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The Characters of Discrete Series as Orbital Integrals 

James Arthur* (Bures-sur-Yvette) 

Suppose that G is a Lie group, which for the purpose of this introduction, we take 
to be a real form of a simply connected complex semisimple group. Suppose that 
square integrable representations for G exist and that f is a matrix coefficient of a 
square integrable representation belonging to the unitary equivalence class ~o. 
Har ish-Chandra  has shown how to evaluate the integral of f with respect to the 
G-invariant measure on any regular semisimple conjugacy class. In fact suppose 
that h is a regular semisimple element of G. The Cartan subgroup T which central- 
izes h may be assumed to be stable with respect to a fixed Cartan involution 0. 
In other words, there is a 0-stable decomposition 

T =  T, T~, 

where T I is compact  and T~ is a vector group. Then according to Harish-Chandra,  

.[ f ( x - '  h x)dx--e(T) Oo(.D Oo(h), (1) 

where Or, is the character of co and e(T) equals 1 if T is compact  and is 0 otherwise. 
Implicit in this formula is the absolute convergence of the integral on the left. The 
vanishing statement (the case that T is noncompact)  is sometimes known as the 
Selberg principle. The purpose of this paper is to establish a formula which 
generalizes (1). 

If P is a parabolic subgroup of G, let 

P=NAM 

be the "Langlands decomposit ion".  It is not P that we want to fix, but rather A, 
and its centralizer MA. In fact, let ~(A) be the set of all parabolic subgroups for 
which A is the vector group in the above decomposition. This set is finite. For  each 
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P=NAM in ~(A) and x~G, put 

x = M(x) exp (Hp (x)) N(x) K(x), 

for M(x)~M, Hp(x)Ea=logA, N(x)~N and K(x) an element in K, the maximal 
compact subgroup of G fixed by 0. Fix a Euclidean measure on a. For any xeG, 
let v(x) be the volume in a of the convex hull of 

{He(x):P~s 

As a function of x, v(x) is left MA-invariant. Choose T so that it contains A. Then 

A c  Tr~ T=MA. 

Our formula is 

S f (  x-1 hx)v(x)dx=e(r ,A)(-  1) p O,~(f) O~,(h), (1") 

where p is the dimension of A and e(T, A) equals 1 if A = 7~, and is 0 otherwise. 
In the particular case that A = T~ we see that the character value of ~o on any 

regular semisimple conjugacy class can be obtained as the weighted average of 
any matrix coefficient of ~o over the conjugacy class. This is a surprising and 
striking coincidence. The matrix coefficients of the discrete series are of central 
importance in the harmonic analysis on G but there has never been anything 
resembling a general closed formula for them. On the other hand, in the spirit of 
Weyl's character formula, O~ (h) can be expressed as the quotient of two exponential 
polynomials. 

The product of the left hand side of(l) by a suitable function ofh yields Harish- 
Chandra's invariant integral, Fs(h), which one studies not just for the function 
given above but for any f in the Schwartz space of G. We shall consider the product 
of the left side of (1") by the same function of h, again for any f in the Schwartz 
space. The resulting distributions 

f--*Ri(h), 

turn out to have analogues of three fundamental properties of the invariant 
integrals. Fr satisfies a family of differential equations in h. The same is true for 
Re(h), although the equations here are more complicated. Fr satisfies boundary 
conditions at the hypersurface defined by any singular imaginary root of (G, T). 
So does Re(h). However, Rz(h) also satisfies boundary conditions for each real 
root of (G, T), and it is these latter which most concern us. Finally, both Fr 
and Re(h) are rapidly decreasing in the T~-component of h. Our starting point is a 
remarkable combinatorial lemma of Langlands, which is similar to the result 
announced in [4(b), w 8]. We reproduce Langlands unpublished proof in w 2. 
Section 3 contains the main application of this lemma. There we derive a formula 
for v(x) which is used in everything that follows. In w 4 we define the distributions 
and give some of their elementary properties. Sections 5-8 are essentially devoted 
to establishing the three main properties described above. We then prove formula 
(1") in w 9 by comparing these properties with the known behaviour of the functions 
Oo,(h). 
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The results of this paper are the generalizations to arbitrary rank of most of 
what is contained in [l(b)], although in that paper we did not recognize the 
appearance of the characters of discrete series. There is one formula for real rank 
one, though, ([l(b), Corollary 7.3]) which does not yet have a general analogue 
in higher rank. It would be desirable to define distributions for any hoeT, and to 
relate them to the values of Rs(h) as h approaches h o. 

The integral on the left side of (1") actually came up in another context. It was 
observed by Langlands some time ago that integrals of this type would arise if 
one attempted to generalize the Selberg trace formula to arbitrary reductive 
groups over •. A general trace formula does not exist at this time. However, for 
groups of rank 1 we can see the integrals occurring in the trace formula in term 
(9.1) of [l(a)]. The role played by (1) in deducing the formula for the multiplicity of 
~o in the regular representation of G on L 2 (F'-. G), where F is a discrete co-compact 
subgroup of G, is by now well known (see [4(c)]). It seems reasonable to expect that 
(1") will play the same role in the more general situation where F \ G  is only 
assumed to have finite G-invariant volume. 
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w O. Notation 

If G is any Lie group, its Lie algebra will be denoted by g, and the complexification 
of g will be written as g~:. We will generally let ~ denote the universal enveloping 
algebra of ge. We shall write G O for the connected component of 1 in G. 

w 1. Split Parabolic Subgroups 

Let G be a Lie group. Suppose that K, 0 and B are fixed and that (G, K, 0, B) 
satisfies Harish-Chandra's general assumptions ([2(h)], [2 (i)]). For convenience 
we recall these assumptions. 

For a start, G itself satisfies the following four conditions. 
(i) g is reductive. 

(ii) If G e is the connected complex adjoint group of ge, A d (G )c  Ge. 
(iii) Let G 1 be the analytic subgroup of G corresponding to gl = [g, g]. Then 

the center of G 1 is finite. 
(iv) G o has finite index in G. 
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K is a maximal compact  subgroup of G which meets every connected compo-  
nent of G and such that K m G o is a maximal compact  subgroup of G ~ 0 is an 
involution on 9 for which f is the + 1 eigenspace. Finally, B is a real symmetric 
bilinear form on 3 such that 

(i) B([X, Y],Z)+B(Y, IX,  Z ] ) = 0 ,  X, Y,Z~g, 
(ii) the quadratic form 

IlXll2= -B(x,  ox), x~3, 
is positive defni te  on 3, and 

(iii) B(OX, O Y)=B(X, Y), X, Ysg. 

Suppose that t is any O-stable abelian subspace of .q. Write 

t = t I C )  t ~ 

for the decomposition of t into its + 1 and - 1 0-eigenspaces. The restriction to t 
of the form B is just denoted by { ,  ) .  It is nondegenerate. We extend { ,  ) to a 
symmetric form on t; r and use it to identify ~e with its complex dual space. This 
convention applies in particular to the case that t is a 0-stable Caftan subalgebra 
of 3. In that case define T, the Cartan subgroup associated to l, to be the centralizer 
of t in G. Then 

T= T~ T~, 

where T~ = T n  K, and T~= exp t~. T normalizes each root space of(3, ~). It follows 
that each root u of (3, t) gives rise to a quasi-character {= of T. 

Recall that a subgroup P of G is called parabolic if it is the normalizer in G 
of a subalgebra p whose complexification contains a Borel subalgebra of ~e. Then 
p is the Lie algebra of P and G = PK. As usual, let N and n denote the nilradicals 
of P and ta respectively, and put 

l=~an0(~). 

Let a I be the - 1 0-eigenspace of the center of 1. Finally, let L be the centralizer 
of a n in G. Then I is the Lie algebra of L and P = NL. 

It is customary to call exp a n the split component  of P and to refer to (P, exp al) 
as a parabolic pair. However, for some applications one wants to consider pairs 
which arise, via extension of scalars, from parabolic pairs over a subfield of IR. 
The resultant objects over IR have been axiomitized in the early pages of [4(a)]. 
Suppose that a is a subspace of a n and A = e x p  a. The action of a on 3 can be 
diagonalized over IR. Let Q be the set of roots of (3, a), and let Qp be the subset 
whose root spaces lie in n. For  any 7eQ we denote the root space by ,%, and also 
by rt>. if 2 happens to lie in Qv- Let m be the B-orthogonal complement of a in I. A 
is said to be a split component of P if for any Y~m and yeQp,  

tr (ad Y),~ = 0. 

We shall call the pair (P, A) a split parabolic subgroup (of G). 
Suppose that (P,A) is a split parabolic subgroup. Let M be the group of all 

meL such that 

det (Ad m)., = + 1 
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for each 7 in Qp. Then m is the Lie algebra of M. Moreover M ~ A = { 1 }  and 
L =AM, so that 

P = M A N .  
It is easily checked that no element in QP is zero and that Q is the disjoint union 
of QP, {0}, and - QP. In particular the Lie algebra p, and hence the groups P, N, 
and M, are uniquely determined by A together with the subset Qp of Q. (See [4(a), 
pp. 2.2-2.5].) If xeG we write 

x = m(x) (exp He (x)) N(x) K (x) 

for M(x)~M, He(x)~a, N(x)eN and K(x)6K. The vector He(x ) is uniquely 
determined. In the future we shall sometime index a split parabolic subgroup by 
a subscript or a superscript. In this case all the various objects associated to the 
parabolic subgroup (such as N, M, Hp etc.) will be indexed the same way, usually 
without further comment. 

Suppose now that A is any vector subgroup of G such that 0 is - 1 on a. As 
above we write Q for the set of roots of (g, a). Put 

a~ H)=O for every ycQ}, 

and let a 1 be the orthogonal complement of a ~ in a. Then 

Ct~flO(~ (11, 

and Q spans a t. We shall always denote the dimension of o' by p. We shall say that 
A is a special subgroup of G if it is the split component of some parabolic subgroup 
P. Since 

Q=Q,~{0}~-Op 

for any such P, A is special if and only if 

tr (ad X),., = 0 

for all X e m  and 7~Q. We shall write N(A) for the set of all parabolic subgroups 
with A as split component.  

Lemma 1.1. Let (P, A) be a split parabolic subgroup. There is a uniquely determined 
subset cb e of Qp for which any element in Qp can be uniquely written as a nonnegative 
integral linear combination of elements in cbe. Cbp forms a basis of a'. I f  7' and 
7 2 are distinct elements in @v, 

For a proof this lemma see [4(a), Lemma 2.2]. The proof goes the same way 
as that of [2(c), Lemma 1]. [] 

For  the rest of this section A will be a fixed special subgroup of G. L is just the 
centralizer of a in G, so is defined independently of Pe.~(A). The elements of 
Q - { 0 }  define hyperplanes which partition a into a finite number of connected 
components called chambers. If P ~ ( A ) ,  put 

cl,(a)={H~a:(y,H)>O for all ?~Qp}. 
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This is called the positive chamber of P. In view of Lemma 1.1. it is defined by p 
hyperplanes, corresponding to the elements of (b z. Distinct groups in 5~(A) give 
rise to distinct positive chambers. On the other hand, suppose that c is an arbitrary 
chamber in a. Define Qp to be the set of roots in Q which are positive on c and 
let u be the sum of the corresponding root spaces. Clearly Q is the disjoint union 
of QP, -QP and {0}. It follows easily that l+u ,  evidently a subalgebra of 9, is 
actually a parabolic subalgebra. Therefore, P, its normalizer in g, is a parabolic 
subgroup of G. A is a split component of P and ce(a)=c. We have shown that 

P ~  Cv(a ), Pe~(A) ,  

is a bijection from ~(A) on the set of chambers in a. 
Suppose that Pe~(A). Let (P*, A*) be a split parabolic subgroup with P c  P* 

and A~A*.  We shall say that (P,A) dominates (P*,A*) and write (P,A)<(P*,A*) 
if there is a sequenc e 

(I"1, A1) ... . .  (Pk, Ak) 

of split parabolic subgroups such that 

P = P ~ P z ~  "" ~Pk -=P*, 

A = A l m A 2 ~ . . .  ~Ak=A* , 

and 

d i m A i + l - d i m A i = l ,  l < i < k .  

Suppose that F is a subset of (b e. Define 

av={Hea:(~,,H)=O for all ?~F}, 

and let I v be the centralizer of a v in g. If QF is the set of roots in Qp which do not 
vanish on av, put 

r [ F ~ - ' O y e Q  F n 7 �9 

Then Iv+n  F is a parabolic subalgebra. Let Pv be its normalizer in G and put 

A F = exp a F. 

Lemma 1.2, The map 

F ~ (PF, AF) 

is a bijection from the collection of subsets of ~b v onto the set of split parabolic sub- 
groups which are dominated by (P, A). 

For a proof  see [4(a), Lemma 2.3]. []  

Given (P,A), we write P<P* if (P,A)<(P*,A*) for some A*. A* is uniquely 
determined, being equal to L* c~A. (Pc~L*,A) is a split parabolic subgroup of L*. 
In fact given A and (P*, A*), the map 

P--* P n L* 
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is a bijection between the set of P e ~ ( A )  which are contained in P* and PL,(A), 
the set of parabolic subgroups of L* with A as split component. 

Define two groups P and P' in N(A) to be adjacent if their chambers have a 
p -  1 dimensional wall in common. P is adjacent to exactly p groups in N(A), one 
for each simple root of (P,A). Suppose that P and P' are arbitrary elements in 
~(A).  A path of length n between P and P' is a set 

Pt = P, P2, . . . , P , =P '  

of elements in ~(A) such that P/ and P/+I are adjacent, l < i < n - 1 .  We write 
d(P,P') for the length of the shortest path from P to P'. 

In this paper we will generally not need to normalize Haar  measures. An 
exception is the measure on a. Here we take the Euclidean measure defined by 
the norm It [[. We do the same for any vector subspace of a, and in particular for 
a 1. Suppose that PE~(A) ,  and that 

(i~p : {~/J: 1 <j<=p}. 

Define 

c(P) = Idet ((y J, 7k) )l <=j,k<=plL 

For any function ~o �9 C~ (al), 

e ( H )  d H = c ( P )  S... ~ q3(tl 71 + "'" + tp ?P) dta ... dtp. 
a 1 

Lemma 1.3. Fix i, 1 <= i < p, let F = {7i}, and define (P*, A*) = (PF, AF), in the notation 
of  I_emma 1.2. Then 

c(P) = c (P*) (7 i, 7i) ~ . 

Proof Ifj 4: i, define 7~ to be the projection of 7 j onto a*, the orthogonal complement 
of 7 i in a. By changing the tl variable we see that for any ~o~ C~(al), 

... ~ (p(t 1 7 i +  . . .  +tpTP)dt,  . . .  dtp 

equals 

�9 ...[ (P(tl 7~ + ' "  +tp)'~)dtl . . .  dtp. 

