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Introduction 

The purpose of this note is to expose an elementary Kozsul complex argument 
which underlies the work of Bott [-3, 41 and Baum-Bott  [-5]. Their results relate 
global Chern invariants of X to local residue calculations. The treatment of 
their results given by the present approach is valid for both the analytic and 
algebraic categories, and we feel that it clarifies the role of the Grothendieck 
Residue symbol in the formulae. A more important  consequence of the present 
approach is that for K~ihler manifolds having a vector field with non-trivial zeroes 
one can prove that the Chern classes (and not merely the Chern numbers) of X may 
be computed on the zero set. Furthermore,  we study systematically the notion 
of bundles equivariant with respect to a ~ -va lued  vector field V, i.e. a section of 
O®~, ,  where O is the holomorphic tangent bundle and ~ a vector bundle. 
One proves easily that the Chern numbers of equivariant bundles are determined 
on the zeroes of V (as are the Chern classes for X K~ihler, ~F" trivial, and zero 
(V) ~ ~). The notion of equivariance is extremely fruitful since it vastly increases 
the applicability of the theorem. All line bundles are equivariant if X is K~ihler, 

is trivial and zero (V) is nonempty. Further if ~/~ is taken to be a sufficiently 
ample line bundle then any given bundle 8 will be equivariant for all q - v a l u e d  
vector fields, which will exist, moreover, in abundance (see § 1). 

A section V of O ® ~ = ( O 1 ) * ® ~  is viewed as defining a map i(V): O l ~ / -  
from the holomorphic forms to ~.. We obtain therefore a derivation V:Cx-~ ~ by 
V(f )  = i(V) (dr). A bundle ~ is called V-equivariant if one may lift V to I~:~-~ ~ ®  
such that: 

V(fs) = V ( f ) ® s  + f (/(s) 
for f a function, and s a section of ~. If one restricts to Z, the locus of points at 
which V vanishes, then the formula above shows that I 7" defines a linear map 

(/z~H°(Z, Hom(o  ~, 8 ) ® # ) .  
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If one gives a degree d polynomial map p: Hom(g, g ) ® # ~ G ,  then one obtains 
p(f"z)~H°(Z,  a3). Our results relate this local class to global invariants obtained 
by applying p to the Atiyah class c ( g ) ~ H  1 (X, Hom(g, g)®~21), which yields an 
element p (c (~)) ~ Hd(X, f2 n ® ~i r - n ® f#). 

Main Theorem. Let X be a complex manifold, ~¢U a line bundle and V a ~W-valued 
holomorphic vector f ield with isolated zeroes Z. Given a V-equivariant bundle Fo and 
a polynomial mappin9 o f  degree d, p: Hom(~ ~, 8)Q~#/'~ f¢ for  some bundle f#, then 

a) I f  d = n = dim X there exists a natural homomorphism 

e : H°  (Z, f# )~  H"(X ,  f2"Q~'cY"-"®~) 

such that 

e(p( fiz) ) = p( c( g ) ) . 

b) I f  d = n, X is compact and ~J = ~.4 r" so that p (c (~))~ H n (X, f2") can be integrated 
to give a Chern number o f  ~, then one has 

~x p(c(8)) = (2zti)" Res (p(l~z)) 

where Res, the Grothendieck Residue, is the canonical map o f  H°(Z ,  W~)=Exff 
(Oz, f2 n) to the scalars. 

c) I f  ~l/= f#=(9 x and d <n,  then Res(p(l~z))=O. 
d) I f  X is compact Kdhler, Z t -O,  and ~ = ' ~ = C  x is trivial, then there exists a 

filtration F i on H ° ( Z, Cz), with F i 3= g i + 1 and F i " F ~ ~ F i + j, and isomorphisms 

ea: F _ d/F - ~ + 1 ~ Hd (X, f2 d) 

such that 

e d(p((/z))= p(c(g)) . 

In particular for  an: Horn(E, E)~C x the d th elementary symmetric function one 
obtains that an(fiz)6 H°  (Z, (g z) computes the d th Chern class o f  E. 

In Section 4 we indicate how one may explicitly calculate the cohomology 
rings of Grassmanians by using the equivariance of the canonical quotient and 
subbundle with respect to flows on the Grassmanian. 

