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Satake Compactification and Extension 
of Holomorphic Mappings 

Peter  Kiernan  (Vancouver)  and Shoshichi Kobayash i*  (Berkeley) 

1. Introduction 

Let Y be a complex space and M a complex subspace of Y such that 

(1) M is hyperbolic ,  i.e., the intrinsic pseudo-dis tance d M is a distance 
(see [3]); 

(2) the closure M of M in Y is compac t :  

(3) given a point  p of the boundary  ? M  = M - M  and a neighbor- 
hood U o f p  in Y,, there exists a ne ighborhood  V o f p  in Ysuch that V c  U 
and the distance between M ~ ( Y - U )  and M ~ V with respect to d M is 
positive 1. 

As in [2] we say that  M is h y p e r b o l i c a l l y  i m b e d d e d  if these three 
condit ions are satisfied. 

Let X be a complex space and A a closed complex subspace of X. 
We consider the p rob lem of extending a ho lomorph ic  mapp ing  X - A - - ~ M  

to a ho lomorph ic  mapp ing  X---, Y. Kwack  [5] has shown that this is 
possible if M is compac t  (so that  condit ions (2) and (3) are vacuous) and 
X is non-singular.  In [3] the p rob lem was affirmatively solved when both 
X and A are non-s ingular  (whether M is compac t  or not). This result 
was further extended in [2] to the case where X is non-singular and  the 
singularities of A are normal  crossing. On the other hand, there are 
simple examples  [3: p. 100] which answer the p rob lem negatively in 
general when X is singular. 

The  purpose  of the present  paper  is to solve the p rob lem affirmatively 
when X - A  is the quot ient  of a symmetr ic  bounded domain  @ by an 
ar i thmetic  discrete group F and X is its compact i f icat ion in the sense 
of Satake,  Baily and Borel, and Pyatetzki-Shapiro.  

On the other  hand,  it was shown in [4] that if M is also the quotient  
of a symmetr ic  bounded  domain  9 '  by an ari thmetic discrete group  F'  
and Y is its compact i f icat ion,  then M is hyperbolical ly imbedded in Y. 

* Partially supported by NSF Grant GP 16651. 
i Condition (3) is equivalent to the following: (3'). If p and q are boundary points of M and 
if {p.} and {q.} are sequences in M such that p. --* p, and q. -~ q, and d M (p., q,,) --, O, then p = q. 
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(Technically speaking, when the action of F' on 9 '  is not free, the distance 
d M in conditions (1) and (3) has to be replaced by the distance d~t coming 
from the intrinsic distance d~, of the domain 9 '  as explained in [4].) 
As an immediate consequence we obtain the following result. Every 
holomorphic mapping of 9/F  into 9'/F' which is (locally) liftable to a 
mapping from 9 into 9 '  can be extended to a holomorphic mapping 
of the compactification 9*/F into the compactification ~'*/F'. More- 
over, the extended mapping sends each boundary component of 9*/F 
into a boundary component of 9'*IF'. This generalizes the result of 
Satake in [8] where the given mapping 9 ~  9 '  is assumed to come from 
a homomorphism between the automorphism groups of the domains 9 
and 9 ' .  

2. Siegel Domains [6] 
To fix our notation we review quickly Pyatetzki-Shapiro's theory of 

Siegel domains. Let V be an n-dimensional real vector space and f2 a 
convex cone in V, i.e., an open non-empty convex subset such that i) 
t y~ f2 whenever y e f2 and t > 0, and ii) it contains no straight lines. 

The open subset T o of V e = V+iV defined by 

T~= {x + i ye Vc; y~f2} 

is called the tube domain or the Siegel domain of the first kind associated 
to ~. 

An f2-hermitianform on an m-dimensional complex vector space W 
is a mapping H: W x W ~  V e such that 

i) H(ctu+ [3v, w)=e(Hu, w)+[~H(v, w) for u,v, w e W  and ~,[~I17; 

ii) H(u,v)=H(v,u) for u, veW; 

iii) H(u, u)eO for uE W, 

where s9 denotes the topological closure of f2; 

iv) H(u, u)=0  only if u=0.  

