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On Moduli of Algebraic Varieties. I 

Herbert Popp (Mannheim) 

Introduction 

It is natural in the theory of classification of projective, smooth 
varieties and compact complex manifolds to consider varieties and 
manifolds as fibre spaces. 

Two types of natural fibrations for smooth, projective varieties and 
compact, complex manifolds are known. The first type is given by the 
pluricanonical mappings of a variety or manifold V; the second type is 
given by the Albanese mapping of V. 

For  surfaces the classification by Enriques 1,6] and Kodaira  1-15] is 
done mainly according to their natural fibrations. 

The investigation of the classification problem and the mentioned 
natural fibrations for varieties and manifolds of dimension >3  has 
started only recently. Very interesting results have been obtained by 
Ii taka [12] and Ueno 1-28]. 

This is the idea: 
To classify smooth, projective varieties and compact complex mani- 

folds of a fixed dimension n one should consider their natural fibrations 
and distinguish them according to the nature of these fibrations. Then 
one can investigate and classify the fibrations on the lines of the papers of 
Kodaira  [14] and Namikawa/Ueno 1,24"]. 

However, there are smooth, projective varieties and compact, com- 
plex manifolds where the natural fibrations are "trivial". 

The pluricanonical fibrations do not give information if the Kodaira  
dimension 1 of V is equal to the dimension of V or if the Kodaira  dimen- 
sion of V is 0 or - ~ .  The Albanese fibration is "trivial" if the Albanese 
variety is zero or if the Albanese mapping is generically finite. 

To classify projective varieties and complex manifolds, where one 
of these fibrations is "trivial", other methods than the theory of fibre 
spaces are needed. The present paper develops a method which gives for 

t Let K v be the canonical line bundle of an irreducible, smooth projective variety V. 
If dim H~ O (K~ m))= N + I ->_ 2, m an integer => 1, we have a rational map ~,,K: V~ pN 
of V into the projective space pN. In this case the Kodaira dimension r(V) of V is defined 
by x(V)=max(dim ~b,,,hll )).where N0= {melq; dim H~ O(K~m))>2}. 

meNo 
If dim H~ O(K~vm))< 1 for all men and dim H~ O(K~m)= 1 for one m, we define 

x(V)=O. 
If H~ O(Kv~m))=0, meN, we define x(V)= - oo. 

1 Inventiones math.,VoL 22 



2 H. Popp 

certain unruled, smooth, polarized varieties (V0, y-0), where one of the 
canonical fibrations is trivial, a coarse moduli space for the global 
deformation functor of (Vo, y-o). For instance, for a polarized K-3 surface 
(Vo, y-o) an algebraic space is constructed which is a coarse moduli space 
for the global deformations of (Vo, 3s 

We give a description of the method. 
Let (Vo, 3s be a smooth, irreducible, projective variety of dimension 

n, defined over the complex numbers C and with a polarization y-0- 
Let (V/S, Y-~S) be a smooth, projective family of polarized varieties 

with a connected noetherian C-scheme S as basis such that one of the 
geometric fibres of (V/S, Y./S) is isomorphic to (V0, y-o). The fibres of such 
a family (V/S, Y-~S) are called global deformations of (V o, y-o). 

Assume in the following that the families (V/S, Y-~S) satisfy one of the 
three conditions: 

1) The polarization Y-IS is the canonical polarization. 
2) The irregularity of the fibres of the families (V/S, X/S) is zero. 
3) (V/S, Y-/S) is a polarized abelian variety. 

Then consider more generally smooth families (V/S, Y-/S) of polarized 
varieties such that the fibres are deformations of (Vo, y-o). (Notice, (Vo, y-o) 
does not have to be isomorphic to a fibre of(V/S, Y-/S).) Call such a family 
a family of deformations of (Vo, y-o) and let dr be the set of such 
families with basis S up to isomorphism. The collection J/(S), S a 
noetherian C-scheme, is then a contravariant functor from the category 
of noetherian C-schemes S to the category of sets, where to a morphism 
~t: T ~  S a map J/(~t): ~ '  (S) ~ ~ ' ( T )  is defined by associating to a family 
(V/S, Y-~S) the pullback family (V x T/T, 3s x T/T). The functor S ~ Jg(S) 

is called the global deformation functor of the polarized variety (Vo, y-o). 
We want J/(S) to be a proper geometric object of algebraic geometry. 

Thus, we want to represent J /(S)  in the category of schemes or in the 
category of algebraic spaces (see 1-13] for this notion) or to find a coarse 
moduli space for the functor J r  (S) in one of these categories. Using pro- 
jective methods we are able to show that the coarse moduli space for the 
functor ~[g (S) in the category of algebraic spaces exists if (Iio, y-0) belongs 
to one of the following types of polarized algebraic varieties 2. 

a) (V 0, 3s is a (canonical polarized) smooth, projective curve of 
genus g > 1. 

b) (Vo, 3s is a polarized abelian variety. 
c) (V o, 3s is a polarized K-3 surface. 

2 In a forthcoming paper we will give a criterion for the representability of a functor as 
an algebraic space. This criterion will show that the deformation functor for the varieties 
with level n-structure in a)-d) is even representable in the category of algebraic G-spaces. 
(n sufficiently big.) 
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d) (Vo, 3s is a smooth, projective variety, such that the canonical 
sheaf is very ample and contained in 3s (V0, 3s is then, in particular, 
canonically polarized. 

Unfortunately, our method does not show the existence of a coarse 
moduli space for the global deformation functor of a canonical polarized 
variety, because we were not able to prove that the automorphism of 
these varieties operate faithfully on their integral cohomology. 

The existence of the coarse moduli spaces in the cases a) and b) is well 
known. By [22] one knows even that in this cases the coarse moduli 
space is a quasi projective variety. But, our proof is more simple than the 
one given in [22]. In the remaining cases the existence of the coarse 
moduli space in the category of algebraic spaces seems to be unknown. 

The method of the present paper which leads to the existence of such 
a coarse moduli space for Jr is interesting in itself. We would like to 
briefly explain the idea of it. 

We show first that the deformation functor ~/(S) of (Vo,3s can 
locally be linearized if ~t' satisfies one of the conditions 1) or 2) 3, i.e. if 
(V/S, 3s and (V'/S, 3s are two families over the scheme S which 
belong to J/(S). Then, after restricting (V/S, 3s and (V'/S, 3s to 
open subsets of S, there exists a projective embedding of these restriction 
into a fixed projective space pN, such that the families (V/S, 3s 
(V'/S, 3s are locally isomorphic as polarized families if and only if 
these embeddings into pN are projectively equivalent (compare p. 28). 
Furthermore, the fibres of the embeddings into PN/S have a constant 
Hilbert polynomial h(x). Denote by H~,~ ) the Hilbert scheme which 
parametrizes the flat families of subvarieties in pN with Hilbert poly- 
nomial h(x). One shows then that there exists a locally closed and 
connected subscheme H of Hg~ ) which parametrizes "locally" the 
families which belong to J/(S). (Compare Prop. 2.14.) 

The projective linear group PGL(N) operates on H and one proves 
that the geometric quotient of H with respect to PGL(N) in the category 
of algebraic spaces, if it exists, is a coarse moduli space of the functor 
~(S) .  

One of the difficulties of the paper is to show that the geometric 
quotient o f / / b y  PGL(N) exists in the category of algebraic spaces. 

For this purpose we prove in Chapter I that the geometric quotient 
of a connected algebraic group G, operating on a ~-scheme, exists in the 
category of algebraic spaces provided X is of finite type and reduced and 
G operates without fix points and with closed graph on X. The main 
difficulties in applying this result to H arise, because PGL(N) operates 
on H in general with fLX points 4. As a matter of fact the non trivial auto- 

3 The case of abelian varieties gets treated separately in Chapte r  III. 
4 There are also difficulties to overcome if H is not  reduced. In this case one restricts the 
functor ~ / t o  Jr'r, d as explained in Chapte r  II. 

1. 
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morphisms of a deformation (V, 3E) of (Vo, 3Eo) lead to fix points of the 
operation of PGL(N) on H. 

In the cases we have considered this difficulty is overcome by showing 
that there exists a finite galois covering H'  of H which is etale and on 
which PGL(N) operates in a natural way (according to H) proper and 
fix point free. A' shall be the galois group of the covering H'  ---} H. Now, 
the geometric quotient M' of H' by PGL(N) exists in the category of 
algebraic spaces (see Theorem 1.13). On the algebraic space M' the finite 
group operates and the geometric quotient M of M' by A' in the category 
of algebraic spaces also exists. (See Theorem 1.15.) This space M is a 
geometric quotient of H by PGL(N) (in the category of algebraic spaces) 
and also a coarse moduli space for the functor .//(S). 

The construction of the covering H' involves new considerations. 
One has to show that the automorphisms of a deformation (V, 3E) of 
(Vo, Xo) operate faithfully on the integral cohomology of V. This is the 
case if the variety (Vo, ~0) belongs to one of the types a), c) or d) from p. 2. 

Using this fact, one constructs H'  first as a finite, unramified, topo- 
logical covering of H which is galois with galois group A'. By the gen- 
eralized Riemann existence theorem [2], XI, p. 12, the covering H' is 
then automatically a scheme on which PGL(N) operates. 

It is a interesting problem to find other types of polarized varieties 
(V, 3E) over IE for which the automorphisms operate faithfully on the 
integral cohomology of V. In particular, one should decide for which 
algebraic varieties over IE of general type 5 this is satisfied, our method 
leads for such varieties to a coarse moduli space for the corresponding 
global deformation functor. It is well known that a coarse moduli space 
for the deformation functor .tt'(S) of (V o, 3Eo) in the category of analytic 
spaces exists if (V o, Xo) satisfies the statements 1) or 2) from p. 2. (We are 
not quite precise here, one has to modify the functor ./t'(S) and allow any 
analytic space S as basis.) The reason that there is less trouble in the 
category of analytic spaces is that by the results of Holmann [10, 11"1, 
one can factor out in this category from the start the group PGL(N). 
This leads, for instance, to coarse moduli spaces for canonical polarized 
algebraic varieties. 

Finally, we would like to point out that the proof of the existence of 
the geometric quotient M, respectively M' of H, respectively H' by 
PGL(N) (see Theorem 1.13) gives quite explicitly an etale neighbourhood 
of the points PEM, resp., M'. The following is a method for constructing 
an etale neighborhood of a point PeM': Take a point Q~H' which is 
mapped to P under the canonical map qr H '  ~ M'. Let EQ be the orbit 
of Q by PGL(N) which is a closed subscheme of H'. Consider an affine 
open neighborhood W' of Q and an embedding 2: W'---,A n of W' into 

5 An algebraic variety V is called of general type if K (V)= dim V. 
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the affine space AN/IE. Take a linear subspace L of A N of dimension = 
N-dim(Eo) which passes through 2(Q) and which intersects 2 ( E q n  W') 
transversally. Then an open subscheme of the intersection Lc~2(W') is 
an etale neighborhood of P~M'. This shows that if one knows H' well, 
one knows also M'  at least locally well. The description of an etale 
neighborhood of M is a little more complicated. We refer to the proof of 
Theorem 1.15. 

This  paper  has been shor tened  at the suggest ion of  the referee. 

