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Weyl's Character Formula for Algebraic Groups 

T.A. SPmNGER (Utrecht) 

Introduction 

H. WEYL'S formula for the character of irreducible representations of 
compact semisimple Lie groups, proved by him by transcendental 
methods ([13], p. 358) is actually a statement of a purely algebraic 
nature. Moreover there is an obvious variant which makes sense for the 
rational representations of connected semisimple algebraic groups over 
an algebraically closed field of characteristic 0, which one derives easily 
from WEYL'S original formula, for instance by invoking the "Lefschetz 
principle". Of course a proof of an algebraic statement along such lines 
is not too satisfactory. 

The algebraic proof of WEYL'S formula given by FREUDENTHAL ([5], 
see also [8], Ch. VIII, w has the disadvantage that it operates with the 
Lie algebra, so that there still is a transition to be made from Lie algebra 
to group, which one would rather avoid in dealing with algebraic groups. 

In the present note a "g loba l"  proof of WEYL'S character formula 
will be given, which operates with the group itself. The ideas used in this 
proof are quite familiar, in one form or another. The main tool is an 
identity (Proposition 2.9) involving the Casimir operator which is the 
algebraic analog of one due to HARISH-CHANDRA (and which is also 
implicit in [5]). 

An advantage of our method is, that it does not completely break 
down in characteristic p > 0, so that one can extract information about 
certain irreducible representations in characteristic p > 0  (viz. those for 
which p is "large with respect to the highest weight", in a sense made 
more precise by 4.3). The results are, however, far from conclusive and 
it does not seem likely that the methods of this note are sufficient to 
obtain a complete solution of the problem of finding a general character 
formula in characteristic p. 

The author is indebted to J. TITS for various useful remarks. 

1. Preliminaries 

1.1. Let k be an algebraically closed field of characteristic p. Let G 
be a connected linear algebraic group, defined over k. We may and shall 
identify it with its group of k-rational points. We refer to [4] for the 
relevant facts about algebraic groups. 
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The ring of regular functions on G is denoted by k [G]. The group G 
acts on k[G] by left (right) translations 7(g) (resp. c~(g)), which are 
defined by 

y(g)f(x)=f(g-lx), tS(g)f(x)=f(xg) (g, xeG, fek[G]). 
We have 7(g)o3(h)=f(h)oy(g)for g,h~G, moreover 7 and ~ are rep- 
resentations of G in k [G]. 

A k-derivation X of k [G] which commutes with all y(g) is called 
left invariant. The left invariant k-derivations form the Lie algebra g 
of G. Using the fact that forp > 0 thepth power of a left invariant derivation 
is again one, one gets for p > 0 a structure of restricted Lie algebra (or 
p-algebra) on g. We shall identify g with the tangent space to G at the 
neutral element e. This tangent space being the space of k-linear func- 
tions tp on k[G] satisfying tp(fg)=f(e)9(g)+q~(f)g(e), the element 
Xeg is identified with the element f~,Xf(e) of the tangent space. We 
refer to [1] (w for a more complete discussion of these matters. For 
geG, X~g we put Ad(g)X=tS(g)oXo3(g) -1. It is readily checked that 
Ad(g)XEg. We get in this manner a rational representation Ad of G 
in g, the adjoint representation. Its differential is the adjoint representa- 
tion ad of g, defined by ad X(Y)=  [X, Y] (see [1 ] for details). 

1.2. lnvariant Differential Operators. In the situation of 1.I let q/ 
denote the universal enveloping algebra of g for p =0  and the restricted 
universal enveloping algebra of g for p > 0 (called u-algebrain [8], p. 192). 
From the definition of g as a Lie algebra of derivations it follows that 
there is a homomorphism of k-algebras h: ://-+ Homk(k [G], k [G]). Any 
element of h(ql) is called a left invariant differential operator in k [G]. 
An invariant differential operator on k(G) is an dement  of h (~)  which 
commutes with all 3(g) for geG. The invariant differential operators 
form a k-algebra. If G is semisimple of rank l and if p =0,  results of 
HARISH-CHANDRA and CrmVALLEY (see e.g. [7]) imply that the algebra 
of invariant differential operators is a commutative polynomial algebra 
in l generators. For p > 0 no such results seem to be known. We will use 
in this note for G semisimple only one particular invariant differential 
operator, viz. the Casimir operator. 

1.3. Example. Let T be an algebraic torus over k, let X(T) denote the 
group of rational characters of T (written additivdy), k[T] is then 
isomorphic to the group ring of X(T) over k. In order to avoid a con- 
fusion between additive and multiplicative notations, we denote for 
aeX(T) by e(a) the element of kiT] defined by a, so that we have for 
teT 

e(a)t=t ~ (value of  a in t). 

Then e(a+b)=e(a)e(b). 
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It is easily checked that there is a bijection c~ of Homz(X, k) onto the 
Lie algebra t of T, 0t being given by (e 2) e (a) = 2 (a) e (a). As an example 
of an invariant differential operator on k IT] we mention the following 
one. Let F be a Z-valued polynomial function on X(T), define D by 
De(a) =F(a)e(a). Then D is an invariant differential operator. 

1.4. Now let G be connected semisimple of rank L Fix an/-dimensional 
maximal torus T of G and let 27 be its root system. This is a finite set of 
vectors in V=X(T)| with familiar properties. We fix an order in 2f 
and denote by A = { r l , . . . ,  rl} the corresponding set of simple roots. 
Let N(T) be the normalizer of T. Then the Weyl group W=N(T)/T acts 
in s and in k [T]. Denote by ( , > a positive definite scalar product on 
V which is W-invariant, so that c , s=2 <s,s>-l<r, s> is an integer for 
r, se2;. We put c~j=c,,.,~ (I <i,j<l). 

The scalar product is normalized as follows. First let ~ be a simple 
root system. Then < , > is unique up to a scalar factor, which we 
normalize by requiring that the minimum value of <r, r> for re27 
equals 1. In that case (r ,  r> is the length of r (as in [3], p. 17) and is 1, 
2 or 3. If E is not simple, the normalization is carried out in each of the 
simple components of ~. 

For  r e x  there exists an isomorphism x, of the additive group 17 a 
onto a closed subgroup G, of G such that tx,(2)t -1 =x,( t '2 )  for 2ek.  
G, and G_, generate a subgroup P, of G. If G is simply connected, then 
P,  is isomorphic to SL 2 ([4], exp. 23, prop. 2). 