But 

Op,= {~'i: J4=i} �9 

Therefore this last expression equals 

c(P*) 1 ~ ~o( t i? i+H, )dH,  dti 
- ~ ( a * )  1 

�9 ~ c ( P * )  1 (~ i~ , i~ . . - � 89  r  
al 

On the other hand this equals 

c (p)-1 ~ ~p (H) dH, 
r I 

so the lemma follows. [ ]  
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Corollary 1.4. I f  P and P' are in ~(A) ,  

c (P) = c (P'). 

Proof. Suppose that P and P' are adjacent. Let ?i be the root in ~p which is ortho- 
gonal to the common wall of P and P'. Then - ? i  belongs to ~e'. The other simple 
roots of P are different from those of P' but their projections onto the orthogonal 
complement of ?i are not. It follows from the lemma that c(P)= c(P'). The general 
case is obtained by taking a path from P to P'. [] 

Since the factor c(P) is independent of P e ~ ( A )  we will in future simply denote 
it by c A . 

w 2. Langlands' Combinatorial Lemma 

Suppose that V is a finite dimensional Euclidean space with a basis 

(~ = { 7 1  . . .  , ~)p} 

such that 

(?i, 7i) __< 0, 

for i# j .  Let {pl . . . . .  #P} be the corresponding dual basis. The following lemma 
is standard. For convenience we include the proof given in [4(a)]. 

Lemma 2.1. For all i and j, 

(#~, ld)  >= O. 

Proof. The lemma is easy to establish if p = 2. Suppose then that p is greater than 2, 
and assume inductively that the lemma is valid for spaces of dimension less than 
p. Fix i and j. Choose k not equal to i or j, and project 

{?l: l#:k} 

onto the orthogonal complement of /~k. This gives a basis {~: l # k }  of a p - 1  
dimensional Euclidean space. The dual basis is {pl:/#:k}. For 1#: k, m #: k, 

46l, ~,,) = (~ ,  ?m) = 4o/, ?,,) 47,,, ?k) 4~, ~k) 
(?k, ?k) 

If I and rn are distinct this is no greater than 0. Applying the induction hypothesis 
we see that 

(~ ,  # )  >__ 0. [] 

Corollary 2.2. Suppose that H is a point in V such that (7i, H ) > 0  for all i. Then 
<#~, H> >=0 .[or all i. 

Proof. We can write 

H = ~ c i ~1i, 

where each c~>-0. The corollary then follows from the lemma. [] 
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If F is any subset of {1, .. . ,  p}, let V v denote the subspace of V spanned by the 
vectors {7~: ieF}. If k belongs to F, set 7~=7 k. However, if k is not in F let 7~ be 
the projection of 7 k onto the orthogonal complement of V v. Finally, let {/z~} be 
the basis of V which is dual to {7~}. 

Fix F c  {1 . . . . .  p} and jCF. We can write 

7 =7i+E . '  Cji  7 , 
i ~F  

for real numbers Qi. Now {7i: i6F} and {#~: i~F} are dual bases of a subspace 
of V. Since (7 i, 7 j> <=0 for each i~F, we must also have (/~i v, 7 ~> =<0 for i6F, by the 
above corollary. It follows that 

Q~ <=O, i~F. 

Consequently if He  V, and (7 k, H> >0  for all k, then we must have (?~, H>>__0 
for all k. 

If i 6 F and j q~ F, then 

<77, 7~> = 0. 

If both i and j are in F and i#.j, 

< ;f ,  7F> = <7 ~, 7 j > =< 0. 

If neither i nor j belongs to F, 

i j <7> 7~> = <7}, 7 j> + S c~<7~, 7 ~> 
k ~ F  

= <7~, ~'J> 
= <7', 7 J> + ~ c~k<7 k, 7~>, 

k e F  

which is no greater than 0 if i 4=j. It follows that for arbitrary distinct indices i and j  

<7~, 7~>-50. 

This implies that for all i and j, 

<~4, ~ >  _>_o. 

Any hyperplane of the form 

{X'(y~v,X>=O} or { X : Q 4 , X ) = 0 } ,  for 

some i and F, will be called a special hyperplane. We shall say that a point H ~ V is 
regular if it does not lie on any special hyperplane. Fix a subset F of {1 . . . . .  p} and 
a regular point A. Define a function ~9~ on the set of regular points of V to be the 
product of the characteristic functions of 

{H: <?~, H)  > 0, for all j not in F} 

and 

{H:(#~,H>(7',A><O, for all i in F}. 
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Let eA denote the number of indices ieF such that (?,i, A ) < 0 .  Langlands' com- 
binatorial lemma is the following: 

Lemma 2.3. I f  (,/i, A) >0  for all i then 

( -  1) ~A 0~(H)= 1 
F 

for all regular H. I f  (7 i, A) <0 for some i, then 

( -  0r = 0 
F 

for all regular H. 

Proof Suppose that (7 i, H)  is negative for all i. Then, as we have seen, each 
(YF, H) ,  and therefore each (tt),  H)  also, is negative. Hence 0A(H) vanishes for 
all A unless F equals the set F 1 = {1 . . . . .  p}. Moreover, ~A =0, and 0A(H) equals 
1 or 0, depending on whether or not (7 i, A) is positive for all i. This proves the 
lemma for H as above. 

Now suppose that H and H' are two regular vectors. We have only to show that 

0F(/-/A ,). 
F F 

H and H' can be joined by a polygonal path, no segment of which lies in a special 
hyperplane and no point of which lies on the intersection of 2 distinct special 
hyperplanes. We may assume that only one point of this path lies on a special 
hyperplane, say 

{x: x )  =0}, 

and that H and H' lie on opposite sides of this hyperplane. In other words (~, H)  
and (~, H ' )  are of opposite sign. 

Suppose that F is a subset of {1 . . . . .  p} and that no vector in either {~;~:jr 
or {tt~: ieF} is a multiple ofu. Then 

(7~, H} = ( ~ ,  H ' )  if jq~F, 

and 

( /~ ,  H} = ( /~ ,  H ' )  if ieF. 

It follows that 0A(H) - --0F(H). A ' 

Let ~ be the collection of those F such that for some k not in F, 7 k is a multiple 
of ct, and let ~ be the collection of those F such that for some k in F,/~k F is a multi- 
tude of ct. In either case k is uniquely determined. ~ and ,~ are disjoint. Suppose 
F 1 ~ .  We might as well assume that F1 = { 1 . . . . .  k - 1  }, for some k < p, and that 
7k is a multiple ofc~. Let F 2={ l  . . . . .  k}. o/k and /~k are both in the span of 
{/~k, ..,/~p} but both are orthogonal to {#k+~, /f}.  Therefore, /~k is a multiple . . . .  ~ F2 

of 7 k, and hence of c~. We note for later use that since 

~,~. =Tk+ ~ % 7i, 
i < k  
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and 

~ 2  = ~ + Y~ d~j ~J, 
j > k  

k k (Pr, ,  PF~) equals l, so that P~2 is actually a positive multiple of Y~,- At any rate, 
F 2 belongs to ~c 2. Since the empty set does not belong to ~ ,  this process can be 
reversed. In this way we set up a one to one correspondence between ~ and ~2. 
Let F l and F 2 be two corresponding sets, which we assume for simplicity are as 
above. We have only to show that 

(_  1y,a., 0~,(H) + ( _ 1)~-~ 0~2(H) = (_  1)~;, ~ ,  (H,) + ( _ 1)~#~ ~pFz(HA ,) .  

Suppose that j>k. 7~ is in the span of {pk+l . . . . .  pv} but is orthogonal to 
{PZ:l>=k+l, 14=j}. 7{, is in the span of {pk,...,/~v} but is orthogonal to 
{pt: l>=k, l#j}. However, 

4,;{,, ~i )  = (~l{,, # )  = ~. 

Therefore, 7{: - 7 {, is in the span of {#k .. . .  , pv} but is orthogonal to {pk+ 1 . . . .  ,/~v}. 
NOW 3~1 also satisfies this property. It follows that 

7L=7{, +r cj~,. 
If we take the inner product of this equation with 7~1, and note that 

"J ~'* "~ = (7{2, uk) __- 0, t F 2 ~  l F t /  

we discover that ~'j => 0.. Suppose that i<  k. Then we can make the same argument 
to show that #~1-V~'2 is in the span of {pl,...,pk} but is orthogonal to 
{pl . . . .  , #k-t}, and that 

l i  i - -  
[ f l  = [AF2 -'1- d i llkFz, 

for d i <0.  

Now (7~1, H)  and (7~,,, H') are of opposite signs. We can assume that (7~1, H') 
is negative. Then $~, (H') vanishes for all A. We must show that 

( -  1) "#1 CA,(H) =(--  1)'a~ q,#~(H')-(- 1)'a~ $A2(H ). (2.1) 

Suppose first of all that t##,(H) vanishes for all A. Then there is a j>k such that 
(7{,, H)  is negative. Since 7{, is not a multiple of a, (7{1, H')  is also negative. 
Therefore 

<7{2, H'> = <7{1, n ' )  + cj (7~,,  H'> < 0. 

This means that <7{2, H)  is also negative, so that ~,~:(H) and A , @F2(H ) both vanish 
for all A. This proves (2.1) in the case under consideration. 

The other case is that Oa (H) does not vanish for some A. This means that 
<7{,, H)  > 0 for each j > k. But then, for any j > k, 

(7{2, n ) :  (7{,, H)  + cj(7~,, H)  
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is positive. The same goes for J ' (7F2,H). On the other hand, suppose i<k. If 
(/~2, H)  is negative then 

is also negative, since (#~2, H) is a positive multiple of (?~,, H), which is positive. 
f i I (/~F2, H) is positive then 

<l~F, , n'> = (la~2, n') + d, (#~, n'> 

is positive, so that (/~,, H) is also positive. Therefore, the three numbers (~iv, , H), 
</~F2, H>, and <#~, H') all have the same sign. Thus, to relate the right side of 
(2.1) with the left side, we have only to consider the 2 opposite signs, 

sign (</~,, H ' )  (~)k, A)) 

and 
sign ( < # k  H )  (7 k, A>). 

Remembering that #k is a positive multiple o fvk ,  we see that if (7 k, A> is positive 
the first sign above is negative. In this case ~2 = c~. On the other hand, if <7 k, A) 
is negative, 7A .A F2 = eF, + l, and the second sign above is negative. Either way, the 
right side of(2.1) equals the left hand side. The lemma is proved. [] 

When we apply the results of this section it will be a little simpler if we don't 
have to always index the elements of t/. Therefore, in future F will denote only a 
subset of ~. Modulo this technicality cA and aA will have the same meaning as 
above. 

w 3. The Volume of a Convex Hull 

Fix a special subgroup A of G. Recall that a = a ~ �9 a ~. In this section we shall not 
distinguish between functions on a ~ and a~ functions on a. Let ~e 
be the basis of a ~ which is dual to-t/e with respect to the bilinear form ( ,  > on 
a'. It follows from Lemma 1.1 that the space a', taken with the basis t/p, satisfies 
the assumptions of w 2. If A is any point in a', regular in the sense of w 2, and F 
is any subset of ~b e, we can define the function a r F and the integer ~ae, v. We have 
indexed them to denote their dependence on P. 

Suppose that (P*, A*) is a split parabolic subgroup such that 

(P*, A*) = (Pr, Av) 

for some subset F of t/e. If the bases t/p and (~e are indexed as in w 2, we write Zp, 
for the characteristic function of the set 

{H~a: < ? ~ ,H > > 0  for all 7J not in F} 

and we write a ~0e, p, for the characteristic function of 

{Hea: (kt~, H> (7 I, A> <0  for all 7 i in F}. 

Then 

@~,F(H)--Zp,(H) (p~,e,(H), H~a. 
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Furthermore, we put 

A A ~ 
P , P *  = ~ P , F "  

Finally, we write qgi~ and flA for q9 A, G and flA a respectively. 

Suppose that 

~= { Yp: P ~ ( A ) }  

is a set of points in a, indexed by ~(A). We shall say that ~ is an A-orthogonal 
set if for any adjacent pair P and P' in ~(A), whose chambers share the wall 
defined by a uniquely determined simple root 7 of (P, A), then 

Ye-- Yp,=rT, r~IR. (3.1) 

Let A* be a special subgroup which is contained in A, and suppose that P* e~(A*). 
If ~J is A-orthogonal, the set 

~. = {re: P ~ ( A ) ,  P=P*} ,  

indexed via the bijection described in w 1 by ~@L.(A), is an A-orthogonal set for the 
group L*. The projection of 

Yp, Pe~(A), P=P*, 

onto a* is independent of P. We denote it by Yp,. The set 

~* = { Ye*: P* e~(A*)} 

is an A*-orthogonal set. 

Suppose that in (3.1) the number r is actually nonnegative for each adjacent 
pair P and P'. We shall label this stronger condition by saying that Y/is a positive 
A-orthogonal set. Let P be a group in ~(A), and let A be any point in ce(a)c~a ~. 
Then if P' is any other group in ~(A), it is easily seen by induction on d(P, P') that 

(A, Yp- Yv,> >=O. (3.2) 

We shall say that a point Aea  t ~s strongly regular if for each Pe~(A), A is a 
regular point associated with (a 1, (be) in the sense of w 2. Denote the set of strongly 
regular points in a 1 by a~r. I f ~  is an A-orthogonal set, let %r(q/) be the set of points 
H e a  such that for each Pe~(A) ,  the projection of 

H+ Yp 

onto a' is strongly regular. 

Lemma 3.1. Suppose that ~ is an A-orthogonal set. Then for Aea'sr the function 

@(H,Y/)= ~ (--I)~r He%,(Y]), 
Pe~@(A) 

is independent of A. 
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Proof By Lemma 2.2 the function is just the difference of 1 and 

E E ( -  1) ~~ oA, e( H -  Yp)" 
P~,~(A) F 5 41. 

In this expression we change the sum over F to a sum over all parabolic subgroups 
dominated by (P, A). We obtain 

~ (--1)'A"*Zp,(H--Yp)PA, p,(H--Yp) 
P e ~ ( A )  P * >  P 

P*:~ G 

= ~ Zp,(H-Ye*){ ~ (--1)"A''*~P~,,p*(H--Yp)). 
P* * G PeN~(A) 

P < p *  

The expression in the brackets depends only on the projection of A onto the ortho- 
gonal complement of a* in a. It is simply the function 

O,(H, %) 
associated with the group L*. Our lemma therefore follows by induction on the 
dimension of a 1. [] 

If ~ is an A-orthogonal set, there is a uniquely determined vector X in a ~ such 
that the set 

~ = { Y p -  X : Pe~(A)}  

lies in a' .  Denote the convex hull of ~1 by C'(oY), and put 

C(~) = C' (~) + a ~ 

Lemma 3.2. Suppose that ~ = { Yp} is a positive A-orthogonal set. Let H be a point 
in as,(~ ). Then the following conditions on H are equivalent: 

(i) ~O (H, ~ )  4: 0, 
(ii) H e  C(O3q, 
(iii) for each P e ~ ( A )  and P~6P, 

(#, n - Yp} < O, 

and 

(iv) 0 (H, ~ ) =  1. 