L Geometric Quotients in the Category of Algebraic Spaces 

In this chapter all schemes and all algebraic spaces are separated and 
k-spaces, where k is an algebraically closed field. See [ 13] for the definition. 
The group G is an algebraic group, also defined over k. An irreducible, 
reduced k-scheme of finite type is called in the following a k-variety. 

I f X  is an algebraic space and G a group we say that G acts on X if for 
all algebraic spaces Z the group Hom(Z,G)  acts on Hom(Z ,X)  in a 
functorial way. 

An algebraic space on which the group G acts will be called a G-space. 
G-morphism f :  X-~ Y between G-spaces X, Y are defined in the usual 
way, i.e., for every algebraic space Z the map Horn(Z, X)-~  Hom(Z,  Y) 
induced by f is compatible with the actions of Hom (Z, G) on Horn (Z, X) 
respectively Hom (Z, Y). 

1.1. Definition. X shall be a G-space. We say that a representable 
etale covering ~, 

R ,~V ~ , X  
/t2 

ofX (V is a k-scheme and R a subscheme of Vx V, see [13]) is a G-stable 
k 

etale covering of the G-space X if there exist morphisms of schemes 
q~': V x G --* V and ~" :  R x G --* R such that 

1) # ' :  V• G--~ V defines an action of the group G on the scheme V. 
(See [22].) 

2) #"  is induced by qB', i.e. #"  is the restriction of the morphism 
q~ 'x~ ' :  (Vx V)x(GxG)~-(V•215 to the subscheme 
R x A~, where A~ is the diagonal of G x G. The diagram 

rtl xld It x id__4. R x G - - - ~ , V x G  X x G  

R ~ V " , X  
~2 

is commutative and defines therefore an action of G on X. 
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3) The action of G on X, defined by ~, gives the G-space X. 

1.2. Definition. A G-space X is called trivial if for every algebraic 
space Z the group Horn(Z, G) acts trivially on Horn(Z, X). 

1.3. Remark. If G is a connected algebraic group which operates 
trivially on an algebraic space X of finite type over k, then G operates 
trivially on every representable G-stable etale covering V of X. For the 
proof let V be any representable and G-stable etale covering of the G- 
space X. Then the stabilizer of every k-valued point P of V is a subgroup 
Sp of G of dimension = dim G. This implies Se = G, because G is connected 
and Sp is closed. Hence, G operates trivially on V. 

Let X be a G-space and Y an algebraic space. A G-invariant morphism 
is a G-morphism f :  X ~ Y where Y is G-trivial. (Note that in this case 
one has for the map of sheaves Or Y* G 0 x, 0 x = sheaf of fixed elements 
of Ox under G.) 

1.4. Definition. An algebraic space Y together with a G-invariant 
morphism tp: X --~ Y is called a quotient of X by G, if for every G-invariant 
morphism f :  X ~ Z there exists a unique morphism f :  Y---, Z such that 
the diagram 

is commutative. 

1.5. Definition. Let G be a group operating on an algebraic space X. 
A geometric quotient of X by G in the category of algebraic spaces, is a 
pair (Y, q~) consisting of an algebraic space Y and a G-invariant morphism 
q~: X ~ Y, satisfying 

1) the map ~o: X ~ Y is surjective (see [13], 107) and for any algebraic 
closed field k* which contains k, the k*-valued points of Y are precisely 
the orbits of the k*-valued points of X. 

2) The structure sheaf of Or is the sheaf O~, consisting of the elements 
of Ox, which are kept fixed under G. 

3) For  every G-invariant map f :  X - ~  Z there exists a unique map 
f :  Y ~  Z such that the diagram 

Y 
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is commutative, in other words, Y is a quotient of X by G and in partic- 
ular uniquely determined. 

1.6. Theorem. Let X be a normal k-variety 6. G shall be an irreducible, 
algebraic group, defined over k which operates freely and with closed graph 
on X. Assume also that, if Pc: G---} E e is the canonical map of G onto the 
orbit E e of an arbitrary point P~X(Spec(k)),  the differential map of the 
tangent spaces dpe: t(G)l--~t(Ee)e is surjective 7. Then there exists a 
separated algebraic space Y of finite type over k which is a geometric 
quotient of  X under the action of G in the category of algebraic spaces. 

The proof of this theorem will be done in several steps. We recall first 
some notations from the theory of G-varieties which can be found in 1-27]. 

Let X be a reduced k-scheme of finite type and G an algebraic group 
defined over k and operating on X in the sense of schemes, see [22]. 
Let Y be the quotient set of X(Spec (k)) by G, endowed with the quotient 
topology and ~o: X(Spec (k))-, Y the canonical mapping of X(Spec (k)) 
onto Y. It is clear that Y is a topological noetherian space. Y carries a 
canonical structure of ringed space, in fact, if qg,(Ox) is the direct image of 
the structure-sheaf Ox on Y then G operates on ~o,(Ox) and we take 
Or = ~o,(Ox) G the subsheaf of ~o,(Ox) left invariant by G. Denote this 
ringed space by (Y, Or). If the ringed space (Y, Or) is a k-scheme, this 
scheme, together with the map tp is a geometric quotient of X by G in the 
category of k-schemes in the sense of the following definition: 

1.7. Definition. Let X be a reduced k-scheme and G an algebraic group 
operating on X. A geometric quotient of X by G in the category of k-sche- 
mes consists of a k-scheme Yand a morphism ~0: X---~ Y, satisfying 

(1) For  each closed point y~ Y, tp- x (y) is an orbit of G on X. 
(2) For  each invariant open subset U c X there exists an open subset 

V c Y such that U = q~- 1 (V). 

(3) For  each open set V ~  Y, ~o*: r(V, Or)~( tp- l (V) ,Ox)  is an iso- 
morphism of F(E O r) onto the ring F(go-t(V), Ox) ~ of invariant functions 
on ~0 -1 (V). 

Remarks. a) One shows as in [23], prop. 5, that a geometric quotient 
in the sense of Definition 1.7 is also a quotient of X by G in the category 
of k-schemes. 

b) The definition for the geometric quotient of X by G in the category 
of k-schemes, which we use, is weaker than the definition used by Mum- 
ford [22], p. 4. There are however cases when these definitions coincide. 
One such situation is described by the following proposition: 

6 The irreducibility of X is actually not necessary. 
v In characteristic 0 this is always true, compare [3], p. 180. 
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1.8. Proposition. X is a k-scheme on which the group G operates. As- 
sume that (Y, r is the geometric quotient of X by G in the category of 
k-schemes. Assume further that there exists a section r: Y--~X over 
r X--~ Y Then (Y, qg) is a geometric quotient of X by G in the sense of 
[22], p. 4. 

Proof. It is easy to see that the existence of the section r: Y---~ X 
implies that the map r X ~  Y is universally submersive, i.e., for all base 
extensions Y ' ~  Y by a k-scheme Y', if X'  = X • Y' and (p': X ' ~  Y' are 

u 

induced by r then a subset U ' ~  Y' is open if an<t only if r is 
open in X'. 

Criterion for geometric quotients. Let X and U be k-schemes of finite 
type and (p: X--* U a surjective morphism such that G-orbits on X map 
to distinct points of U. (G-orbits are always G-orbits of k-valued points 
of X.) Then the k-valued points of  U can be identified with the orbit set 
Y= X/G. Now, if there exists a section of X over U, i.e., a morphism 
r: U- - ,X  such that r U ~ U  is the identity morphism, one shows 
that the ringed space (U, Or) can be canonically identified with (Y, Or) 
by the map r and that (U, Or) is therefore a geometric quotient of the 
G-scheme X. (Geometric quotient in the sense of Definition 1.7 and by 
Proposition 1.8 also in the sense of 1"22], p. 4.) 

We would like to indicate the proof of this fact: 
Clearly, the morphism X * ~ U  gives a morphism of sheaves 

tp*: Ov--,O~. The section r: U - * X  defines a morphism Ox "* ,Or 
which has, restricted to 02,  a trivial kernel, because an element f in Ox G, 
considered as a function on U, is the zero function if and only i f f  is zero 
in Ox and therefore zero in 02. (Notice that Ox has no nilpotent elements, 
X is a k-scheme of finite type where k is an algebraically closed field.) 
Hence, r*: O~--~Ov is injective. Now the equation r*otp* =Id* on Ov 
implies that r* is an isomorphism form Ox G onto 0 v and this shows the 
statement. 

Let X be a reduced k-scheme of finite type on which the algebraic 
group G is operating with finite stabilizers. Let the operation of G on X be 
defined by ~: X x G - * X .  F c X x X  shall be the graph of 4, i.e., 
F= {(x, ~(x, g))=(x, g(x)); x ~ X ,  g~G}. 

We assume that F is closed in X x X (in the Zariski topology). Let U 
k 

be a reduced k-scheme of finite type and i: U - ,  X be a k-morphism from 
U to X. (In the following U is mainly a subscheme of X and i: U ~ X  the 
embedding.) q: U-~  Yshall be the mapping of U(Spec (k)) in Y, defined 
by ~poi. 

Consider the fibre products U x X = { ( u , x ) ;  (u,x)~U(Spec(k))x 
X(Spec(k)) and q(u)=~p(x)}, r 
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Claim. U x X is a closed subset 8 (in the Zariski topology) of U x X. 
g k 

Take X • X with the Zariski topology and let Y x Y be the quotient of 
k 

(X k x X) (Spec (k)) modulo G x G in the sense of topological spaces. Then 

the map tp x ~p: (X k x X) (Spec (k))-. Y x g is continuous. Also, the map 

(i, Id): U •  Id=ident i ty  of X, is continuous. Hence, the 
composit map 

U x X  ~i, ld)>x>(x  ~• Y x  Y, 

which is the map (q, tp), is continuous. Now F is closed in X x X if and 
k 

only if the diagonal d r of Y x Y  is closed in Y x Y  and since U•  X =  
(q, r (dr) the assertion follows, r 

As U • X is closed in U x X, it is in a canonical way a reduced k- 
Y 

scheme of finite type. This k-scheme is in the following denoted by U x X. 
r 

The group G acts in a natural way on U x X and on U x X by the rule 
r 

g((u,x))=(u,g(x)), xsX(Spec(k))  and we have a canonical map 

U • X Y ~ X induced by the projection U • X - * X  which is a G-mor- 
Y 

phism. We have also a morphism tp: U • X--~U induced by the pro- 
r 

jection U x X - , U .  This morphism maps distinct G-orbits of U x X 
u 

to distinct points of U. Furthermore the map U s , U x X defined by 
r 

s (u)= (u, i(u)) is a section with respect to ~p. This implies, see p. 8, that U 
is the geometric quotient of U x X by G and also that U x X is irredu- 

r r 

cible, provided U is irreducible. The last statement can be shown as 
follows: 

Consider the map U •  ~ ~ U •  defined by 6((u,g))=(u,g(u)), 
Y 

where u and g are k-valued points of U, respectively G. This map is 
surjective for the k-valued points. Assume U x X = V1 u V2, where I/i, V2 

u 

are closed subschemes of U x X with V 1 ~ V 2 and V 2 • V 1. 6-1(V 0, 6-1(V2) 
Y 

are then closed subschemes of U • G and 6-1 (V l ) u  6-1(V2 ) = U x G. This 
contradicts the irreducibility of U • G if U is irreducible. Q.E.D. 