1.5. In the situation of 1.4. let G O be the Chevalley-Demazure scheme 
corresponding to G. This is an affine group scheme, which is of finite type 
and smooth over Z. So Go=Spec(Ao) and k[G]=Ao | Moreover 
denoting by go the Lie algebra of G O we have g = g o |  Then go is a 
direct sum 

g o = F +  ~ Z E r ,  

where F is a lattice in go of rank / ,  such that F | k is the Lie algebra t 
of T. We have CHEVALLEY'S rules 

[E,E,]=N,,E,+~ (r, seZ, r+s#O), 

where the integers N,~ are as in [3] (Th. I, p. 24). Moreover 

[E,E_,]=F, eF, [FE,]=g,(F)E,(FeF), 

where g, is a Z-valued linear function on F such that p,(F~)=c,~ 
(=2<s ,  s>-~<r, s>). Let A be the sublattice of F spanned by all F,. Put 
f =  [det (cij) 1. Then the index (F:A) is < f and we have ( F : A ) =  1 (resp.f)  
if Go is of adjoint type (resp. of simply connected type). 

7* 
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If Z is simple and not of type A t, then 1 < f < 4  (see [3], p. 6 3 - 6 4  for 
the precise values o f f ) .  

Returning to g, we put X , = E , |  1, H,=F,@ 1. Denote by 2r the 
k-linear function on t = F @ k determined by #,. Then 2, is the differential 
of the morphism t ~ t '  of T into the multiplicative group Gm (the tangent 
space to Gm in 1 being identified with k). We need the following simple 
result, which is contained in [3] (p. 22, line 17 from below). 

1.6. Lemma. I f  r, s, r + seZ  then we have 

<s, s> N,s+ (r+s ,  r+s> S,, _ ,_ s=0 .  

1.7. Let R be the lattice in V = X ( T ) |  R generated by the elements 
of 27. Any set of simple roots {r 1 . . . . .  rl} is a basis of R. Let P be the 
lattice in V generated by the weights, i.e. the elements a~V such that 
2<r, r ) - l<a,  r> is an integer for all r~Z. We have R c P  and (P:R)=f  
(=ldet(c,j) l). 

The weight d is dominant with respect to a given order, if (d, r > > 0  
for all r > 0. A dominant weight is an integral linear combination 

1 

d = ~ nl d, 
/ = 1  

with ni~Z, ni>O of the fundamental weights di, defined by 

2<r j ,  rj> -1 <di, ri>=gti. 
! 

Put p = ~ d~. It is well-known that 2 p = ~ r .  
t = 1  r > O  

Finally, let us recall that we have R ~ X ( T ) c  P and that X ( T ) = R  
(resp. P) if G is adjoint (resp. simply connected). 

2. The Casimir Operator 

We first prove some lemmas. 

2.1. Lemma. Let G be a linear algebraic group over k, let H be an algebraic 
subgroup of G. Denote by r k [G] ~ k [HI the canonical projection and 
by i: b ~  the canonical injection of Lie algebras. We then have for 
X~I~, h~H, f ~ k  [G] 

( i X)  f (h) = X ~p ( f )  (h) . 

Proof. By left invariance it suffices to establish this for h =e. Then 
the assertion is a direct consequence of the identification of g (I~) with 
the tangent space to G (H) at e (recalled in 1.1). 

The point of this lemma is that the left hand side of the equality can 
�9 be computed in k [H]. 
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2.2. Lemma. Let G be a linear algebraic group over k. Then for X~g, 
gEG, f~k[G] we have that X~(X. f ) (g)  is the differential in e of the 
morphism of algebraic varieties ~k: x ~ f ( g x )  of G into the additive group 
G~, the tangent space to Go in 0 being identified with k. 

Proof. There exists a finite family {fi, gl} of elements of k [G] such 
that 

f ( gx )  = ~ f/(g) gi(x). 
i 

By left invariance of X we have 

(X f ) (gx )=~f i (g )Xg~(x ) ,  so (X f ) (g )=~f i (g )Xg , (e ) .  
i i 

The right hand side also equals the differential of ~ in e. 

In the next lemmas G is a connected semisimple group. We use the 
notations of w 1. We denote by g the canonical homomorphism k [G] 
k [T]. Moreover C[G] will denote the subalgebra of k [G] consisting of 
the class-functions, i.e. the [~  k [G] such that f ( g  xg-  1 ) =f(x)  (g, x ~ G). 

2.3. Lemma. Let G be a connected semisimple algebraic group over k. 
Let.f~ C [G], put 

c~f= ~ m(a)e(a) (m(a)~k).  
a E • ( T )  

Then we have for r~Z 

(1) 0c(X, X_r f )  = ~ 2 ( r , r ) - ~ ( a + i r ,  r )m(a+ir )e (a ) .  
I > O ,  a E X ( T )  

Notice that 2 (r, r)-~ (a + it, r) is an integer! 

Proof. We reduce to the case G=SL2. 
(a) Let G' be the universal covering group of G. Then k [G] can be 

identified with a subalgebra of k[G'] and C[G] with a subalgebra of 
C[G']. One checks that the validity of (1) in G' implies the validity in G. 
Hence we may suppose that G is simply connected. 

(b) With the notations of 1.4, let Q, denote the subgroup of G gen- 
erated by G,, G-r  and T. Let U denote the identity component of the 
kernel of r, then we have Qr = P, " U where (as in 1.4) P, is the subgroup 
generated by Gr and G-r ,  which is isomorphic to SL2 (G being simply 
connected). From 2. I we conclude that it suffices to prove the formula 
corresponding to (1), where G is replaced by Qr and ~ by the canonical 
homomorphism k[Qr]~k[T]. Now there exists a central isogeny 
Pr • U~Pr"  U=Qr. As in (a) it follows that we may replace Qr by 
PrxU. Since k[Pr•174 and since X, ,X_r  are tangent 
to P, ,  they act trivially on 1 | k [U], as derivations of k[P,  | U]. So it 
suffices to consider the action on elements of k [P,] | 1. This means that 
we may replace G by P,,  i.e. we may assume G =SL 2 . 
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(c) We make now an explicit computation, which will be briefly 
indicated. Identify T with the group of diagonal matrices in G. We may 
take X, and X_, to be the tangent vectors defined by the homomorphisms 
Go --, G which send 2ek  into 

( ~ )  ( r e s p . ( ~ ) ) .  

Moreover k[G]=k[X, Y,Z,  U ] / ( X U - Y Z - 1 ) .  Denoting by Dx etc. 
partial derivation in the polynomial ring k [2, Y, Z, U], it follows from 
2.2 that X, is the derivation of k [G] induced by XD r + ZDv and X_, the 
one induced by YDx+ UDz. Define a~X(T) by 

a ( ( :  2 0 , ) ) = 2 .  