The open subset 9 ( H ,  f2) of Vr W defined by 

9 (H, (2)= {(x + i y, w)e V c • W; y - H(w, w)e f2} 

is called the Siegel domain of the second kind associated to H and f2. 

In order to define the Siegel domain of the third kind, let Jd be the 
set of all complex antilinear mappings p: W-~ W such that 

i) H(pu, v)=H(pv, u) for u, veW; 

ii) H(u, u) -H(p  u, p u)eO for ue W; 

iii) H(u, u)+H(pu, pu) if u4:0. 
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The set of all complex antilinear mappings p satisfying only (i) forms 
a complex vector space in which Jd is a bounded domain. If p e ~  and 
1 denotes the identity transformation of W, then l + p  is a real linear 
automorphism of W and we can define a mapping Lp: W x W-~ Vr by 
setting 

L~(u,v)=H(u,( I+p)- lv)  for u,v~W. 

Let ~,~ be a bounded domain in a complex vector space U and ~0 a holo- 
morphic mapping from ~ into X. The open subset 9 ( H ,  f2, ~5, q~) of 
U x V C x Wdefined by 

9 ( H ,  O, o ~, cp)= {(t, z, w)e U x V c • W; t e~ ,  Im(z ) -  Re(L,~,)(w, w))ef2} 

is called the Siegel domain of the third kind associated to H, f2, ~,  and ~0. 

Let 62 be an open set in o ~. For each fixed element r of f2, a cylindrical 
set with base (9 is defined by 

9,((9)= {(t, z, w ) e g ;  te(9, Im(z)-Re(L~o,(w, w))-  ref2}. 

The natural projection U x Vc x W--, U induces a fibering of 9 = 
9 ( H ,  r ~,  qg) over ~J. Let G be the group of holomorphic automorphisms 
of 9 that preserve this fibering. Let G' be the group of holomorphic 
transformations of the base o~. We denote the natural homomorphism 
from G to G' by h. Let Z be the subgroup of G consisting of parallel trans- 
lations, i.e., automorphisms of the following type: 

t--* t 

z--~ z +a+ 2iH(w,b)+iH((I  +q~(t))b,b) 

w--~ w + b + q)(t) b, 
where ae  V, be W. 

Let P be a discrete subgroup of the largest connected group of holo- 
morphic transformations of 9 .  The base domain ~- is said to be I'- 
rational if Z/(Zc~ F) is compact and h (G n F) is a discrete subgroup of G'. 

3. Compactification [1, 6, 7, 9] 
Let 9 be a symmetric bounded domain in ~n in the so-called Harish- 

Chandra realization. Let ~ be the topological closure of 9 and put 
Q9 = ~ - 9 .  The topological boundary 09  is a disjoint union of the so- 
called boundary components. Each boundary component ~ is also a 
symmetric bounded domain. If ~ '  is another boundary component of 
9 and if ~ ' c  0~, then ~ '  is a boundary component of ~ also. With 
respect to each fixed boundary component ~,~ of 9 ,  the domain 9 can 
be biholomorphically identified with a Siegel domain of the third kind 
9 (n,  f2, ~ ,  tp). 

16 Invemiones math.,Vol. 16 
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Let F be an arithmetically defined discrete subgroup of the largest 
connected group of holomorphic automorphisms of 9 .  A boundary 
component Y of ~ is said to be F-rational if it is F-rational as a base 
domain of the fibering ~ - ~ o ~  (see w 2). Let ~ denote the union of all 
F-rational boundary components of @ and set 

The action of F on @ extends to 9 "  in a natural manner and 

~ * / r  = ( Y / r )  u ( ~ / r ) .  