The stabilizers of the action of G on X are finite and hence, the fibres 
of the map 6: U x G - ,  U x X are finite. By the dimension theorem one 

u 

concludes from this that 

dim (U x X ) = d i m  (U x G)=dim U + d i m  G 
and 

dim (U x X ) = d i m  (X) if dim (U)=dim ( X ) - d i m  (G). 

s Only the k-valued points are considered. 
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We go now back to the situation of Theorem 1.6. 

1.9. Main Lemma. Let X be a normal k-variety and G an irreducible 
algebraic group which operates freely on X with closed graph F. Then there 

Itl 
exists a representable etale covering R = X ' •  X'  ~X' ~ , X  which 

X it2 

is G-stable, and there exist schemes ~7 and R of finite type over k which are 
geometric quotients of  X', respectively R by G (in the sense of Definition 1.7) 

such that the induced - - ~ - *  maps R _ ,X  define an etale equivalence equation 
lt2 

on X -7. The diagram R ~ ~,X ~ defines therefore an algebraic space Y and 
~2 

this space Y is a geometric quotient of X under the action of G in the cate- 
gory of algebraic spaces. 

Proof. We use the following result of Seshadri, see 1-27], Proposition I. 

1.10. Proposition. Let X be a normal k-variety and G an algebraic 
group which operates with finite stabilizer on X. The orbit map pp" G---~ Ep 
shall satisfy the assumption of Theorem 1.6 for all points P e X .  Given an 
orbit E of G on X there exists a G-stable open subset W of  X containing E 
and an irreducible, normal, locally closed subvariety U of W of dimension 
dim ( X ) -  dim (E), which intersects E transversally infinitely many points, 
such that the morphisms f: U x W--* W and •: U x G--~ W, where ~c is the 

Y 

composite of the maps ~ and f via U • G ~ ~ U x W ~ ~ W, have the 
following properties: r 

1) f is surjective and quasi finite, i.e. V x~ W, f - l ( x )  is not empty and 
finite. 

2) The geometric quotient of  U • W under G exists (in the category 

of k-schemes) and is isomorphic to U. 

3) The map ~ is etale. 

4) The field extension k(U x W)/k(W), k(U x W)=function field of  

U x IV,, is finite separable and ifG operates freely on X, t3 is an isomorphism 
Y 

and therefore f etale. 

Using this proposition of Seshadri we can pick a finite open covering 

UW/ /o f  X and normal locally closed subvarieties U i of W~ such that 
i=1  

Ui x W ~  W~ are etale maps and satisfy the statements of Proposition 1.10. 
n 

Then x ' = L i ( U i x  W~) ~ X  is a representable etal covering of X. If 
i=1  

R denotes X ' x  X', the diagram R ~' ;X'  defines an etale equivalence 
X rr 

relation in the category of schemes with X as quotient. (Compare [13], 
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p. 93.) R - - - } X '  '~ , X is a G-stable etale covering of X, where the opera- 
It2 

tion of G on R is as follows. 
Consider the set of k-valued points R (k) of R, i.e. 

R(k)= {(x'l,x'2); x'i~X'(k) and n(x0=lr(x2)}. 

If we let X' = L I  (u, x w~) we can write x'l =(ul, w~), x~ =(u2, w2) and we 
i 

get (x'l, x2)~R(k ) if and only if w I = w: as elements of X(k). This implies 
in particular that u: =g0(ul) with g0~G(k). The operation of G on R is 
then defined by the rule 

g((u 1, w~), ( / ' /2,  W2))=((Ul, g(wO), (U2, g(w2))) 

for g~G(k). 
We show now that the geometric quotient of R modulo this operation 

of G exists and that this quotient defines an etale equivalence relation on 
the variety LI ui which is exactly the one induced by the operation of G 
on X on the scheme Ll ui. 

To make this more precise, we consider the equivalence relation on X 
which is induced by the action of G. This equivalence induces a relation 
on LI u, via the map LI u, u inj > X ,  where I_[ inj is the direct sum of the 
injection maps of the schemes U~ into X. The graph of these equivalence 
relation on I I  ui is given by the closed subscheme R = (LI u,) x (k[ u,) 

of (LI ui) x (LI ui). Notice that one has a natural continuous map 
i i 

(L[ Ui) x (I_[ Ui) -~'• Y • Y 

induced by (p: X - ~  Y and that t~=((p x (p)-i dr  ' The diagonal d r of 
r • Y is closed in Y x r and therefore R in (El ui) • (El ui). For the 
k-valued point of LI ui this equivalence relation can be described as 
follows : i 

Let ui, uj be elements of (LI ui) (k) then ui is equivalent to uj if and 
only if there exists an element geG(k) such that us=g(ul) as k-valued 
points of X. The set of k-valued points of/~ is, consequently, 

/~(k)= {(ul, u2); S geG(k), g(Ul)=U 2 in X} 

(LI u,) • (U u,). 

Let Rij=(Uix  Us)hR. Then R=LI /~ i j  (disjoint sum). Clearly, /~is= 
i , j  

(Ui x Us) n F, where F is the graph of the operation of G on X. This shows 
again that/~is is a closed subscheme of Ui x U s and also that/~ is a closed 
subscheme of (ILl ui) x (LI ui). We will use this fact later. 

i i 
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Claim./~ is the geometric quotient of R modulo G in the category of 
schemes. 

For the proof let cp": R--* R be the morphism defined by the projection 
((UI,W1) , (U2,W2))--~(Ul, U2). This map is surjective and sends distinct 
G-orbits of R into distinct points of R. We show that there is an injective 
morphism j: R - * R  with 

J: (Ul, U2)~ ((Ul, U2), (U2, U2)) 

which is then a section of R over/~ with respect to ~o": R--* R. 
To get the morphismj :  /~--* R it is enough to define the restriction of 

j to the various varieties/~i~. 
Let p~: R~j--~Ui be the morphism induced by the projection map 

U~ x Uj--~ U~ and pj: /~j--~ U~ the morphism induced by the projection 
Uix Uj--~Uj. Then pj(ui, uj)=uj and u i=g(ui) for g6G if (ui,uj)6Rij. 
Hence, pj(ul, u j )= uj~(U~ c~ W/)c W~ as Us c W/and W/is G-stable. 

This shows that p~ can be considered as a map from R~j into W~. On 
the one hand R ~  U~x W~ is to be the map PiJ=(P~,Pi)" On the other 

hand we have a morphism q j: R i j ~  Uj x W/, defined by the diagram 

qJ 
RIj-Tj~ j Uj---~ Ujx r Wj 

(u~, u~) ~ u~ ~ (u~, uj). 

If we use the universal properties of the product R = X' x X', we obtain a 
morphism x 

Ui x r Uj=Ri.i p'j • R 

(u,, ui)--~ (p,~(u,, ui), qj (u,, uj))= ((u,, uj) (uj, uj)) 

which is the restriction of the m a p j  to R~j. 
The criterion described on p. 8 shows that R = L[/~i is the geometric 

quotient of R modulo G. 
There is a commutative diagram 

R ; X' ~ X  
g2 

i~ "' ; l l v , .  

l ~  H U~ is the quotient of the pair R -  ~' ~X' under the action of G. 
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If we can show that the maps ~1 and ~2 are etale maps, the diagram 

g ~'qjUi_ 
~2 

will define an algebraic space Y(see [13], p. 93). 
To show that the ~. are etale we direct our attention to the canonical 

surjective G-morphism 
~: R x G - - ~ R ,  

defined by e(?, g) =g(j(~)), wherej is the map j:  R -~ R from above. 

is an isomorphism, because G operates freely on R. (Use [22], 
Proposition 0.9.) 

We have (Proposition 1.10) an isomorphism LI u~ x G ~  X' and the 
diagram 

R - ~  X' 

i 1 
is commutative. 

The map (n2 x Id) is etale and the restriction to R = R  x {e} is the 
map ~2. Using [7] we can conclude that the map ~2 is etale. In the same 
way one proves that ~, is etale. The same arguments together with the 
section j ' :  (u,, u2)---~((u,, ul), (u2, u,)) of R over R *", R instead of j 
suffice. Let Y be the separated algebraic space of finite type over k which 
is defined by the diagram 

(Y is separated, because R is a closed subscheme of(L[ v,) • (LI v,).) 
Claim. Y is a geometric quotient o f  X modulo G. 

Statement 1 of Definition 1.5 is obviously satisfied by the algebraic 
space Y. 

For the proof of statement 2) of Definition 1.5 let V r ,  y be an etale 
map where V is a scheme. Using the Definition of the structure sheaf 
on Y (see [13], p. 104) it is enough to show that for eve~ point P E V  
there exists an etale neighbourhood h: N ~ V of P, where N is a scheme, 
and a G-stable etale morphism N ~ X, where N is also a scheme, on 



14 H. Popp 

which G operates such that N is the geometric quotient of N modulo G 
in the sense of schemes. 

The structure sheaf of-N is then in particular the fixed sheaf O~ of ON. 
Notice that the etale map V - ,  Y can be described by a commutative 

diagram 
R w  ~ V ~ , V  

R ~I_Iui , Y 

where V' is an affine scheme and V' -* V a representable etale covering 
of V- and where f7 is an etale map from the scheme V' to the scheme 
u=I_Iu~.  See [13], p. 101, for the details. Consider the commutative 
diagram 

X '  • V '  

r~l X I  
R 1 - i  ~ , X  

V' 
, ) ,  f 

R ~ u = L I U ,  - ' Y 
~2 

m 

where X' • V ~ is the scheme product and f ' :  X'  • V' - ,  X' the projection 
U o 

map. This map is etale, because f~ is etale. Therefore the map n o f ' :  
X' x V --7 - ,  X is also etale. It remains to show that the geometric quotient 
of X'  x V' modulo G is V'. 

U 

First, the product X'  • V' is a subscheme of the scheme X' x V', 
v 

namely the inverse image of the diagonal under the map 

X'  • V ~ ~ ' '  Y'~ U x U. 

Second, the operation of G on X'  x V' is induced by the operation 
U 

of G on X'  and the map X' • V' ~ V' maps different G-orbits to different 
U 

points of V' and is surjective. Third, the map j :  V ' - ,  X '  • V' 
U 

v ' - , ( (u , i (u) ) ,v ' ) ,  with u - ( ' t v q  

i = L i i n j :  U - , X ,  

is a section of X' x V' over V'. 
v 

We can therefore apply the criterion from p. 8 and obtain the geo- 
metric quotient of X'  x V' modulo G which is isomorphic to V'. This 

U 
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finishes the proof of statement 2) of Definit ion 1.5, if one takes N = V' 
and N = X'  x V'. 

U 

For  the proof of statement 3) of Definition 1.5 we need the following 
lemma. 

1.11. Lemma.  Let R ~ X ' - - * X  be the representable G-stable etale 

covering from above and R * ~ '  ~X* ~* , X  be any representable 

G-stable etale covering of X such that there exist etale maps ~' : X* -~ X', 
~" : R* --* R which are G-invariant and which induce the identity morphism 
on X via the commutative diagram 

R* " I ~ X *  ~" , X 

R 132' ~ ) X .  
~2 

(1) 

Then the geometric quotients X* and R* of X* and R* modulo G exist, 
The maps n*, n~ induce maps n*, n~ 

R* ~ _  X* (2) 

which define an etale equivalence relation on X* and the algebraic space 
which is defined by the diagram (2) is isomorphic to E 

Proof Consider  the subscheme U = L[ ui of x '  from above 9 and let 
U * =  ~-1 (U) be the inverse image of U in X*. The natural  G-morphism 
U* • G ~* , X*, defined by (u*, g) ~*, g(i* (u)) where i*: U* -*  X* is the 
injection of U* into X*, is an isomorphism from U* • G to X*. This can 
be seen as follows. It is clear that 3" is surjective and that the geometric 
fibres 3 " - i  (p , )  consist of only one point  for all P*~X*, as G operates 
without fix points on X. Hence, b* is a radical morphism. 