Proof The characteristic function of C(~)  and the function 0(H,  Y/) are both 
invariant under translation by a ~ We may therefore assume for the proof that 
a ~ = {0}. We shall prove that (i) ~ (ii) ~ (iii) ~ (iv) ~ (i). 

Suppose that (i) is true. Fix an arbitrary point A in asr. In view of Lemma 3.1 
we can find a P e ~ ( A )  such that if7 is any element in q~e and tt is the corresponding 
dual basis element, 

(A, 7> </~, H - Yp> <0.  

Summing over 7sq,p, we see that the number 

(A, H -  Ye} 
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is negative. If H were not in C(~)  we could, by a fundamental property of convex 
sets, find a A E a such that 

( A , H ) >  sup ( A , X ) .  
XEC(~) 

We have just seen that this cannot happen if A is in a , ,  a dense subset of a. It 
follows that H belongs to C(~r 

Next suppose that H is in C(~). Fix P ~ ( A )  and let A be any point in cv(a ). 
By the Krein-Millman theorem, the linear functional defined by A assumes a 
maximum on C(~)  at some extreme point. Therefore, there is a P'e~(A) such that 

(A, Yv,) >= (A, H). 

Combining this with (3.2) we find that 

( A , H -  Yp) ~O. 

But A was an arbitrary point ofcv(a ). It follows that for each Steer ,  

(#, H -  Yv> < O. 

Since H belongs to %(~ ) ,  this inequality is strict. 

Suppose next that (iii) is valid. Fix P ~ ( A )  and Aecv(a ). Then 

( -  1) z~' qgA,(H - Yp,), P'e~(A), 

equals 1 i fP '=P and equals 0 otherwise. It follows from Lemma 3.1 that 

~ 9 ( g : ~ ) = l .  

This is just condition (iv), which trivially implies condition (i). []  

Corollary 3.3. I f  ~ is any A-orthogonal set, the support of the function 

H ~ o ( g , ~ )  

is contained in C(~/). 

The proof that (i) implied (ii) above only made use of the fact that ~ was 
A-orthogonal. [] 

Let ~ be a fixed A-orthogonal set. It is a consequence of Corollary 3.3 that 

~, (H, ~)  e <~' H> dH, 2 ~ a~:, (3.3) 

is an entire function of 2. Remember that dH is supposed to be the Euclidean 
measure on a ~. We are going to evaluate (3.3) at 2=0 .  

Let A be the real part of 2, and choose 2 so that A is strongly regular. Fix 
Pe~(A).  We claim that the integral 

( -  1) ~# ~oA(H-- Yp) e <x'n> dH (3.4) 
fl 1 

is absolutely convergent. If (bp = {71 . . . . .  7 e} and 

Ce={,u' . . . .  ,~P} 
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is the corresponding dual basis, (3.4) is the integral of 

( -  1) p~ e<~,H> 

over the set 

S={Heat: <A, TJ> <#J,H- Yp><O, l <=j<=p}. 

In the integral, write 

H = t  1 71 + . . . + t p 7  p. 

With this change of variables we gain the factor 

c A = [det ((7 ~, 7k>)1 <_j,k<p[ ~, 

discussed in w 1. The integral becomes 

CA(-- 1) ~ f i  { S e<X"/>'idtj} , 
j= 1 Sj 

where 

Sj= {tj: (A,  7J> ( t j - ( p  j, rp>)<0}. 

The above integral over Sj is obviously absolutely convergent, and is easy to 
evaluate. It equals 

<2, ~  e <~'~'j> <uJ, r,,>. sign (<A, 7J)). 

We have shown that the integral (3.4) is absolutely convergent and is equal to 

P 
CA(-- i) pC H ((2, 7 j)- '  e <z'vj> <"j' vp>. sign ((A, 7J))) 

j=l 

e<~., rp> 
= C A p 

FI <2, ?> 
j = l  

Therefore the function (3.3) equals 

e<2, YP> 
cA 

Pes H <2, 75 
?e~p 

This function is entire in 2. To obtain its value at the origin we replace 2 by 

z2, z ~ ,  

and let z approach 0. The resulting expression, 

CA(P !) -1 2}2 <~' Ye>p 
e~{~} H <2,75' 

yelp 

is independent of 2. We have proved the following: 
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Lemma 3.4. Suppose that H is an A-orthogonal set and that 2 is a point in a~ whose 
real part is strongly regular. Then the integral over H e a  1 of O(H,H) equals 

<,~, Y y  
v(H);cA(p!)  ' Y~ 

7eqbp 

In particular the right side of this .formula is independent of 2. [] 

Corollary 3.5. I f  H is a positive A-orthogonal set, the expression v(~J) equals the 
volume of the convex hull C ' (~) .  [] 

The A-orthogonal sets which will concern us in this paper are given in the 
next lemma. 

Lemma 3.6. Fix xeG.  Then 

= { - He(x): Pe~(A)} 

is a positive A-orthogonal set. 

Proof. Suppose that P and P' are adjacent groups in ~(A). Let the common wall 
of ce(a ) and Ce,(a ) be defined by )'e4~ e. We must show that 

- H e ( x )  - ( - H e ,  ( x ) )  (3.5) 

is non-negative multiple of 7. 
Put 

x = m a n ' k ,  m e M ,  aeA, n ' e N ' , k e K .  

Then (3.5) equals - H e ( n '  ). Corresponding to the subset {7} of 4~p we have the 
parabolic subgroup 

P* = M* A* N* 

of G, which contains both P and P'. Then 

(P,, a , ) =  (Pr~ M*, A r~ M*) 

is a split parabolic subgroup of M* of parabolic rank one. Put 

n ' = n * n , ,  n * e N r ~ N ' = N * , n ,  eN '  c~M*. 

We have 

- He(n ) = - He (n,) = - Hp,(n,). 

This vector is certainly a multiple of 7. That it is actually a nonnegative multiple 
follows from [2(g), Lemma 85]. []  

If H and H' are (positive) A-orthogonal sets then 

H +~J'= {YP+ YI:Pe~(A)} 

is a (positive) A-orthogonal set. 
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Corollary 3.7. Suppose that ~ is an A-orthogonal set. Then the function 

v ( x , ~ ) = c . ( p ! )  -~ F= <,~, r ~ - / # ( x ) y  
V~<A) ]~ (~,7) , xeO, 

yEC~p 

is independent of 2ea~. It is left-invariant under L=MA.  [] 

w 4. The Distributions 

Let A be a special subgroup of G, and as always, 

L = M A  

is the centralizer of A. Fix a O-stable Cartan subalgebra t~t of m, and let T M be the 
Cartan subgroup of M associated to t u .  Then 

t=tMGa 

is a Cartan subalgebra of g, and 

T= T ,A  

is the corresponding Cartan subgroup. We denote by Treg the set of hET such 
that ~ ( h ) # l  for every root ~ of (g, 0. Fix a Haar measure on G. On T~=exp t~ 
we take the Haar  measure which corresponds under the exponential map to the 
Euclidean measure on ~ .  These 2 measures determine a G-invariant measure 
on T~ \  G which we denote by dx. For any heT~eg, any A-orthogonal set ~r and 
each function f e  C~ (G), define 

( r ( h : ~ ) , f ) =  S f ( x - lhx )  v(x'~)dx" 
T ~ G  

This integral is absolutely convergent and r (h: ~ )  is easily seen to be a distribution. 
For any f,  ( r ( h : ~ ) , f )  is a smooth function of h e T ~ .  

It is these distributions that we primarily want to understand. Their study 
involves an inductive argument, however, which forces us to enlarge the collection 
of distributions under consideration. Before doing this, we must agree to some 
notations for differential operators. 

Let N and ~r be the universal enveloping algebras of ge and ae respectively. 
N can be identified with the algebra of left invariant differential operators on G. 
With this interpretation, an element YeN maps any f e  C~ :~ (G) to a new function 
whose value at xeG is denoted by (Yf)(x) or f (x ;  Y). On the other hand, from any 
element 

X = X  1 . . . X r ,  X I . . . . .  X r e  9 , 

in N we obtain a right invariant differential operator D x, defined by 

d d 
(Dxf)(x)= dh --dt-- f(ex p t I X 1 .. ,  exp trXrx), . . . . . .  , . :0 ,  
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for each f ~  C ~ (G). This last expression is also sometimes denoted by f(X~ x). 
The map 

X ~ D x ,  X~f f  , 

is an anti-isomorphism from ff onto the algebra of right invariant differential 
operators. When we want to specify that the differentiation D x applies to the 
variable x, we write Dx(x ). Finally if 

f (x, Yl, ' " ,  Y.) 

is a function of several variables, we shall denote the value of the function 

Dx(x) f ( x ,  Yx .. . .  , Y,) 

at x = x o by 

Dx(xlxo) f (x, Yl . . . .  , Y.). 

If ~' is any vector subspace of f#, let q/a denote the set of elements U in q/such 
that 

Ad (a) U = U 

for any a~A. The additional distributions will depend on an element X~ff a as 
well as a point h ETreg , and an A-orthogonal set Yr We define them by 

( r ( h : ~ : X ) , f ) =  ~ f ( x - l h x ) D x v ( X , ~ ) d x .  
T~'-. O 

There is a formula for D x v ( x , ~  ) which we must describe. Suppose that 
PE~(A). Define 

p l = n O m ,  

and 

t,=0(n). 

pl and o are subalgebras of g and there is a vector space decomposition 

g = p l G a G D .  

Therefore, if ~1 and ~/~ are the universal enveloping algebras of p~ and ~r respec- 
tively, f# is linearly isomorphic to ~1@~r162 For  each X~fga, define #p(X) to 
be the unique element in ~r such that X - l a p ( X )  belongs to 

pl ( # + f i b .  

There is a decomposition 

i f=p1  fr @ ~ t ~  

of f~ into subspaces which are normalized by the adjoint action of A. The compo- 
nent of X - # e ( X )  in ~'~U must actually lie in ~ .  By the definition of #j,(X), this 
component must vanish. It follows that X - # p ( X )  belongs to p~ ft. In particular, 
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the map 

x--,~p(x), xs%, 

is a homomorphism. From this discussion it is clear that for x~G and X~ff A, 

DxV(X,~/)=CA(P!) -1 ~, Du,,(x~(hll) 
P ~ ( A )  

Notice that for m e M A ,  

D x v ( m x , ~ ) = D  x v(x, Yl). 

(2, Ye- log  h -He(x) )V 
FI (,t, ;,) 

(4.1) 

Another consequence of (4.1) is the commutativity formula 

r ( h : ~ : X  1 Xz)=r(h:,~ 

for two elements X 1 and X 2 in (#A- 

For any positive integer r let (ffA (r) be the set of elements X in ~A such that 
for any Pc~(A) ,  all the nonzero homogenous components of pe(X) have degree 
at least r. (#a(r) is an ideal in ~a and ~a(r) ~A(r') is contained in ~a(r+r'). If X 
is in (flA(p+ 1) then by (4.1) 

D x v(x, Y)=0.  

Suppose that A* is another special subgroup of G which is contained in A. We 
claim that for any r, ~A(r) is contained in ~a,(r). To see this, take any P* in ~(A*). 
There is always a P ~ ( A )  which is contained in P*, in which case the group 

(p,)l  = M* N* 

contains p1. If X belongs to ,qJA(r), flp,(X) is the projection of pp(X) onto .~d*. 
The claim follows. 

There is a decomposition 

f# = ~  I |  

where I is the identity. The projection of any Xefq onto IlS I yields a complex 
number, which we denote by c o(X). 

Lemma 4.1. For any Xef# A, 

X - c o (X) I 

belongs to fqa(1). 

Proof The element 

Y = X - c o ( X ) I  

is in aJ,4. But for any Pe~(A) ,  

Co(~rIY))= Co(~)=0, 

which proves the lemma. []  
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Suppose that weK. If Pe~(A), wPw -~ belongs to ~(wAw-1) .  
If 

x = a m n k ,  a6A, meM, n~N, keK, 

write 

w x = w a w  - I  . w m w  -1  . w n w  -1  . w k  

to see that 

H,,ew-, (w x) = Ad (w) H e (x). 

If ~ is an A-orthogonal set, 

v t x , ~ ) = c ~ ( p ! )  ~ 
Pe~(A) 

<2, Ye-  Ad (w -a) Hwp,.-, (wx)> p 
[-[ (;~, ~) 

=CA (p r)-I Z (Ad (w) 2, Ad (w) Y w - , p w - H e ( w x ) ) "  

PE,~(wAw-1) H (Ad (w) 2, 7) 
y e l p  

where 

(w Y)p=Ad (w) Y~ 'ew, P ~ ( w A w - 1 )  . 
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-v(w x, w~), 

w ~  is a wA w-l-or thogonal  set which is positive whenever ~r is. If we make a 
change of variables in the integral which defines r (h :~ :X)  we obtain the formula 

r (w h w- 1 : w Yr Ad (w) X) = r (h : ~ : X). (4.2) 

We know that if our distributions are anything like Harish-Chandra's invariant 
integrals, it is natural to multiply them by a certain function of h. We take the 
definition of this function from [2 (i), w 8]. If 3 is the centralizer of t~ in g, let Z(t) 
be the centralizer of ~ in K. Let R{ be the set of positive roots of (3, t) relative to 
some order. Put 

A + (h) = Idet (l - Ad(h-  1))~/~1 ~, h~T, 

and 

/~(H) /~{H) 
AI(H)= 1-I (e 2 - e  2 ), H~t .  

p~R? 

Finally, for ~EZ(t) and He t ,  define 

A(~, H)= A,(H) A + (~ exp H). 

Let treg(~ ) be the set of H in t such that 

exp H 

is in Treg. Then if Hetreg(~ ) and X and ~ are as above, we define 

( R ( ~ , H : ~ ' X ) , f ) = 3 ( ~ , H ) ( r ( ~ , H : Y / : X ) , f ) ,  feCy(G).  
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We shall often write 

rf(h :o g ) =  ( r (h  : ~ ) , f ) ,  

and 

Rr :YI : X ) = ( R ( r  :~I : X ) , f ) ,  

and when we want to emphasize the dependence of Rr162 H : ,~/: X)  on T and A, 
we will write 

Rf'A(~, H:  ~ : X) =Rf(~, H : ~  'X). 

If the function 3(~, H) seems unfamiliar it is because we have not assumed 
that G is acceptable. Suppose that R + is the set of positive roots of (9, t) relative to 
some order, which we always assume is taken so that R/~ is contained in R +. For 
G to be acceptable the function 

H-,eP(m=exP(�89 ~ ~(H)), H~t ,  
~ R  + 

must lift to a function ~o on T. For H in treg(~), let n~(H) be the number of positive 
real roots fl in R + such that fl(H)<0. Define 

N(H) = ( - 1)'~ m) 

and 

A (~, H) = ~(H)  3(~, H). 

Then if G is acceptable A (~, H) equals the usual function 

A (~ exp H)=  ~p(~ exp H) I~ (I - ~,(~ exp H)-~). 