The underlying idea of our proof is that the Atiyah class c(g) can be thought 
of as coming from a class g(g) in the hypercohomology of an i(V)-Kozsul complex. 
This hypercohomology lives on Z, in particular, for isolated Z, g(g) will be 
identifiable with V z e H ° ( Z ,  H o m ( g , g ) ® ~ K ) .  Now, by construction c($) arises 
from g($) via a spectral sequence edge morphism e, and this morphism commutes 
with the evaluation of p in view of the multiplicative character of the Kozsul 
complex. The lack of multiplicative structure for the generalized Kozsul complexes 
is a first obstacle to the simple treatment of higher dimensional foliations, cf. [6], 
by an analogous argument. We remark in §3 that statement b) of our theorem 
follows easily from a standard commutative diagram in residue theory. The 
analogous result for the higher dimensional foliations needs to be uncovered-- 
it is clearly implicit in the fibered residue calculations of [6]. 

Finally, we remark that for higher dimensional foliations the hypothesis of 
integrability of Baum and Bott is precisely the hypothesis that the quotient sheaf 
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Q=O/#Z is equivariant, and "explains" the calculation of Q-Chern numbers 
rather than O-Chern numbers in their work. Since Q is in general only coherent 
rather than locally free it is necessary to extend our spectral sequence argument 
to this broader context to cover the Baum-Bott results--this is achieved in {}6. 

§ 1. V-Equivariant Sheaves 

Throughout our discussion X will denote a (not necessarily compact) complex 
manifold of dimension n, #Z will denote a locally free, rank one sheaf of (~x modules 
and VsH°(X, 0 ® ~ )  a "~r-valued" holomorphic vector field on X. (Note that 
since O ® # P = H o m ( #  ~*, 0), one may equivalently view V as a map ~ * - - , 0 .  
We indicate by "V' ,  or by " V ® ' ,  any map # z * ® ~ O ® ~ p r o d u c e ~  from V by 
linearity. Dually we denote by i(V) maps produced from i(V): QI__,#Z by 
tensorisation.) 

A sheaf of C x modules $ is called V-equivariant if there exists a C-linear map, 
I? :g-~Yf®g,  lifting the derivation V : C x ~ # ,  that is 

17"(f-s)= V ( f )®s+ f . V (s) (1.1) 

where f(resp, s) is a local section of C x (resp. $). For vector fields (i.e. when W is 
trivial) the sheaves 0 and (2 p are equivariant via Lie bracket and Lie derivative. 
In general 0 will not be equivariant for #Z-valued fields. However, if one defines 
Q by the sequence 

O~ #~a, V ,O_~+Q__+O (1.2) 

then one obtains a natural 

(7: Q-+ W'®Q= Hom(W*, Q) 

by taking l?(q) to be the map:s-+~([V(s), c7]) where s is a section of W "a* and ~ is 
any ~-lift of q. (Independence of the choice of 0 is due to the integrability of rank 1 
subbundles of O. For higher rank ~ one may assume integrability to guarantee 
equivariance of Q, as in [6].) 

We denote by Z the subvariety of X defined by the vanishing of V, i.e. by the 
sheaf of ideals I z which is the image of i(V): Q1 ®~//r"*--+C x. Note that by definition 
V(f)~ I z for all f If g is any equivariant bundle we see therefore that I?: g--+g®~///~ 
maps Iz-g  to Iz-(g®~#/) and modulo I z induces an (9 z linear map Vz, important 
in the sequel. 

For general g one may measure the obstruction to constructing a l? by a 
class 6 (6°) E H ~ (X, Hom(& g)®'W). Namely, locally one may construct 17" satisfying 
(t.1) and I7; is determined by to a linear map in Hom(& ~#/'@~), whence the 
patching obstruction for global l?. 

Proposition (1.1). Given a locally free sheaf o ~ of Cx-modules, the element 3(V) 
obstructin9 the V-equivariance of 8 is i(V) c(#)E HI (X, Hom(g, 6~)@'/U) where 
c(~)e H 1 (X, Hom(& eg)®Q 1) is the Atiyah Chern class of & 

Proof. The result follows from noting that c(g) obstructs the existence of a con- 
nexion V: g--+~* ® ~  and that given Vone may define 17" as i(V). 17. 
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An important application of this is 

Proposition (1.2). Given X a projective manifold and ~ locally flee, there exists a 
line bundle ~ on X such that ~ is equivariant with respect to any section of  H ° 
(X, O®~?) and such that O®oL, ° has sections with isolated zeros. 