Then e(a), e ( - a )  generate kiT] and it suffices to prove (1) f o r f  such 
that ~f=e(a)n+e(-a)  * (n>=O). Let F, be the polynomial with integral 
coefficients in one indeterminate such that Fn (X+ X-  1) = X" + X - ~. The 
abovef  is then defined by 

,((: y)) 
Using the explicit expressions for X,, X_,  one sees that 

x _ , / )  = r" (e (a) + e(-- a)). 

The right hand side of (1) is now 

n 2 e(a) k" 
- -n<k<n 
n - k  e v e n  

(1) then follows from the identity 

X F ~ ( X + X - ' ) = n  ~ X ~. 
- - n< k~n  
n- -k  e v e n  

2.4. Lemma. Let G be a connected semisimple group over k. Let 
f~k[G], aeX(T),  c~f =e(a). For reZ, let H,=[XrX-r] be as in 1.5. Then 

(2) ~(H, f )=2(r ,  r}- 1 (a, r) e(a). 

The proof is similar to that of 2.3. One reduces this to the case G=SL2, 
in the same manner as before. Using the notations of part (c) of the proof 
of 2.3 we have H,=XD x -  Y D r + Z D z -  UDv and it suffices to check (2) 
in SL 2 f o r f  defined by 

f ( ( :  Y) )=x"  or u n (m,n>O), 

which is easy. 
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With the notations of 1.4 and 1.5, let u be the smallest positive 
integer such that u<a, a>~Z for all aeX(T). It is easily seen that u 
divides 2 f ;  u = 1 if G is of adjoint type. 

We define invariant differential operators L and A on k IT] by 

Le(a)=2u <p, a> e(a), A e(a) = u <a, a> e(a), 

where p is defined as in 1.4. 

They extend canonically to left invariant differential operators on 
k [G], denoted by the same symbols. With these notations we have 

2.5. Lemma. 

[L, X,] =<2up,  r> X,, [A, Xr]= --u<r, r> X,+u<r, r> H,X~. 

Proof. Put H j  =H, j .  It follows from 2.1 and 2.4 that we have 

L = ~  (2up, dj>Hj, 
J 

where d s is as in 1.7. The first relation is then a consequence of 

[Hj, X,]=2<r 2 , rj> -1 <r, ry>X, 
(see 1.5). 

To prove the second relation, it is convenient first to assume that 
p = 0 .  Define A' =u-lA. Then 

A ' =  E < d i , d j > n ,  n j .  
l ~i,.f<=l 

Using again the previous formula we find [A', X,]=- ( r ,  r>X~+ 
(r, r> ttrX ~. 

Multiplying this by u, we get a relation with integral coefficients, 
which is true in any characteristic. 

2.6. Lemma. 

IX,, ~ <s, s> X,X_~]=(r, r> H,X,-<2p, r> X,-<r, r> X,. 
s > O  

Proof. We have 

Ix,, Z <s,s> x x_A 

= ~ <s,s>N, sX,+,X-s+~'.<s,s)N,,-sX~X,-~+<r,r)(H,X,+X,H,) 
s:~ --r s~r 

= Z (<s,s>N,~+<r+s,r+s>N,,_,_s)X,+~X_, 
s# - r  

+2<r,r)H,X,-2<r,r>X,.  
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The sum equals 0 by 1.6. Moreover 

E <s,s>X=X_,=2~ <s,s>X~X_,-- E <s,s>H,. 
s ~  s > O  s > 0  

This gives 

2IX,, ~ <s,s>XsX_s]=2<r,r>HrXr-2<r,r>Xr+ ~ <s,s>[X, Hs]. 
s > 0  s > 0  

The last sum equals - < 4 p ,  r>Xr. This establishes the asserted formula 
for p 4:2. Since it is an identity with integral coefficients, it is then also 
true in characteristic 2. 

With the previous notations, we put 

C= ~u<s,s>X~X_~-L+A. 
s > 0  

This is a left invariant differential operator on k[G]. We call C the 
Casimir operator. 

2.7. Proposition. C is an invariant differential operator. 

Proof. It follows from 2.5 and 2.6 that [X,, C] =0. This implies that 
if p = 0 ,  C commutes with all 6(xr(2)) for reX. Since the groups G r 
generate G, it follows that C is invariant in characteristic 0. Invariance 
of C being expressible in terms of polynomial identities with integral 
coefficients, the assertion is true for arbitrary p once it has been proved 
in characteristic 0. 

2.8. We will now establish an important formula for the Casimir 
operator. The corresponding analytic result is due to HARISH-CHANDRA 
([6], Th. 2, p. 125). First some preparations. Let p be as in 1.7 and 
suppose that peX(T) (which is the case, for example, if G is simply 
connected). Define hek [T] by 

h= E e(w) e(w p), 
w ~ W  

where e(w) is the sign of weW. A well-known result of WEYL ([13], p. 355) 
asserts that 

h=e(p) l-I (1-e(r)-  l). 
r > 0  

The formula mentioned before is contained in the following proposition. 

2.9. Proposition. Suppose that peX(T). Then if feC[G] we have 

h . ~(C f )=A(h  . ~ f ) - u  <p,p> h . ~f  . 
Proof. Put 

~f= ~ m(a)e(a). 
a e X ( T )  
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Using the definitions of C, A, L and 2.3 we obtain 

(3) ~ ( C f ) =  ~ 2 u ( a , r > m ( a ) e ( a - - i r ) + L ( c t f ) + A ( c t f ) .  
i > O , r > O  
aeX(T) 

First let p =0. Extend k [T] to a k-algebra A containing all formal power 
series in the e ( - r i )  (1 < j < l )  and such that A is integral over the sub- 
algebra generated by such power series and by the e(rj). The k-deriva- 
tions of k IT] extend canonically to k-derivations of A. The algebra A 
contains for r > 0  the element 

log( i - -e(--  r))= -- ~ i -1 e(-- i  r). 
i = l  

Put 
v= 1-I ( 1 - e ( - - r ) ) ,  logv= E log (1 - - e ( - r ) ) .  

r > O  r > O  

Then h=e(p)v .  For f ,  g~A, put D ( f ,  g ) = A ( f  g ) - f  . A g - A  f . g. 
For fixed g , f ~ D ( f ,  g) is a derivation of A. From the definition of 

A it follows that the sum in (3) equals D(log v, ctf), which by the remark 
just made is v- 1D(v, ctf). Similarly uL(ocf) =e(p)-  a D(e(p), ctf). Thus 
we get from (3) 

c~( C f )  = v-  * D(v, ct f )  + e(p)-  1 D(e(p), ~ f ) + A (~ f )  

= h -  i D (h, ~ f )  + A (~ f )  = h -  a A (h .  ~ f ) -  u <p, p> ctf. 