In any case, A (~, H) is analytic in H. 

There are still some other related distributions which we need to define. 
Suppose that fl is a fixed real root of (g, t). Define 

2fl 

Let X~ be a fixed root vector for fl such that 

[ X'p , - O X'B] = H'~ , 

and put 

Define 

t o = {Her :f l(H)=0} 

and 

t* =to@ ~ ( X ~ -  Y~). 

t* is a Cartan subalgebra, and we denote the corresponding Caftan subgroup by 
T*. Notice that Z(t*) is contained in Z(t). Suppose that ~ is in Z(t). From the 
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theory of the split three dimensional real Lie algebra, we know that 

~(~)-- ~_~(~)= + 1. 

This number equals 1 if and only if ( is in Z(t*), which is the case if and only if 
Ad (~) commutes with X~ and Y~. 

Define 

O* = t o N a  , 

and put A* = exp a*. Let na(A ) be the cosine of the angle between fl and the linear 
subspace n oft~. I f H  is any point in t such that fl(H)4=0, put 

fl(H) fl(H) 
z(U)=z~(U)=nt~(A) IIH'~N logic 2 - e  2 [. 

Suppose that (cZ(t*). Then for X and ~ as above, H~treg(( ) and f e  C~(G), we 
define 

<s~(~, H : .~  : X),f> = S~(~, H : ~  : X)  

to be 

R I (~, H '  ~ : X)+ z(H) R~'A*(~, H :~*  :X). 

Here ~* is the A*-orthogonal set defined in w 3. Note that if na(A) is not 0 there 
is a unique reduced root 7a of (g, a) such that the restriction of fl to a is a positive 
integral multiple of 7a. This gives rise to an injection 

ja: ~(A*)-* ~(A), 

whose image is the set of PE#(A)  for which Ya is a simple root. The vector in ~*  
associated to any P* 6~(A*) is the projection of Yj~(p,)onto A*. 

The role played by these new distributions will become clear in w 6. 

Lemma 4.2. For X, ~ as above and x~G, 

n~(A) IIH~II Dx v*(x, ~ * ) =  -Dr ,  x, x v(x, ~). 

Proof. If np(A)=O the lemma is obvious, so we assume na(A)#O. Dr~ xh x v(x, ~)  
equals 

42, Ye - log h - Hp(x)) p 
ca(p!) - t  ~,, Du,,(r'~x'~x)(htl) 

yelp 
For any P, 

#e(Y~ X~ X) = #p(Y; X~) #p(X) = - ea(P) H~ ~tp(X), 

where ea(P) equals 1 or 0 according to whether 7a is a root of(P, A) or not. Therefore 
D r;~ x~ x v (x, ~ )  equals 

+ 
- - C A ( ( P - - 1 )  !) -~ ()],, H~> . ~ Du,,(x)(hll) <R' (4.3) 

Yp-  log h -  H~,(x)) ~-1 

where the summation is extended over all P e ~ ( A )  for which ~a is a root of (P, A). 
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Put 

2=zTp+2*,  ze(r, 

where 2* is a point in o* such that {2", 7 ) + 0  for any root ), of (g, a) which has 
nontrivial restriction to a*. We fix 2* and let z approach 0. If 7p is a root of (P, A), 
and 7 e Op, then <2", ?) can be zero only if ? equals the reduced root 7n. In particulm; 
70 must belong to Op, which is the same as saying that P=j~(P*) for some 
P*e~(A*). We find that (4.3) equals 

- ca((P- 1) !)-1 (7a,Ya) P*e,~(A*)-- H (~'~/) 
):cOp* 

From Lemma 1.3 and the definition of %(A) we obtain 

<y,, /4 9 

It follows that (4.3) equals 

- na(A) ]tH~II Dx v*(x, 8/*), 

which is what we were required to prove. [] 

Corollary 4.3. For X, 8/ and ~ as above, H~treg( 0, and f ~ C{ (G), 

-no(A) IIH~II R~'A*(~, H '  ~*  : X)=R~'A(~, H : ~ '  Y~X'aX ) 
=S~(~, H" 8/: Y/X'~X). 

Proof. The first equation follows from the 1emma. The second is a consequence 
of the fact that R~'A*((, H'8/*" Y~X'~X) equals 0. [] 

The next four sections will be devoted to a more detailed study of the distribu- 
tions R((, H : 8/: X) and S~((, H : 8/: X). In these sections A, t, T, 8 / and  X will be 
fixed and are to have the meaning ascribed above. The element ( is also to be 
fixed, and unless stated otherwise it belongs only to Z(t). 

w 5. The Differential Equations 

As in the real rank one caSe ([1 (b), w 5]) our distributions satisfy a linear non- 
homogenous differential equation. However, unlike the real rank one case it is 
not sufficient for us to consider only the Casimir element. Rather, we must derive 
a differential equation for each element of ~f, the center of fa. 

Let 3- be the universal enveloping algebra of re. For any X~gr and Y ~  define 

Rx(Y)= YX, 
Lx(Y)=XY. 

It is easily verified [-2(a), Lemma 15] that for every h~T there is a unique linear 
mapping 

Fh : fr | aS 
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such that 

(i) ~ ( l |  ued-, 

and 

(ii) Fh(X 1 . . .  X r |  I )X 1 - R x ,  ) . . .  (LAd(h-,)x-Rx.) u, 

for Xt,  ..., Xreg. 

Let ~ be the direct sum over all roots of (gr re) of the corresponding root 
spaces. ~ is a subspace of gr Let 5 P be the image of the symmetric algebra on 
under the canonical map from the symmetric algebra of gr to ft. 50 is a vector 
subspace of ft. Denote by b ~ the set ofXe~9 ~ such that co(X)=0, 

Suppose mow that h is regular. In [-2(a), Lemma 22] Harish-Chandra proves 
that F h maps ,Y~| bijectively onto ~. In particular, for each z e ~  there is a 
unique element fib(z) in J such that 

z--~h(z) 
belongs to Fh(SC'| ). Therefore there are elements 

{Xi : 1Gi_<r} 

in 5 P' which commute with T, linearly independent elements 

{ui: l <=i<r} 

in ,Y- and analytic functions 

{at: l <=i<r} 

on Treg such that for any he Trcg, 

z-[3h(z)= ~ ai(l~) Fa(Xi | 
i = 1  

Fix f e C y ( G ) .  For  y, y~, y2EG, let us write 

f(Yl :Y :Y2)=f(Yl )' Y2)" 

We shall denote the function 

f ( x - l y x ) = f ( x  1 :y :x ) ,  x, yeG, 

by F(x : y). If z is, as above, in the center of if, 

f (x  -1 h x; z)= f (x  -1 : h : z; x j=F(x : h; z) 

for each xeG. Suppose that X e q  and Yeff. Then 

F(x : h; (LAd(h_ , ) x - - R x )  Y) 
= f ( x  -1 : h;(LAd~h_bx--Rx) Y: x) 
= f ( x - l  : X: h; Y : x ) -  f ( x  -1 :h; Y X : x) 

d x )  ~ d ~ .x)= - d t f ( ( e x p t X . x ) - ~ ' h ; Y "  - ~ f ( x -  : h ; Y : e x p t X  
0 

- dtd F ( e x p t X . x : h ; y ) t = o .  
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From this formula it follows easily that for any h in T~eg, 

F(x : h; Fh(Xi| ) =Dx:(X ) D,,(h) F(x : h). 

Here X; is the image of X i under the anti-automorphism of ff defined by 

Y, ... Y ~ - , ( -  1)' ~ . . .  Y~, Y,, ..., Yr~g~. 

Notice that for any pair of functions gl and g2 in C~(G), 

f. (Dx,, gltx)) g2(x) dx = ~ g, ix) Dx~ g2 (x) dx. 
G G 

It follows that 

(. F(x: h; Fh(Xi| D x v(x, ??l)dx 
T ~ \ G  

equals 

D,,(h) ~ f ( x - l h x )  Dxx, V(x,~)dx. 
TtR'., G 

Now we shall write 

h = ( e x p  H, (~Z(t), HEtreg((). 

Let S(tr be the symmetric algebra on re. It is canonically isomorphic to ~.  In 
particular any element u~S(t 0 defines a differential operator with constant 
coefficients on t, which sends any function q~ C~(t) to a new function which we 
denote by 

c~(u) ~0(H) = ~0(H; 0 (u)), H~t.  

Let I(te) be the set of elements in S(tr which are invariant under the Weyl group 
of (gr to), and let y denote the isomorphism from ~ onto I(t 0. Harish-Chandra 
has proved [2(a), Theorem 2] that for q~e C~(treg(~)), z ~  '~ and h as above, 

,d (~, H) fin(z) (A (~, n ) -  1 ~0 (n)) = ~ (]1 (Z)) q) (n). 

Finally, for each i, let 0~(z) be the operator which sends ~0e C~(tr~g(()) to 

3(~, H) a~(~ exp H) D,,(3((, H) -~ q~(H)). 

Each ~3~(z) is a differential operator on t,~g((). It is a consequence of [2(a), Lemma 
23] that for every z and i there is a k such that the coefficients of the differential 
operator 

(~, H) ~ a~(z) 

extend to analytic functions on t. 

We have virtually established 

Lemma 5.1. For any z6~r we can find elements 

{Xi: l <_i<r} 
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in GA(1 ) and differential operators 

i . _ _  _ _  {OH(z ) . l < i < r }  

on tr~,(~) such that for any H6treg(~ ) and f 6 C~(G), 

R~(~, H ' ~ ' X ) - R f ( ~ ,  H; O(7(z)) : 0# 'X) 

equals 

'~ Rz(~, H; a~(z) : ~ " XXi). 

Proof. The equality of the two given expressions has been established by the 
discussion above. The assertion that each X~ belongs to ffa(1) follows from 
Lemma4.1. [] 

Suppose that/3 is a real root of(g, I). Adopt the notation of the previous section. 
Fix ~ E Z (1"). We can easily transform the assertion of the lemma into a differential 
equation for S~(~, H : ~ : X). Define 

3(H) F(H) 
~(H)=-- �89 2 --e 2 [~_no(A)-IIIH~][z(H), 

if/3(H) 4= O. From Corollary 4.3 we have the formula 

S~(~', H : ~  : X)=Ry(~, H :~J " X)+ ~:(H)Ry(~, H ' ~ "  YAX'oX). 

If D is any differential operator on t~g(~) we write 

[D, -~ (H)] 

for the commutator  of D and the operator given by multiplication by ~(H). 
Applying the differential equation we have just proved to the two right hand 
terms in the above formula for S~, we find that for any z ~ ,  S~(~, H; ~(7(z)) : Y/" X) 
is the sum of 

S~j.(~, H" ~ :  X ) -  ~" S~(~, H; e~(z): ~J" Y/~X'pX) 
i = 1  

and 

Rr162 H; [0(7 (z)), ~(H)]' q/" Y/X'oX ) 

+ ~ Rr162 H; [3~(z), ~(U)] : ~ "  Y~X'~XXi). 
i = t  

The element Y~ X~ is in ffa(1). It follows from (4.1) and Corollary 4.3 that for any 
X ~ ,  

Ry(~,H:~: ' ' " (~ ,H:~:XY~ ' B Y~ X~ X)= Ry " ' X~)= S~ (r " ' H : ~ :  XY~ X~). 

We have shown that there exist elements 

~?j, 1 <.j<~, 

in ~,t(1) and differential operators 

,~ (z), 1 --<j =< ~, 
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on treg(~) such that 

S~(g ,H 'O(7(z ) ) :~:X)=S~y( ( ,H:~:X  ) -  ~ Sfr(~,H;[J(z):~:XXj). (5.1) 
j = l  

The logarithm which is in the formula for ~ (H) disappears from the coefficient 
functions of the differential operators [0(7(z)), ~(H)] and 

i ~ [0n(z), r (H)], 1 <-i<_r. 

It follows that for each j and z there is an integer k such that the coefficients of 
the differential operator 

(C, H) ~ G (z) 

extend to analytic functions on t. 
The above differential equations can be written down explicitly if z is the 

Casimir element in f#. The calculation proceeds as in the case of lR-rank one. 
The analogue of Corollary 4.3, for fi an arbitrary root of (~, t), allows one to 
express the non-homogenous components of the differential equation in a partic- 
ularly simple form. Here, however, we need this more explicit formula only in a 
special case, and we may as well just quote the result from [1]. 

Suppose that, as above,/3 is a real root of (9, t). Let 9p be the centralizer of 
t o in 9. Let Gr be the analytic subgroup of G corresponding to 9~. Finally let Z z 
be the center of the universal enveloping algebra of 9~,r and let s z denote the 
reflection in t c about the hyperplane to, r Then we have the isomorphism 7~ from 
Zt~ onto the set of elements in S (to) which are invariant under %. Suppose that H 
is a point in t such that fl(H)+O. For any ~oe C~ (G} we write, in the usual notation 
for the invariant integral, 

/~ (H~ ~ (H) 

F,~(H)=le z - e  2 ] ~. f ( x - l e x p H x ) d x .  
T1R \ G# 

We also write 

R~(H)=R~(1,H:O: 1) 

and 

S~(H)=S~(1,H:O:I) 

for the values at q~ of the distributions R and S p associated with the group G~ 
and for which ~ = 1, qr = 0 and X = l. 

The element 

~ o : ~ ( H , ) 2  1 ,  , , , ,  !_ +a x~ Y~ +z Y; x~ + s 

is in Z~. Its image in S(tr under 7p is ~ ( H y .  

Lemma 5.2. For ~p e Cy (G) we have 

S~,(H ; 0 (7, (o~)))--S,o~,(H)+ �88 coth fl (H) . F~,(H ; O(H'~)). 

Proof First of all we quote the differential equation satisfied by R~ (H) from [1 (b)]. 
G o is not semisimple and need not be a matrix group but this does not affect the 
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outcome. Ro(H ) is actually a multiple of the distribution defined in [l(b)]. In 
fact if u belongs to the subgroup exp(IR Y~) of G~, v(u, 0) equals 

fl(H~(u)) _ NH~H "�89 fl(H~(u)). 

We must therefore multiply the differential equation of [1, Theorem 5.1] by 
HH~II. The result is 

fl(H) fl(H) 
~Ro(H;~(H,)2)=Ro, o(H)+�89 jI( e 2 - e  2 ) - 2 G ( H )  ' 

(The reader might feel more comfortable deriving this equation directly.) 
Now 

{H) _ fl (H~ 
So(H)=Ro(H)+IIH~H logle 2 - e  2 IF~(H). 

Since 

Fo(H ; ,2 0(Hp) ) = G o ( H ) ,  

we have only to look at the commutator  

fl(tf) fl(H) 
~_[(9(H~)Z, log]e 2 - - e  2 I]" 

This is just 
fl(H) f l ( H )  

~ H '  2 ) - 2 .  � 88  tj)-�89 2 - e  

The lemma follows. []  

Corollary 5.3. Suppose that z62~ and ~o~Cj (Gp). 7hen modulo a function which 
extends to a smooth function of H~t, So(H; ~?(?~(z)) equals S~o(H ). 