On the other hand we have the commutat ive  diagram 

U * x G  

( ~  x Id) 

U x G  X *  

/ 
X' 

where c~b is the restriction o fe '  to U*. 

9 U = [] U, is a subscheme of X' by the map U ~ X', defined by u--, (u, i(u)), where i = [I in j: 
U~X. 
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p , i �9 r �9 The morphism ~t o 6 = 6 o (% x Id) is etale because, ctv 1s etale and 6 an 
isomorphism. Since ct' is etale, 6* is etale, see [7], p. 39. By [9], IV, 17.9.1 
it follows that 6* is an isomorphism. This fact implies, in particular, that 
the variety U* is a geometric quotient of X modulo G in the scheme sense. 
The subvariety U* x X of U* x X is defined on p. 9 with respect to the 

Y 
map ~* i*: U * ~  X. G acts on U*x  X by the rule g((u*, x))= (u*, g(x)), 

r 
for g~G(k), and the projection U* x X ~* ~ U* maps distinct orbits to r 
distinct points of U. The morphism U * - ~ * , U *  x X, defined by 

Y 
u* ~* , (u*, n* i*(u*)) is a section of U* x X over U*. Hence, (U*, q~*) 

Y 
is a geometric quotient of U* x X with respect to the action of G. This 

Y 

implies (use [22], Proposit ion 0.9) that the morphism U* • G ~ U* • X, 
Y 

defined by p*(u*,g)=g(s*(u*)) is an isomorphism. Then the morphism 
X* P*~ ~*-~ U* , • X is also an isomorphism. 

r 
We identify in the following X* with U* • X via p* o 6" - 1. The map 

r 
from X* = U* • X to X which is induced by n* coincides with the map 

Y 
from U* • X to X which is induced by the projection U* • X -~ X. 

r 
After identifying X* with U*• X, R* becomes a subscheme of 

Y 
(U* x r X) • (U* rx X) and its k-valued points are 

R* (k)= {((u*, x0,  (u*, x2)); (u*, x,)~ U* • X and xl = x2 in X}. 
Y 

Let now R* be the subvariety of U* • U* such that its k-valued points are 

R-~(k) = {(u*, u*); u* ~ U* (k) and there exists 

g E G (k) with g (n* i* (ul)) = r~* i* (u2)}. 

Then R* defines an equivalence relation on U* which is induced by the 
action of G on X. 

One checks that the map R* --~ R*, defined by 

( (U l ,  Xl ) ,  (U2,  X 2 ) ) ~  ( U l ,  U2), 

is a morphism which maps different orbits of R* to different points of R*. 

One checks also, as on p. 12, that the map  

j*:  R*-~ R*, 
defined by 

�9 * * * - * i * ( u * ) ) , ( u ~ , ~ * i * ( u ~ ) ) )  j (u~,  u 2 ) -  ((u~, ~ *  

is a morphism which is a section of R* over R*. 
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In addition the map j* ' :  R*-*  R*, defined by 

j*'(u*, u*) = ((u*, n* i* (u~)), (u*, ~z* i* (u~'))) 

is a morphism which is a section of R* over R*. 
In the same manner as on p. 12 ft. we now show that R* is a geometric 

quotient of R* modulo G in the sense of schemes. 

From diagram (1) factoring out G we find 

R ~  ~r ;U* 

R ~  : U  ~ Y  
~2 

where the maps ~" and fi' are etale and the diagram is commutative. (The 
proof is the same as on p. 13 for the map ffl.) Furthermore, the maps ~* 
and ff~' are etale and R~--~T-~-~, U* gives an etale equivalence relation 

on U*. Let Y* be the algebraic space, defined by it. We want to show 
that Y* is equal to Y. 

With respect to the etale maps ~o ~': U * ~  Ythe fibre product U* • U* y 
is isomorphic to the scheme R -~. From this we see that U* ~~ , Y is a 
representable etale covering of Y with R* as equivalence relation and 
therefore that Y* equals Y. See [13], p. 95. This proves Lemma 1.11. 

Now to the proof of statement 3) of Definition 1.5. Let f :  X ---, Z be a 
G-invariant morphism and let 

R z , ~ Z ' - - ~  Z 

be a representable etale covering of Z, which we consider as a G-stable 
eta le covering by takingthe trivial action of G on Z' and Rz,. 

Consider the commutative diagram 

,, z f' 

R z, ~ - - ~  Z'  -----~ Z.  

The operation of G on X induces an operation of G on X and on RX- and 

the maps ~ ,  ~ are etale. Let R x , ~  ~ IX' ~ , X  be the G-stable etale 
~2 

covering of X from p. 11 and 2 x X' be the fibre product of 2 and X' 
X 

2 lnvemiones math., Vol. 22 
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over X. We have the diagram 

Rt• x, ~ R x, 

x" X x X '  ~X '  

1 
R ~--~ , f ( = X x Z '  ~ , X  

Rz, 1 Z '  ~ Z. 

The group G operates on the schemes X x x X' and RX~, x, in a way such 

that the induced action on X is the given one. Furthermore, by Lemma 1.11 
the geometric quotients "~ xXX" respectively R ~  x, of X x x X',  respec- 

tively, R ~  x' by the group G exist and we have an induced diagram 

R~x ~cx , ~ X x X '  

which defines the algebraic space Y. 
f '%K'" On the other hand, the maps ,~XX'x I '~  and R~c~x, ,Rz ,  

factor through )C x X' and Rye • x'- This gives the commutative diagram 
X x 

Ryc~x, ~ X x X '  ~ Y 
X 

Rz,  ~ Z' , Z 

and defines a unique morph i smf :  Y ~ Z  such that 

X 

Z 

is commutative. Lemma 1.9 and Theorem 1.6 are proved. 

Theorem 1.6 shows that the geometric quotient in the category of 
algebraic spaces of a reduced and normal k-scheme on which a connected 
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algebraic group operates freely and with closed graph always exists. 
However, for applications one needs the existence of a geometric quotient 
of a reduced, normal k-scheme on which a connected algebraic group 
operates with closed graph and with finite stabilizers. 

Sometimes this can be established. 
First we recall a theorem proved by Deligne (see [13], p. 183). 

Theorem. Let X be a separated algebraic k-space and G a finite group 
operating on X. Then the geometric quotient of X by G exists as an algebraic 
space. 

This theorem of Deligne can be used to prove the existence of a geo- 
metric quotient by a group action in the following more general situation: 

1.12. Theorem. Let X be an irreducible, reduced and normal k-scheme 
on which the connected algebraic group G operates. Assume that there 
exists a finite covering X' I ,  X of X which is etale and galois with galois 
group A' and on which the group G operates without fix points and with 
closed graph. Assume further that the operation of G and A' commute and 
that the map f is a G-morphism. Then there exists an algebraic k-space of 
finite type which is a geometric quotient of X by G in the category of alge- 
braic k-spaces. 

Proof By Theorem 1.6 the geometric quotient Y' of X' modulo G 
exists and Y' is a separated algebraic space. The finite group A' operates 
then on Y'. To see this, we have to choose the representable etale covering 
of X' from p. 11 more carefully. 

Consider the etale and galois covering X'  I ,X. By the proof of 
Proposition 1.10 in [27] one finds that there exist finitely many orbits 
E1 . . . . .  E, on X, open G-stable subvarieties W~ . . . . .  HI, of X and locally 
closed subvarieties U~ of W~, i=  1, ..., n, such that 

1) EicWt,  i=1 . . . . .  n. 

2) dim (U~)= dim ( X ) - d i m  (G) and U~ intersects E~ transversally in 
finitely many points. 

3) The G-morphisms Ui ~ W~ satisfy statements 1) and 2) of Proposi- 
n 

tion 1.10and U W~=X. 
i = 1  

U~ is the quotient of U~ ~ W~ by G. 

Let W/=f-l(W~) and U~=f-~(Ui) be the inverse image of W~ and Ui. 
Then W/is G-stable, U~ is a normal, locally closed subvariety of W{ and 
we can assume that W( and U~ satisfy Proposition 1.10. If necessary, one 
has to make U~ and W~' smaller, but one can always do this in such a 
way that A' operates on U~ and W/. 
2* 
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i t___~ r It follows that the canonical maps Ui ~ W~ W i are etale maps 

(Y' is the quotient set of X' (Spec (k)) under the operation of G), because G 
operates freely on X' (see Proposition 1.10). If we pick the W~, i=  1 . . . . .  n, 
in a proper way then the W/will cover X', and we obtain an etale covering 

w,')-, x ' .  
i 

Let/~ =.~ '  x X'. We have then the diagram 
X' 

~' ; .~ '~- - ,  x ' ,  (3) 
~2 

where ~1, ~2 are etale maps and where X' is the quotient as an algebraic 
space. By Theorem 1.6 the group G can be factored out from the diagram 
(3) in the category of algebraic spaces. In doing so, we get an algebraic 
space Y' together with a representable etale covering 

and Y' is a geometric quotient of X' modulo G. 
By construction the finite group, A' operates on the schemes U~ and 

therefore also on l_I U~. But A' operates also on/~ as one checks easily. 
One finds that the finite group A' operates on the separated algebraic 

space Y'. Let Y be the geometric quotient of Y', respectively A' which 
exists by the theorem due to Deligne. 

Claim. Y is a geometric quotient of X modulo G. 

Proof We have the diagram of algebraic spaces 

X' 

X Y' (4) 

Y. 

By the universal property of X as a quotient of X' modulo A' we have a 
unique map ~0: X--* Y such that (4) is commutative. It is now easy to see 
that Y, together with the map q~: X --~ Y is a geometric quotient of X by G 
in the sense of Definition 1.5. 

In applications of Theorem 1.12 it is often difficult to show that the 
scheme X on which G operates is normal. 

One should try to drop this assumption. By transcendental methods 
this can be done if X is a reduced scheme of finite type over the complex 
numbers 112. 
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1.13. Theorem. Let X be a reduced ~-scheme of finite type which may 
be reducible (C = complex numbers) and G a connected algebraic group 
defined over ~ which acts on X without fix points and with closed graph. 
There exists an algebraic ~-space of finite type which is a geometric 
quotient of X by G. 

Proof. Let P be a point of X and Ep the orbit of P by G. Xo shall 
be an affine open subset of X containing P. Let 2: X o --* C N be a closed 
embedding which is fixed in the following. Take an irreducible, smooth 
subspace L of the ~n of dimension N-dim (Ep) with the following proper- 
ties. 

l) L c~2(Ep C~Xo) is non empty and consists of finitely many points. 
Furthermore, the intersection of L and 2(Ee c~ Xo) is transversal. 

2) If~-o is the maximal open subvariety o fX 0 consisting of the normal 
points of X, then -~'o c~L is a normal variety. (By [26] this is always 
possible.) 

Let U' = 2-1 (L n 2 (Xo)) and consider the morphism 

U'•  ~ ~X 

defined by (u', g)-* g (i (u')), where i: U ' - .  X is the injection morphism. 
Let Q~2-1(Lc~2(EpnXo).  Then K-~(Q)= {(u',g)~U' x G, g(i(u')) 

= Q} is finite. 