This is the asserted formula. 

If p >  0 we use that C[G] is generated, as a vector space over k, by 
t h e f e  C [G] such that ~ f  equals a sum ~ e (a), a running over the distinct 
conjugates of an element of X(T)  under W (this is implicit in [12], proof 
of 6.3, p. 62). For th i s f  the identity to be proved is again a universal one 
with integral coefficients, so it holds in arbitrary characteristic if it is 
true in characteristic 0 (notice that by 2.3 and 2.4 ~ ( C f )  depends only 
on ~ (f)). 

3. The Character Formula (Characteristic 0) 

3.1. Let G be a connected semisimple group over the algebraically 
closed field k. Until further notice, the characteristic p of k is arbitrary. 
We keep the previous notations. 

The elements of the character group X(T)  are ordered as follows: 
a > b  if a - b  is a positive linear combination of positive roots. Let 
7t: G ~ G L ( V )  be an irreducible rational representation of G. The 
weights of z with respect to T are the elements of X(T)  which occur in 
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the restriction of n to T. There is a unique maximal dominant weight g 
(for the order on X(T)), which we also call the highest weight of ~ (in 
another terminology, what is called here the highest weight of n is called 
the dominant weight of n; in the present note the latter notion is always 
used in the sense of 1.7). Its multiplicity is 1. We have d<g for any 
other dominant weight of n. An arbitrary weight of n is of the form wd, 
where dis dominant and weW(see [4], vol. 2 for these results on represen- 
tations). The following 1emma is known (see [5], p. 373 or [8], Lemma 3, 
p. 248), we include a proof for completeness. 

3.2. Lemma. Let g be the highest weight of the irreducible represen- 
tation n of G. Let p be as in 1.7. 

(a) For any weight a~g  of n we have (a+p, a + p ) < ( g + p , g + p ) ;  
(b) l f  goeO then (p, p)< (g+p, g+p).  

Proof. If weW then 2wp is the sum of all positive roots in 2~, for 
some order. It follows that 

2wp= E s(r)r, 
r>O 

where e ( r ) = _  1. Hence wp<p for  all weW, equality holding only if 
w = l .  Let a be a weight of n, let a=w-id(weW,  d dominant). Then 

( a + p , a + p ) = ( d + w p ,  d + w p ) = ( d + p , d + p ) - 2 ( p - w p ,  d).  

The weight d being dominant, we see that ( p - w p ,  d)>=O, whence 
(a+p, a+p)<(d+p ,  d+p), equality holding only if a is dominant. If 
a is dominant, then 

( a+ p ,a+p)  = (g+p, g+p)- -2(g- -a ,p) - - (g- -a ,  g - - a ) .  

( ' Since g - a > O  and since p is a dominant weight for p =  ~ di with the 
\ i = l  

notations of  1.7}, we have ( g - a ,  p)>O. This implies (a). 

As to (b), we have ( g + p , g + o ) - ( p , o ) = 2 ( g , p ) + ( g , g )  and 
(g, p)> 0 since g is dominant and since 2p is a sum of positive roots. 

Let n be a (non necessarily irreducible) rational representation 
G~GL(V) .  In this situation we will say that V i s a  G-space. Let  V' be 
the dual space of V, let ( , ) denote the canonical pairing of V and V'. 
For  xeG, veV, v'eV' the matrix element x~(n(x)v ,  v') is in k[G]. Let 
D be a left invariant differential operator on k[G]. Define a linear 
transformation Dn(x) of V by 

(Dn(x), , ,  v ' )=O(n(x) , , ,  v') (xeG, ,,eV, v' eV') .  
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being as above, we call irreducible constituents of zr the irreducible 
representations of G in the composition factors of a composition series 
of the G-space V. With these notations we have: 

3.3. Proposition. (a) If  D is an invariant differential operator, then 
there exists a linear transformation A(zt, D) of V such that Drc(x)= 
A (n, D)~z(x) ---lt(x) A (~z, D) (xEG). 

(b) If  ~ is irreducible, there exists 2(zc, D)ek such that A(n, D ) =  
2(~, D) . id. 2(~, D) depends only on the equivalence class of ~. 

(c) The eigenvalues of A(~z, D) are the 2(0, D), 0 running through the 
irreducible constituents of ~. 

Proof. (a) By the invariance of D we have 

Dn(xy)=rc(x ) .Dn(y )=Dx(x) . x (y )  (x,y~.G). 

This implies (a), with A (it, D) = D n (e). The first assertion in (b) is then a 
consequence of SCHUR'S lemma and the second one is obvious. 

(c) Let 0 =  Vo c V 1 c ... c V, = V be a composition series of the 
G-space V. Take a basis (e 1 . . . . .  e,) of V such that (e, ,  . . . ,  e,,) (where 
n~=dim V 3 is a basis of Vt (1 <i<r). It is readily seen that with respect 
to this basis, A (re, D) is represented by a triangular matrix, in the diagonal 
of which only the 2(0, D) occur. This implies (c). 

We come now to WEYL'S character formula. Let rc be an irreducible 
rational representation of G with highest weight g. The characterf~ of rc 
is a class function on G. 

We assume, as in 2.8, that peX(T).  For  a~X(T) we then define the 
element ha of k [T] by 

ha= ~, ~(w)e(w(a+p)), 
w ~ W  

so that h o is the h of 2.8. We then have (0~ denoting again the canonical 
homomorphism k [G] ~ k [T]) 

3.4. Theorem (WEYL'S character formula), f f  k has characteristic 0, 
then ~f~ =h- t .  hg. 

Proof. Let C be the Casimir operator. By 3.3(b) we have C n ( x ) =  
2Qt, C)n(x), whence Cf~ =2(n,  C)f~. Using 2.9 we see that 

(4) A (h. ctf~) = (u (p, p)  + 2(n, C)) h.  ctf~. 

From now on the argument is well-known (see [5], p. 376). 