Proof. ~ is generated, over the universal enveloping algebra of the center of g~, r 
by ~o. The corollary follows by induction provided that we can prove the result 
for z=a~. It is known that F~(H) extends to a smooth function of H~t.  Since 

F o (s~ H;  ~ (H;,)) = - F o (H" c ~ (Hi)), 

we have 

Fo(Ho)=0 

if fl(Ho)=0. Therefore 

H ~ �88 coth fi (H). F o (U) 

extends to a smooth function on t. The corollary now follows from the lemma. [] 

w 6. Boundary Va lues  

Let fl be a real root of (g, t). In this section we shall investigate the behaviour of 
S~ (g, H : ~ '  X) as H approaches the hyperplane t 0. Adopt the notation of w 4 and 
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w 5. In addition, define K o = K  c~ Go, N o = e x p  (NX}) and Up = e x p  (IR Y~). Then 

G o = T, Na Ka = T~ Ua K 0 . 

We have already normal ized the Haa r  measure on Ta, and we have also fixed 
some Haa r  measure on G. In this chapter  we shall need to use Haar  measures 
on Go, Na, U 0 and K0, as well as a G-invariant measure on G o \ G. At this point  
we assume only that they are normalized to satisfy the obvious compatibi l i ty 
conditions�9 Put 

A = e x p  { - ( -  1) + (X0 + Yt~) } ad ' ' 

A is an au tomorph i sm of 90, r We have A (re)= t~ and 

A n '  a = i (X'~ - r/). 

Let us decree that  an imaginary root  c~ of (g, t*) with nontrivial  restriction to 
�9 2 (X '~-Y / )  is positive if and only if e ( i (X '~ -  Y/)) is positive. This condit ion,  
together  with our  fixed order  on the imaginary roots  of (g, t), serves to order  the 
imaginary roots  of (g, t*). 

In this section we assume that ~ actually lies in Z(t*). Then we can consider 
the distributions R r*" A* (~, H* :~/* : X). Moreover ,  any element 

exp Ho, H o e t o , 

commutes  with Ga. Define to, reg(O to be the set of points H o on t o such that 

r exp Ho) # 1 

for any root  7 of (g, t) not equal to fl or - f t .  It is an open dense subset of t o. If S 
is any function on tre,( 0, and Hoeto ,  reg(0, we shall write 

S(Ho) • = lim S(H o + tH'~). 
t - ,  +_0 

Fix an open subset f2 o of t0, reg(0 which is relatively compact  in t0, reg(~ ). 

Theorem6.1 .  Suppose that ~eZ(t*) ,  ueS ( t  0 and f s C ~ ( G ) .  Then the limits 
S~ (~, H o ; 0 (u): ~ : X) + and S~ (~, H 0 ; (? (u) :~ :  X ) -  both exist, uniformly for H o ~ 0 o . 
The first limit minus the second one equals 

�9 T *  A *  r t . n o (A)~l_m R] ' (~, H 0 + 0 (X o - Y~), ~ (A (s o u - u)): ~g*: X). 

Proof. We shall put  

H = H o + t H '  ~, Hoef2o,  t e ( - e , e ) ,  

for some fixed positive number  e. Let ~ be the set of H so obtained, and let f2 be 
the set of H e  ~ for which t # 0. We take e to be so small that  for any H in the closure 
o f ~  and any roo t  7 of(g,  t), 7 #  +fl ,  

~(~  exp H ) #  1. 
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The function 

zl0 (~, H)=  A(~, H)le'-  e- '1-1 

is a smooth function of HeO. Define 

q~y(x)=f(y -1 ~xy), xeGp, y6G. 

Then for H~O, S~(~, H : ~ :  X) equals the product of Zio(~, H) with 

I d - e - ' l  ~ q)r(x-~expHx)(Dxv(xy,~)+'c(H)Dxv*(y,~*))dxdy. 

We have used the fact that the function 

Dxv*(y,~*), yeG, 

is left invariant under G~. It follows from the definition of g2 and the fact that f 
is compactly supported, that the integral over G0"-. G may be taken over a relatively 
compact subset F of G which is independent of H. We rewrite the above integral as 

~[e'-e '1 ~ ~%,(k ' u - l e x p H u k ) .  
F Kit Utj 

(D x v (u k y, ~r + r (H) D x v* (y, ~*)) d u dk dy. 
(6.1) 

If n0(A)=0, G 0 is contained in M. As a result, (6.1) reduces to the integral 
over yeF of the product of D x v(y, Yl) with 

[ g - e - ' [ f  ~q)y(k - l u  - l e x p H u k ) d u d k .  
Kt3 U/~ 

This last expression is a smooth function of H e ~ ,  so there is nothing further to 
prove. 

Therefore we may assume that no(A)#O, and that the restriction of/3 to a 
is a positive multiple of the reduced root 70 of (g, a). In the formula for 

Dxv(uky ,~) ,  u~U o, k~K o, y~G, 

namely, 

cA(P!) -1 ~ Du,,~x~(hll) 
Pe.~(A)  

(2, Ye - log h - Hp(u k y))P 

[-[ (,~, 7) 

+ 

we consider separately summations ~ and ~ over those Pe~(A) for which 70 is, 
P P 

and respectively is not, a root of (P, A). If 70 is not a root of (P, A), 

He (u k y) = Hp (k y). 

If ~ is a root of (P, A), write 

u = e x p  H~ (u). N(u) K ( u ) ,  
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where N(u)~No, K(u)sKo, and Ha(u ) is a multiple of H~j. Then 

H v (u k y) = H a (u) + Hp (K(u) k y). 

Dxv(uky,~d ) becomes the sum of 

CA(P!)_ , Dx(~[ky) ~ (2, rv-He(tt)) p (6.2) 
[I ( ;~, 59 

~eOp 

and 
(2, Yp - Ha(u ) - Hv(rl)) v 

CA(P!)-I DxOlIK(u)k y) "'"P [l  (2, ~,) 

This last expression we rewrite as the sum of 

+ 

CA(P!)_ t DxOl]K(u)k y). ~ (2, Yp- Hv(~)) p 
[ I  <2, 5'> ' (6.3) 

y~Op 

+ 

CA((p_ 1)!)_ ~ Dx(tllK(u) ky ) . ~  (LHa(u)) (2, Ye-Hp01)) p-~ 
v [ I  (2, 5') (6.4) 

and ~.e| 
+ G ( , O  

(2, Ha(u))2. 
e I-I (2,5,) '  (6.5) 

y e l p  

In (6.5), Qp(2) is a polynomial in 2, which of course depends on K(u)ky. 
Put 

2=zTa+2*,  zEC, 

where 2" is a point in a* such that (2*, 5')4=0 for any root 5' of (g, a) which has 
nontrivial restriction to a*. For u as above 

<2, Hp (u)> : z <?a, Ha(u)>" 

We fix 2* and let z approach 0. If?a is a root of (P,A), and 7~Op, then <2", o/> can 
be zero only if ? equals the reduced root "/~. In particular 9~ must be in Op, which 
is the same as saying that P=jt~(P*), P*e~(A*). At any rate, there is, for fixed P, 
at most one 7 in Op such that <2", 7>=0. It follows that the limit of (6.5) as z 
approaches 0 is 0, while the limit of (6.4) is 

--CA((P-- 1)!) -1 <y~, Ha(u)) 1 (?a,?~) Dx(tlJK(u)ky)'v.~e(a*) ~ (2*'YJe(P*)-He*(tl))P-l-[ (2", 7) 

In view of Lemma 1.3, this expression is just the product of 

(?~, Hp(u)) 
(~'a, ~a) ~ 

with 

D x v*(K(u) ky, C~*)=Dx v*(y,~*). 
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It follows that the limit as z approaches 0 of the sum of (6.2) and (6.3) exists and is 
independent of 2*. 

Let us denote the terms (6.2) and (6.3) by t~-(z, ky) and qJ+ (z, K(u)k y) respec- 
tively. Each of these functions is meromorphic in the first variable and smooth 
in the second. For any z 

~le'-e-'] S ~ q~ (k-x u - x ' e x p H ' u k ) o - ( z , k y ) d u d k d y  
F K B U 3 

equals 

e - t ~  ~ ~ f ( y - i  ~k-*expHuky)O-(z ,  ky)dudkdy.  
F Kl~ Ufl 

Since F and K~ are compact, the constant term of the Laurent expansion about 
z = 0  of this function extends to a smooth function of H e ~ .  Next, examine the 
contribution the term (6.3) makes to (6.1). This is 

~ l e ' - e - t [  ~ ~ r lexpHuk)qJ+(z,K(u)ky)dudkdy 
F KI~ U 3 

= ~ [et-- e-t] .( ~ qo,.(k-l(uK(u)-l) -1 expH (uK(u) -~) k)~+ (z, k y)du dk dy. 
I ~,~ v~, ( 6 . 6 )  

Now 

uK(u) -~ =exp  H~(u). N(u). 

As may be seen by direct calculation on SL(2, IR), the map 

u~N(u), uzU~, 

is a diffeomorphism from U~ to N~ which preserves the Haar measures. It follows 
that (6.6) equals 

etf ~ ~ f(y-X Ck-lexpHnky)tp+(z,  ky)dndkdy.  
1" K/~ NI~ 

Once again, the constant term of the Laurent expansion about z = 0  of this function 
extends to a smooth function of H e ~ .  

We have so far shown that S~(~ ,H:~ 'X)  is the integral over y z F  of the 
product of 

Jo(~, H) D x v*(y, '~*) 

with 

te'-e-tl  y ~ o,,(k X u-X .exp H.uk)  (z(H) 

This last expression is just 

n~(A) Se,(H). 

Define 

F*y(H,)=(e~(AtJ)(n*~ - �89 H* - e  ) $ %(x -1 exp x)dx, 
G~ 

for H %  t*r 
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Lemma 6.2. For each u~S(tr the limits S~y(Ho; 8(u)) + and 

lim F*(Ho +O(X' ~ -  Y~); 8(Au)) 
0-~_+0 ~oy 

all exist uniformly for Hoof2 o and y6F. Moreover the two sided limit 

lim F*(Ho+O(X' ~ -  Y~); 8(As~ u) -8(Au))  
0 - . 0  

exists and equals 

S~o~(Ho; ~ (u)) + - S~oflHo ; ~? (u)) . 

Let us assume the proof of this lemma for the moment while we complete the 
proof of the theorem. Define 

~ * =  {H* =Ho+O(X'  p - Y~) �9 Ho 6f2o, 0 a ( - e ,  e)}, 

and let ~2" be the complement of~9 o in ~g*. Suppose A*(~, H*) is our usual function 
associated with t*. The function 

j~ (~ ,H , )= j , (~ ,H) (e~aP) (u*)_e  ~(Ap)m*))-a, H*~(2*, 

extends smoothly to f]*. In order to reduce the proof of the theorem to Lemma 6.2, 
we must compare the differential operators 

8 ( u )  " o Ao(~, H), H e ~ ,  (6.7) 

and 

?(As~ u - A u ) o  J*(~, H*), H * ~ * .  (6.8) 

By Leibnitz' rule there are elements 

{ui, u i" 1 <_i<_n} 

in S(tr such that 

c~(u) o zlo(~, H ) = ~  Ao(~, H; 8(ui) ) 8(ui), 
i 

8(A u) o J *((, H * ) = ~  A~'(~, H*; 8(A u)) 8(A u'), 
i 

and 

8(As~u) o J@((, H * ) = ~  J*(~, H*; 8(As~ui) ) 8(Ast~ui). 
i 

Let R~+ be the set of roots of(g, t) which do not equal fl or - f l  and which do 
not vanish on ~ .  Then for H e ~ ,  Jo({, H) equals 

Az(H) H 11--~7(~) - 1  e-~m)1�89 
~ER0+ 

Let 7 be a real root in R~+ which is positive on ~. Then ~(~)= ~_7(()= _+ 1. There- 
fore the contribution of 7 and -Y to the above product is 

e~,~(n) {,.(~)-1 e-4r.e(u). 



The Characters of Discrete Series 239 

Suppose that 7 is a complex root in R~+. Then the root 

Y= - 0 7  

is different from 7, and 

~(0 = ~ ( 0  - ~  = ~(0. 
The contribution of 7, - 7 ,  ? and - ~  to the above product is 

(~7(f) e~ ~(H) _ e- ~'t~H)) (~7(~) e ~ m - -  e- ~ ~m). 

It follows that/To((, H) is a polynomial in the variables 

X? = e �89 

indexed by the roots of (g, t). We claim that J~(f ,  H*) is the same polynomial, 
but with each x~. replaced by 

y}, = C�89 (A 7) (H*). 

For any 7 we have 

If A7 is an imaginary root of (g, t*), ~aT(~)= 1. These two facts follow from the 
definition of Z(t*), and they suffice to establish our claim. 

I fEe t~ ,  

O(E) x~, =�89 7(E) x~, 

while 

c~ (A E) y~, = �89 A 7 (AE) y~, = �89 7 (E) y~. 

It follows inductively that for any v~S(tr J * ( ~ , H * ; ~ ( A v ) )  may be obtained 
from Jo(f, H; c~(v)) by replacing each variable x 7 by y~. Now set both H and H* 
equal to H o , a fixed point in f2 o . Then each x 7 = y~.. Therefore 

J*(~, H o ;~ (A v))= Ao(f, Ho;~ (v)). 

On the other hand, 

Jo(~, sO n ) -  Z]o(~, n), H e~.  

Consequently, for any v �9 S(tr 

A o (~,, Ho, ~ (Asp v)) =/]o(~, Ho ; 0 (sr v)) =/1o (~, Ho ; 0 (v)). 

Applying these remarks to the elements {u~ : l< i<n} ,  we see that the local 
expressions at H* = H = H o of the differential operators (6.7) and (6.8) are 

Z]o (~, Ho;O (ul))~ (u i) 
i 
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and 

A0(~,/40; ~ (ui)) ~ (A s~ u i -  A u i) 
i 

respectively. 