Claim. For a point Q'=(u',g)~K-I(Q) the map K is a local analytic 
isomorphism from U' • G to X. 

A proof of this claim is omitted here, for it is done along the lines of the 
proof of Hitfsatz 1 of Homann's paper [10]. 

The fact that ~ is a local analytic isomorphism at a point Q'e K-1 (Q) 
signifies that the completions of the local rings of Q'e U' x G and Q ~ X  
are isomorphic. Hence the map x is etale at every point Q'ex  -1 (Q). 

Let V be the maximal open subvariety of U' x G on which x is etale. 
Then x ( F ) =  W is an open subvariety of X, because the map x: F - . X  
is open. (See [7].) Also W contains the orbit E e and is G-stable. The 
image U of F by the projection of U' x G onto U' is an open subvariety 
of U' too, for the map G ~ Spec (~) is universally open and therefore the 
map U' x G-*  U' open. 

Consider the product U x G. Obviously one has U x G ~ E On the 
other hand if (u, g)e F, {u} • Gc_ F, as U' x G -~ X is a G-morphism. This 
shows that U x G ~  Fand in addition that U c  W. 

Let U • W be the variety defined on p. 9. Then one shows as 
u 

before that the morphism 5: U•  G-* U x W, defined by 6(u,g)= 
I( 

g ((u, i(u))), is an isomorphism (i = embedding of U in W). 



22 H. Popp  

We have shown so far the following. 

1.14. Proposition. Let the assumption be as in Theorem 1.13 and let E e 
be an orbit of  the action o f  G on X. There exists an open neighbourhood W 
of  E which is G-stable and a locally closed subvariety U of W such that the 
G-map U x W ~_ U x G --~ W is etale and surjective. 

Y 

Obviously, Proposition 1.14 is analog to the proposition of Seshadri 
from p. 10. Now the proof of Theorem 1.13 is the same as the proof of 
Theorem 1.6. One has only to use Proposition 1.14 instead of the proposi- 
tion from p. 10. Minor changes in the proof of Theorem 1.12 lead to 
the following: 

1.15. Theorem. Let X be a reduced C-scheme of  finite type on which the 
connected algebraic group G, which is defined over C, operates. Assume 

that there exists a finite covering X '  f ~ X of X which is etale and galois 
with galois group A'. Assume further that the group G operates with closed 
graph and without f ix  points on X'. 

Also assume that the operation of G and A' commute and that f is 
a G-morphism. Then the geometric quotient of  X modulo G exists and is an 
algebraic space o f  finite type over C. 

Remark. Theorem 1.6 and Theorem 1.13 give a quite explicit descrip- 
tion of the quotient Y of X modulo G. Roughly speaking, the following 
holds: Let E be an orbit of G on X and P the corresponding point on Y, 
then Y is locally at P isomorphic to a subvariety U of X which has a 
dimension equal to dim ( X ) -  dim (E) and which intersects E transversally. 
If G operates with f'tx points the local description of Y, as given in Theorem 
1.12 and Theorem 1.15, is a little more delicate. 

II. The Moduli Space of Polarized Varieties 

In this chapter we describe a method which gives, under certain 
conditions, the existence of the coarse moduli space for the global defor- 
mation functor of a polarized variety. 

All schemes and algebraic spaces are C-spaces, where C is the com- 
plex number field xo. 

An irreducible, smooth and projective C-scheme is called a smooth 
variety over C. 

2.1. Definition. (V,, 3E), where V is a smooth variety over C, and 
is an algebraic equivalence class of divisors of V which contain a very 

1o That  we work over ~ is no t  essential in the first part  of this chapter ;  we could take 
instead of C an a rb i t ra ry  field k. It becomes essential when we later apply  Theorem 1.15. 
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ample divisor is called a polarized variety ~1. A divisor X ~  is called a 
polar divisor of (V,, ~). 

2.2. Definition.A polarized variety (V,, X) is called canonically polarized 
if X contains a very ample multiple of a canonical divisor of V. 

Automorphisms and isomorphisms of polarized varieties are defined as 
usual. A projective embedding of a polarized variety V is a projective 
embedding of the underlying variety V into a PN/k, determined by a 
very ample linear system of V which consists of polar divisors. 

Let Pic(V) denote the Picard-scheme of V See [9]. Pic ~ (V) shall 
denote the connected component of Pic (V) which contains the identity. 
Using the properties of Pic (V) there is another equivalent manner to 
define the notion of a polarization on V.. 

2.3. Definition. (V, ~), where V is a smooth variety and X a coset of 
Pic~ in Pic(X) which contains a very ample invertible sheaf, is 
called a polarized variety. 

We notice for the equivalence of Definitions 2.1 and 2.3 that on V the 
divisor classes with respect to linear equivalence, are functorially in a 
1-1 correspondence with the classes of invertible sheaves on V. By the 
functorial properties of Pic (V)the k-rational points of Pic (V) parame- 
trize the divisor classes of V.. By Matsusaka [18] the k-rational points of 
Pic ~ (V)parametrize exactly the divisor classes which are algebraically 
equivalent to zero. With these remarks the equivalence of the definitions 
is obvious. 

Let (V, ~) be a polarized variety and Z a polar divisor, z(V, mZ)= 
h(m), where z(V, mZ) is the Euler characteristic of the invertible sheaf 
determined by the divisor mZ, is then a polynomial in m which is inde- 
pendent of the choice of the polar divisor and therefore uniquely deter- 
mined by (V, 3E). (Notice that if Z and Z'  are algebraically equivalent 
divisors of V, then z(V, mZ)=;f(V, mZ') for all integers m. Compare [19], 
Prop. 3.1 and Prop. 3.2.) We shall call this polynomial the Hilbert poly- 
nomial of (V, 3s 

We need to consider families of polarized varieties. 

2.4 Definition. A smooth and projective morphism f :  V ~  S of schemes, 
where the base S is noetherian and the fibres are varieties is called a 
projective family of varieties with base S. Denote such a family by V/S. 

Pic (V/S) shall be the relative Picard-scheme of the family V/S. Pic (V/S) 
is a group scheme over S, locally of finite type, such that among other 
things the following holds: For  every S-scheme T with ct: T--* S as map 

1~ This notion is actually what is called in the literature an inhomogeneous polarized 
variety. Compare [22] and the remark on p. 25. 
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for which V x T---. T has a section over T one has 
s 

{group of invertible sheaves of Vx T} 
Hum (T, Vic (V/S))= s 

subgroup of sheaves f*  (L), L an} 
invertible sheaf on T 

For the existence and for further properties of Pic (V/S) see Grothen- 
dieck [9]. 

Pic ~ (V/S) shall denote the connected component of Pic (V/S) which 
contains the neutral element of Pic (V/S). 

2.5. Definition. (V/S,I/S) is called a family of polarized varieties if 
V/S is a projective family of varieties over S, S noetherian, and I /S a 
coset of Hum (S, Pic ~ (V/S)) in Hum (S, Pic(V/S)), containing an invertible 
sheaf which is very ample respectively S. An element X e X  is called a 
polar sheaf of V/S. 

(V/S, X/S) is called canoncially polarized if X/S contains a very ample 
multiple of the sheaf of regular differential n-forms of V/S, n = dimension 
of the fibres of V/S. 

Let (V/S, I/S) be a family of polarized (projective) varieties and let 
X e I / S  be a polar sheaf. Spec (12)~S shall be a geometric point of S 
and V Jr2 = V x Spec (f2) the fibre over s. Xs will signify the sheaf of V~ 

S 
which is induced by X and Is  the polarization of V~ which is determined 
by Xs. (V~, I~) is then a polarized variety induced by (V/S, I/S). 

Let hs(x) denote the Hilbert polynomial of (V~, Is) as defined above. 

2.6. Proposition. The polynomial hs(x) is independent of s. 
Proof. Follows from [8], III. 
Let (Vo, Io) be a polarized variety defined over ~ and let (V/S, t/S) be 

a family of polarized varieties (in the sense of Definition 2.5) such that 
(Vo, Io) is isomorphic to a geometric fibre of (V/S, t/S). Assume that the 
base scheme S is a connected C-scheme. Then, we define: 

2.7. Definition. A geometric fibre (V~,ts) of (V/S,t/S) is called a 
deformation of (V o, t0).  

(Vo, to)  shall be fixed in the following. For a noetherian C-scheme S 
we consider smooth, projective families (V/S, t/S) with a polarization t /S  
where the fibres of V/S are deformations of  (V o, t0). If (Vo, to) is canoni- 
cally polarized we consider only families (V/S, t/S) of deformations of 
(Vo, t0) which are also canonically polarized. 

We call such a family a family of deformations of (Vo, to). (Notice that 
(V/S, t/S) does not have to contain a fibre which is isomorphic to (Vo, to).) 

Let ,/t'(S) be the set of families (V/S, t /S) of deformations of (V o, t0) 
up to isomorphism. Clearly, the collection of sets ~ ' (S)  form a contm- 
variant functor from the category of noetherian IE-schemes to the category 
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of sets, i.e., given a morphism f: T-*S, a map ~t'(f): J / (S) - -*J / (T)  is 
defined by associating to a polarized family (V/S, 3s the pullback 
(V x T/T, 3s x s T/T). This functor is called the global deformation functor 

of (Vo, 3s 

Remark. As already stated there exists in the literature the notion of 
a homogeneous polarized variety. Compare [19]. This notion is more 
intrinsic than the notion of a polarized variety we are considering. For  
a homogeneous polarized variety (Vo, 3~o) one defines as above deforma- 
tions, which are again homogeneous polarized varieties, and also the 
functor ~7 of deformations of the homogeneous polarized variety (Vo, ~o)- 
If (Vo, 3s is a polarized variety in the sense of Definition 2.1 we associate 
to it a uniquely determined homogeneous polarized variety (Vo,Xo). 
Let dr respectively dg be the deformation functors of (V o , 3s respectively 
(Vo, 3~o) then the following can be shown: 

If the deformations of (Vo, ~o) satisfy statement (.) in [19], p. 206, for 
sufficiently large integers m the deformation functor of the polarized 
variety (V0, m. 3s and the deformation functor of (Vo, ~o) have the same 
sheafification with respect to the etale topology. For a proof of this fact 
the results in [19] and [8], IV, 17.16, have to be used. As (*) is known to 
be true for canonically polarized varieties in characteristic 0, [20], the 
remark shows that for such varieties there is no essential difference 
between the functors d / a n d  ;d.  

Back to the functor de. 

2.8. Definition. An algebraic space M of finite type over C and a 
morphism q, from the functor d /  to the functor hM(S)=Hom (S, M), 
represented by M in the category of algebraic spaces, is called a coarse 
moduli space, if 

a) for every algebraically closed field k* which contains C the map 
O(Spec (k*)): Jg(Spec (k*)) ~ hM(Spec (k*)) is an isomorphism. 

b) Given an algebraic space N and a morphism ~0 from J / t o  the 
representable functor hN, there is a unique morphism X: hM-~ hN such 
that ~O =Zo r 

It is the aim of this paper to develop a method which implies the 
existence of a coarse moduli space for the deformation functor in certain 
cases. However, the proposed method will sometimes only work, if one 
changes the above situation as follows. 