Let 
h.ctf~= ~ m(a)e(a). 

a e X ( T )  



96 T.A.  SPRINGER: 

Then m(wa)=8(w)m(a) (weW) and re(a)4:0 only if a=b+ wp, where b 
is a weight of n and w~W. Moreover m(g+p)=l .  This implies that 
2(z~, C)=u((g+p,  g + p ) - ( p ,  p)). From (4) we now infer that re(a)4:0 
only if a=b+wp with (b+wp, b + w p ) = ( g + p , g + p ) ,  which by 
3.2(a) implies b = wg. 3.4 then readily follows. 

3.5. Proposition. (a) (p arbitrary). Let ~ be an irreducible represen- 
tation of G with highest weight g. Then 2(zt, C ) = u ( ( g + p , g + p ) -  
(p, p)) mod p. 

(b) (p =0). Let ~ be an irreducible representation of G of degree > 1. 
Then Czt=;t~ with 2ek, 24:0. 

Proof. (a) The argument of the proof of 3.4 gives this result in any 
characteristic. (b) is then a consequence of 3,2(b). (N.B. We still suppose 

We next indicate how in characteristic 0 the preceding results may 
be used to obtain some well-known theorems (e.g. the theorem of 
complete reducibility). We keep the same notations. 

3.6. Proposition (chark=0).  Let V be the subspace of k [G] spanned 
by the matrix elements of irreducible rational representations of degree 
> 1. Then k [G] is the direct sum of k and V (as a vector space). 

Proof. Suppose that l e  V, so that 

1 = ~  ~ifi 
i 

where the f i  are matrix elements of irreducible representations of degree 
>1,  with ~qek*. We may assume the f~ to be linearly independent. 
Applying the Casimir operator to both sides we get from 3.5(b) a 
relation 

O=~ ~xikifi, 
i 

where 2~k* .  This is a contradiction. Hence the sum k +  V is direct. 
k + V is invariant under left and right translations in k [G]. Let W be a 
subspace of k [G], containing k + V, such that k + V has finite codimension 
in W and that G acts irreducibly in W/k + V via right translations (the 
existence of W follows from [4], exp. 4, no 1). Suppose that the cosetsfi 
rood k + V span W/k + V. Then 

f i(g x) = ~,, u~ j(x) f j(g) , 
J 

where the u~j are matrix elements of an irreducible rational representation 
of G. Taking g=e we conclude tha t f i~k+ V. Hence W = k +  V, which 
implies that k [G] = k  + V. 
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3.7. Invariant Means. Let now G be a linear algebraic group defined 
over the field k, which need not be semisimple. For  the moment,  we do 
not make any hypotheses about  k. A k-linear function # on k [G] is 
called an invariant mean on k[G] if p ( 1 ) = l  and f f / t  is invariant under 
left and right translations. This can be expressed as follows: let k be an 
algebraic closure of k, then the canonical extension /7 of # to ~[G] = 
k [G] | ~: satisfies f t(y(g)f)  =f i ( f (g) f )  =/7 ( f )  for geG, .re k[G]. From 
3.6 one derives the existence of an invariant mean in the situation of 
that proposition. However we will sketch the proof of a somewhat more 
general result. 

3.8. Proposition. Let G be a linear algebraic group defined over the 
fieM k. There is an invariant mean on k [G] in the following cases: 

(a) G is a torus; 

(b) char k = 0 and G is reductive. 

Proof. (a) Suppose that G is a torus which splits over k. Let 

f =  ~, m(a)e(a) 
a e X ( T )  

be an element of k[G]. Then one checks easily that # ( f ) = m ( 0 )  is an 
invariant mean. In general, G splits over a finite separable extension l 
of k, which we may assume to be normal (see e.g. [2], 1.5, p. 61). One 
checks that the invariant mean, defined above, on l[G]=k[G]| is 
invariant under the Galois group Gal(I/k), f rom which one obtains an 
invariant mean on k [G]. 

(b) We recall that G is called reductive if the radical of its identity 
component  is a torus. 

First let G be connected semisimple, with k algebraically closed (and 
of characteristic 0). Let V ~ k [G] be as in 3.6. Then if we put f o r f ~ k  [G], 

f = l ~ ( f ) + v  with #( f )~k ,  veV, it follows f rom 3.6 that/~ is an invariant 
mean on k [G]. Next if G is connected semisimple and k arbitrary, then 
an argument as in (a) shows that one can descend the invariant mean on 

[G] to one on k [G]. 
If G is connected reductive, let T be the radical of G. The quotient 

G/T is then connected semisimple and k [G/T] is the subalgebra of k [G] 
consisting of all f e  k [G] such that f ( g  t) =f(g)  (t e T, g e G) (see [9], Th. 1, 
p. 218). Let #6/r ,  /~T denote invariant means on k[G/T], k[T], respec- 
tively. Let fl denote the canonical homomorphism k[G]--,k[T]. Let 
fek[G], 

f ( x  y) = ~, f i(x) g,(y) (x, y ~ G). 
i 
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Then 

f '  = ~ f , # r ( f l  gi) 
i 

lies in k[G/T]. Putting #(f)=ltafr(f' ) we obtain an invariant mean on 
k [G]. Finally, if G is arbitrary, let G be its identity component. There is 
an invariant mean on k [Go]. One then easily constructs one on k[G] 
by averaging over the finite algebraic group G/Go. 

3.9. The existence of an invariant mean on k [G] has several con- 
sequences. We state some of them, without going into the details (which 
are standard and may be left to the reader): 

(a) The theorem of complete reducibility of the rational represen- 
tations of G which are defined over k. One obtains thus, in particular 
from 3.8a "g loba l"  proof of this theorem for reductive groups in 
characteristic 0. 

(b) The triviality of extensions 1 ~ N ~ E ~ G --* 1 of algebraic groups 
over k, in the case that N is connected unipotent. An argument of 
ROSENLICHT ([10], Th. l, p. 99) gives a regular cross-section for the 
homomorphism E--*G, from which one concludes that the extension 
may be described by SCn~mR'S method. One then uses a reduction to 
the case of an abelian N. 

(c) Orthogonality relations for matrix elements of irreducible rep- 
resentations (along the lines of [14], p. 115). 

3.10. Multiplicities. Let G be a connected semisimple group over the 
algebraically closed field k of characteristic 0. Let n be an irreducible 
representation of G with highest weight g (in the previous notations). 
We denote by m(g, a) the multiplicity of the weight a in rc (i.e. the 
multiplicity of the character a of T in the restriction of n to T). One then 
has the following formula, due to FREUDENTnAL ([5], formula 3.1, p. 372) 

((g+p, g+p)-- (a +p, a +p)) re(g, a) 

(5) = 2  ~ (a+ir, r)m(g,a+ir). 
l>0,  r>0  

It  is a direct consequence of (3) of w using the value of 2(re, C) found 
in the proof of 3.4 

(5) can be used effectively to compute multiplicities. We will use (5) 
in w for the case of G2. 