It follows that all the assertions of Lemma 6.2 remain valid when the differential 
operators 0(u) and ~(A s c u - A  u) are replaced by (6.7) and (6.8) respectively. It is 
in this form that the lemma leads to the proof of Theorem 6.1. To transform the 
data given by the lemma to data required by the theorem, we merely multiply by 

nt3(A ) O x v*(y, ~J*) 

and integrate over y~F. With the observation that 

S A*((, H*) F~,(H*) D x v*(y, ~*) dy 
F 

equals R~*'A*((, H* �9 ~ * '  X), the proof of the theorem is complete. [] 

We still have to prove Lemma 6.2. The existance of the limits involving F~ 
follows from a general result of Harish-Chandra [2(i), Theorem 9.1], so we can 
concentrate on those assertions that concern S~.  Any u e S(tr is a sum of elements 
of the form 

ul = 7p(z) J, 

where z is in ~0 and J equals either 1 or H i_ From Corollary 5.3 we know that, 
modulo a smooth function of y~F and Her2, S~o,(H; O(ul)) equals Sz,~,(/4; i)(J)). 
Therefore the first statement of the lemma would be proved if we could establish 
the uniform existance of the limits S~o(Ho;~(J)) +- for any function (pe C~(Ge) 
which varies continuously with a parameter yeF. Note that 

A(% u 1 - / / 1 )  ~- ~ ( z )  A(s f l  J - J) ,  

where 7~ is the isomorphism from ~a to the invariants of S(t~). It follows from the 
differential equations satisfied by F~ that 

F*  (H*; ?(A%J-AJ))=F*(H*;  t?(Asau, - A Ul)), 

for any H*eO*.  It is therefore enough to prove the lemma for u=J. 
It would be possible to extract what remains to be proved of Lemma 6.2 from 

the results for groups of real rank l in [1 (b)]. However, it is perhaps safer to 
proceed directly�9 To simplify matters, we replace (py by an arbitrary q~e C~(GB) 
which we assume varies continuously with a parameter yeF. It will be clear that 
the limits we establish will be uniform in y, so we will not allude to this point again. 

Let dk be the Haar measure on Kp for which the volume of Ka is 1. Let du and 
da be the Haar  measures on Ue and T~ respectively, obtained via the exponential 
map from the Euclidean measures on the corresponding Lie algebras (with respect 
to the norm H H). The Haar  measure on Gp is of course defined by the product 
measure da du dk. If H = H  o + tH'p belongs to ~, 

S~o(H) = [e'- e-'[ ~ ~ q~ (k-1 u-1. exp H .  u k) 
Kt~ U~ 

�9 {�89 ][H~[[ (log [et-e-'l 2 -fl(Hp(u)))} du dk. 
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For xEIR define 

u(x)=exp (x Y~). 

The restriction of the form B to % is a multiple of the Killing form Br on gp. Since 

B~(X'~, O X'~)=BptYI, 0 Y~)=�89 B~(H'~, H'p), 

we have 

HH~]I 2 =2  II X~ll 2 = 2  ]] Y~II 2. 

In particular, for any function pc  C~(Ut~), 

J p(u)du=IIH~l[ ~ p(u(x))dx. 
U/s 1 / 2  --oo 

We have 

e -~("~<"r = IIX~ll 1 IiAd (u(x) -1) X;~ll 
=llX~lt ' I l e x p ( - x a d  Y~)X~[] 

= Ilx~l1-1 NX'~+xH'~+x 2 gilt 
= l + x  2. 

Therefore, 

log ]d-e- t]  2 - fl(H~(u(x)))= log {1 + x 2) ( 1 - e - 2 t )  2 } +2t .  

From these facts it follows easily that S,~(H) equals 

~ (H : x) (log {(1 - e 2t)2 _~ x 2 } _.[_ 2 t) dx, (6.9) 
I O O  

where 

e t 
r  []H~II 2 y r  -1 u(x )expHk)dk .  

z V /  Kfi 

~(H : x) is smooth in H, and as a function of x, is smooth and compactly supported. 
In particular, (6.9) is continuous for H in t}. This proves the lemma for u = J =  1. 

The only other case left to prove is for u=J=H'~.  The operator ~(H~) is just 
differentiation with respect to t. The function 

2t S q ) (H 'x )dx  
- a c  

is smooth for Hal}. Therefore we can omit the factor 2t from (6.9). Moreover, 
the function 

~' r ' x)log 0c2) dx 
- - 0 0  
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is also smooth in H. We therefore have only to consider the limit as t approaches 
+ 0 of the difference of 

e-2t(1 _ e  2,) 
�9 d x  (6.10) 4 S ~o(Ho+tH' p X)(l_e_2t)2+x 2 

- o o  

and 
e2'(1 - e  2') 

4 S tP(Ho-tH'~'x)( 1 _e2t)2+x 2 dx. (6.11) 
- o c  

The term (6.10) equals 

4e -2 '  }o q~(Ho+tH,c.(l_e_2t)x)llx2dX. 
- o o  

The limit of this expression exists uniformly in H o . By the dominated convergence 
theorem the limit is 

4~z q~(H o : 0). 

By a similar argument the limit of (6.11) exists uniformly in Ho, and equals 

- 4 ~ 0 ( H  o :0). 

We have shown that 

S ~,(H o; 0 (H~)) + - S~ (H o; ~ (H~))- (6.12) 

equals 

2V~rt  IIH}I[ 2 ~0(exp Ho). 

To this last expression we apply a general limit formula of Harish-Chandra. 
In fact, according to [2(0, Lemma 17.5 and Theorem 37.1] 

lim F* (H o + 0 (X~ - Y;); • (A fl)) = - 2 1/2 ~ tp (exp Ho). 
0 ~ 0  

Here of course fl is to be regarded as a vector in t. But 

fl= Z llH'plj- Z H'~, 

so that 

A(% H'e) - A(H'~) = {I H~ II 2( A fi). 

It follows that (6.12) equals 

lim F*(H o + 0 (X} - Y~); c3 (A(% H~ - H~))). 
0 1 , 0  

This completes the proof of Lemma 6.2. []  

The distributions R(~,H : ~ : X )  also satisfy boundary conditions at any 
singular imaginary root. Here the situation is the same as for the invariant integrals. 
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Lemma 6.3. Suppose that (eZ( t*) ,  usS(tc) and f e  C~(G). Then the limits 

lira Rf*' A*(~, Ha + 0 (X~ - Y~); 8 (A u) : Y/*" X) 
G - , + 0  

and 

ol!moRY*'A*(~, Ho + O(X' ~ - Y;); 8(au ) :  ~ * ' X )  

both exist, uniformly for H o 6t2 o. The first limit minus the second one equals 

- ~ ~ -  i IlH;slI lima R~'a*(~, H o + tH'p; 8(u): ~ *  'X).  

This lemma is proved by an argument  similar to but easier than that used 
above. Proceeding as in the proof  of Theorem 6.1 one shows that it is enough to 
treat the case that G=Ge.  But in this case the lemma is well known. See [2(i), 
Theorem 9.1]. []  

w 7. A Growth Condition 

In this section we estimate the growth of our distributions as the t~ component  
of H gets large. At the same time we shall show that the distributions are tempered. 
As usual, this leads to a study of inequalities. 

In order to estimate the functions v(x, 4?/) we will first verify a couple of easy 
and more or less standard facts. To state them it is useful to fix a maximal special 
subgroup (~ of G, and a minimal parabolic subgroup 

(o)p = (o) N (o) A (o) M 

in ~((~ We assume that T~ is contained in (~ Recall that the Schwartz space, 
(8(G), is the space of all f in C~(G) such that 

sup If(g1; x; g2)l-=(x) -1 (1 +cr(x))r < oo 
x~G 

for any gl and g2 in ~ and r in IR. Here ~ is defined as in [2(g), w 7] and cr is defined 
by 

~r(k 1 . expH.k2)=l lHH,  He(~ k 1 , k2aK.  

Suppose that 7r is an irreducible finite dimensional representation of G, which 
by convention here we always take to act on the right. It is possible to fix an inner 
product on the space on which ~ acts so that different root spaces are orthogonal  
and so that for any x~G, 

~(x)* = ~ ( 0 x - l ) .  

If xeG,  we write Ilz(x)H2 for the Hilbert-Schmidt norm of n(x). We can always 
write such an x as 

k I exp H k2, kl,  k2~K , H~c(o)p((~ 

Then 

II~(x)ll 2 = H~(exp H)H2. 
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If ~(rt) is the set of weights of rt with respect to (g, c~ and/1 + is the highest weight, 

Nn(x)l[2 2=  ~ eZ<U'n><=dimn .e2<u+'n> 

In particular Ilrc(x)Jl2 is no less than 1. Therefore we can find a constant  G such 
that  

log (1 + Hrc(x)l]z)<G(1 + ~r (x)), xeG. (7.1) 

The inequality remains valid if we remove the hypothesis of irreducibility of ~, 
since 

log (1 + ta + t2) < log (1 + tl) + log (1 + t2) 

for two positive numbers q and t 2. 

Next we will check that  there is a finite dimensional representation 7z and a 
constant  c such that 

Hm)H(x)LI -<_c log (1 + l[Tr (x)ll 2), xe  G, (7.2) 

where we have put 

mlH(x)=Hm>(x). 

It is clearly enough to prove the formula obtained by replacing the left side of 
(7.2) by 

I@, I~ 

where/~ is any arbitrary element in ~m>" Let n be an irreducible representation 
whose highest weight on (~ equals k/l, for k a positive real number.  Let q) be a 
highest weight vector of unit length. We have 

e k <,,,o,u(x)> = I1 q9 ~ (x) ll -- (~0 rt (x) ~ (x)*, ~0)~. 

The right hand side of this formula is clearly bounded by II rc(x)ll 2. If <#, m)H(x)> 
is positive we are done. Suppose that </l, m~H(x)> is negative. Let ~' be the irre- 
ducible representation of G whose lowest weight is - k / t ,  and let ~p' be a lowest 
weight vector of unit length. Note  that  

tp' ~'(X) -- e -k<u' ~~ tp' 

is or thogonal  to ~o'. It follows that  

e_kO,, ,O,H(x)> < iiq~, rt' (x)ll < II~'(x)ll 2, 

which leads to the inequality 

I</~, (~ < ~  log (1 + Ilrt'(x)ll). 

This establishes (7.2). 
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Lemma  7.1. There is a constant c such that for every X~(~ 

log (1 + HXH)<c(1 + a(exp X)). 

Proof Embed (~ in a 0-stable Cartan subalgebra, (~ of .q. Let R denote the set 
of roots ~ of (g, (~ such that the root space g, of ~ lies in (~ For X ~ (~ and 7 E R, 
let X~. be the component  of X in O~, relative to the decomposit ion 

Iol .  = @ g~. 

It would be enough to prove that there is a c such that for any X~(~ 

log (1 + HX~ll)<c(1 + a(exp X)). (7.3) 

Let r be the height of 7 relative to some order for which every root in R is positive. 
We shall verify the above assertion by induction on r, starting at r = 0  where of 
course there is nothing to prove. 

Let 7z be any finite dimensional representation of G for which there are weights 
on (oq of the form # and # + 7- Let ~0 and q)l be corresponding unit weight vectors. 
Then 

~(~)=(~o ~(Y), ~Ol), Y~g~, 

is a nonzero linear functional on the one dimensional space g~,. Define 

P , _ , ( X ) = Z X  ~, X~(~ 

where the sum is over all roots c~ of R of height less than r. There is a polynomial 
q on P,_,((~ such that 

((p~(exp X ) , % ) = ~ ( X ) + q ( P ~ _ l ( X ) ) ,  Xe(~ 

Therefore there are constants ct and c 2 such that 

1 + IIX~,ll <= 1 + q  Iq(P~_,(X))[+Czl(qo~(ex p X), ~0,)l, 

for each Xe(~ Now 

I(~o zr(exp X), %)1 _<-H~(exp X)ll z' 

In addition, we can find constants c 3 and d such that 

1 + q  [q(P~_I(X))I =<C3(1 -t~ tlP~_ z(X)ll) ~. 

Formula  (7.3) now follows from (7.1) and our induction hypothesis. []  

Consider the set of numbers 

{11 - r exp H)-l l},  H~t~eg(~), 

indexed by the roots ~ of (g, t) which do not vanish on a. Our distributions are not 
defined when any of these numbers equals 0. This shows up in the growth condi- 
tions. Define L(r exp H) to be the absolute value of the logarithm of the smallest 
of these numbers. 
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For each N, define 

IN(~,H)=I3(~,H)I ~ E(x -~ ~ exp n x)( l  +~r(x -a ~ exp H x)) -N. 
T~\G 

ID x v(x, Y/)I dx, HetFog(~). 

If H6i ,  we put 

H = H , +  H~, H, et~, H~e tl~. 

Lemma 7.2. For each integer n we can find constants c and N such that 

I N ( ~ , H ) < c ( I + L ( ( e x p H ) ) P ( I + [ I H R N )  - "  , H e  freg(~). 

Proof Fix a parabolic subgroup P = N A M  in ~(A). For Hetreg(~), IN(~, H) equals 

[A(~, H)I ~ ~ UN((exp R) I p (exp R))[D x v(exp R, ~)l dR dm, 
M 11 

where we write 

/~=m -1 ffexp H m  

and 

UN(x)=~(x)(l +cr(x)) -N, xEG. 

Consider the polynomial map 

Cu: R --+ log (exp ( -  Ad (/~- l) R) exp R), Rert, 

of n to itself. Since HE tre~(~), 

Au:R ~ - A d ( p - 1 ) R + R ,  Ren,  

is a linear isomorphism of ft. It follows from [2(f), Lemma 10] that the inverse 
of ~p, exists and is also a polynomial function from n to itself. 

According to [2(f), Lemma 11], the diffeomorphism ~o~ transforms the Haar 
measure on n by the factor 

5(~ exp H)=  Idet (1 - Ad (~ exp H)-I).I . 

This is just 
�9 ( H )  - c t ( H )  

I - I l l - ~ : ( ~ e x p H ) - l t = e - " ( m [ - I l e  2 -{ . (~)e  2 l, 

where the product is taken over all roots a of (.q, t) whose corresponding root 
spaces lie in n, and 

p (H) = 1 tr (ad H),. 

It follows easily that IA(~, H)I is the product of 

5(~ exp H) -1 e p(H) 

with 

Iz/.(ff, H)I, 
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the function we have defined earlier, but associated with the group M. Therefore 
IN(~, H) equals 

13~(~,, H)l e~ ~ ~ UN(~ exp R)ID x v(exp (D# 1 R, Yr dR dm. 
M n  

A closer look at the proof of [2(1), Lemma 10] reveals that, relative to a suitable 
fixed basis of n, the coefficients of the polynomial function (P21 can be bounded 
by a polynomial in the Hilbert-Schmidt norms of Au and A S~. But the matrix 
coefficients of Au ~ are just polynomials in the matrix coefficients of A,, divided 
by the determinant of A,. The absolute value of this determinant is 

6 (( exp H). 

For  R e n, define 

R 7zM(#) = Ad (/~- 1 ) R. 

It follows that there are constants c~ and d~ such that for all R and/~ under con- 
sideration 

[l~0S ~ Rll "<Cl((l +6(g exp H) t)(1 + HrtM(kt)ll)(1 + IIRtl)) a'. (7.4) 

Referring to formula (4.1), we see that there is a constant c z such that for all 
# and R, ID x v(exp ~p,- 1 R, ~)1 is bounded by 

Cz ~ (l+l[Hv(expqo•lR)lL) p. 
Pe:~(A) 

By (7.2) there is a finite dimensional representation ~ of G and a constant c 3 such 
that this last expression bounded by 

C3(1 +log(1 + Nrt(exp q) 1 R)tl))p. 

