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M O T I V A T I O N S  AND L I N E A R  A L G E B R A *  

1. M O T I V A T I O N S  IN M A T H E M A T I C A L  I N S T R U C T I O N  

I choose the field of Linear Algebra as an example for some very general 
considerations on the role of motivations in mathematical instruction, 
especially in the teaching of those parts of mathematics which are (believed 
to be) applicable. I shall always have in my mind the pupil or student for 
whom mathematics is a requirement and who does not take it for, say, 
'cultural' reasons; referring to college students S. K. Stein recently spoke of 
'the captured student' 1, and similar remarks may be made for the same reasons 
with respect to most pupils on the secondary level. 

For them, we must permanently use motivations for the mathematics we 
want them to learn, and these motivating examples should be taken from 
their environment, and they should be accessible for their age and their 
knowledges. These remarks are almost trivial. Nevertheless, I have to stress 
them. Almost all of the dozens of textbooks in Linear Algebra for the second- 
ary level as well as for colleges and the lower university level I know, and 
even those written by engineers for engineering students, by economists for 
economics students, make the same mistake: They give a more or less thor- 
ough and complete presentation of Linear Algebra or what the authors 
think are the essential parts of this field (either matrices including rows and 
columns, or 'genuine' coordinate-free vector space theory), and at the end 
there follow some 'applications'. If motivations are given, or at least examples 
for the use of Linear Algebra, they are mostly from geometryL 

But motivating examples from geometry, like the well known calculation 
of the distance of two straight lines in 3-dimensional space or of the volume 
of a tetrahedron, or of the axes of an ellipsoid, are either dull and tedious, or 
they look far-fetched to everybody who is not interested in mathematics in 
itself and who is not yet aware of the usefulness of such techniques for 
applications. I have observed the change of reactions by engineering and 
economics students to geometry for more than 15 years: Their interest in 
geometry has been permanently decreasing, and this process is going on 3. 
On the other hand, Linear Algebra has to be taught now at an earlier age than 
before. In Germany (the Federal Republic) it is now a part of the mathe- 
matics schedule at the higher secondary level, and some preliminaries are 
postulated for the 14 or 15 years of age. What can be done to arouse interest 
in Linear Algebra? 
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Of course, there is a very strong intrinsic mathematical motivation for 
linearity as a whole: Linear functions are simple, calculus relies on linear 
approximations of functions, linear problems occur everywhere in differential 
and integral equations, and even the second approximations to 'general' 
functions, by quadratic functions, lead to bilinear forms. There are most 
important motivations from mechanics and physics, think of the always 
present principle of superposition. But all this is far beyond the reach of the 
school level, and even beyond the first university year. (Until recently I 
postponed linear algebra to the second university year, when the students had 
enough background from physics, mechanics, engineering, and differential 
equations, and even then I restricted it to matrices, except with physics 
students who had already had a glimpse into quantum mechanics). 

So we are in a situation we often have in mathematics teaching: The motiv- 
ation for the teacher who knows the final aim of the instruction is different 
from the motivation which is accessible for the learner. The essential motiva- 
tion for learning Linear Algebra is a global one: The field is a necessary pre- 
requisite for other mathematical fields and for important applications; and 
the motivation for genuine (i.e. coordinate-free) Linear Algebra is mostly an 
inner-mathematical one, its use in almost all applications (save quantum 
mechanics) provides 'natural' coordinates. The motivations for the learner 
who is not primarily interested in mathematics will have to be local, that 
means, every new concept, every new method has to be motivated; and they 
should be, if possible, extra-mathematical, there should be direct applications 
in the fields which are mentally accessible for the learner. Moreover, these 
motivations have to be convincing; to take an example from another mathe- 
matical field: Maybe for the extension of the field of rationals to the real 
field inner-mathematical motivations will be sufficient at the age we use to 
teach this extension; but the proof that there is no rational number with 
square 2 is not convincing. This and similar examples lead to the algebraic 
numbers. Endless decimal numbers are probably a better motivation, and 
nobody will be astonished at the fact that not every decimal number is 
periodic. (It should rather be a surprise that the rational numbers are charac- 
terized by the periodicity property.) Of course, for the 'genuine' mathe- 
matician the irrationality of x/2 is most exciting, with its Greek history and 
all that. But I have in my mind the consumer of mathematics who has to be 
won for learning just the mathematics of which the teacher knows that it will 
be useful for him; if we tell him about how exciting mathematics can be and 
how important it is for culture etc., he will in many cases prefer music or 
football or chess. Of course, it is legitimate that the teacher make use of such 
preferences of his pupils to win them for the mathematics he has to teach 
them. 
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The task of the teacher is more difficult in mathematics than in any other 
field: He has to give local motivations, where he himself prefers a global one. 
This corresponds to the fact that at the earlier stages of learning local organiz- 
ing of mathematics, as Freudenthal calls it, will be the right way of mathe- 
maticalinstruction. And the teacher must know the world of the learners well 
enough to find suitable and convincing motivations which only in the minority 
of cases will be innermathematical, and which will only very rarely coincide 
with the motivations that are used in contemporary mathematical research. 