Proof  When A a is sufficiently positive, H 1 (X, Hom(8, N ) ® ~ ) = 0  and O ® ~  
will be very ample, hence will have sections in general position. 

As another example, we have 

Proposition (1.3). I f  X is a compact Kiihler manifold and VEH ° (X, O) has zeros, 
then every invertibte sheaf AF on X is equivariant. 

Proof For then, i(V): HI(X,~21)---rHt(X,(_gx) is zero. This is essentially 
Lichnerowicz's Lemma [7]. 

§ 2. The Fundamental Kozsul Complex 

Given VEH°(X,  O®~2) we may extend the canonical map i(V): f21®~*~(gx  
to define a Kozsul complex. Namely, we define: K - '  = AP(O 1 ®~W*)= f2P®~W - ", 
where "W- ~ = (~q#*)®P. We have the fundamental Kozsul complex of sheaves: 

0--*K-"--* ... ~ K -  1 ~ K O ~ 0  (2.1) 

in which the differential is contraction with V, i(V). Given any locally free f f  we 
shall denote by K(ff)  the complex obtained by tensoring (2.1) with i f ,  over C x. 

We will be analysing the two spectral sequences of hypercohomology for 
these complexes 

E~ "q = n p (S,  .;/t ~q (F ) )~ H v + q (S, K (~)) (2.2) 

E~ 'q = n q (X, f2- P® o~)~U~ + q(X, K(~.~)) (2.3) 

where jg(o~) denotes the cohomology sheaves of the complex K(o~). 
The hypercohomology H(X, K(o~)) may be computed as total cohomology of a 

double complex--for example fixing a Leray covering ok' for X, one may form the 
double Cech complex CP(q/, t2q®F) with differentials i(V) and 6, (the Cech 
coboundary) and with total differential 6 + ( - 1 )  p i(V). Alternatively one can use 
the double complex AP'q(F) of F valued C ° forms of type p, q with differentials 

and i(V). In fact this double complex is implicit in the projector calculations of 
Bott. The remarks we make below concerning hypercohomology may be easily 
followed in the explicit representation given by either of these double complexes. 
The spectral sequences above are the two spectral sequences of the double complex. 

We recall that (2.1) is exact off the zeroes Z of V, and the cohomology sheaves 
Jt~(~) are in fact coherent sheaves of (9 z modules in particular are supported on Z. 
When dim Z = 0  then .Ygq =0  for q > 0  and .~° (~)  = ~ z by the well known theory 
of the Kozsul complex. 

Remark 2.4. The sequence (2.2) shows that H(K(~)) is determined by contributions 
on Z. One sees immediately, 

a) I fZ= tk then  H'(X,  K(o~))=0 for all r. 
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b) If dim Z = 0  then H*(X, K(f f ) )=0  for r # 0  and H°(X, K ( , ~ ) ) = H ° ( Z ,  o~z). 
where ~,~z =~-® ex Oz. 

Moreover we remark on the multiplicative nature of these spectral sequences. 
Namely, given a bilinear map A × B-~ C one extends it to a natural bilinear map 

KP(A) x Kq(B)--, KP+q( C) (2.5) 

by using the natural exterior product in K ' =  A" K s. This is a pairing of complexes 
in view of the contraction identity 

i (V) (k~ A k z ) = ( i ( V  ) ka) A k 2 + ( -  1) v k 1 A i(V) k 2 . 

Consequently one obtains a bilinear pairing 

H p ( K  (A)) x H q ( K  (B))-~ H v + q ( K ( C ) )  

of hypercohomology. Further, if F. H denotes the filtration on H defined by the 
spectral sequence (2.3) then one has F, H x F s H ~ F, + ~ H. 

In particular when i f =  (9 x, the hypercohomology of K =  K((gg) has a natural 
ring structure, which is compatible via (2.3) with the wedge product pairings of the 
groups E -  p' q= H q (X, Y2P® ~#/'-P). In case ~q/'= (9 x and X is a K~ihler manifold, the 
H q (X, f2 p) are the Hodge components of the cohomology ring of X. In this case we 
recall the main result of [7] : 

Theorem 2.6. I f  X is a Kdhler manijbld, V a holomorphic vector field with nonempty 
zero set, Z, then the spectral sequence (2.3) has all differentials vanishing, so that 
the cohomology ring o f  X is determined on Z as the associated graded ring for  
the filtered F v H v + q (X,  K'). 

