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Characterizations and Metrization 
of Proper Analytic Spaces 

J. E. Jayne (London) 

I. Introduction 

All topological spaces considered will be completely regular Haus- 
dorff spaces. The word space will refer to such a topological space. 
A proper map from a space X into a space Y is a closed continuous map 
with compact point inverses. An analytic subset of a Polish (separable 
completely metrizable) space is one which is either empty or the image 
of the Baire 0-dimensional product space N N, where N =  {1, 2 . . . .  }. 

Definition. A proper analytic space is one which admits a proper 
map onto an analytic subset of a Polish space. A proper Borel space is 
one which admits a proper map onto a Borel subset of a Polish space. 

Characterizations of proper analytic and proper Borel spaces are 
given in Theorems 1 and 2, respectively. Necessary and sufficient condi- 
tions for the metrizability of such spaces are given in Theorem 3, and an 
application to the metrization of compact convex subsets of Hausdorff 
locally convex real topological vector spaces in terms of the topological 
and Baire set structures of their sets of extreme points is given. In partic- 
ular, as part of Theorem 4, we prove: If X is a compact convex set 
whose set of extreme points g(X) is a proper analytic space, then X is 
metrizable if and only if 8(X) with its algebra of Baire subsets is a 
standard Borel space. 

By the Baire sets of a space we mean the smallest family of sets 
containing the zero sets of continuous real-valued functions (that is, of 
the form Z ( f ) =  {x: f (x )=0} )  and closed under countable unions and 
complementation. By the Borel sets of a space we mean the smallest 
family containing the closed sets and closed under countable unions and 
complementation. For  a metrizable space the Baire and Borel sets 
coincide. 

A measurable space is a pair (X, ~r where X is a set and J f  is a 
family of subsets closed under countable unions and complementation. 
A standard Borel space is a measurable space which is measurably 
isomorphic to a measurable space (X, ~),  where X is a Polish space 
and ~ is its algebra of Borel sets. The word standard derives from the 
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fact that two Polish spaces are Borel isomorphic if and only if they have 
the same cardinality (which must be finite, countable, or that of the 
continuum). Note that Borel isomorphic means that there exists a 
bijective point map which takes Borel sets to Borel sets in both directions. 
The reader is referred to [2] for an exposition of the theory of standard 
Borel spaces and their applications, to [14] for the classical theory of 
analytic sets, and to [8] for a survey of the recent theory of non metrizable 
analytic sets. 

Proper analytic spaces have been referred to as ZS-spaces by the 
author [12] and proper Borel spaces coincide with Frolik's bianalytic 
spaces ([5, 6, 8].) 

2. Characterizations of  Proper Analytic Spaces 

Let ~vg be a family of subsets of a set X. The Souslin-dg subsets of X 
are the sets admitting a representation of the form 

U U n,, 
o E N  N s <  

where s < a  means that s is a finite restriction of the sequence of inte- 
gers a. The space of bounded continuous real-valued functions on a 
space X is denoted by C* (X), the family of zero sets of functions f~  C* (X) 
by ~ (X), and the family of closed sets of X by ~-(X). The Stone-l~ech 
compactification of a space X is denoted by ]~X. If 

f :  X ~ Y  

is a function and A ___X then flA will denote the restriction o f f  to A. 

A space X is defined to be analytic if it is a Souslin-ff(/3X) subset 
of fiX. It is the case that a subset of a Polish space is analytic in the 
classical sense if and only if it is analytic in this sense ([3, 8]). The contin- 
uous image of an analytic space is analytic ([3, 8]), the countable product 
of analytic spaces is analytic ([5, 8]), and every analytic space is Linde- 
16f [8]. 

Theorem 1. For any space X the following are equivalent: 

1) X is proper analytic, 

2) X is a Souslin-~(flX) subset of  fiX, 
3) X is homeomorphic to a Souslin-.~(K) subset of  some compact 

Hausdorff space K, 
4) X is homeomorphic to a closed subset of a product space K x A for 

some compact Hausdorff space K and an analytic subset A of  some Polish 
space. 



Characterizations and Metrization of Proper Analytic Spaces 53 

The following properties of proper maps will be used: 
1) If {fr: 7~F} is a class of proper maps (F denotes an index set) of 

spaces Xr onto spaces Y~ respectively, then the map 

�9 : lq x,-,l-I ~ 
y~F yeF 

defined by 
�9 ({x~: ~er})={L(x,): ~er} 

is a proper map [16, p. 297]. 