2. EXAMPLES FOR MOTIVATIONS OF LINEAR ALGEBRA 

I shall now discuss some examples. 

A. Mechanics 

The age-honoured motivations for vector addition (parallelogram of forces), 
of the inner product (work), and of the vector product (moment) should of 
course be mentioned. They are still useful, if only for euclidean three- 
dimensional space. 

B. Communication Systems 

Let there be a party ofn persons Pa .... , P, who speak and understand one or 
more of the m languages Lx .... , L,,. We arrange the informations in a matrix 
A, such that ars= 1 if P, knows L~, and a,s=0 otherwise; as an example take 

Engl. French Germ. Ital. [1 0 11 P2 1 I 0 0 
Pa 0 I 0 0 
P4 1 1 1 0 
Ps i .  0 0 0 1 

= A .  

You get motivations for transposition of matrices, and for multiplication: 
C = A" A t is a 'communication' matrix which gives the number of languages 

in which two persons can talk to each other; the diagonal elements indicate 
the numbers of languages a person knows. We have 

I i  1 0 2 1  
3 1 2 1 2 1 0  

C =  0 1 1 1 0 . 
2 1 3 
0 0 0 
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This matrix is symmetric which is to be expected from its interpretation. 
(Is the product A" A t always symmetric?) If you only want to know which 
(different) persons can make direct contact to each other, you will take the 
reduced communication matrix R, with r~=0, r~k=0 for C~k=0, and r~k= 1 
else. In the example, 

0 0  1 1 
R =  1 0 1 . 

1 1 0  
0 0 0  

Then, S=  R 2 has entry Sik ifPi ~Pk c a n  speak to each other in just Sik ways by 
use of at most one interpreter, and the main diagonal entry s~ gives the num- 
ber of other persons to which P~ can speak: 

1 2 1 2  
S = R 2 =  1 2 1 

2 1 3 
1 0 1 

After reducing S and squaring again, you will see that any two persons of our 
party can speak to each other by the aid of at most two interpreters. 

(Find the necessary and sufficient conditions for A, that there exists a num- 
ber d, such that every pair of persons can speak to each other by the aid of at 
most d interpreters! What is the maximum of d, if d exists?) 

There are models of communication systems whose matrices are not 
symmetric. Take n stations (communication centers), and let C be the matrix 
with entries C~k= 1 if station i can speak to station k, and c~k=0 otherwise. 
By definition, let c~=0. Take as an example 

"0 0 0 i l  C =  l O 0  . 

1 0 0 

0 1 1 

Here, stations 2 and 4 can speak in both directions, whereas 2 and 3 cannot 
have any direct contact. But what about using a relay station? Taking 

C2=  1 1 . 
0 0 
0 0 
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you see, that 4 can speak to 1 in two different ways by using exactly one relay 
station. The sum 

C +  C a = 1 1 . 
0 0 
1 1 

shows that only 3 cannot speak to 2, and that each other station can speak to 
every other station either directly or by using at most one relay station. The 
sum C + C z + C 3 has only positive entries; at most 2 relay stations are needed. 
(Why is this the worst result to be expected, if any?) 

Here we get a motivation for the addition of matrices. 

C. Black Boxes 

The concept of 'black box' gives a very useful introduction to mathematical 
modeling by the use of matrices. Its origin seems to be in electrical engineering, 
but there are useful models which require no physics. Let C be a factory 
which uses three types of raw material, P~, P2, Pa for the production of two 
types of final products, P~, Pz. The factory C consists of two departments, 
A and B. Department A transforms the raw materials into four types of 
intermediate products,/1 .... , /4,  which are needed in department B for the 
production of P1, Pz. Assume that aij units of R~ are needed for the produc- 
tion of one unit of 1~, and b;k units of Ij for the production of one unit of Pg. 
Then C~k = ~ j  a~jbjk units of R~ are needed for the production of 1 unit of the 
final product Pk. This model can be varied in many ways, and we get a very 
intuitive motivation for matrix multiplication, C=A" B: 

R 1 - -  

R2 M 

R 3 - -  

A 

) I  1 > 

>I2  

7I 4 

8 

- - - - - ,  

- - ---"  P2 

C 

If there is some knowledge of electricity, the usual models for n-ports are 
useful, with currents and voltages. Matrix addition is easily motivated by 
using 'parallel' black boxes, 



248 D E T L E F  L A U G W I T Z  

Moreover, in our example above we see that the column R can be calculated 
uniquely, if the production column P is known, but in general not vice versa. 
There are hidden hints to inverse matrices, linear systems, and linear 
optimization. 