Now the Hilbert-Schmidt norm 

I]n(exp S)I[, Sen,  

can certainly be bounded by a polynomial in IISII, since 

S --, g (exp S), S ~ n, 

is a polynomial on i1. Therefore, in view of (7.4), there is a constant c 4 such that 
[D x v(exp ~0u 1 E, .~/)1 is no greater than 

c~(1 +log(1 +6(~ exp H ) - l ) + l o g ( 1  + HnM(/01k) +log(1 + tlRLI)) p. 

Finally, applying (7.1) to the representation n M of M, and referring to Lemma 7.1, 
we find that there is a constant c 5 such that ID x v(exp ~0 S 1 R, ~)[ is bounded by the 
product of 

c5(1 +log(1 +6(~ exp H)-I)) v (7.5) 

and 

(1 + o(exp R)) p (1 + a(/a)) v. 
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Now 

1 + a (exp R) < 1 + cr (/2 exp R) + a (/~- 1) 

= 1 +a(/z exp R)+a(i 2) 
< (1 + a (# exp R)) ( 1 + ~ (/~)), 

by [2(g), Lemma 10]. Therefore the second factor in the above product is no 
greater than 

(1 +a(/~ exp R)) p (1 + a(/~)):". 

We have shown so far that for N~IR, and H~lreg((), IN(~, H) is bounded by 
the product of (7.5) with the integral over m~M of the product of 

[ziM(~, H)I (1 +a (m -1 ( exp Hm)) 2p (7.6) 

and 

eptm.f~( m l [ e x p H . m e x p R ) ( l + a ( m - l [ e x p H . m e x p R ) )  N+PdR. (7.7) 
I1 

I fN  1 is any real number, we can, by [2(g), Lemma, 21], choose N and c 6 such that 
for all m and H, (7.7) is no greater than 

C6~,M(m -1 ~ exp H.m)( l  +~r(m i ~ exp H.m))--u,. 

For suitable N 1, the product of this expression with (7.6) is integrable over M. 
In fact, by the results of [2 (g)], we can, given n, choose N 1 and c 7 so that the integral 
over M of this product is bounded by 

e7(1 + IIH•IF)-". 

We still have the term (7.5). However, with a little manipulation of the formula 
for 6(( exp H) given above, one sees that for some constant c 8, 

1 + log(1 +6(exp H) -1 )<  cs(1 +L(~ exp H)). 

This last inequality completes the proof of our temma. [] 

Recall that a distribution is said to be tempered if it extends to a continuous 
linear functional on ~(G). From the lemma we obtain immediately 

Corollary 7.3. For each H~treg(~ ) the distribution R(~, H : ~ : X )  is tempered. I f  
f 6~(G) the integral 

A(~,H) ~ f ( x - l . f e x p H . x )  D xv (x ,~)dx  
T ~ \  G 

is absolutely convergent, and equals 

(R((, H :r : X), f ) .  [] 

Corollary 7.4. For every integer n there is a continuous semi-norm v on (~(G) such 
that for all f ~Cg(G) and HElr~g(~), 

Ry((, H : ~ : X)[ < v(f) (1 + L(( exp H)) p (1 + ]IH~H)-". [] 
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w 8. The Mapping f--, S~ 

Our final task is to extend our earlier results to the Schwartz space. In particular, 
we must show that for f ~ ( G )  the functions RI(~, H : ~  : X) and S~(~, H ' ~ "  X) 
are smooth in H 6 treg(~ ). We must then prove that the earlier differential equations 
and boundary conditions apply to this more general setting. We neglected to do 
this in [1 (b)]. However, it is not a serious problem in the case of real rank 1, 
essentially because one has Helgason's explicit formula for 

v(n, ~), n~N,  P = N A M ~ ( A ) .  

In the higher rank case there is no such explicit formula. The matter is further com- 
plicated by the fact that the group M is not compact. It would therefore seem 
unfeasible to prove what is needed by the method of [2(g), Lemma 22]. Instead 
we will use the technique by which Harish-Chandra proved [2(e), Theorem 3]. 

Suppose that fi is a fixed real root of (g, t). Adopt the notation w 4 and w 5. Let 
be in Z(t*). It follows from Corollary 7.3 that the distribution 

S~(~, H : ~ : X), H~tre,(r 

are tempered. Let treg(~, fl) be the union of tr~g(~ ) and to, reg(0" It is an open subset 
of t. Suppose that f2 is an open subset of treg(~ ) which is relatively compact in 
treg(~, fl). We can certainly choose a c such that 

( l+L(~expH))P<cl f l (H)t  1 Her2. 

It follows that there is a continuous semi-norm v on C~(G) such that for all fECg(G), 

sup ]S~(~, H : ~ "  X) fl(H)] <=v(f). (8.1) 
H~Y2 

Suppose that ~ is an open set in a finite dimensional Euclidean space V. 
For any u in the symmetric algebra of V and any integer n, put 

II q0 ]l,,. = sup {(1 + I[ H II)" Iq' (H; a (u))l}, 
H ~ S  

for qoE C~(-~). Define ~(~) to be the set of all q) in C~(~) such that for each u and n, 

II~PL..< oo. 

Let ,9~(G) be the set of continuous semi-norms on ,~(G). 

Lemma 8.1. Suppose that ~eZ(t*) and that f2 is an open subset oft~g(0 which is 
relatively compact in t~eg(~, fi). Then the map 

f ~ S ~ f ( ~ , H : ~ / : X ) ,  HeO,  f e C y ( G  ), 

extends to a continuous linear map from ~'(G) to c~(f2). 

Proof Suppose that X E N A(r). We shall prove the lemma by decreasing induction 
on r. I f r > p  we have 

D x v(x, ~ ) =  O, 
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in view of fo rmula  (4.1). Therefore  fix r, O<r<-p, and assume that  the l emma is 
valid for all ~ if X is replaced by any X 1Eqffa(rl), r 1 > r. 

The first stage of the p roo f  is to show that  for any fixed z~5 : ,  the m a p  which 
sends fE C[(G) to 

d:(H)=S~((, H; 0(7(z)) : ~ '  " a ~ X)-Sz:(~,H:,~:X),  H~(2, 

extends to a cont inuous  linear m a p  from Cg(G) to ~(f2). According  to (5.1), 

d r ( H ) =  - ~  S~((, H ;  3'(z) �9 Y/: X )(,). 
i 

We can choose a posit ive integer n so that  for each i the differential ope ra to r  

~(H)" ~'(z) 

has analytic coefficients on treg(~, fl). Each )(i belongs to ~a(1) SO we may  apply  
the induction hypothesis.  It follows that  the m a p  which sends j'E C~(G) to 

e I ( H  ) = fl(H)" d:(U), HE (2, 

extends to a cont inuous  linear m a p  f rom Cr to ~((2). 

If the closure of (2 does not  meet t o, the first stage of our p roof  is established. 
Therefore,  to comple te  this first stage, we may  assume that  

(2={Ho+tH'~:HoE(2o, - e < t < e ,  t # 0 } ,  (8.2) 

where (2 o is an open subset  of  t o and e > 0. 

For  ~oEcg(O) and  HoE(2o, define 

/ n 1 t k  . d k 

if t belongs to (0, e). If  t belongs to ( - e ,  0), define O(Ho+tH'~) in a similar way. 
It follows f rom the integral form of the remainder  term in the Taylor  expansion 
of a function of  one variable that  

is a cont inuous  linear m a p  of ~((2) to itself. Now it is a consequence of Theorem 
6.l that  for any  fE C~(G), the function 

d:(H), HEY2, 

belongs to c~((2). This means  that  

Y:(H)=fl(H)-" e:(H)=-d:(H), H6(2. 

We have shown, for g2 as in (8.2) and hence for all required ~2, that  the m a p  

f~d:(H), fE C2(H ), HEY2, 

extends to a cont inuous  linear m a p  f rom Cg(G) to cg((2). Combin ing  this fact with 
(8.1), we find there are cons tants  c and N such that  

sup IS~((, H ;  c~ (7(z)) : o~ : X) fl(H)l <= c v=, N(f), fE C~ (G), (8.3) 
H~f /  
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where 
v=,N(f)=sup I(z f ) ( x ) "  E(x) -1 . (1 +a(x))  u I 

xEG 

is a continuous semi-norm on Cg(G). 

The second stage of our proof is to combine what we have shown so far with 
the proof given by Harish-Chandra for [2(e), Lemma 48]. In order to convince 
the reader that it actually applies to the situation at hand, we repeat the relevant 
portion of Harish-Chandra's argument. Suppose then that u is an arbitrary element 
of S(te) of degree d. Let ~ be the element in S(te) such that ~(o9) is the Laplacian on t, 
with respect to our Euclidean norm. For any integer m > 1 we can choose an integer 
r and elements 

{z j" 1 <=j <= r} 

in ~ such that 

(omr-} - ~ ~i)(Zj) 60m(r-J)=0. 
j-1 

If m is sufficiently large there is a function E o in C 2"(r-'~+d (t) which is of class C ~ 
away from 0, such that 0(~) m' E 0 equals 6, the Dirac delta distribution at the 
origin [2(e), Lemma 57]. 

Define E = 0 (u)* E o , where the star denotes adjoint, and 

Ej-- --~(o))m(r-J)E, 1 < j < r .  

Then Ej is of class C 2~j-~), and is of class C ~ away from O. From the relation 

~(~)~'+ ~ ~(~(zj)) ~(~o) ~r-~ =0 
j--1 

we obtain the formula 

~(u)* ,~ = ~ #(7(z~))* Ej. 
j= l  

Let 0 be a function in C~(IR) which equals 0 on ( -  o% 0], 1 on [1, oo) and such 
that 

0<r  1, xelR. 

Given e, 0 < e < �89 define 

~,(H) = qJ(~-' I]Hl[-2), Het, 
Ej,~(H)='P~(H)Ej(H), Her, l<=j<=r, 

and 

B~(H)= ~, O(7(zj))* (Ej,~(H)-Ej(H)), Het. 
j=1 

T~(H) equals I if IiH][ __<2~ and equals 0 if lIHII >__3t. B~(H) vanishes unless 

2 e ~  IIHII ~3e.  
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We can find positive integers b and n (which depend on u but not on e) such that 

sup [B~(H)] < b e-", 
Hel 

(see [2(e), p. 498]). 

The formula 

~. #(7(z))* Ej,~=O(u)* 6+B~ 
j = l  

follows from the definitions. Suppose H is a point in ~2. Choose e=eu,  with 
0<e<�89  such that the distance from H to any point in the complement of treg(() 
in t is greater than 4e. Then ~ is supported on treg(~ ). It follows from integration 
by parts that for any q~e C~(treg(~)), q)(H; ~(u)) equals 

~ ~p (/1; 8 (7 (z j))) Ej.~ ( H  - ffI) d12I - ~ qo (~I) B~.([I - H )  dlZI. 
j = l l  t 

For each j, 

IE~, ~(H - R)I ~ I E ~ ( H  - H)l. 

Using the above estimate for B~ and (8.3), we can obtain a v in ~(G) such that for 
every f e C 2 ( G ) ,  

sup ISs(~, H; ?(u) . ~ ' x )  fl (H)"f < v ( f ) .  (8.4) 
Heg2 

In the case that the closure of Q does not meet t o this last inequality suffices 
to prove the lemma. Therefore, we may assume that ~2 is of the form (8.2). The 
third and final stage of our proof is based on the method of [2(e), Lemma49]. 
Choose elements 

U I - ~ - I , u  2 , . . . , u  r 

in S (tr such that 

S(tr = ~ u i I(tr 
i=1  

For each i there are elements 

zq, l < i < r  

in ~( such that 

H'~ u, = s ~ (z u) uj. 
j = l  

For HeO, put 

~q.,(U)= S~ (~, H; ~ (u,): ~:  x),  f e C ~ ( G ) ,  1 <_i<_r. 
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F r o m  the first stage of our  p roof  we know that  there is a v 1 in 5P(G) such that  for 
J'~C~(G), Hc(2 and l <_i<r, 

l~,f,~(H; O(H'J)- ~ Oz,j,i(H)l< h (13. (8.5) 
j = l  

If 0 < t < e and H o ~ 12 o write 
E 

•, i(Ho +t H~): t~j.. i(Ho + eH~)- ~ Of.,(Ho + sH~; 0 (H~)) ds. 
t 

It follows that  there is a v 2 in S~(G), which depends  on e but  not  on H o or t, such 
that  

rt~f,i(Ho + t H'~)l < vz(f)+ [, Z [~,j . j(Ho + s U'~)l ds. (8.6) 
t j 

It follows from (8.4) that  there is a v~dY(G) and a positive integer N such that  for 
all ge C~ (G), Hoar2 o and se(0,  e,), 

]~k~.j(Ho+sH~j)l<s-Nv(g), l <j<r. (8.7) 

Therefore  I~f.i(Ho+tH'~)[ is bounded  by 

~(13+ ~ (s) N d~. y~ v (~ , / ) .  
t j 

But the semi -norm 

f ~  ~ v (zijf), f e  C? (G), 
J 

is in 5P(G). It follows that  in (8.7) we can replace s -s  by s (N 1) if N > 2 ,  and by 
log(e/s) if N =  1. Of course the new inequali ty would hold for some different 
veY(G) .  By induct ion there is a wSP(G) such that  for all g, H o and s, 

I~g,j(Ho+sH'~)l<log(e/s)v(g), l<j<r .  

Once again, we apply  this inequali ty to the integrand in (8.6). We conclude that  
there is a v~eog~ such that  for any Ho6(2 o, te(O,e), f~C~(G) and l<i<r ,  

10f, i (Ho + t H~)I =< v 3 (f). (8.8) 

By a similar a rgumen t  we may  assume that  this inequali ty holds also for t e ( -  e, 0). 
Let u be an arb i t ra ry  e lement  in S(tr Then  

u = y~ ~, (z3 ui, 
i 

for elements  z i~ Y.  Fo r  H e  Q and .f~ C~ (G), I S~ (~, H ;  ~ (u): ~ :  X) I 
is bounded  by the sum of 

~, [0 (u,)(S~ (~, H ;  0 (? (z,)):q]" X)-S{ , f (~ ,H:~:  X))I 
i 

and 

i 
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We know from the first stage of our proof that there is a ve~(G), independent 
of H, such that the first expression is bounded by v(D. That the same is true for 
the second expression follows from (8.8). Our proof of the lemma is complete. 

[] 
Corollary 8.2. Suppose that ~eZ(t*) and that fe~(G).  Then the function 

S~(~,H:Y/:X), H6t~r 
is infinitely differentiable. Moreover the differential equations given in Jormula 
(5.1) remain valid. 