4. The Character Formula (Characteristic p > 0) 

4.1. In this w we assume that G is a connected semisimple group over 
the algebraically closed field k of characteristic p > 0. We use the nota- 
tions of the preceding paragraphs. 
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Let n be an irreducible representation of G, with highest weight g, 
let f~ be again the character of 7z. The argument used to prove 3.4 may 
be used now to show that WEYL'S formula for f~ still holds, provided 
that p>u<g+p,  g+p>. However this is a rather weak result: it gives 
only congruences m o d p  for the multiplicities. By a different argument 
one can establish a better result. 

We use the fact, recalled in 1.5, that there is an affine group scheme 
G o, of finite type and smooth over Z, such that G = G O x z k. I t  is known 
that, if c h a r k = 0 ,  any irreducible representation of G comes f rom a 
representation of G o over Z. Now let ~ be as above, let rto be a represen- 
tation of G O over Z, corresponding to an irreducible representation in 
characteristic 0 with highest weight g. 

Reduction of z~ o modulo p gives a representation 9 of G (observe that 
G = Go x z k, so that reduction modulo p makes sense). For  any weight a, 
let rap(g, a) be the multiplicity of a in n (rap(g, a)depends only on p and 
not on k). For  a dominant weight d let np(g, d) denote the number of 
times an irreducible representation ~t a of G with highest weight d occurs 
as an irreducible constituent of ~ (in other words: let [n] denote the 
element of the Grothendieck group of rational representations of G 
defined by the representation re, then 

[,9] = ~ no(g , d) [na])- 
d dominant  

Clearly np(g, g) = 1. 

4.2. Theorem. Suppose that peX(T),  l f  np(g, d ) > 0  then 

u<g+p, g+p>--u<d+p, d+p> m o d p .  

Proof. Let Z[Go] denote the ring of Go. The Casimir operator C of G 
is the extension of an invariant differential operator Co in Z [Go]. We 
have Coz~o=Rno, with 2=u( (g+p ,g+p>-<p ,p>) ,  as follows by 
extending Z to an algebraically closed field of characteristic 0 and 
applying 3.5 (a). Reduction mod p shows that CO =X'9 where ~ is 2 mod p. 
The assertion now follows from 3.3(c) and 3.5(a). 

Remark. The proof shows that if the condition peX(T)  is not  
fulfilled one still has a similar congruence, provided one replaces u by 
,,the u of a covering of G for which the condition peX(T)  holds".  

4.3. Corollary. l f  p > u( (g + p, g + p > - <p, p > ) then '9 i~ irreducible. 

Direct consequence of 4.2 and 3.2(a). 

F rom 4.3 one concludes that under the assumption of 4.3, a formula 
analogous to WEYL'S character formula holds for a suitable " f o r m a l "  
character. 
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4.4. Examples. (a) From the results given in [5] for the irreducible 
representations of E 8 in characteristic 0 (p. 491, table E, 3 r~ column), 
one obtains easily, using 4.2, that the 8 fundamental representations of 
E8 (whose degrees are 248, 3,875, 30,380, 147,250, 2,450,240, 6,696,000, 
146,325,270, 6,899,079,264, respectively) remain irreducible in char- 
acteristic p > 29. 

(b) Let k be a finite field of characteristic p, let G be a connected, 
semisimple, simply connected algebraic group defined over k. STEINBERG 
has shown how the irreducible p-modular representations of the group 
G(k) of k-rational points of G can be obtained from the irreducible 
rational representations of G ([11], Theorems 7.4 and 9.3, p. 45, 49). 
4.2 can then be used to determine the Brauer characters of certain modu- 
lar representations. An example will be discussed in more detail in 4.9. 

Next we establish a result about splitting of exact sequences of 
G-spaces if the characteristic p is positive. G is as before. 

4.5. Proposition. Let 0 - ,  V' ~ V ~  V" ~ 0  be an exact sequence of 
G-spaces. Let g' (resp. g") run through the highest weights of the irre- 
ducible constituents of the representations of G in V' (resp. in V").  
Suppose that u(g'  + p, g' + p)  @u(g" + p, g" + p)  mod p for all such 
pairs {g', g"}. Then the exact sequence spfits. 

Proof. Let z~' resp. n"  be the representations of G in V' resp. V". Put 
W=Homk(V" ,  V'). The group G acts on Won the left via n' and on the 
right via ~z". A well-known argument shows that it suffices to prove the 
following: l e t f  be a morphism (of algebraic varieties) of G into W such 
that 

(6) f ( x  y)= x .  f ( y )  + f ( x ) .  y (x, y ~ G), 

then there exists w e W  with 

f ( x )  = X" w-- w" x.  

Let C be the Casimir operator. With the notations of 3.3(a), put 
A'=A(~' ,  C), A"=A(~" ,  C). From 3.3(a) it follows that A' (x .  w)= 
x .  (A'w), (w. x ) A " = ( w A " ) ,  x (x~G, endomorphisms of V' and V" 
acting in Win the obvious manner). Also the assumption about weights, 
together with 3.3(c) and 3.5(a), shows that no eigenvalue of A' equals 
one of A". 

Apply C to both sides of (6). Using invariance one gets 

C f(x y) = A'(x. f(y)) + C f(x). y = x. C f(y) + (f(x). y) A ", 
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whence, putting v = (C f )  (e), 

A ' f ( x ) - f ( x )  A" = x" v -  v. x .  

Now apply the following elementary lemma: 

4.6. Lemma. Let V', V" be two.finite dimensional vector spaces over 
the algebraically closed f ieM k. Let A', A"  be linear transformations of V' 
and V" such that no eigenvalue of A' equals one of A".  Then the linear 
transformation of HOmk(V", V'), which maps T into A ' T - T A "  is 
bijective. 

From this lemma one concludes that there exists w s W  such that 
v = A ' w - w A "  and that f ( x ) = x ,  w - w . x ,  finishing the proof of 4.5. 
As to the proof of the lemma, it suffices to prove injectivity. So let 
T~HOmk(V", V'), A 'T=TA" .  Let v be an eigenvector of A" in V". 
Then the assumption about A' and A" implies that Tv=O. One then 
replaces V" by V"/kv and uses induction on dim V". 