Models from economy give examples for inner products: Ifpk is the price 
for one unit of product number k, and you want to buy ak units of this 
product, then at.p =~k akPk is the amount you have to pay when you leave 
the shop. 

D. Coding and Decoding 

This field provides very nice examples which will appeal to many pupils at a 
certain age. Unfortunately, it does not directly motivate why we multiply 
matrices just in the way we do. But if matrix multiplication is already known 
we can make it more interesting by a little cryptography. 

As usual, we start by numbering the alphabet, using 0 for all signs which 
are not letters, as free spaces: 

A B C D E F G J K L  M N  0 P Q R ... 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 

Our message reads LINEAR ALGEBRA and becomes 

10, 8, 12, 5, 1, 16, 0, 1, 10, 7, 5, 2, 16, 1; 

as a 'coding matrix' I take an invertible matrix, C, 

i r12 
C =  1 1 

,2  2 

We write the coded message as a matrix with three rows, M, and take C'M: 

ir12 11110 5 071!1 = 1 8 1 1 5 C.M 1 1 
~.2 2 1 12 16 10 2 

r14 - 9  - 8  15 18 i 
= 30 22 11 14 17 = M ' .  

~48 28 12 26 34 
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The columns of M '  are transmitted as a coded message. The receiver knows 
the decoding matrix D = C  -1, and he has to calculate 

M =  D . M '  = C - J ( C . M ) .  

In our case, 

D = C  -1 = 3 . 

2 

Several little problems arise. For instance, it is certainly useful that both the 
coding and the decoding matrix have integers as their entries; find conditions 
for this! (Since determinants will not be available at this stage, take 2-2- 
matrices only.) Life might be easier if D = C; is this possible with non-trivial 
matrices? (It is a nice problem to determine all 2-2-matrices with this prop- 
erty.) The occurence of negative numbers is a certain handicap; can it be 
avoided? Moreover, are there matrices which together with their inverses 
have no negative entries, and are these matrices useful? (I shall return to the 
last question.) 

E. Population Matrices 

Though eigenvalues and eigenvectors are most important in geometry and 
higher mechanics and physics there can be found only few motivations at 
school level. 

Consider a population of (hypothetical) beetles on a tropical island. 
The following facts are known: A beetle will live at most two months. Let 
f j  be the number of new beetles created per old beetle of age j (months). 
It is observed thatfo = 0, f l  = 1, f2 = 3 under laboratory conditions similar to 
those in freedom. And it is known that the population on the island is stable. 
Let pj be the probability that a beetle of age j  at the month k will survive to 
month k + 1, and Po = ½ is known from the laboratory observations. Due to 
unknown influences on the island which cannot be simulated in the labora- 
tory the probability Pl is not known. Can it be calculated from the data? 

Let aik be the number of living beetles of agej  months at time k (months), 
and consider the column 

k,. a , kJ  

which gives the age distribution of the population at time k, with n as the 
maximum possible age. Then we have 

a k +  1 = T a  k 
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with the transition matrix 

¢io i, 
r--/po o o...o/. 

| 0 Pl 0 . . . 0  J 0 . . . 0  Pn-10 

The condition that the population is stable is ak+ 1 =ak or 

Ta  k = ak, 

hence, 1 has to be an eigenvalue of the matrix T. In our special case, we have 

T =  0 . 

P l  

If determinants are known, we get the characteristic equation 0 = -  23+ 
+½A+~:pl, which has root 1 iffp~ =½. 

Determinants can be avoided by direct computation of the non-trivial 
population distribution, from the linear equations with x=aok=ao,k+~,  

y-=alk =al ,k+ l, and z=a2k  =a2,k+ i : 

y + 3 Z = X  

½ x = y  

p l y = z ,  

from whichp~ =½ is easily calculated under the assumption z¢0 ,  and more- 
over the 'eigenvector' x =  6z, y = 3z, z = z  is obtained. 