Consider the category Cred of reduced, noetherian C-schemes and 
let JCred be the restriction of the deformation functor ~r162 of (V o, 3s to this 
category. 

2.9. Definition. A reduced, algebraic space M of finite type over C 
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and a morphism �9 from Jr'red to the functor h~t(S)= Horn (S, M), S~ Cred, 
is called a coarse moduli space for the functor d/ro d if 

a) for every algebraically closed field k* which contains r  the 
map �9 (Spec (k*)): ~t'(Spec (k*))~ h• (Spec (k*)) is an isomorphism. 

b) Given a reduced algebraic space N and a morphism @ from ~'red 
to the representable functor hN, there is a unique morphism ~(: h~t~hN 
such that ~, = Z o 4. 

Roughly speaking, the coarse moduli space for the functor dgre d is the 
reduced algebraic space which corresponds to the coarse moduli space 
M of the functor J [ ,  provided M exists. 

Let Jr be again the global deformation functor of the polarized 
variety (Vo, 3~o). h(x) shall be the Hilbert polynomial of (Vo, Xo). 

We assume in the following 12 that the families which belong to J/(S) 
are canonically polarized or that the irregularity of (Vo, 3~o) together with 
the irregularities then of the fibres of the families which belong to ~g(S) 
are zero. 

We assume further that the polarization of the families of J/(S) is 
sufficiently ample, i.e., for every geometric fibre (V~,~) of a family 
(V/S, ~/S) of dr we have (1) X~ is very ample whenever Xs~3~s; (2) 
hi(V~, Aa(n .X~))=0 for all XsEXs and all i>0,  n>0.  

The following proposition shows that the last assumption made on 
is not too serious and how one can change from a polarization to a 

sufficiently ample polarization. 

2.10. Proposition. There exists an integer m > 0  such that the deforma- 
tion functor of the polarized variety (11o, m . ~o) contains only families with 
a sufficiently ample polarization. 

Proof By [19], Theorem 1, there exists an integer c > 0  which depends 
only on the polynomial X(Vo, nXo)=h(n), Xo a divisor in Xo, such that 
for t>c  every deformation (V~, Y~) of (V0, t. Xo) is sufficiently ample 
polarized. Pick a fixed integer m > c. 

2.11. Proposition. There exists a projective space pn such that every 
family V o,, S which belongs to Jg(S) can be locally embedded into pN, 
i.e., there exists a finite open covering {U~} of S such that the induced 
families V x Ui/Ui= Vt/Ui can be embedded into the projective space 

S 

pn • Ui in such a way that the fibres of VJUi are embedded as polarized 
varieties with the induced polarization and do not lay in a hyperplane of 
the pN. Let V~/Ui be the embedding of VI/U~. Then, the Hilbert polynomials 
of the fibres of the families VJUi are the same. 

~2 We exclude the case of an abelian variety. There the considerations are different as 
explained in Chapter III. 
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Proof Consider first the case when the families in Jr are canonically 
polarized. Let (V/S, 3s be a family in dr and let t2~/s be the sheaf of 
relative differential n-forms (n=dim(Vo)) of V/S. By the definition of 
canonically polarized families and by the assumption made on Jr  there 
exists an integer ~ > 0, which is the same for all families in ~ '  (S) and such 
that the sheaf (f27,/s) | which belongs to 3s is sufficiently ample relative 

n |  to S. This implies (see [22], p. 19) that the sheaf og,((f2v/s) )=E is 
locally free of rank (N + 1). Let { Ui} be an open covering of S such that 
E/Ui is a free sheaf for all i. Then P(E/U~)= pN • U~ (notation as in [8], II) 
and the very ample sheaf (O~/s) | defines a closed immersion (over Ui) of 
the families V~ ,o, ,U~ into the projective space PNx U~. Denote this 
embedding by ~ U~. It is then clear by the construction that the geo- 
metric fibres of the families ~/U~ do not lay in a hyperplane of the pN. 

Now, the geometric fibres (V~, Xs) of (V/S, X/S) are deformations of 
(Vo, Xo). Let (/o/k be an embedding of (Vo, ~o) into PN/k determined by 
(f2~o)| Then h(x) is the Hilbert polynomial of [7 o. From [8], III, 7.9, 
we conclude once more that the Hilbert polynomials of the fibres of the 
embedding ~/Uiare equal to h(x). 

Next, we treat the case when the irregularity of the fibres is zero. 
Then, for every family (V/S, ~/S) of ~'(S), there is essentially only one 
invertible sheaf L,e of Vin the set 3E/S (LP is up to tensoring with an invert- 
ible sheaf, coming from S, uniquely determined) and this sheaf is suffi- 
ciently ample. Let o9, (5r be the direct image of the sheaf Z~' on S. By [22], 
p. 19, og,(Z,~') is again locally free of rank N + 1, and we can pick an open 
covering { U~} of S with o9, ~/Ug free so that the above arguments apply. 
Q.E.D. 

In the following pN is always the projective space from Proposition 
2.11 and h(x) the Hilbert polynomial of the geometric fibres of the 
embedded families which belong to ~/(S). Hh~ ) shall be the Hilbert 
scheme which parametrizes the proper and fiat families of subvarieties 
of the pN with h (x) as Hilbert polynomial. 

2.12. Proposition. There exists a uniquely determined, connected 
subscheme H of the Hilbert scheme H ~  ~ such that, for every connected 
C-scheme S and every morphism f: S--) H~, ~, f factors through H if and 
only if the conditions 1)-4)are satisfied: 

1) The family V/S in pN x S, induced by f via the universal mapping 
properties of Hhp~ ~ is a smooth family with connected fibres. 

2) t3 I f  the families in J[(S) are canonically polarized, the invertible 
sheaf on V/S, induced by the sheaf of hyperplane sections Op,,(1), is iso- 
morphic to 

(f2~/s) | ~ | 09* (L) 

~3 If the polarization is not canonical, the assumption 2) is to be dropped. 
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for a suitable, invertible sheaf L on S. (oJ: V---~ S is the morphism of the 
family V/S.) 

3) For every geometric point s eS  the fibre ~ of  V/S does not lie in a 
hyperplane. 

4) Let Fn---~H be the pullback of the universal family of the Hilbert 
scheme to H. Then every family V/S belonging to .14 is locally a pullback 
of  Fn--~ H. Furthermore, every deformation of  (V o, 3s in the sense of 
Definition 2.7 is isomorphic to a fibre of  the family Fn--~ H. 

Proof. Let F/H~,V ~ be the universal family in pN • H ~ )  which belongs 
to H~V J. By the construction of Heh~ x~ the polarized variety (Vo, Xo) is 
isomorphic to a geometric fibre (Fo, ~1o) of F/HhV ), where ~o denotes to 
polarization of F0 determined by the hyperplane sections. Using that 
(Vo, ~o) is sufficially ample polarized one concludes as in [22], Prop. 5.l, 
that there exists a subscheme U of HehV ~ such that conditions 1)-3) are 
precisely realized on U. One checks that U contains a C-valued point s 
such that the fibre of F/H~,~ ~ over s is isomorphic to (Fo, 3Po). Then the 
connected component H of s in U satisfies the proposition. 

Because of the universal mapping properties of the scheme Hh~ ~, the 
group PGL(N) operates on HheV ~. This operation induces an operation 
of PGL(N) on the scheme H, for the condition 1)-4) are invariant under 
PGL(N). 

Let hn = Hom (--, H) be the Hom-functor of H. By Proposition 2.12 
there is a natural morphism of functors 

~: h n ( S ) ~  JC (S). 

Let ~f~Z,e(N) be the functor Hom (S, PGL(N)). Then, for every connected 
noetherian C-scheme S, the action of PGL(N) on H induces an action of 
the group ~ f ~ a  (N) (S) in the set hn(S) functorial in S. Denote this action 
by ~. We have then 

rc o ~ = n o P2, (5) 

where P2 is a projection morphism from ~ f ~ e  (N) x h n to h u. 

2.13. Definition. For all connected noetherian schemes S let J / ' (S)  be 
the quotient of the set hn(S) by the action of the group ~f#L,e(N) (S). 
Let ,/[ '  be the functor defined by this collection of sets and by the obvious 
maps between them. The Eq. (5) implies that n factors 

ha "' ,.A'I' t ~ ~r 
~t 

2.14. Proposition. I is injective 14 and for an coe ~ (S) there is a covering 
{Uj} of S such that the restriction of  co to JC ( U j) is in the image of I,for all j. 

~4 This means, roughly speaking, that two polarized families of deformation of (V o, X0) 
are isomorphic if and only if their embeddings into PN/S are projr equivalent. 
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Proof The first statement is proved exactly as in [22], p. 101. The 
second statement follows from Proposition 2.12. 

The connection between the geometric quotient H of H by PGL (N) 
and the coarse moduli space of the functor ~ / i s  described in the following 
proposition. 

2.15. Proposition. The geometric quotient H of H by PGL(N) is a 
coarse moduli space for the deformation functor (all in the category of 
algebraic spaces of ~.). 

Proof First, the morphisms t~ from Jr '  to a representable functor hN, 
N an algebraic space over ~E, and the set of morphismsff rom the scheme 
H to the algebraic space N such that (6)fo q~ = f o  P2 (P2: PGL(N) • H-~ H 
is the projection morphism, ~ =act ion of PGL(N) on H) are canonically 
isomorphic. This is seen as follows. Consider the universal family Fn/H, 
given by the construction of H (see Proposition 2.12) and the element 
7e~/(H),  determined by Fn/H. Associate to the morphism r J / ~ h N  
the morphism ~k (7): H ~ N which maps an S-valued point s of H to the 
S-valued point ~ (7) (s) of N where ~b (7) (s) = ~,((Jt'(s))(7)) via the diagram 

S , Jl[ (S) ~ , hN (S) 

H ,.~(H). 

Obviously, ~, (7) satisfies then the Eq (6). 
Conversely, if f:  hn~hN is a morphism which satisfies (6) then f 

factors through the functor J/r and we have an induced morphism 

f ' :  ,,4t"--* hN �9 

By Proposition 2.14 this morphism f induces a unique morphism 
6y: d t ' ~hN.  It is clear that 

hn (Spec (k*))= dt'(Spec (k*)) 

holds for all algebraically closed field k* which contain ~. Q.E.D. 

Next, let Hr, a be the reduced scheme which belongs to H. The action 
of PGL(N) on H induces an action of PGL(N) on Hrr If we consider 
Hr,d with this action, the arguments in the proof of Proposition 2.15 lead 
to the following: 

2.16. Proposition. I f  the geometric quotient Hr~o of H,~d by PGL(N) 
exists in the category of algebraic spaces, it is a coarse moduli space in the 
sense of Definition 2.9for the functor J[red in this category. 
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The method for the construction of the coarse moduli space for the 
deformation functors J/r or dCrea of a polarized variety (V0,3~o) follows: 

We assume that J r  satisfies the assumption made on p. 26. 
Let H be the scheme constructed in the proof of Proposition 2.12 

with respect to ~ '  and//red the corresponding reduced scheme. Then the 
group PGL(N) operates on H and on Hrea and the geometric quotients 
of H modulo PGL(N), respectively, Hrea of Hrea by PGL(N), if they exist 
as algebraic spaces, are coarse moduli spaces for the deformation functor 
~ ' ,  respectively, ~'rea" Compare Proposition 2.15 and Proposition 2.16. 
Of course, we would like to apply Theorem 1.13 or Theorem 1.15 to 
prove the existence of H and Hr~a. But there are difficulties. 