Proof It is enough to prove the corollary on any open set (2 which is relatively 
compact in treg((). Fix fe~(G), and let f ,  be a sequence of functions in C~(G) 
which converge to f in the topology of ~(G). By the lemma the sequence 

S~.(~,H:~:X), H6f2, (8.9) 

is Cauchy in c~((2), so it must have a limit in cd(~2). The limit function must equal 
the pointwise limit of (8.9), which by definition is S~((,H:~:X). In particular, 
this latter function is smooth. Suppose that z ~ .  It follows from the lemma and 
what we have just proved that the map which sends f6Cd(G) to 

S~(~,H;a(~'(z)):~:X)-S~,(( ,H:~:X)-~.  S~ ( ( ,H;~( z ) :~ :XX) ,  HEY2, 
.I 

is a continuous linear map from C~(G) to c#((2). Since it is zero on the dense sub- 
space C~ (G), it must be identically zero, [] 

Lemma 8.3. Suppose that ~eZ(t*) and that Y2* is an open subset of t~g(g) which 
is relatively compact in the union of treg(g ) and tO, reg(~ ). Then the map 

f~R]'*'A*(~,H*:~*:X), H*~(2*, f~C~(G),  

extends to a continuous linear map Jrom (~(G) to cg((2*). 

This lemma is proved exactly the same way as Lemma 8.1, except that the role 
of Theorem 6.1 is played by Lemma 6.3. [] 

Corollary 8.4. The statement of Theorem 6.1 remains true .for feed(G). 

Proof This corollary follows directly from Lemmas 8.1 and 8.3. [] 

Lemma 8.5. Suppose that _~Z(t) and that f ~'(G). Then the ,function 

R/(~,H:~:X), H~ t~reg(~), 

is infinitely differentiable. Moreover, the differential equations given in Theorem 5.1 
remain valid. 

Proof If ~2 is an open relatively compact set in treg((), the map 

g ~ R g ( ( , H : ~ : X ) ,  H~t2, g~C~(G), 

extends to a continuous linear map from Cd(G) to cg((2). 

This is verified by a repetition of a part of the proof of Lemma 8.1. One then 
a rgues  as in Corollary 8.2 to prove the lemma. []  
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w 9. The Main Theorem 

For this section suppose that the rank of G equals the rank of K. In particular 
the split component of the center of G is trivial. Let ~2 (G) denote the set of equi- 
valence classes of irreducible unitary square integrable representations of G. For 
any co~,~z(G ) let ~o,(G) be the closed subspace of Cg(G) spanned by the K-finite 
matrix coefficients of any representation in the class r For each such co we let 
O~ be the character of o. It is a tempered distribution on G which coincides with 
a locally integrable function, also denoted by O~. 

As always A is a special subgroup of G of dimension p, T is a 0-stable Cartan 
subgroup of G containing A, and ~ is an A-orthogonal set. We are ready to state 
and prove our main theorem. 

Theorem 9.1. Fix ~d~2(G) and .fE~o,(G). Then if a4:t~, 

rf (h: ',~') = 0, hETr~g. 

If  a = t a ,  

ri(h:~)=(-1)POo~(f)O~(h), h~Tr~g. 

Define e(T, A) to be 1 if a = t ~  and to be 0 otherwise. We shall actually prove 
the following 

Theorem 9.1 *. For any XE.(gJ A and h~T~g, 

ri(h: ~: X)=c,(T,A) co(X)(-  1) p O~,0 c) O,~(h). 

Proof We will prove Theorem 9.1 * by induction on p. Suppose that p = 0. Then 
A = {1}, NA=G, and 

v ( x , ~ ) =  1, x~G. 

It follows that 

D x v(x,~)=co(X). 

Therefore ri(h: ~ :  X) equals the product of c o (X) and 

rf(h)= ~ f ( x - l  hx) dx. 
7 ~ .  G 

If T is not compact we know from [2(g), Theorem 11] that 

rf(h)=O. 

If T is compact, we appeal to [2(g), Theorem 14] to see that 

rf(h) = Oo(f) O,~(h). 

(For these last two formulae see also [2(i), Lemma 8.2, and the corollary to 
Lemma 27.4].) The theorem is thus valid for p=0 .  

Fix p>0 .  Suppose the theorem is true for any T~ and A t with dim,4x< p. 
Let X belong to Na(r). To prove the theorem for T and A we shall use a second 
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induction, this time a decreasing induction on r. If r>p, we have 

Dxv(X,~)=O, 

from formula (4.1). Therefore fix r, O<r<p, and assume that the theorem is valid 
with X replaced by any X 1 ~ ~a (q), r~ > r. 

Fix ~ Z ( t ) .  For any H~tr~g(~) define 

~,(~, H)=  A(~,H) O~(( exp H). 

Let R,(~) be the set of real roots fl of (fl, t) such that ~(~)=  1. Let t~, r~g(() be the 
set of points in t~ on which no root in R~(~) vanishes. Suppose that U is a connected 
open subset of t i such that for any non real root fl of (g, t) 

r exp H) # 1 

for all He U. The set 

exp (U + t~. reg (())" 

is contained in Trig, and the union over all ff and all such U of the corresponding 
sets is dense in T~.  Therefore, to complete the proof of the theorem we must 
show that for all H~ U+t~,.r~g(~), 

7/(H) = Rf(~, H: ~4: X ) -  ~(T, A) c o (X ) ( -  1) p Oo(f) ~(~, H) 

equals 0. We will prove this by combining the differential equations of w 5, the 
boundary conditions of w 6 and the growth condition of w 7. 

From Harish-Chandra's characterization of the discrete series [2 (g), Theorem 
16] and [2(i), w 27] we know that there is a regular linear functional v on 1r such 
that for every qel(tr 

~(~, H; O(q))=q(v) ~(~, H). 

If z e ~  e and 7(z)=q then v also has the property that 

z f=  q(v)f, 

since f~c~o)(G ). Now look at the equations satisfied by R(~, H: ~ :  X). If X~ belongs 
to NA(1), XX~ belongs to ,~r + 1). By our induction hypothesis on r, 

Rf(~,H:~: XXI)=O. 

It follows from Lemma 8.5 that if z and q are as above, 

RI(~, H; 0(q): ~ :  X)=  R~f (~, H: ~ : X ) =  q(v) RI(~, H: ~ : X). 

We have shown that 

~(n;~(q))=q(v) ~(H), q~l(tr H~U+tr,~r (9.1) 

Fix a real root fl~R~((). We continue to use the notation related to fl which 
we set up in w and w 5. Then (~Z(t*). Fix a point H o in U+t~  such that for any 
root ~ of (g, t), 

~ (~ exp H0) 
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equals l if and only if c~ equals _+ ft. Define 

cl)((,H)=A(~,H)Oo((,expH)=e~(H)~(~.,H), H~treg(0,  

and let 

q~* (~, H * ) =  @. (H*) ~*(~, H*),  H* ~ t*eg(0, 

be the corresponding function associated with t*. It is known [3, p. 283] that the 
limits 

lira cb(~, H o + t H'~; ~(H'~)) 
t ~ 0  

and 

lim 4~* ((, H 0 + 0 (X~ - Y~); ~ (AH'~)) 
0 ~ 0  

exist and are equal. Now for t and 0 sufficiently close to 0, 

e~(H o + t H~) = sign t. e~ (H o + O(X~ - Y~)). 

It follows that 

~(~,Ho;~(H}))  + ~([ ,  .~ , _ $ ,  ~ . . . . .  - Ho,(~(H~) ) = 2 1 i m  (~,Ho+O(X~-Y~),c(AHt3)). 
0 ~ 0  

(9.2) 

We shall use this fact to show that 7/(H o + tH'~) is cont inuously differentiable 
at t =0.  First of all, we should see that it is continuous.  By our  induction hypo-  
thesis on p 

Rj.(~,,Ho + tH'~:~: X)=S~ (~,Ho + tH'~: ~I: X). 

By Corol lary 8.4, this function is cont inuous at t =0 .  It is known that the same 
is t rue for 

cb(~, H o + t H'~). 

Therefore  7/(Ho +tH'~) is cont inuous  at t = 0 .  We have only to check that the left 
and right derivatives of ~P(H o +tH'~) are equal at t=0 .  Since 

A (sp H } ) -  A (H~) = - 2 A (H~), 

we obtain from Corol lary  8.4 the equality of  

R:(~, Ho; (? (H~): 77/: X) + - R f ( ( ,  Ho; (~ (H~): Y/: X) (9.3) 

and 

- 2 nt~ (A) l im R T * "  A* [:" , . 0~o*':  '~'H~ Y~)'O(AH'~):~I*:X)" 

It is clear that e(T,A)=e(T*, A*) and that p* = p - 1 .  Therefore by our  induction 
hypothesis  on p, (9.3) equals 

2 n~(A)e(T, A ) c o ( X ) ( -  1) p O,o (f) l ira $*(~, Ho+O(X ~ -  Y~); O(AH'~)). 
0 ~ 0  

Combining  this with (9.2) we find that 

(H o ; c~ (H~)) + - ~P (H o; ~? (H~))- 
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equals 

2 (n~ ( A) -  1) ~(T, A) co(X)(-  1) v O,o0O lira ~p*(~, H o +O(X'~ - Y~); ~,~(AH'p)). 
0 ~ 0  

If ~ (T, A)= 0 this expression is 0. If e(T, A)= 1 then a = t~, so that na (A)= 1. Again 
the expression is 0. We have shown that ~U(H o + tH'~) extends to a continuously 
differentiable function at t = 0. 

Suppose that F is any connected component of t~ reg(()" Then the restriction 
of ~P to the open connected set U+F is a smooth function which satisfies the 
equations (9.1). We repeat the argument used in [2(a), Theorem 3] to show that 
7 j is actually analytic on this set. Let ~o be the element in S((r such that (?(~) is 
the Laplacian on t with respect to our Euclidean norm. We can find a positive 
integer n and elements 

{ui:O<_i<~n-I } 

in l(tr such that 

~o"+u, l~o"--a+ ... +Uo=0 .  

It follows from (9.1) that 

(?(og)"+u,, 1(v).~(~o)"-1+ ... +Uo(V))gJ(H)=O, H~U+F.  

The restriction of ~ to U + F is a solution of a linear elliptic differential equation 
and is therefore analytic. This fact, combined with the differential equations (9.1), 
is exactly what is needed to apply another basic technique of Harish-Chandra. 
According to [2 (b), p. 102] there are complex numbers 

{cs: s~ W}, 

indexed by the Weyl group of (gr162 such that for any He U + F ,  

7J(H) = ~ c~ e s~u). 
s ~ W  

Suppose that F' is another component of t~<~g(~) such that the chambers F 
and F' have in common a wall defined by a real root fl in R~(~). We can assume 
that fl(F} is positive. If 17~ is the interior of this common wall, then 

v = u +  v~ 

is an open subset of 

t o = {H~t: fl(H)=0}. 

Any point H o in V satisfies the hypothesis we made above. Moreover if t is suffi- 
ciently close to 0, ~ ( H  o +tH'p) belongs to either F of F'. Suppose that W 0 is a set 
of representatives in W of the cosets { 1, sa} \ W. Let 

{<: s~ w} 
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be the set of cons tan ts  assoc ia ted  to F' .  Then  for every po in t  H o e  V we can find 
a posi t ive  n u m b e r  e,(Ho) such that  

7J(Ho+tH'~)= ~ (c~ etsv(H'~)+Cst, se tsv(H;3)) e sv(H~ 
s~Wo 

if 0 <  t <e,(Ho), and  

T(Ho +tH'~)= ~ (c~ e'S"(H~) TC's~s e -tsv(n~)) e s'(H~ 
sEWo 

if -e(Ho)<t<O. It follows from the fact tha t  (P(Ho+tH'p) is con t inuous ly  differ- 
en t iab le  at t = 0  tha t  

("~ + ('s,~ ~ - ci - c';,.~)(s v (H;~)) e s'(H~ = 0 
se Wo 

and  

(Cs-Cs~-c'~+c's,s)(sv(H'~)) e~"(H~ = 0 
s ~  

for all H o in V. 

Suppose  tha t  s v - s ~  v is o r t hogona l  to t o for two elements  s and  s~ in W o. 
Then if v I = s~ v, and  r = s s 11, 

rv~=v~+xH~, x~IR. 

Since r is an o r t h o g o n a l  map ,  x must  ei ther equal  0 or  - 2  v~(H~) This second 

a l te rna t ive  is imposs ib le  because  it would  lead to the equa t ion  

SY=SBS1Y, 

which, in view of the regular i ty  of v, would  mean  that  s = se s~. Therefore  s mus t  
equal  s r F r o m  this it follows that  the set of  funct ions 

Ho ~ e ~,, (Ho), H 0 e V, 

indexed by W o, is l inearly independent .  On the o ther  hand,  the regular i ty  of v 
implies  tha t  for all s~ W o , 

sv(H'B)+O. 

We obta in ,  for each s6 W o, the equa t ions  

c~ + % ~  - c'~ - c~,~ = 0 

and  

c~ - % ~  - c'~ + c ~  = 0. 

Thus  for each s e  W, c~ equals  c'~. We  have shown tha t  the fo rmula  

(P(H)= ~ c~ e ~'(m 
s~W 

is val id  for all H in the d o m a i n  of  7 j. 
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Now we can apply Harish-Chandra's growth condition F2(i), Theorem 12.1] 
to the tempered, invariant, ~-finite distribution 69,o. Combining this with the 
growth condition of Corollary 7.4, we obtain constants C and r such that 

17'(H)I < C(1 +L(.~ exp H)) v (1 + IIHaH)', H e  U + tR. reg(~ ). (9.4) 

As in Corollary 7.4, we have put 

H = HI + H~, H1et~, HRet~. 

Let 2, . . . . .  2~ be the distinct vectors obtained by projecting 

{ s v : s e W }  

onto (i~r Each of these vectors is real. It is well known that, since G has a compact 
Cartan subgroup, there exists a real root of (9, t). Therefore by the regularity of v, 

2i #:0, 1 <i<_k. 

For 1 <i<_k, let W~ be the set of se W such that the projection of sv onto (t~r is 
2 i. I f se  W/, 

s v = # s +  2 i, 

where #se ~ 1 t t. Then for H e  U + t~, reg(~), 

k 
7'(H)= ~,, ( ~" c s e u~r e~'(n* ). 

i=1 s~Wi 

After a moment's reflection one realizes that the growth condition (9.4) will fail 
unless each coefficient function 

Cs ~,~(n,), H e U, (9.5) 
seWi 

vanishes. Distinct elements se W~ give rise to distinct vectors #s. Therefore (9.5) 
is a linear combination of linearly independent functions. In other words, 

cs=O , s e W .  

We have shown that 

7'(H)=0, He U+t~g(~), 

and thereby have compleied the proof of Theorem 9.1". [] 

Remark. Theorem 9.1 is at variance with the formula given in [I (b)]. The mistake 
there was the result of using two different Haar measures on the group 

N, = exp IRX', 

(in the notation of [1 (b)]. One measure, on page 579, was normalized by the 
restriction to r h of the Killing form of g, whereas the formula quoted on page 581, 
line 12, was based on the measure normalized by the Killing form of .q,. The 

measures differ by the factor ~ f - .  It is this factor which should be removed from 

the formulae in Theorem 7.2 and Corollary 7.3. 
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