2) If f :  X --* Y and g: Y-" W are continuous maps on the respective 
spaces and 

gof: X ~ W  

is a proper map, then both f and g are proper maps [13, p. 1583]. 
An immediate consequence of this result is 
3) If {fy: 7~F} is a class of continuous maps from a space X into 

spaces Yr respectively, at least one of which is proper, then the map 

~,eF 

defined by 
�9 (x)= {L(x): y~r} 

is a proper map. 

Proof of Theorem I. 1)~2) Let f be a proper map of X onto a metriz- 
able analytic space A. Let A denote a metrizable compactification of A 

and fi: f iX- ' ,4  

the Stone extension o f f  Then, since f is proper, 

f - ,  of[x] =x .  

Since A is analytic in the metric space A, it has a representation of the 
form 

A =  U N ~, ~ ( / i ) .  
o 6 N  N S < @ 

For each s let f~e C* (/i) be such that F~ = Z (fs). Then 

x= U Nz(s~o}) 
r162 N $ < a 

and for each s fs ~ f ~ C* (/$ X). 
2)~3) Trivial. 

3)~4) Suppose X is homeomorphic to a Souslin-~(K) subset X' of 
a compact space K. Then X' is analytic ([3], [8]) and has a representation 
of the form 

x'= U N z(f~), Lec*(K). 
~r N s <  o 
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Reindex the countable set {fs: a~NN, s<tr} by {f,: n = l , 2  . . . .  } and 
define 

O: K--*R N 
by 

~ (x)=( fl (x), f2 (x) .. . .  ). 
Then 

O-'o+[X']  = x '  

and, since ~ is continuous, �9 IX']  is an analytic subset of R u. The map 

g: X ' ~ K •  
definded by 

g (x) = (x, a~ (x)) 

is a homeomorphism of X'  into K x r [X'] .  

Let 
h: K • ~ [X']  ~ @ [K]  x O [X']  

be defined by 
h(x, y)= (a~(x), y). 

Since the set 
A={(y,y):y~[X']} 

is closed in ~ [ K ] x ~ [ K ' ]  and since h-l[A]=g[X'], we have that 
g [X']  is closed in K x O [X'] .  This completes the argument since X is 
homeomorphic to g [X'].  

4)~1) Suppose X is homeomorphic to a closed subset X'  of K x A 
where K is compact and A is a metrizable analytic space. Let .4 denote a 
metrizable compactification of A and 

A = U n Z (g~), g~ e C* (A), 
~ E N  N s <  

be a representation of A in A. Then 

K x A =  U NK• 
@EN N $ < ~  

is a Sousl in-~ (K • A) representation of K • A, since each 

K x Z(g~)=Z(hs) 

where h ~  C* (K • A) is defined by 

hs (x, y) = gs (Y). 

Let X'  denote the closure of X'  in K x .,t. Consider the functions hs as 
being restricted to X' and reindex them by {h,: n =  1, 2 . . . .  }. 

Define O: ~ - -*R N 
by 

,f (x) = (hx (x), h 2 (x) . . . .  ). 
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Then ~[x, is a proper map and q~ [X']  is an analytic set of the metric 
space R N (since a closed subset of an analytic space is analytic and the 
continuous image of an analytic space is analytic). 

Remarks. 1) Frolik [11, Theorem2] has shown that an analytic 
subspace A of a space X is a Souslin-Z(X) set if and only if there exists a 
continuous map f of X onto a separable metric space such that 

f E A ] ~ f [ X \ A ] = ~ .  

The equivalence of 1), 2) and 3) in Theorem 1 is an elaboration of this 
observation. 

2) The implication 1)~2) in Theorem 1 implies that proper analytic 
spaces are in fact analytic. 

3) The fourth part of Theorem 1 implies that the class of proper 
analytic spaces is the smallest class of spaces containing all compact 
spaces and all analytic subsets of Polish spaces which is closed under 
the operations of taking finite products and passing to closed subspaces. 

4) The proper analytic spaces form a strictly smaller class of spaces 
than the analytic spaces. The integers plus one point from its Stone-(~ech 
compactification is an analytic non proper analytic space. 