Let q: ~ * ~  @*IF denote the natural projection. We shall now introduce 
a topology in ~*/F. For each point of Y/F, a basis of its neighborhood 
system is given by its neighborhood system in N/F with the usual quo- 
tient topology. For  a point p in N/F, we construct a basis of its neighbor- 
hood system as follows. Assume pe~/(-~) and let ~ e ~  be a point such 
that q (})=p. Consider the family of all F-rational boundary components 
g of ~ such that ~ ~ c~& It is known that there are only a finite number 
of F-equivalence classes in this family. Let .~] . . . . .  o~ be a system of 
representatives for these F-equivalence classes. Thus the family 

{]'(~); ,, 'eF and i=  1 . . . . .  m} 

exhausts the rational boundary components 6 ~ of ~ such that ~ c ? &  
Let (9 be an open neighborhood of p in o~. Considering ~ as a Siegel 
domain ~ (H ,  fL ~, q~) of the third kind, we consider a cylindrical set 
~r((9) in 9 ,  where re(2. Since each .~ is also a Siegel domain 4 =  
~(Hi ,  Oi, ~5, ~Pl) of the third kind, we can speak of the cylindrical set 
~.,,((9) in ~ ,  where riE~'~ i. Put 

and 
4, = (~ w ~,((9)~ ~ , , ,  ((9)~ . . - u  y=.,,,((9) 

0u=,(o#).  

We take the family of q/ with varying (9, r, rt, ..., r,, as a basis for the 
open neighborhood system for p. 

The topology thus introduced in ~*/F by Pyatetzki-Shapiro is easily 
seen to be at least as coarse as the one defined by Baily and Borel. It has 
been recently established by Borel that the two topologies coincide, i.e., 
the topology of Pyatetzki-Shapiro is also Hausdorff. This fact is essential 
for Theorem 2 since our proof is based on Pyatetzki-Shapiro's topology. 
(For Theorem 1, it suffices to know that Pyatetzki-Shapiro's topology 
is at least as coarse as the one defined by Baily and Borel.) 
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4. Lemmas on Siegel Domains 

L e m m a  4.1. Let (2 be a convex cone in an n-dimensional real vector 
space V and ~ the tube domain associated to (2. Let xl ,  3"1, Y~ V such that 
yEf2 and y1~(2. Define two curves a 1 and 0 2 in T~ by 

0"1(s )=iya+isy ,  0 " 2 ( s ) = x x + i y l + i s y  .for s > 0 .  
Then 

Jim dro (0", Is), 0"2 (s)): 0, 

where dr~ ~ denotes the intrinsic distance of  the domain T~. 

Proof. We shall first prove  the l emma in the special case where y~=0. 
For  s large, define a mapp ing  h~ f rom the open unit disk A = { ( e ~ ;  I(I < 1} 
into V e by 

h ~ ( ~ , ) = i s y + i c s ~ x l ,  ~EA, 

where c is a positive constant  such that  y+_cxl~(2.  Since 

Im (/,s (0) = s(y + c (Re ~) xl) 

is in (2, h~(O is in Tn for all ~eA. Since h~ is distance-decreasing, we have 

c s + l  
dT~ (0", (s), 0"2 (s)) = dT~ (h~ (0), h~ ( - i/c s)) < d~ (0, - i/c s) = log - -  

c s - 1  

The general case will be reduced to the special case y l = 0 .  Define a 
mapp ing  h from Ta into itself by 

h ( z ) = z + i y  1. 

Since h is distance-decreasing,  we have 

dTn (a 1 (s), 0"1(s)) = dT~ (h (i s y), h (x 1 + i s y)) <= dr~ (i s y, x,  + i s y) 

c s + l  
< da (0, - i/c s) = log - -  QED.  
= c s - 1  

L e m m a  4.2. With the same notations as in Lemma 4.1, let z l~  T ~ and 
ye(2. Define two curves 0"1 and 0"2 in T~ by 

0"1(s)=isy, 0"2(s)=21+isy ,for s>O.  
Then 

!irn dT~ (0"1 (s), 0"2 (s)) = O. 

Proof. Put Z l = X ~ + i y  1 with X l e V a n d  y l ~ .  Consider  the curve 0"2 
defined by 

t . 0"2(s)=i yl + is  y.  

S" t race dr~(0"2(s), 0"2(s))~ 0 as s--* ~ by L e m m a  4.1, it suffices to prove 
t hat d~r~(O-l(s), 0"2(s))-~0 as s--~ ~ .  In other  words, we can assume that  
X1 ~---- O. 

16' 
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If Yl and y are linearly independent,  let P be the real 2-dimensional 
plane in V spanned by Yl and y. If Yt and y are linearly dependent,  let 
P be any plane in V containing Yl and y. Then P c~ f2 is a convex cone 
in the 2-dimensional vector space P. If we take two independent  vectors 
Pl and P2 on the boundary  of the cone P ~ f2, then 

P n f 2 =  {aPx +tiP2, tX>0, fl>0}. 