Remark 2.7. In particular if dim Z=O,  the cohomology ring of X is the associated 
graded of a filtration 

H°(  Z, (~z)=F- ,~=F- ,+ 1 ~= ... ~=F_ 1 ~=Fo = 0  

on the ring of global functions on Z, cf. 2.4 b) above. Note that the F~ are not in 
general ideals in this ring, but do satisfy F i . F ~ c F~ + j. 

An example with X = P" is done explicitly in §4, below. 

§ 3. Principal Results 

We next turn to the definition of hyper-Chern classes for equivariant bundles. 
Given any bundle we note that the Atiyah Chern class c(g)  defines an element of 
H ~ (X, Hum(g,  g)®f21), which group may be interpreted as the E ;  ~'~ term in the 
H(K(.N)) spectral sequence (2.3), where ,N= Hum(g, g )®# ' :  We note that d~ (c(g))= 
0 if and only if g is V-equivariant (Proposition 1.1). Thus since El- ~" 2-r vanishes 
if r > 1, we find that o v is equivariant if and only if c(g) defines a hypercohomology 
class g(o v) lying in F_ 1 H° (X, K (Hum(8, 8) ®~W). [This ~(o v) is well defined only 
up to Fo H°, and modulo F 0, ~(g) is the class in E~ 1'~ given by c(o v) modulo all 
spectral sequence boundaries.] We call ((o v) a hyper-Chern class of 8. 

Given(gx-modules A and B, a mapping p: A ~ B  will be called a polynomial of 
degree d if it is obtained by composing the diagonal map A ~  ®a A, ( a ~ a ® a . . .  ®a), 
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with a linear map ®d A-~B. Given such a polynomial one obtains canonically 
p:It(K(A))--,H(K(B)) by composing the diagonal map H(K(A))~®dlt(K(A)) 
with the map ®dlt(K(A))--*H(K(B)) induced by the linear mapping assumed 
above. Note that p respects the filtration of the spectral sequence (2.3), i.e. 
p(Frltq(A)) c_c_ FdrHdq(B), and one finds immediately (in view of the multiplicative 
character of our spectral sequences): 

Proposition 3.1. Given p: Hom(g,o~)®~W~ad a degree d polynomial, the class 
p(c(g)) in Hd(X, ~2dQudr-d®~.q) is associated to the class p(~(8)) in H°(X, K (~)). 
More precisely, p(F(8))~F_ d H°(X, K(G)) and modulo F__d+ 1 it defines in E~ d'a 
the class which is the image of p(c($))6E;d'd(K(G)) modulo B -d'd (the set of all 
spectral sequence boundaries in E-tin'd). 

In general the vanishing of p(6(g)) implies only that p(c(~d)) is a spectral 
sequence boundary, and wilt not imply the vanishing of p(c(g)). In particular 
cases where there are no boundaries p(c(g)) is completely determined by p(F(g)). 
Since this latter class is in H(K((~)) it is determined on the zero set Z in view of 
(2.4). Thus, we have results of Bott type: 

Theorem3.2. Given V~H°(X, O®~W) where X is a (not necessarily compact) 
complex manifold, and ~W is a complex line bundle, then for any V-equivariant 
bundle E, and any polynomial p: Horn (g, g)®~q/'--* ff of degree n = dim X: 

e (p (F (8))) = p (c (8)) 

where e: H° (X, K ((~))-* H"( X, f2"® W-"®G) is the edge morphism of the spectral 
sequence (2.3). Thus p(c(rY)) is determined by contributions on Z = zero(V), vanishing 
if z=~ .  

The concluding remark of the theorem is a reference to the spectral sequence 
(2.2). The local contributions are made explicit in (3.4) below. The key point in 
(3.2) is the non-existence of boundaries in E~"'" since K r = 0  if r <  - n .  We have 
similarly 

Theorem 3.3. Let X be compact K6hler, and V a vector field with nonempty zero 
set Z, and let p:Hom(g,  o~)--*(gx be any degree d polynomial, then the Chern class 
p(c(g))~ Hd(X, (2 d) is e(p(F(g))) where 

e: F_ d H° (K)-~ Hd(X, ~d) 

arises from the totally degenerate spectral sequence (2.3), ((f~ 2.6, and [7].) 