Frolik has extensively studied the class of proper Borel spaces. He 
has proved 

Theorem [8]. For any space X the following are equivalent: 

1) X is a proper Borel space, 

2) X is a Baire subset of  its Stone-~ech compactification, 

3) X is homeomorphic to a Baire subset of  some compact space, 

4) Both X and ( f l X ) \ X  are analytic spaces. 

The name bianalytic, used by Frolik, derives from part 4 of this 
theorem. 

Theorem 2. For any space X the following are equivalent: 

1) X is a proper Borel space, 

2) X has a disjoint representation of  the form 

x= U Nz(L), L~C*(flx), 
~ N  N s <  

(Disjoint means that for tr ~etr' we have n z ( f s )  ~ n z ( f s )=~. )  

3) x is homeomorphic to a closed subset of  a product space K • B for 
some compact Hausdorff space K and a Borel subset B of  some Polish 
space. 
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Proof. 1)~2) First note that a subset C of a Polish space has a 
disjoint representation 

c= U Nz(g,), g~C*(Y), 
~ E N  N i < 

if and only if it is a Borel subset 1-10, p. 210]. 
Let f be a proper map of X onto a Borel subset of a Polish space and 

let/} be a metrizable compactification of B. Let 

f: flx--,~ 
be the Stone extension of f and let 

B =  U ~ Z(gs), g~C*(B)  
r  $ < @ 

be a disjoint representation of B in/]. Then 

X =  U N Z ( g s ~  , gsof~C*(flX) 
r  N S < r 

is a disjoint representation of X in fiX. 
2 )~  i) Suppose X has a disjoint representation 

x= U Nz(L), L~c*(flx). 
@ E N  N s <  @ 

Reindex {f ;  a e N  N, s<a} by {/,:  n=  1, 2 .. . .  } and define 

r flX--,R N 
by 

~(x )=(  fl  (x), fz  (x) ... .  ). 

Then ~lx is a proper map and ~ [X] is a Borel set in R N since it has the 
dispoint representation 

R E X ] =  U ("~z(f~o~-l), L o ~ - t e c * ( ~ E f l X ] )  �9 
@ ~ N  N $ < @ 

I )~3)  Let f be a proper map of X onto a Borel subset B of a Polish 
space. Then as in the proof of 3)~4) of Theorem I we obtain that X is 
homeomorphic to a closed subspace of (fiX) • B. 

3)~2) Suppose X is homeomorphic to a closed subset X' of K • B 
for a compact space K and Borel subset B of a Polish space. Let/~ be a 
metrizable compactification of B and 

B =  U ~ Z(f~), f~C*(/~) 
c l a n  N S < r 

a disjoint representation of B in/].  
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Let X -7 denote the closure of X '  in K x 13. Then 

x'= U N z(LI~), f s l~eC*(X --7) 

is a disjoint representation of X'  in X'. 

Let 
~: f lX ' - ,  X ~ 

be the Stone extension of the identity map of X'  onto itself. Then 

x'= U NZ(g~), 
o E N  N $ < 0 

g~= Ll~ o "it C* (fl X'), 

is a disjoint representation of X'  in fiX'. 

Remark. The techniques used in proving the equivalence of 1) and 2) 
in Theorem 2 also prove: 

I fX  is a proper Borel space and A is a Souslin-Z(X) set, then A has a 
representation 

A= U Nz(L), L~c*(x)  
~ E N  N S < ~r 

with disjoint summands if and only if A is a Baire subset of X. 

3. Metrization of Proper Analytic Spaces 
We will need the following results: 

A. (Frolik [9].) If X is a LindeRif space and d is an algebra of 
bounded continuous real-valued functions on X which generate the 
topology of X, then every f e  C*(X) is the pointwise limit of some 
sequence in d .  

B. (Okuyama [18].) If X admits a proper  map onto a metrizable 
space and the diagonal in X x X is a G~ set, then X is metrizable. 

A family of subsets 9~ of a space X is said to be point countable if 
each point of X is contained in at most countable many members of ~ .  

C. (Nagata [17].) If X admits a proper map onto a metrizable space 
and has a point countable collection ~ of open sets such that for each 
pair x , y ~ X ,  x+y,  there is a UEq/such  that x e U  and yeU, then X is 
metrizable. 