First, one needs that the scheme H is reduced. So we have to consider 
are a and the functor Jr're d in general. Only if we can insure that H is 
reduced, we can employ H and J / .  

Unfortunately, not much is known about the reducedness of the 
Hilbert scheme. Only in special cases (for curves and K-3 surfaces) is 
the scheme H known to be smooth and thus reduced. Secondly, one 
needs that the group PGL(N) operates with closed graph on//re d. This 
is not too serious and is satisfied in many cases (see Chapter III). We show 
in this connection the following lemma. 

Lemma. I f  the fibres o f  the family F n--~ H are unruled varieties, the 
action of  PGL(N) on H is proper, i.e., the map 

cp: H x PGL(N) ~ H x H 

(x, g) , (x, g (x)) 

is proper. The induced action of PGL(N) on Hre a is then also proper. 

Proof. By the valuation criterion for proper morphism ([8], Chapter 
II,7), we have to show the following: 

LetRbeadiscretevaluationringoverlEandg: Spec(R)--*H x PGL(N) 
a rational map. Let h: S p e c ( R ) - * H x H  be a morphism such that 
h = r  as rational map. Then there exists a morphism g':  Spec(R)- ,  
H x PGL(N) which coincides with g on the general point of Spec (R). 

Theorem 2 of Matsusaka and Mumford [21] states the following: 
Let V and V' be polarized, smooth unruled varieties, defined over 

Spec(R), such that their specializations 17" and I2' are also smooth, 
unruled polarized varieties. Then the specialization of any isomorphism 
p: V--, V' is an isomorphism ~: P---, 12'. 

This theorem can be applied to establish the valuation criterion for r 
Let h and g be as above. 
Then h determines two varieties V and V' over Spec (R). The map g 

determines an isomorphism p: Vx Spec (K)-~ V' x Spec (K), K = quo- 
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tient field of R. g gives also a rational map Spec (R)-~ PGL(N) and a 
morphism g' of Spec (R) into the projective closure PGL(N) of PGL(N). 

Let /5 be the specialization of p. By the theorem of Matsusaka and 
Mumford,/5 is an isomorphism of l?and V'. Using Proposition 2.14 this 
implies that/5 is induced by a projective transformation and that g' is a 
morphism of Spec(R) into PGL(N). Hence, �9 satisfies the valuation cri- 
terion and is therefore proper. 

Third, one needs that there exists a finite galois covering H'  of Hr~d 
which is etale and on which PGL(N) operates without fix points. Notice 
that PGL(N) operates in general with fixed points on H,~ d. This follows 
from the definition of the action of PGL(N) on H and Hr~d and the uni- 
versal mapping properties of H which imply that for every geometric 
point s of H, respectively, Hr~d, the stabilizer ofs  by the action of PGL(N) 
is isomorphic to the automorphism group of the polarized variety which 
is determined by s. 

In certain cases a galois covering H'red of H,ed on which PGL(N) 
operates without fix points can be constructed. Examples are curves, 
abelian varieties, polarized K-3 surfaces and canonical polarized varieties 
for which the canonical sheaf is very ample. 

We consider for the construction of/-/~ed all C-schemes of finite type 
and observe the universal family F n--* H. By [ 16], Chapter II, III, the family 
Fn-*H is locally a topological product with respect to the complex 
topology, i.e., for every C-valued point s there exists a complex open 
neighbourhood Us ors on H such that f -  1 (Us) is homeomorphic to F~ x U,, 
where F~ is the fibre of Fn/H over s. 

Let F~o be a fibre of Fn ~ H  which is isomorphic to Vo and let 
Hi(F~o, Z)* be the free part of the integral cohomology groups of F~ o. 
Fn ~ H locally a topological product and H connected imply that for 
every fibre F~ of Fn---, H the integral cohomology group Hi(F~, Z)* is 
isomorphic to Hi(F~o, TZ)* and hence to H~(Vo,Z) *, for i=1  . . . . .  n =  

n 

2. dim V. Let ~ HI(F~, 7Z)* be the direct sum of the free part of the integral 
i = 1  

cohomology groups of F~. 

2.17. Proposition. Assume that the automosphism group of the fibres 
F~ of F n ~ H are finite for all C-valued points s of H, and that the auto- 
morphism of F~ operate faithfully on ~ H' (F~, Z)* ( _~ ~ H' (F~o, Z)*). Then, 
a finite galois covering H' Y ~H exists which is etale and on which 
PGL(N) operates without fix points, proper, and so that f is a PGL(N) 
morphism. 

Proof. Let V/S be a family which is a pullback of the family Fn--. H 
respectively a morphism g: S--*H. Then V/S is smooth and by 1-16] 
locally a topological product. Let V~ be a fibre of V/S over a C-valued 
point s of S and ~ H i (V~, Z)* the direct sum of the free part of the integral 



32 H. Popp 

cohomology groups HI(V~, Z), considered as Z-modul. Then ~ Hi(V~, Z)* 
is independent of s and isomorphic to ~ Hi(Vo, Z)*. Let I(H'(V~, Z)*)= 
li(V~) be the set of minimal generator systems of the Z-modul Hi(V~, 7Z)* 
and I(V~)=I-IIi(V~) the direct product of these sets. Then the group 

i 
A=I-IAut(HI(V~,Z)  *) operates transitively on I(V~). Notice that 

Aut (H ~ (V~, Z)*) is the group of invertible (nl, nl)-matrices with coefficients 
in Z, where n~ is the rank ofH~(V~, 7z)* as Z-module. 

Consider the disjoint union S = U I(V~). Let y: ;~--* S be the map 
sES(~') 

which sends an element ,~I(V~)c~ to seS(Spec(~E)). We know that the 
family V/S is locally a topological product. Using this fact one can intro- 
duce, by a standard argument, a natural topology on ~ such that ~: S-~ S 
is continuous and ~ with the map ~ is a topological covering of S. The 
group A operates, then, on ~ as Decktransformation group. The 
assumption that the automorphism group Aut(V~) of any fibre V~ of V/S 
is finite and acts faithfully on ~H~(V~,Z) * implies that Aut(V~) is iso- 
morphic to a finite subgroup of A=[-IAut(H~(V~, 7/)*). By the theorem 
of the appendix, the group A contains up to conjugency only finitely 
many subgroups of finite order. Let A1 . . . .  , A, be representatives of the 
conjugate classes of these finite subgroups. We can pick a sufficiently 
large integer n (independent of S) in such a way that the congruence 
subgroup A~"~=I-I(Hi(V~, Z)*) ~") 15 of A does not contain any element 
of the groups At different from unity, for i=  1, ..., rJ 6 

Let A ~n) be the quotient of A modulo A ~'~ and let S ~') be the finite 
unramified topological covering of S which is obtained from S by 
factoring out the group A ~n). Then the covering S~n)---* S is galois with 
galois group A~). But S ~ is in a natural way also an analytic space and, 
by the generalized Riemann existence theorem [2], XI, p. 12, a ~E-scheme 
such that the map S ~n~ ---* S is an etale covering. 

We have constructed so far for every family V/S, which is a pullback 
of F/H, a finite galois and etale covering S ~ of S with A~n~ as galois group. 
We denote this covering in the following by P~(V/S). One checks that 
the construction of P~*)(V/S) is for a fixed scheme S functorial in the 
families V/S in the following sense: Let V/S and V'/S be pullbacks of 
F/H such that the commutative diagram 

V f ~v' 

' \/ 
S 

~ Aut(// '(V~,Z)*) c~ consists of all matrices M in Aut(H'(V,,:~)*) which are congruent 
to the unity matrix I modulo n, i. e. M - I  is a matri• which has coefficients all divisible by n. 
~6 The intersection of A ~'~ with any conjugate of one of the groups A~, i = 1 . . . . .  r, contains 
then also only the unity element, because A ~ is a normal subgroup of A. 
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gives an isomorphism from V/S onto V'/S. Then f induces an isomorphism 
ft,):  pt.)(V,/S ) ~ pt,)(V/S ) and the diagram 

pt.)(V,/S) J''"' , pt.) (V/S) 

S 
becomes commutative. 

One checks also that the construction of Pt")(V/S) is compatible 
with taking pullbacks, i.e. if 

V• T=V '  ) V 
S 

11 
T ~ , S  

is a pullback diagram, then Pt")(V'/T) is the pullback of Pt")(V/S) with 
respect to the morphism T " , S. 

We introduce in analogy to curves and abelian varieties the following 
notation. 

2.18. Definition. Let V/S be a family which is a pullback of In/H and 
let St")=Pt")(V/T) be the etale covering of S which is determined by 
V/S. A section of S t") over S is called a level n-structure of the family V/S. 

The construction described above gives in particular an etale covering 
Hr.)= pt.)(in/H) of H which has the following universal properties: 

I) For  every connected noetherian scheme S and morphism S--,  H 
the etale covering Pt")(InxnS/S)=S(") of S is isomorphic to the etale 

covering H t") nx S. (Pullback with respect to f )  

2) The S-valued point hu(n)(S) of H t") correspond exactly to the 
families which belong to points in hn (S) with a level n-structure. 

Proof of this Fact. Let S " ~ H (") be a morphism and Ht")--~--~H be the 
covering map. We get then a morphism S ~~ H and a family V= in Hx S 

over S. Because St")= S x H(")=Pt")(V/S), the map S ~ S t")= S x H t") is 
H H 

a section of S t") over S and gives a level n-structure of V/S. Conversely, if 
S--L-,  ~ S" is a section of S"=P"(V/S) over S and V/S a pullback family 
of in/H with respect to a morphism S ~ ,H ,  the map a: S ~ H t") 
defined by the diagram 

S - ~ , S t") = S x H t") ~ H t") 
H 

3 Inventiones math., Vol. 22 
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leads to an S-valued point of H t") which returns the family V/S and the 
section 2: S ~  S t"). 

2.19. Lemma. The group PGL(N) operates on the scheme H t") in a 
natural way where the operation is without f ix  points proper, and the 
covering map H t") --~ H is a PGL(N)-morphism. 

Proof For  every scheme S we have to define an operation of the group 
PGL(N)(S) (=S-valued points of PGL(N)) on the S-valued points 
hn~,~(~3 of H t") which is functorial in S. Let s t") be a S-valued point of 
H t"). Then s t") determines a unique S-valued point s: S ~ H of H and a 
section 2 of Pt")(V/S) over S. (V/S is the pullback of Fn/H with respect 
to s: S ~ H.) Let (re PGL(N)(S). Then, (r maps the S-valued points s of H 
to an S-valued point s ~ of H. To s" corresponds a family W/S which is 
the family gotten from V/S by applying the projective transformation 
(r to V. As the schemes Pt")(V/S) are functorial in V, we find that a induces 
an isomorphism (rt,) from Pt")(V"/S) to P"(V/S) such that the diagram 

Pt")(V~/S) ~'' , P(")(V/S) 

S 

is commutative. Let a t")-I be the inverse of a in). Then, for every section 
2 of Pt")(V/S) over S, we denote by 2 " = a  t")-I (2) the section of P(V'/S) 
over S which is the image of 2 under the map a t")- 1. 

We define 
a:  (s, 2)-~ (s", ,t~). 