One can ask several questions, for instance: Are the f / s  uniquely deter- 
mined if you know the age distribution and the pj ' s?  (In fact, they are not: 
f0 = f~ =0, f2 =6 gives another stable population in our example). 

F. Stochastic Matr ices  

Supposed there is some previous knowledge of elementary probability, then 
call a row vector a probability vector if its entries are non-negative and have 
sum 1. A stochastic matrix is a matrix all of whose rows are probability 
vectors. 

As an example take the following method for voting predictions. Let there 
be three parties, S(ocialists), C(onservatives), L(iberals). At an election 
the following shift of voters is observed 

to: S C L 

S ( 6 0 %  20% 20%") 
f rom:  C l30  % 60% lO%[ 

L L30 % 20% 50%) 
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with the transition matrix 

[  o.6o o. o 

P =  0.30 0.60 0.10]. 
0 . 3 0  0.20 0.50J 

which is stochastic. If the trend of the voters is assumed to remain unchanged 
until the next election, the transition matrix p2 permits a prediction. 

Problems: It is to be expected from the interpretation that the products of 
stochastic matrices are again stochastic. 

Or: Are there stochastic matrices whose inverse matrices have the same 
property? Find them! (I shall return to this question). 

In our case, 
(0.48 0.28 0.24"] 

P2=|0.39 0.44 0.17]. 
(,.0.39 0.28 0.33.) 

That means: 48~ of the people who voted for S in the first election will do 
the same in the third election, etc. If you want to calculate the distribution of 
votes, you have to take the transposed matrix pt; e.g., if each party got 100 
votes in the first election, the distribution will be 

(100~ (120" l 
P'/100 I=ll00 I 

t l00) t. 80.) 
after the first election, and 

(lO0"~ (120"] (126") 
(P')2 |1oo I = P' jlOOj= 11001 

~100) ~100) t. 74) 

after the second election, 

(100"~ ('127.8"] 
(P')~/100/=/100.01 

~100J t,. 72.2.) 

after the third election, etc. 
(At a higher stage of instruction, many interesting questions arise. For 

instance, it is 'easily' seen that 1 is always an eigenvalue of P, with (1, 1, 1) as 
an eigenvector. From the determinant condition or otherwise one sees that 
1 is also an eigenvalue of pt. Hence, for every P there should exist stable 
distributions of voters!) 

In our example, the eigenvectors are proportional to (9; 7; 5), for instance 
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after multiplying with ~ o___~o: (128.6; I00; 71.4). This is approximated by the 
results of consecutive elections! Is this a general fact?) 

There are more realistic examples: The stochastic matrix &survival prob- 
abilities from one state to another state, or of probabilities of a disease 
progressing from one state to another at different periods of diagnosis 4. 

G. Linear Optimization 

This field is well known, but it has not yet become a subject which is generally 
accepted as useful mathematics at school level. Concepts and methods of 
rows, columns, and matrices are used, and even such concepts as basis and 
transformations occur, if only at a comparatively higher level. 

What makes the subject very attractive is that the concepts of row-and- 
column linear algebra are used in permanent connection with other mathe- 
matical subjects, as inequalities and convexity. I need not go into details, 
though I feel contempted to discuss the subject because it appears to be a 
most impressive example for the usefulness of mathematics instruction 
nowadays. 

3. LINEAR ALGEBRA WITHOUT GEOMETRY? 

Just up to the discussion of optimization I have always tried in this paper to 
avoid connections of linear algebra and geometry. As I said at the start, 
I am aware of the fact that -  though linear algebra once emerged from analytic 
geometry, and analytic geometry had its roots in 'genuine' geometry - 
geometry appears to be driven into the backwoods by contemporary 
mathematics instruction. Though much of the material I have discussed are 
examples of row-and-column linear algebra for organizing and reorganizing 
numerical data, there were some hints where I see geometry creeping in. 

Let me discuss a few examples for the use of geometric intuition and 
methods of thinking in those subjects which appeared here without any 
connection to geometry. 

We saw that it might be useful to have square matrices A with the following 
properties: (a) A and A-1 have non-negative entries, (b) the entries are non- 
negative integers. [The question (a) was recently proposed as Elementary 
Problem E 2379, Amer. Math. Monthly 79, (1972) 1033 by H. Kestelman.] 
Try (a) by purely algebraic methods; you will find it extremely tedious and 
probably get nowhere. 