Let 3r be the upper-half  plane in ~E. Define a mapping g: ~ x Yf--, T~ by 

g((1, (2)= (lpt + (2 p2 for (~1, (2)~r X ~ .  

Then g is an injective holomorphic  mapping which sends the cone 

{((1, (2) 6 j r  • J r ;  R e ( ( 0 =  Re( (2)=0}  

onto  the cone i(Pc~f2). Let 

i ~ l - - g - X ( i  yl), i f ; = g - l ( i  y). 
Then 

i ~l =(i  ~, i fl), i ~;=(i 7, i 6), 

where ~,/3, 7, and 6 are positive numbers  determined by 

yl=~xpl+/3p2, y=Tpl+bpz. 
Let 

~1 (s) = g -  l (a  1 (s)) = i s ~ = (i s ~', i s 6), 

6 2 ( s ) = g - l ( a z ( S ) ) =  i Yt + i s ~ = (i(ct + s 7), i(fl + s 6)). 

Since g is distance-decreasing, it suffices to show that 

lim dae • jr(61 (s), ~2 (s)) = 0. 
$ ~ o o  

But 
d~•  ae (61 (s), t~ 2 (s)) = day • ~f {(i s 7, i s 6), (i (~ + s 7), i(/3 + s 6))} 

= Max {d~e(i s 7, i(ct + s 7)), dJe( i s 6, i(/3 +s  6))} 

{ , ~ + s ~ ' , l o g ~  . = M a x  log s~' 

Therefore,  dje• as s - - - ~ .  QED.  

L e m m a  4.3. Let  ~ = ~ ( H ,  12, if, tp) be a Siegel domain o f  the third 
kind. Given y~f2,  t' e ~ ,  and (t", z, w ) 6 ~ ,  define curves: 

a 1 (s) = (t', i s y, 0), a 2 (s) = (t', z + i s y, O) 

a 3 ( S ) = ( t " , z + i s y ,  O), t r 4 ( s ) = ( t " , z + i s y ,  w ) .for s > 0 .  
Then 

(1) ! imd~(aj(s) ,a~+~(s))=O for  j = l  and j = 3 ;  

(2) d~(a2(s ) ,a3(s ) )=d~( t ' ,  t") for  all s > 0 .  
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Proof. (1) To prove this for j =  1, define a mapping h: Ta-- ,~ by 

h(z')=(t',z',O) for z'eTa. 

Since h is distance-decreasing, the result follows immediately from 
Lemma 4.2. 

To prove this for j = 3, define a mapping hs: A ~ ~ by 

hs(~)=(t",z+isy, c]/s~w) for ~ A ,  

where c is some positive constant such that 

y -  c 2 Re(L,p(,.)(w, w))~(~. 

(This condition insures that for large s, h~(A) is in ~.) Then 

d~(aa(s), a,(s))= d~(h~(O), h~(1/c 1/~)) < d~ (0, 1/c ]/~) = log 
c l / ~ + l  

cl/ -I 
(2) Define a mapping h: ~ by 

h(t)=(t ,z+isy,  O) for tc ;~  

Since h is distance-decreasing, 

d~ (a 2 (s), 0" 3 (s)) -< d~ (t', t"). 

Since the projection from ~ to f f  is distance-decreasing, 

d~(a2(s),a3(s))>=d~(t', t"). QED. 

Lemma 4.4. Let @ -- ~(H, (2, if, tp) be a Siegel domain of the third 
kind. Let F be a discrete subgroup of the largest connected group of 
holomorphic transformations of the domain ~. l f  ~ is F-rational, there 
exists a vector Yo in Y2 such that the translation Ty o defined by 

Tyo(t,z,w)=(t,z+yo,W ) for ( t , z , w ) ~  

is an element q[" the group F. 