Theorem 3. For a proper analytic space X the following are equivalent: 
1) X is metrizable, 
2) X x X  is perfectly normal (that is, normal and ~ - ( X x X ) =  

:~ (x  • x)), 
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3) The diagonal in X x X is a Souslin-~r (X x X) set, 

4) X is Baire isomorphic to a metrizable space, 

5) The family of Souslin-~oLr (X) sets is countably generated; that is, 
there exists a sequence {Z.: n=  1, 2, ...} of  zero sets such that the Sous- 
lin-.~r (X) sets are the smallest family of sets containing this sequence and 
closed under the Souslin operation. 

Proof Clearly 1)~2)~3)  and 1)~4). 1)~5) since a metrizable analytic 
space has a countable base. It suffices to demonstrate that 4)~3)~1)  
and 5)~1). 

4)~3) We first prove that the Baire sets in X x X coincide with the 
smallest family ~ of subsets closed under countable unions and countable 
intersections such that for each projection 

7r.: X x X ~ X ,  n = l ,  2 

onto the first and second coordinates and for each Baire set B in X 

~ ;  1 [B]  e a~ .  

Since X • X is analytic, it is Lindel6f. Thus by result A above every 
f e C *  (X x X) is the pointwise limit of a sequence of functions from 

= {glx • x: ge C* (fl X • fl X)}. 

Therefore the smallest family of functions containing ~r and closed under 
pointwise sequential convergence is the space of all real-valued Baire 
functions on X x X. 

Since each ge  C* (fiX x fiX) is the uniform limit of polynomials in 

{h o n.P}, n = 1, 2 

where n.P is the projection on the n-th coordinate of f iX •  and 
he C* (fiX) (Stone-Weirstrass theorem), 

(glx. x)- 1 [B ]  e act ~ 

for every Baire set B in the real line R. Now since every Baire function 
on X • X is obtained from these functions by iterating pointwise se- 
quential limits, ~b-1 [B]eoCg for every Baire function ~b and every Baire 
set B in R. Therefore 9~ contains the family of Baire sets of X x X. 

On the other hand, for each projection 

it.: X x X ~ X ,  n = l , 2  

and each Baire set in X we have that n-1 [B] is a Baire set in X x X, 
since n. is continuous. Therefore ~ coincides with the family of Baire 
sets of X x X. 
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We have just proved that the Baire sets of X x X are completely 
determined by the Baire sets of X. Thus, if X is Baire isomorphic to a 
metrizable space M, then M must be separable and analytic [7, p. 1114, 
part C], and so the Baire sets in M x M are also completely determined 
by those in M. Thus X x X is Baire isomorphic to M x M and so the 
diagonal in X x X must be a Baire subset, since this is the case for the 
metrizable space M x M. Therefore the diagonal in X x X is a Souslin- 
Z (X x X) set. 

3)~1) We have for the diagonal d _~X x X 

"t= U Nz(L), Lec*(x• 
~EN N s < a 

Reindex {f~: creN n, s<a}  by {f.: n = l , 2  . . . .  } and define 

q~: X x X ~ R  N 
by 

Then 
r x9  = (A (x,, x~), f~ (xl, x~) .. . .  ). 

@- lo@[~]=A.  

Since X is proper analytic, there is a proper map r of X onto a 
metrizable analytic space A. The map 

~b x ~b: X x X - ~ A x A  
defined by 

r x r  x2)=(r (xl), r 

is proper. Therefore the map 

C x ~ b x r  X x X ~ A x A x R  N 
d ~ n ~  

is proper and 

(~ X ~b X ~(Xl ,  X2)= (~1~ (Xl) , ~b (X2) , ~ (Xl ,  X 2 )  ) 

(@ x @ x r o (r  x ~ x r [~2 = A .  

Since d is closed in X x X 

(~ x 4, x r I-a] 

is closed in the metric space (~b x ~b x ~ ) [ X ]  and is therefore a G 0. So 
/I is a G~ in X x X, which implies that X is metrizable by result B above. 

5)31)  Suppose {Z,: n = l , 2  . . . .  } generates the Souslin-Z(X) sets. 
I f x ,  y X ,  x4:y,  then there is a Baire set B such that 

x e B ,  y e X \ B .  
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We have 
B= U Nz , 

o '~N N s < o 

Z ~ { Z . :  n = l , 2  . . . .  }. 