4.7. Proposition. Let ~ be a rational representation of G in V. Then 
the G-space V is a direct sum 

V = ~ V ~  

of G-spaces V~ with the .following properties: (a) if  g and g' are highest 
weights of two irreducible constituents of the restriction of 7z to V i (1 < i<  n) 
then u ( g + p , g + p ) = u ( g ' + p , g ' + p )  modp,  (b) suppose iJej and let 
g (resp. g') be a highest weight of an irreducible constituent of the restrict- 
ion of n to V~ (resp. V fl .  Then u (g + p, g + p ) ~ u (g' + p, g' + p ) modp.  

Proof. Induction on the degree of z~. For an irreducible n there is 
nothing to prove. So suppose n reducible. Let V be the space of n. There 
is then an exact sequence 0 ~ V' ~ V ~  V" ~ 0 of G-spaces, where V' ~:0, 
V"~=0, and where V" is irreducible. Let g"  be the highest weight of the 
representation of G in V". 

By induction, there is a decomposition V' =Z  Vi, with the properties 
of the proposition. Let V~ be the direct sum of those V~, for which 
u (g + p, g + p)  ~r u (g"  + p, g"  + p)  mod p for all highest weights g of 
irreducible constituents of the restriction of n to Vs. We then have an 
exact sequence O ~ V ~ V ~ V ~ ' ~ O  of G-spaces, which splits by 4.5. 
This implies the assertion. 

4.8. Corollary. Let ~z be an indecomposable rational representation 
of G. Let g and g' be the highest weights of two irreducible constituents 
of n. Then u ( g + p , g + p ) - u ( g ' + p , g ' + p )  modp.  

8 Inventiones math., Vol. 5 
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4.9.  An Explicit Example. To terminate ,  we give a deta i led  discussion 
of the  i r reducible  representa t ions  of Gz in charac ter i s t ic  3. M u c h  a b o u t  
this  (in pa r t i cu la r  the  degrees of the  i r reducib le  representa t ions)  is 
con ta ined  in [11]. W e  wan t  to  show wha t  can  be done  in this  pa r t i cu la r  
case with the  me thods  of the  present  note .  

G2 is s imply connected,  so we have  u = 1. The  charac te r  g roup  X(T) 
is spanned  by  3 e lements  x o, Xl, x2 ,  whose  sum is 0, such tha t  r 1 =Xo,  
r 2 : x l - - x  o. M o r e o v e r  we have d~=xo+xl=2rl+r2,  d 2 = x 1 - x 2 :  
3 r l + 2 r  2. The  roo ts  a re  +xi, x ~ - x j  (i~:j). W e  have (xi,  xi>=l, 
(x~,  x j> = - � 8 9  The  elements  of  W a c t  on X(T) as fo l lows:  w. x i =exit  O, 
where  n is a p e r m u t a t i o n  of {0, 1, 2} and  e =  _+ 1 (see [4], exp. 19, p. 11). 

In  o rde r  to  f ind  the charac ters  of the  i r reducible  representa t ions  of 
G2 in character is t ic  3, i t  suffices, by  a theorem of STEINBERG ([11], 
Th.  6.1, p. 44) to  de te rmine  those  whose  highest  weights are  g =id 1 +jd2 
with O<=i,j<2. 

W e  have first  de te rmined ,  in character is t ic  0, the  mult ipl ic i t ies  
m(g, d) for  such g and  d d o m i n a n t  < g .  The  m e t h o d  we fo l low is tha t  of 
FREUDEr~THAL ([5], I I )  based  on  fo rmula  (5) (of 3.10). The  detai ls  of the  
calcula t ion,  which is no t  very labor ious ,  a re  omi t ted .  The  results  a re  
given in Tab le  1. The  rows and  the first  co lumns  are  labe led  by  the 
pai rs  i j, co r re spond ing  to  the  d o m i n a n t  weight  idl § The value of 
m(g, d) is in the in tersect ion of row g and  co lumn d (zeros on the empty  
places).  The  last  co lumn conta ins  the  numbers  ( g + p , g + p ) - ( p ,  p). 

Table 1. Multiplicities in characteristic 0 

00 10 01 20 11 30 02 21 40 12 31 50 03 22 (g+p,g+p)  
- -  ( p ,  P~> 

00 
10 
01 
20 
11 
30 
02 
21 
40 
12 
31 
50 
03 
22 

1 0 
1 1 6 
2 1 1 12 
3 2 1 1 14 
4 4 2 2 1 21 
5 4 3 2 1 1 24 
5 3 3 2 1 1 1 30 
9 8 6 5 3 2 1 1 32 
8 7 5 5 3 2 1 1 1 36 

10 10 7 7 5 3 2 2 1 1 42 
16 14 12 10 7 6 4 3 2 1 1 45 
12 11 9 8 6 5 3 3 2 1 1 1 50 
9 7 7 5 4 4 3 2 1 1 1 0 1 54 

21 19 16 15 11 9 7 6 4 3 2 1 1 1 56 
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Now let G be the algebraic group of type G2 over an algebraically 
closed field k of characteristic 3. There is an inseparable isogeny tr: G ~ G 
of degree 3 such that ~r (T) = T and such that the induced homomorphism 
tr*: X(T)~X(T)  maps d 1 onto d2 and d2 onto 3d I (see [4], exp. 21). 
Let nij be an irreducible representation of G of highest weight idl +jd2, 
let eij be its degree. Clearly 7tijoa is then one with highest weight 
3jdl + id2 and with the same degree. On the other hand, by STEINBERG'S 
theorem, quoted above, we know that naj,~ is equivalent to the tensor 
product s(rtjo)| where s is the automorphism 2 ~ 2 3  of k. It 
follows, in particular, that e~=ejoeo~, whence ezj=ezoejo. It follows 
also that elo and e20 determine all degrees eij for 0<i ,  j < 2  (and even 
for arbitrary i and j,  by STEINBERG'S theorem). From 4.2 we conclude 
(using the last column of Table 1) that e2o is as in characteristic 0, and 
Table 1 then easily implies that e2o =27. On the other hand it follows 
from Table 1 that elo is either 6 or 7 (observe that di has 6 conjugates 
under W). So the symmetric part of ~Zlo| has dimension 21 or 28. 
However this must contain the representation rC2o of dimension 27 (by 
highest weights), whence elo =7 (as in characteristic 0). 

One now concludes, by degrees, that 7ztj is equivalent to nzo | 
From this one derives easily a table of multiplicities in characteristic 3. 
Instead of this table, we give in Table 2 the (equivalent) table of "de- 
composition numbers" ha(g, d) (see 4.1). 