One cannot conclude the vanishing of Chern classes for equivariant bundles 
on K~ihler manifolds when Z =  0, since the spectral sequences will not degenerate 
when Z =  0. As an example, let X = pl × T with T an elliptic curve. Take V to be 
translation on T and 8 =  ~*((9(1)). One has p(F(g))EH(K))=O, while clearly for 
p = tr: Hom (8, ~)-~ (9 x one has 0 ,  cl (~)~ H I(X, ~21). 

We turn next to the proof of the main theorem. The hypothesis that Z have 
isolated zeroes yields an identification H ° (X, K(Hom(g,  g)®~))-Z,H° (Z, Hom 
(8, g ) ® ~ )  in view of the degeneracy of spectral sequence (2.2), cf. (2.4). The 
statements a), c), of our main theorem correspond to Theorems 3.2, and 3.3, once 
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one verifies that 5(8) and I? z correspond under the above isomorphism. Fixing an 
acyclic covering ~ of X by polydiscs U~ we employ the Cech double complex 
Cr(~ ', K q) to calculate H. Note that if D~: 8 ~ 8 ® ~  ~ is a connexion for 8 on U~ 
then D ~ - D # = O ~ e  C~(~II, K -1) is the Cech representative for the Atiyah class. 
Consider L~=V- i (V) .D~ which yields an element of C ° ( ~ , H o m ( 8 , 8 ) ® ~  :) 
such that L¢~- L~ = i(V) (O~#). Thus we see that the cochain {O~#} (~{L~t}e@p+q= o 
CP(~I, Kq(Hom(g, g)®~¢:)) is a total cocycle (i.e. is annihilated by 6 + (-1)Pi(V), 
the total differential) and represents the class ?(8). The corresponding class in 
H°(Z, Horn(& 8)®~¢¢:) is {L~}lz. But L, lz= l?z since i(V) vanishes on Z, and we 
obtain our assertion. 

To obtain statement b) of the main theorem concerning the Grothendieck 
residue, note that since dim Z--  0 

K = 0 ~ O " ® ~ - " - *  ... ~f21 ®:~/: - 1~(9 x 

is a resolution of (9 z and since one has a natural identification K ( ~ ) =  Horn 
(K, O n) via 

K-P(~qF~) = y2P®~IU~-p = H o m ( f p -  p ® ~ p -  n, (P) 

so that one may identify H ° (K (~q#")) and Ext n ((9 z, f2"). Our claim is: 

Exff(C z, £P) --% H"(X, 0 n) (3.4) 
Res'-.  / 

C 
is commutative, where Res is the Grothendieck Residue, e is the edge morphism 
in the spectral sequence, and Hn(x, Qn)~C is the canonical map (called Tr in [8], 
and j in [9]). [This latter notation is misleading, since in fact the map Tr is given 
by 1/(2ni)" Jx under the standard identification of H"(X, Q~) and H2n(X, (7).] The 
commutativity of the above diagram is essentially the definition of Res, see [9] or 
[8, Chapter III,§ 1] for a proofofcommutativity. 

c) Follows immediately from the fact that e (p~(8))= 0 if deg p < n. 

§ 4. Examples 

( I) The universal Chern classes 
Let Grass (k, n) denote the set of k-planes in C n viewed as the homogeneous space 
of left cosets G/H where G=GL(n; C) and H = G L ( k , n - k ;  C) is the isotropy 
group of the k-plane C ~ spanned by' e 1 . . . . .  e k for the left action of G on Grass (k, n). 
For any z~G, let 14"(0 denote the first k columns of z and for any sequence I =  
{ l ~ i l < i 2 < . . . < i k ~ n  } denote by Ux the Zariski open H-invariant set in G 
defined by the requirement that W x (z), the submatrix of W(z) formed by selecting 
rows I, be nonsingular. The universal subbundle 8 consisting of all pairs (S, x) 
where S~Grass (k, n) and x~S can be viewed as the homogeneous vector bundle 
G × C / H  where the right action of H is (z, v) ~b--(z~, ~-1 v). From this description 
it follows that 8 is trivial over t~x-- Ux/H and that the patching data on U:~Uj are 
f i j =  W z W~ -J. An explicit representative of c(£) in C 1 ({UI), Hom(& ~)®~ra~s) 
is dfHf~ 1. First, computing this on G, gives 