Proof The n-dimensional real vector space V may be considered as 
a closed subgroup of the group Z of parallel translations since each 
element a~ V defines a parallel translation (t, z, w) ~ (t, z + a, w). Since 
Z/(ZnF) is compact, V/(VnF) is also compact. Therefore V/(VnF) is 
a real torus of dimension n and VnF is a lattice in V. Clearly this lattice 
meets the cone (2. (If (Vc~F)~O were empty, the natural projection 
V-~ V/(VnF) would map O injectively into V/(Vc~F). But this is im- 
possible since the volume of ~ is infinite.) QED. 

Lemmas 4.3 and 4.4 will be used in the proof of Theorem 1 in w 5. 
We shall now prove a lemma which will be used in the proof of Theorem 2. 
First, we quote the following result from [4; Proposition 2.5]. 
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Lemma4.5 .  Let  ~ = ~ ( H .  f2 ,~ ,  q~) be a Siegel domain of the third 
kind. For r~(2, denote by ~ the cylindrical set ~ ( ~ )  with base o~. Then 

d~(a,b)>logs .for a e ~ , ,  b e ~ - ~ , ,  s > l ,  r eO.  

We say that a sequence {%} of points of ~ converges to a point t 1 
of ~ if, for every open neighborhood C of t 1 in o ~ and every cylindrical 
set 9,((9) with base C, there exists an integer M such that a , , c~ (C)  
for m > M. 

Lemma 4.6. Let ~ = ~ (H, f2, ~ qo) be a Siegel domain of the third kind. 

(l) Given two points t a aml t 2 o f  Yf, there exist sequences {%} and 
{bin} of points q[" ~ such that l i m a , = t 1 ,  l imb, ,= t  2 and d~(a,,,b~) is 
bounded (by a number independent of m). 

(2) / f  {a,,} and {b,,} are sequences of points of ~ such that d~(a,., b,,,) 
is bounded and !f lim a~=taE ~ , then {b,,} contains a subsequence which 
converges to a point of Y provided F is d~-complete. 

Proof (1) Fix an element y of f2 and define 

am=(t~, i m y, O), b,,=(t2, i m y, O). 

Applying the proof of (2) of Lemma 4.3, we obtain 

d~(a,., bm)=d~(t 1, t2). 

(2) We denote by n the projection ~ - . f f  induced by the natural 
projection U x Vr • W ~  U. Since n is distance-decreasing, 

ds~ (n (am), n (b,,)) <= d~ (%, bin). 

Since d~(a,,, bin) is bounded and n(%) converges to a point t ie  ~,  some 
subsequence ofn(bm) converges to a point, say t 2, of ,~. (We are assuming 
that ~ is complete with respect to the distance d~.) Taking a sub- 
sequence if necessary, we may assume that n(bm) converges to a point 
t 2 of .~. Assume that no subsequence of {b,,} converges to a point of F. 
Then there exists an element rEf2 such that the cylindrical set @r = '~r(g) 
contains none of the points of the sequence {bin}. (Since n(bm) converges 
to t ae if, it suffices to consider only the cylindrical sets with base ~.) 
Now take an arbitrarily large number s. Since {%} converges to a 
point in ~,  there exists an integer M such that a , , ~ r  for m>M.  By 
Lemma 4.5, 

d~(am,bm)>=logs for m > M .  

This contradicts the assumption that d~(a m, bin) is bounded. QED. 
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5. Extension Theorems 

We are now in a posit ion to prove the main theorem. 

Theorem 1. Let c~ be a symmetric bounded domain and let F be an 
arithmetically defined discrete subgroup of the largest connected group 
q[ holomorphic trans/ormations of 9.  Let M be a complex space hyper- 
bolically imbedded in a complex space Y. Then every holomorphic mapping 
f: ~ / F ~ M  extends to a holomorphic mapping f: ~*/F-~ Y, where 
~*/F denotes the compact!fication of ~/F. 