Table 2. Decomposition numbers 

00 10 01 20 11 30 02 21 40 12 31 50 03 22 

00 1 
10 0 1 
01 0 l 1 
20 0 0 0 1 
11 1 1 1 0 1 
30 0 1 2 0 1 1 
02 1 0 0 0 1 0 
21 0 0 0 0 0 0 
40 1 0 1 0 2 0 
12 0 0 2 0 1 1 
31 1 0 3 0 2 2 
50 0 0 0 0 0 0 
03 0 0 2 0 0 2 
22 0 0 0 0 0 0 

1 
0 1 
1 0 1 
1 0 0 
1 0 1 
0 1 0 
0 0 0 
0 0 0 

1 
1 1 
0 0 1 
1 1 0 1 
0 0 0 0 

Let now G be the group of type G2 defined over the field F a with 
3 elements. Put H=G(F3), the finite group of rational points of G, with 
order h = 3 6 ( 3 2 - 1 ) ( 3 6 -  1)=2 ~. 36. 7 .13 .  We will use the preceding 
results to determine the 3-modular characters (in BRAUER'S sense) of H. 

8* 
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We first determine the 3-regular classes of H. According to [11] (w 
they come f rom the t e T  such that  w .  t = t  3 for  some w e W .  We describe 
the elements of T by triples (t x~ t xl, t ~2) in (k*) 3, where the .x'~ are as in 
the beginning of this section. In  this description, it is easy to work  with 
the action of W on T. The result is that  the 9 3-regular classes of H are 
described by the triples (1, 1, 1), ( - 1 , -  1, 1), 2 2 ( e s ,  e s ,  e84), (e2,  ~ ,  1), 
(~7, ~2, ~74), (g8, ~83, 884), (~8, ~85, E2), (g13, E133, ~73), (~23, ~63, 8153), where 
en denotes a primitive n th roo t  of  unity in k*. We label these classes by 
their orders as l,  2, 4, 4' ,  7, 8, 8', 13, 13' respectively. Denote  by q~ the 
isomorphism of the group of roots  of unity of order  7 �9 8 �9 13 in k* into 
C* defined by tp(en)=e 2~i'n-x for  n = 7 ,  8, 13. The Brauer characters 
of H are computed  using this h o m o m o r p h i s m  ~p (and depend on it). 
Using the results of [11] (w one easily gets the modular  character  table 
f rom Tables 1 and 2. To  each highest weight id  I +jd2 (0=< i, j___< 2) there 
corresponds such a character  X~j- Moreover  we have (as follows f rom 

the preceding remarks) ;~11 =;ClOZOl, ~(21 =Z20~01, ~12 =Zion(02, Z22 = 
;~20 Z02. So one only has to determine ;(0~, Zlo, X02, ;(20- This is easy, using 
Tables 1 and 2. The result is given in Table 3. 

Table 3. Modular characters of G2(F3) 

Char- Class 
acter 

1 2 4 4" 7 8 8' 13 13' 

Zoo 1 1 1 1 1 1 1 1 1 
;Qo 7 - 1  - 1  3 0 --1 1 ~(1 q- VI'J) ~ (1 -- ]/'l-J) 
Zol 7 --1 3 --1 0 1 --1 �89 - ]fi'J) {(1 + lfi-J) 
z11 49 1 - 3  - 3  0 - 1  - 1  - 3  - 3  
Z2o 27 3 - 1  3 - 1  1 - 1  1 1 
Zo2 27 3 3 - 1 - 1 - 1 1 1 1 1 Z21 189 --3 --3 --3 0 1 1 �89 (1 -- I/]-'J) ~ (1 -b Ill-'J) 
Zl2 189 --3 --3 --3 0 I 1 �89 (1 + I/]"J) �89 VI-J) 
)~22 729 9 - 3 - 3 1 - 1 - 1 1 1 

Apa r t  f rom sign, the values of Xo2, ~(2o and t(22 are also contained in 
[11] (11.3). The modula r  characters depend on the choice of the iso- 
morph ism q~. If  one makes a different choice of q~, then either the 
characters remain unchanged,  or  ~/1] gets replaced - b y  V T ]  through-  
out  Table 3 (]/'T~ occurs because of a Gaussian sum). 

R e f e r e n c e s  

1. BOREL, A., and T.A. SPRINGER: Rationality properties of linear algebraic groups, 
II. (To appear.) 

2. --, and J. Trrs: Groupes rrductifs. Publ. Math. I .H.E.S .  No. 27, 55--151 
(1965). 



WEYL'S Character Formula for Algebraic Groups 105 

3. CHEVALLEY, C.: Sur certains groupes simples. T6hoku Math. J. (2), 7, 14--66. 
(1955). 

4. - -  S6minaire sur la classification des groupes de Lie alg6briques, 2 vol. Paris 
1958. 

5. FREUDENTHAL, H .  : Zur Berechnung der Charaktere der halbeinfachen Lieschen 
Gruppen I. Proc. Kon. Ak. v. Wet. Amsterdam, Series A 57, 369--376 (1954); 
II., ibid. 487--491. 

6. HARISH-CHANDRA: The characters of semi-simple Lie groups. Trans. Amer. 
Math. Soc. 83, 98-- 163 (1956). 

7. - -  Differential operators on a semi-simple Lie algebra. Amer. J. of Math. 79, 
87-- 120 (1957). 

8. JACOaSON, N.: Lie Algebras. Intersc. tracts in pure math., 10. New York: Inter- 
science puN. 1962. 

9. ROSENLICHT, M.: On quotient varieties and the affine embedding of certain 
homogeneous spaces. Trans. Amer. Math. Soc. 101, 211--223 (1961). 

10. --  Questions of rationality for solvable algebraic groups over nonperfect fields. 
Annali  di Mat. (IV), 61, 97--  120 (1963). 

11. STEINBERG, R. : Representations of algebraic groups. Nagoya Math. J. 22, 33--56 
(1963). 

12. - -  Regular elements of semisimple algebraic groups. PuN. Math. I . H . E . S .  
No. 25, 49--  80 (1965). 

13. WEVL, H. : Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen dutch 
lineare Transformationen, in Selecta, p. 262--366. Basel-Stuttgart: Birk- 
h/iuser Yerlag 1956. 

14. - -  The classical groups. Princeton: Princeton University Press 1946. 

T.A. SPRINGER 
Mathematisch Instituut 
der Rijksuniversiteit 
Universiteitscentrum de Uithof 
Utrecht, Niederlande 

(Received October 20, 1967) 