d j} , f  h ' = dW, Wi- ' - f ,  sdWsWf ' f[j ' . (4.1) 
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It is well known that a given VeH° Oa~,~(k,,) lifts to a linear vector field M on 
G; i.e. MeHom(C",C') CH°(OG). Now (4.1) implies that the ~I,=i(M) dI~ W71 
provide a lift of M to a derivation on (9~, consequently if the ~1, descend to [7) on 
0 x we will have established V-equivariance of#.  But 

i(M)dW x Wj- ' =(MW)x W~- 1 = M, WW~- 1, 

hence M x clearly does descend. We can thus represent ~(~) by 

dflsfl s I _ M1WW~- 1 

and therefore the j th  universal Chern class cj(g) is represented in H°(Z, (gz) by 
( -  1)Jaj(M, WW[- x). 

To continue the example let M=diag(21 . . . . .  2,) where 2i~C are distinct 
complex numbers. Then the zeros of the induced vector field V on Grass (k, n) 

areallsimpleandtheseoccuratthe(;)k-planes(r=euA.. .Aei~.  Consequently 

H°(Z, (gz)= ®~ C is the ring of all (k I square diagonal matrices and the computa- 

tion of the contribution to cj(# at the zero ~ is (-1)Jaj(MWWi- I)= 
(-- 1)iaj(2i ...... 2i~). 

(II). The Cohomology Ring of P"- 1 

The vector field 

M _ _  ~ ' 

0 . . .0 

on C" vanishes along the line spanned by e I hence descends to VeH°(Op. - 1) with 
unique zero ~= [1, O, .... 0]. In inhomogeneous coordinates w t . . . . .  w,_ 1 about ( 

V = ( W 2 - - W  2) ~/(~W I "t- (W 3 - - W  1W2) 0/(;'~' 2 - t - . . . - - W  1W n_ 1 ~/6~42n-I 

It follows that H°(Z,(gz)=C[wl]/(w]). In the notation of the above example, 
1=  {t } and 

W W ;  I= w: . 

Therefore, - M, WW I- ~ = - w 1 is the first Chern class of the universal subbundle 
(9( -1)  on p , - l .  Granting that c1((9(-1)) "-~ +0  it follows that the filtration 
degree of w i is precisely - i ,  hence H'(P"-1, C) is the graded polynomial ring 
generated by the element c 1 ((9( - 1)) and truncated at degree n. 

Remark. The constructions employed in (I) are valid for any V-equivariant sheaf 
g on an arbitrary X. The appropriate role of G and M are respectively as the 
bundle o~ of frames o f g  and as equivariant lift of V to o~. The precise formulations 
are left to the reader. 
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§ 5. Higher Dimensional Foliations 

Ideally, one would hope to treat the study of singular foliations ~ * ~ O  with 
r ank(~)  > 1 in a completely parallel manner, by employing generalized Kozsul 
complexes to simplify the argument of [6]. The simpler results of [4] are readily 
described in the present context: 

Proposition 5.1. Suppose i(V): f21~cK is a surjection and 8 is V-equivariant. 
Then for any (gx-linear p: Horn(8, 8)®k~CX, p(c(8))=0 for degp= k>corank  :@2 

Proof Following an idea of Sommese, consider the induced exact sequence of 
locally free sheaves 

0~H om( E ,  E)®~,~-o Horn (8, 8)®f2 t ~ Hom(E, E)® ¢¢r~0. 

Considering the Hi-level of the cohomology exact sequence one sees that V- 
equivariance implies c ( 8 ) e H  1 (X, Hom(8,  8 ) ® ~ ) .  Hence c(8)®k=0 if k>  rank o~. 

Proposition 5.1, which is valid in all generality, explains in our context the 
foliation vanishing theorem of Bott [4] since, if ~ generates an ideal in O" closed 
under d, then Q = ~-* is equivariant (see Section 1). 

Proposition 5.2. Suppose i(V): f21 ~ :t¢/" is surjective and that X admits a line bundle 
such that e I ( ~ )k  ~ 0 for some k > corank ¢U. Then H 1 ( X, f,U) 4= O. 

Proof If H ~ (X, ~¢r)=0, then ~e is equivariant so Proposition 5.1 applies giving a 
contradiction. 