Prm?f Let ~ * / F = ( ~ / F ) u ( ~ / F )  as in w Since ~*/F is a normal  
complex space, it suffices to show that .f extends continuously.  Let 
po6~/F. Then po=r/(to),  where ~7: ~*-~c~*/F is the projection and 
t o is a point  of  a F-ra t ional  boundary  componen t  J~. Identify ~ with 
a Siegel domain  ~ ( H ,  (2, ~ ,  ~o) of the third kind. By L e m m a  4.4. there 
is a vector  Yo in the cone ~2 such that  the translation Ty o defined by 
Yo is in F. Let ,~( denote  the upper-hal f  plane in ~' and define a mapp ing  
go: ~ ~ by 

go(L-')=(to, ( Yo, 0) for ( ~ (  

Let A* be the punctured  unit disk in ~7, i.e., A * = { ~ ,  0 < l ( ] < l } .  
Then ~u{. is a covering space of A* with projection ~-~e 2~i~ and with 
covering group Z acting on ~Xr ~ by (n,()~Z• ~. Since 
r/(~o(~+n))=q(T,,~.,,(~o(~)))=q(~o(~') ) for ever), integer n, go induces a 
mapp ing  

go: A * = ~ ' / Z - ~ / F .  

Let Jo=fogo . Then fo is a ho lomorphic  mapp ing  from the punctured 
disk A* in M. By T h e o r e m  3.6 in [3; p. 99], it extends to a ho lomorphic  
mapp ing  .1o f rom the disk A into Y. Put  

q =,/o (o) ~ Y. 

Let {Pro} be any sequence in ~/F such that p , , ~  Po. We will be done 
if we can show that  .f(pm)~ q. 

To do this, it suffices to show that every sequence {p,,} with p,, ~ Po 
has a subsequence {p,,,} with f ( p " ) - ~  q. Denote  by ~C~,, the open neigh- 
bo rhood  of t o in o~- defined by 

(_9,. = { t ~ ;  d~(t o, t )<  l /2m}.  

Taking  a subsequence of {Pro} if necessary, we may assume that for 
each p,., there exists a point ~ , .=( t , , ,z , , ,w, , )  in the cylindrical set 
@,,yo((9,,) such that  r/(b,,)= p,,. For  each m, define a mapping  ~": o ~ ' - ~  

by ~,,(~) = (t,,, z,, + ~ Yo - i m Yo, w,,). 

As above,  ~,, induces a mapp ing  g": A* = ~ / Z - - ~ / F .  Put 

,f =.fog,,. 
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We have the following commuta t ive  diagram: 

l 
A* ~" , ~ / F  f ~ M c  Y. 

Let m be fixed. In k e m m a  4.3, let 

Y=Yo, t '=t  o and ( t ' , z ,w)=( t , , , z , , - imyo ,W, , ) .  

Choose  s,. > 0 such that 

d~ (0"1(s,,), 0"2 (s,.)) < 1/4 m, 
Then  

d~(0"1(Sm), o'4 (Sin)) 

Put  

d~ (0" 3 (Sin) , 0"4 (Sin)) < 1 / 4  m .  

__< d~ (,~, (~,.). ,.~ (~.,)) + d~ (0.~ (s,.), 0.~ (~,.)) + d~ (0.~ (~,.), ,~,, (~.,)) 
1 1 1 1 

< ~ - - m  + 2 - m  - +  4m m 

(m=e-2nsmEd *. 

Since go (i s,,) = (to, i s m Yo, 0) = a I (s,,), we have 

fo((m)= f ogo(e-2~'~m)= f oqo~,o(i Sm)= f otloal(S,.). 

Similarly, since g,m (i s . , )  = ( t  m,  z , .  + i s m Y o  - i m Y o ,  w , . )  = a 4 (sin), we have 

f,~((m)= f og.,(e- 2~m)= f oqogm(i s,.)= f ottoa 4 (sin). 
Therefore  

dM (fo ((m), fm (~-m)) = du ( f  ~ tl~ a, (sin), fotl o a 4 (sin)) 

< d~(al(s,,), a4(Sm)) < 1/m. 

Since lim ( , , = 0 e A * ,  we have 
m ~  oo 

lim fo (~,.)= fo (0) = q. 
m ~ o o  

Since limodu(fo((,,),fm((m))=O and M is hyperbolically imbedded in Y 

(see condit ion (3) in w we have 

lim f , . ( ( , . )=  lim fo( ( , . )=  q- 
m ~ o o  r n ~ a o  

Put 
~'=e-2~m~A *. 

Since 
~,,=(t,. ,z,. ,  wm)=g,m(im), 
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we have 

.f (Pro) = f ~  ~ (P,.) = f ~  ~I o ~,. (i m) = fog,. (e- 2 ~:m) = fog,.  ((,=) = f.. (('.1). 