Since x~B, x ~ ( ]  Z~ for some ao~N N, and since yCB, yCZ~, for some 
s < o o  

s' < a o; that is, 
y ~ X \ Z ~ , ,  x~Z~,. 

Thus {X \ Z . :  n =  1, 2 .. . .  } is a point-countable collection of open sets 
such that for all x + y  there is an m such that x ~ X \ Z , ,  and yeZm. 
Therefore, since X is proper analytic, it is metrizable by result C above. 

Remarks. 1) The hypothesis in Theorem 3 can not be weakened to 
include all analytic spaces. The integers plus one additional point from 
its Stone-(~ech compactification is a non metrizable analytic space which 
satisfies 2) through 5) of Theorem 3. 

2) A form of part 3) of Theorem 3 was announced in [11] and a form 
of part 4) was announced in [12, Theorem 1.12]. 

4. Applications to Compact Convex Sets 

MacGibbon [15] has proved that a compact convex subset X of a 
Hausdorff locally convex real topological vector space is metrizable if 
its set of extreme points g(X) is a Souslin-~(X) subset. In brief she 
considers the map f :  X x X - , X  defined by f (x ,y)=�89 The dia- 
gonal in 8 (X)xS(X)  is equal to f - l [~f (X)]  and is thus a Souslin- 
.~(~f(X) x 8(X)) set. Since g(X) is Souslin-~(X), it is proper analytic 
and thus by Theorem 3.3) above 8(X) is metrizable. Since a metrizable 
proper analytic space is the continuous image of N N, X must be metrizable 
by the main theorem of [3] which states that X is metrizable if ~(X) is 
the continuous image of N s. 

In the same vein we have 

Theorem 4. I f  X is a compact convex set whose set of extreme points is 
a proper analytic space, then the following are equivalent: 

1) X is metrizable, 
2) 8(X) with its own algebra of Baire subsets is a standard Borel space, 
3) 8(X) with its own algebra of Baire subsets is Baire isomorphic to a 

metrizable analytic space (equivalently, to an analytic subset of R), 

4) The Boolean algebra of Baire subsets of 8(X) is free on a countable 
number of generators or the cardinality of g(X) is at most countable, 

5) Every point of 8(X) is a Baire subset of g(X) and there exists a map 
of the algebra of Baire sets of g(X) onto the algebra of Baire sets of some 
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metrizable analytic space A with the property that 

nl c_B2 if and only if f (no~f (B2) .  

Proof. 1)~2) The set of extreme points of a metrizable compact 
convex set is always a G~ subset [1, p. 34] and is thus completely metriz- 
able. 

2)~3) Trivial. 
3)~  1) This follows directly from part 4) of Theorem 3. 
2)~4) An uncountable standard Borel space is isomorphic to the 

Cantor set 2 N with its algebra of Borel sets and this latter algebra is free 
on a countable number of generators [20, p. 107]. 

4)~2) Let :~ denote the algebra of Baire subsets of the space 8(X). 
Suppose ~' is free on a countable set of generators. Then there exists a 
Boolean algebra isomorphism f of the algebra of Borel sets of the 
Cantor set 2 s onto :~. The map f is induced by a point map ~b from dr(X) 
onto 2N; that is, 

~b-1 [B] = f(B) 

for every Borel set B of 2 N [19, p. 13]. Thus (dr(X), ~ )  is isomorphic as a 
measurable space to 2 N with its algebra of Borel sets. Therefore (dr(X), ~ )  
is a standard Borel space. 

3)~5) Trivial. 

5)~3) Suppose f is the map in part 5). Then from [21, p. 137] there 
exists a point map ~b of dr(X) onto A such that 

~b [B] = f(B) 

for every Baire subset B of dr(X). The map ~b is a Baire isomorphism. 

Remarks. If dr(X) is a Souslin-~(X) subset, then it is proper analytic 
by Theorem 1. The converse is false since any compact space may be 
represented as the extreme points of a compact convex set. 

The problem remains open as to whether or not the hypothesis that 
dr(X) be proper analytic may be dropped from Theorem 4. If the card- 
inality of dr(X) is at most countable, then the hypothesis may be dropped 
since dr(X) will be the continuous image of the discrete space N and so 
of N N. Thus the problem may be phrased as: 

If X is a compact convex set and dr(X) is Baire isomorphic to 2 N, 
then is X necessarily metrizable? 
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