§ 6. Coherent Sheaves, Equivariant Complexes 

For general (gx-modules 8, there are both local and global obstructions to 
equivariance. Denoting by 31(8) the g-valued one jets, one has an exact sequence 
(see [1]) 

0~f21 ® 8 ~ J  1 (8)~8---,0. (6.1) 

The equivariance of 8 is equivalent to the existence of a linear map j1 ( 8 ) ~ 8  
extending the map i(V)®I: f21 ® 8 ~ 8  and hence is obstructed by an element 
6(V) of global Extl(8,8).  The obstruction to splitting (6.1) is the generalized 
Atiyah class c(8)eExt 1 (8, f21 ®8)  and one obtains i(V) c (8 )=6(V)  under the 
natural map i(V): Ext 1 (8, f21 @8)~Ex t  I (8, 8). 

To be more explicit, assume 

0 ~ f f - , & ~ - - , +  l__>.. _ . , . . & o ~ o ~ 8 ~ 0  (6.2) 

is a global resolution of the coherent sheaf 8 by locally free o~ Then the Atiyah 
obstruction may be calculated in the following manner. Fix a Leray coveririg 
0g= {U~} such that o ~'i is free on U~. Fix local connexions d~ for o ~ i  on U~. Denote 
by Hom'(~-, ~-) the complex of sheaves with HomP(o ~ ,  ~-) the (_gx-linear maps 
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~ i ~ i + p  and with differential D: HomP~Hom p+I defined by D(~)=2.  q~+ 
( -  1) p q~. ,~, where 2 denotes the differential in .~-'. Note that 

d~' 2 - ,t. di~ - 1 ~ C O (q/, Hom t (~,  ~ ) ®  f21 ) 
i i C 1 dp-d~e (q/, Hom°(~, ~,  ~)®~21) (6.3) 

define a 1-cocycte 0 in the complex 

C (Horn (~,  ~)®O1)= @r +~=. Cr( °//, Hom~( ~ ,  ~'~)@ O1) (6.4) 

in which the differential C(Hom~)~C'+X(Hom')q)C'(Hom ~+1) is given by 
6 + ( -  1) r D. One checks easily that 8 has a connexion if and only if 0 cobounds. 
In fact, the cohomology of the complex (6.4) is simply Extl(8, g Q P  ~) and 0 
represents the Atiyah class. 

Given a vector field V, the obstruction to V-equivariance may be similarly 
calculated and is in fact the image of 0 under 

i(V): C(Hom(~-, ~ )®O~)~  C(Hom(~,  ~) ) .  

Assuming that 8 is V-equivariant, we obtain an element L~C°(Hom(~-,~,~)) 
whose total (5, D) coboundary is i(V)O, and O+L is therefore a total cocycle in 
the double complex 

K' (Hom(~- ~,  ~ ) ) =  (~p-q=~ CP(Hom(~, ~)®f2 q) 

in which the differential is 6 ___ D in the p direction and i(V) in the q direction. To 
define Chern numbers (or classes), one must give maps of complexes of sheaves ®P 
Hom'(J ~ ,  ~ ) ~ O x  where ®P comes equipped with differential 

D® 1 ®. . .® 1 +. . .  + 1®.. .® 1 ®D 

and (9 x is viewed as a complex concentrated in degree zero, i.e. maps are admis- 
sable if and only if they send boundaries in ®P Hom'(~,  ~ to zero. Note that 
when p = 1, the boundaries in Horn" (~ ,  ~ )  are the maps homotopic to zero hence 
admissable maps kill homotopies. As an example, the alternating sum of traces for 
• eHom°(~ ,  ~ )  is admissable. One may calculate the Chern numbers of d~, i.e. 
the virtual Chern numbers of the complex 0 ~ - ' ~ . . . - ~ ° ~ 0  in the hyper- 
cohomology of the Koszul complex (2.1) associated to V by applying suitable 
admissable polynomials. Determination of these numbers on Z follows from our 
earlier remarks. This applies equally to the meromorphic case. 

Note moreover that given any complex of locally free sheaves 

. ,  ,-~ ~i.--.~ ~ i  + 1 - 4 . . . .  

with ~ i = 0  for Iil sufficiently great, one could define V-equivariance of ~" by 
requiring that if 0 is the cocycle defined as in (6.2) then i(V)O cobounds and one 
may calculate Chern numbers of L~ a" (or Chern classes if Z #  0) by calculations on Z. 
N.B. The individual Sf f need not be equivariant and their Chern numbers need 
not be calculable on Z in a natural way. 
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