In this way we obtain an operation of PGL(N)(S) on the S-valued points 
of H ~"). (First we realize an operation of PGL(N)(S) on the set of families 
of polarized varieties Fn • S/S with a level n-structure and, therefore, an 
operation of PGL(N)(S) on H t") (S).) 

This operation is functorial in S and defines therefore an operation 
of PGL(N) on the scheme H t"). 

It is easy to see that the operations of PGL(N) and At,) commute and 
that the covering map H t") ~ H is a PGL(N) morphism. 

That PGL(N)(S) operates on H t") without fix points can be seen as 
follows. 

Let s t"~ be a ~E-valued point of H t") and let (V/Spec(r 2) be the 
variety over Spec0E) with level n-structure 2 which is determined by s t"). 
If o ~ PGL(Spec 0E)) has s t") as fix points, then a induces an automorphism 
of V/SpectrE) and maps 2 to a level n-structure 2" of V/C. By assumption 
2 = 2". Therefore, a = Id, as the automorphism of V/r operates faithfully 
on the integer cohomology and by the construction of H ~"). 
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It remains to show that the action of PGL(N) on H t") is proper. For 
this purpose we consider the commutative diagram 

H I") x PGL (N) ~"~ ~ H t") x H ~"~ 

H x PGL(N) ~ , H x I-I 

where ~"~ and �9 are the maps to the graph. We know that q o 4 ~"~ is 
proper, because p and ~ are proper maps. Therefore 45~"~ is proper, 
because q is separable. 

If one takes H'  = H  ~"~ for a qualified integer n, the Proposition 2.17 
is satisfied. 

Taking things together, we have proved the following. 

2.20. Theorem. Let ~ be the deformation functor of an unruled 
polarized variety (Vo, Xo). The assumption made on p. 26 concerning ~ 
shall be satisfied. Assume that every deformation (V, X) of (Vo, Xo) is unruled 
and that the automorphism group of (V, ~i) operates faithfully on the integral 
cohomology of V. Then the coarse moduli space for the functors Jr respect- 
ively, JIroa (take ~rea if H is not reduced) in the sense of Definition 2.9 
exists. 

I lL Applications 
In this chapter we show the existence of the coarse moduli space for 

the global deformation functor in the sense of Definition 2.8 or 2.9 for 
curves, polarized abelian varieties, polarized K-3 surfaces and canonical 
polarized varieties for which the canonical bundle is very ample. 

Curves. Let (V0,Xo) be a polarized, irreducible, smooth and pro- 
jective curve of genus g > 1 defined over r Assume that 3~ o is a divisor 
class respectively algebraic equivalence which contains 3Kv,  Kv a 
canonical divisor of F o . Let ~ be the deformation functor of the canonical 
polarized curve (Vo, 3~o) in the sense of Chapter II. If V/S is a family 
in ~t'(S) and f2vl s the sheaf of relative differential 1-forms of V/S, one 
knows that ~2v~Ss is very ample. Hence, the sheaf Qv~ gives a local em- 
bedding of V/S into a projective space pN called the 3-canonical em- 
bedding, so that Proposition2.11 is satisfied. Let H / r  be the scheme 
which parametrizes the (local) 3-canonical embeddings of the families 
in ~r and which satisfies the requirements of Proposition 2.12. 

One knows by [22] and [1] that the scheme H is smooth and con- 
nected. Furthermore, it is shown in [4], XVII that the automorphism 
group of every curve V of genus g > 1 operates faithfully on H 1 (V, Z). 
3* 
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Using Theorem 2.20 we conclude the existence of the coarse moduli 
space over C for the deformation functor of the curve (Vo,~o). This 
space is normal. 

Remarks. a) It follows from [22-1 that, for every curve V/C of genus g, 
there exists a C-valued point s on H such that the fibre of the universal 
curve Fn/H over s is isomorphic to V/C. This implies that the algebraic 
space which is the coarse moduli space for the deformation functor of 
(V 0, 3E0) is also the coarse moduli space for curves of genus g over C in the 
sense of [22]. 

b) Of course one knows more about the moduli space of curves of 
genus g. It is proved in [22] that the coarse moduli space for curves of 
genus g is a normal, reduced scheme. 

Polarized Abelian Varieties. Let (Vo,3E0) be a polarized abelian 
variety of dimension g, defined over the complex numbers. Let H be the 
Hilbert scheme for polarized abelian varieties of dimension g, con- 
structed in [22], p. 131 ft. 

Let s o be a point of H which belongs to (V0,3~o) and let H o be the 
connected component of H which contains s o. Then PGL(N) operates 
on He and the geometric quotient is the coarse moduli space of the 
deformation functor of (Vo, 3Eo). By [22], p. 132ff. there exists a finite 
etale galois covering H~ of H0 on which PGL(N) operates without fix 
points. (H~ parametrizes the polarized abelian varieties with n-partition 
point structure.) Applying Theorem 2.20, we get a coarse moduli space 
for the deformation functor of (Vo, ~o). Again Mumford's results in [22] 
are stronger: They show that the coarse moduli space for polarized 
abelian varieties of dimension g exists and is a scheme. 

Polarized K-3 Surfaces 17. Let (Vo,X0)be a polarized K-3 surface 
defined over the complex numbers C. ~o shall contain a sufficiently 
ample sheaf L~ a, Let Vo :__,pN be the projective embedding defined by .~ 
and ~r162 be the deformation functor of (V o , Xo) in the sense of Chapter II. 
Then for every family (V/S, ~/S)e~r the sheaves in ~/S are sufficiently 
ample. Using one of these sheaves we can embed V/S locally into the P~; 
in such a way that the fibres do not lie in a hyperplane. 

Let H be the scheme constructed in Proposition 2.12 and corre- 
sponding to the deformation functor Jr  of the K-3 surface (V 0, ~o). 

Claim. /he  family F n --* H is a family of K-3 surfaces, i.e., every fibre 
of Fn-+ H is a K-3 surface. 

Proof By [9] the irregularity of the fibres of Fn ~ H is zero. By [19], 
p. 233, a specialization of a smooth, projective and ruled variety is ruled. 

t 7 An irreducible, smooth and projective surface V is a K-3 surface if the irregularity of V 
is zero and if the canonical divisors of V are linearly equivalent to the zero divisor. 
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Hence, a general fibre of Fn --, H which has a K-3 surface as specialization, 
is not a ruled or a rational surface. Using upper semi continuity of the 
cohomology, we get that such a general fibre of F n--,  H has Kodaira 
dimension < 0  and is therefore a K-3 surface or an Enriques surface by 
the classification table of surfaces [15]. The fundamental group of the 
fibres ofFH -~ H are by [7] the same, hence trivial. This implies that every 
such general fibre of F n --, H is a K-3 surface. 

Let now V be a general fibre of Fn ~ H which is a K-3 surface and let 
V' be a specialization of V over a discrete valuation ring. By upper semi 
continuity we have 

dimH~ ', Kv,)> dimH~ Kv)= 1, 
and 

dim H ~ (V', - Kv,) > dim H ~ (V, - Kv) = 1. 

Also we have a map H~ ', Kv, ) • H~ ', -Kv.)--~ H~ ', Ov,), defined 
by (f,g)---~f| Let O ~ f ~ H ~  ,) and 04:g~H~ ', - K v ,  ) then 
f @ g  is a global section in H~ Ov) which is not identically zero and 
hence a constant function 4:0. This implies that the canonical class of V' 
is principal and that V' is a K-3 surface. From the proved facts one 
concludes that every fibre of Fn ~ H is a K-3 surface. Q.E.D. 

By [25], Proposition 1, the scheme H is smooth. By 1-17] the auto- 
morphism group of a polarized K-3 surface is finite. Using [25], Pro- 
position 2, we get from this fact that the automorphisms of such a surface 
act faithfully on H 2 (X, Z). We can apply the construction developed 
in Chapter II to obtain an algebraic space which is a coarse moduli space 
for the deformation functor Jg  of (Vo, 3Eo). 

Canonically Polarized Varieties where the Canonical Sheaf is Very 
Ample. Let (Vo, 3s be such a polarized variety which is smooth, pro- 
jective and defined over the complex numbers. 

Let (V, ~) be any deformation of (Vo, ~o) in the sense of Definition 2.7. 
It is well known that the automorphism group Aut(V, 3~) of (V, ~) is 
finite t8 and operates faithfully on the global sections H~ f2") of the 
sheaf of holomorphic differential n-form, because this sheaf is by 
assumption very ample and determines 3E. Using Hodge theory we get 
that H"(V,, IU) contains in a natural way the r H~ O"). This 
implies that Aut (V, 3E) operates faithfully on H"(V, C) and, therefore, also 
on H"(V,Z)* as H"(V, IE)=Hn(V,:E)| Applying the method of 
Chapter II, the existence of the coarse moduli space for the deformation 
functor -//rod of (Vo, X0) is realized as an algebraic space. (We have to 
take Jgred because it is not known if the scheme H from Proposition 2.12, 
which belongs to Jr', is reduced.) 

~8 Use [17]. 
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Appendix 
Theorem. The group GL(n, 71) contains up to conjugation only finitely 

many finite subgroups. 

W.D. Geyer has communicated to me a proof of this theorem which 
we will indicate. 

1. Having given up to conjugation a finite subgroup G of GL(n, 71) 
means that a faithfull integral n-dimensional representation of G has 
been given or 7/" has been given as a faithfull G-modul. 

2. As G is finite, every element gCG has a bounded order <N.  If 
g~ = 1 and m is minimal, then g (as an operator on 7/n) satisfies a poly- 
nomial equation f ( g ) = 0  of degree n 2. Because the m-th cyclotomic 
polynomial ~m(x) divides, in this case, f, degree ( f ) =  n 2> ~p(m). But, 
lim r (m)= ~ .  Therefore, for only finitely many m, q9 (m)< n 2. 

m ~  ao  

2a. Remark. If G is only known to be periodic, it follows from 2), 
together with [5] 36.1, that G is finite. 

3. Assumption. G is abelian and finite. Consequently, the exponent 
of G divides N ?. Look to the subgroup G c~ SL(n, 7/) which is of index < 2 
in G. After adjoining the N !-roots of unity to Q, one can diagonalize 
G c~ SL(n, 7/) and G c~ SL(n, 7/) becomes a subgroup of (7//N ! 7/)". This 
demonstrates: Up to isomorphism there are only finitely many finite 
abelian subgroups of SL(n, 7/) and GL(n, 7/). 

4. G shall be any finite subgroup of GL(n, 7/). By [5-1 (36.13), there 
exists a number F(n) (independent of G) such that G has an abelian 
normal subgroup of index <F(n). This implies together with 3): There 
exist up to isomorphism only finitely many finite subgroups of GL(n, 7/). 

5. To conclude the theorem it remains to prove that a finite group 
has up to isomorphism only finitely many integral representations of 
dimension n. 

This is a special case of [5] (79.12). 
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Note added in proof The assumptions in Theorem 1.13 can be weekened considerably. 
We are able to show the following: 

Let X be a separated algebraic ~2-space locally of finite type and G an algebraic group 
over ~'. If G acts properly on X and with finite stabilizers, there exists a separated algebraic 
C-space locally of finite type over C which is a geometric quotient of X by G. 

A proof will appear in Compositio Mathematica. 
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The stronger quotient theorem yields over the complex numbers in connection with 
the considerations in Chapter II of this paper to coarse moduli spaces for canonical 
polarized, smooth varieties and also for polarized, smooth varieties with irregularity 0. 
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