To prove l imf(p, . )=q,  it suffices therefore to show limfm((~.)-q. 
r n ~ o o  m ~ c ~  

Since l im f.,({.,)=q, this follows from the following 

Lemma (see Theorem 1 in [2]). Let M be hyperbolically imbedded 
in Y and let f,.: A*--~ M be a sequence of hoIomorphic mappings. Let ~,. 
and (',. be sequences in A* converging to 0 and such that lim f , . ( ( , . )=q6 Y. 
Then lim .F,,(~,)=q. 

m ~ r  

This completes the proof of our main theorem. 

Theorem 2. Let ~ (resp, ~') be a symmetric bounded domain and F 
(resp. F') an arithmetically defined discrete subgroup of the largest con- 
nected group of  holomorphie transformations of 9 (resp. 9'). Let ~*/F 
(resp, ~'*/F') be the compactification oF 9 / F  (resp. ~'/F'). Then every 
holomorphic mapping f :  ~/F--~ @'/F' that comes .From a holomorphic 
mapping ,f : ~--~ 9'  extends to a holomorphic mapping f :  ~*/F-+~'*/F' .  
Furthermore, the extended mapping sends each boundary component of 
~*/F into a boundary component of ~'*/F'. 

We observe that the condition that f :  ~ / F ~ ' / F '  be lifted to 
f :  9 -+ ~ '  is satisfied if F' acts freely on 9 '  since ~ is simply connected. 

Proof It was shown in [4] that ~'/F' is hyperbolically imbedded 
in ~'*/F' provided that F' acts freely on @'. In this case, the first state- 
ment follows immediately from Theorem 1. If F' is not acting freely 
on ~ ' ,  we replace the intrinsic pseudo-distance d~,/r, by the distance 
d'~,/r, induced from the intrinsic distance d~, and modify conditions 
(3) in w 1. Then as in [4], the first statement follows immediately from 
the proof of Theorem 1. It should perhaps be pointed out that d~,/r, 
need not be a true distance if F' is not acting freely on ~ '  and that 
Theorem 2 does not hold in general for a non-liftable mapping.ft. 

To prove the last assertion, we fix a F-rational boundary component 
,~- of @ and choose two arbitrary points t~ and t 2 of ~. By (1) of 
Lemma 4.6, we can find sequences {%} and {b,,} of points of ~ such 
that lim % =  t~, l imb, ,=  t 2 and d~(a,,, b,,)is bounded. (The convergence 
should be understood in terms of the neighborhood system defined 
by cylindrical sets; see the paragraph following Lemma4.5.) Let 
tl: 9 * - , ~ * / F  and i1': ~'*-- ,~ '* /F '  be the projections. Suppose 
.fort(tt)er/'(o~'), where ~ '  is a F-rational boundary component of N'. 
We want to show that fotl(t2)erf(~').  Choose a point t'~e.~' such that 
tf(t i) = fotl(t  O. Since 

lim 11'of (a~) = lim .fo t/(am) = .f~ r/(lim a~) = fotl (tt) = rf(tl), 
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",' of elements  of U such that  there exists a sequence ~., 

l im 7'mo f (a.,) = t' l . 
We put  

a'm = ;'m o.[(a,,), b~ = 7'~ o.f(h,,) .  

Then the sequence {a~,,} converges  to t ' l e Y ' ,  and the distance d~,(a'  m, bl,) 
is bounded  because 

d~, (a',,, b',,) = d~, (7'~ o f (%) ,  ~"~ o f (bin)) = d~, ( f  (am), f (bin)) <-_ d~ (a m , b,,). 

By (2) of  L e m m a 4 . 6 ,  a suitable subsequence of {b'} converges to a 
point, say t~, of  ~ ' .  On the other  hand,  

f o  q (t2) = .f'o r/(lim b,,) = lim f o  r/(b,,) = lim ~'o.f(b,,)  

= lim q 'OTmof(b , . )=  lim q'(b'~). 
Therefore,  

f o~ l ( t z )=~ l ' { t ' 2 ) eq ' (~ ' ) .  QED.  
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