Now consider the problem in R" with the non-negative 'cone' C consisting 
of the columns all of whose entries are non-negative. Then obviously ACc_ C 
and A- a C g  C, hence A is a 1-1-mapping (or bijection) of C. Any vector from 
C which is a sum of two linearly independent vectors from C will have an 
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image with the same property; hence, A permutes the positive half-axesI 
A has exactly one positive element in each row as well as in each column, all 
other entries being 0. This condition is sufficient. If the entries of A and A- 1 
are integers, according to (b), the only solutions are permutation matrices. 
As coding matrices they are not very good. 

By the way, we have also solved the problem of finding all stochastic 
matrices whose inverses have the same property: Only permutation matrices 
are solutions. 

Consider the transposed pt of a stochastic matrix P. Let A be the inter- 
section of the hyperplane xl +. . .  + x, = 1 of R" with the non-negative cone C. 
pt is a contraction mapping of A into itself and by geometric reasoning the 
fixed point theorem may be made plausible. The iterating process of 2/7 
above gives an example for the use of this fixed point theorem for contraction 
mappings; this theorem is useful also in analysis (Newton's approximation 
method of zeros). 

This solution of a purely algebraic problem by approximation is unsatis- 
factory to a mathematical purist. But it is a nice example for good instruc- 
tion. Now the remark will arise: We saw easily that P has an eigenvector 
(1, 1,..., 1) and eigenvalue 1 ; we concluded without explicit use of this fact 
that also pt has 1 as an eigenvalue. Of course, this could have been established 
by the use of determinants. The question is: Can we establish by geometric 
reasoning, that an eigenvalue 2 of a square matrix A is always an eigenvalue 
o f  At? Or, letting B = A - h E ,  does Bx=O with an x ¢ 0  imply, that a vector 
y ¢ 0  exists such that Bty=0? Bx=O means that the columns of B are 
linearly dependent, these vectors lie in a hyperplane. Let y be a vector per- 
pendicular to this hyperplane, and you get Bty=0. 

In linear optimization geometric thinking is especially useful. The graphic 
solution methods for problems in two variables contain a lot of good mathe- 
matics which can be instructed at a rather early stage: Linearity, convexity, 
intersection of point sets. Thus, the algebraic methods which are needed for 
large numbers of variables and restrictions can be made transparent by a 
geometric anticipation of the essential steps. 

Such examples give glimpses into a very broad and interesting field of 
modern mathematics for applications: Functional analysis, which combines 
the methods of linear algebra and geometry (like convexity, mappings, fixed 
points, etc.). I think here is an answer to those who postulate that mathe- 
matics instruction should be 'modern' and who wish to see the gap filled 
between school mathematics and university. This cannot be done in an anti- 
didactic inversion (Freudenthal) by introducing so called fundamental 
notions like the language of sets or of the algebra of vector space at an early 
stage of instruction, where no motivation for these can be presented. 
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Modernizat ion is really effective if it is oriented at the contents of  useful 

modern  mathematics - in our  example functional analysis - which may  give 

the global motivat ion for the teacher. Wha t  I wanted to show was how we 

can give local motivations for the learner, even saving fields like geometry 

(which some people say to have died) f rom complete recess by showinghow 

their methods are useful for present day problems. 

Note added in proof:  When giving this lecture I was not  aware o f  the excellent 

b o o k  by T. J. Fletcher:  Linear Algebra Through Its Applications, Van Nos-  

t rand Reinhold, London,  etc. 1972. There are several aspects in m y  lecture 

which have been treated in Fletcher 's  book.  

Darmstadt 

NOTES 

* Invited lecture held at the 3e Seminaire d'Echternach, I.C.M.I., 4-9, June 1973, on 
'New Aspects of Mathematical Applications at School Level'. 
1 S. K. Stein, 'Mathematics for the Captured Student', Amer. Math. Monthly 79, (1972), 
1023-1032. 
2 A book which tries to avoid these mistakes and which has been helpful for the prepara- 
tion of this paper is: Hugh G. Campbell, Linear Algebra with Applications, New York 1971. 
This book contains many useful references to applications of matrices. 

The reasons for the permanent recess of geometry in mathematical instruction (not in 
mathematical research, by the way!) are not quite clear. 'New Math' has evidently not much 
affinity to genuine geometry, and there is a temporary misinterpretation of 'rigour' in 
Mathematics which permits only trivialities to be rigorous mathematics. See: H. Freuden- 
thal, Mathematics as an Educational Task, Dordrecht 1973, pp. 38ff., pp. 402ff. 
4 At the 3rd Seminar at Echternach John H. Durran gave a conference on Markov Chains 
in which he used the three possibilities of British weather (fine, dull, wet) for the motivation 
of transition probabilities (changes of weather from one day to the nex0 and of stochastic 
matrices. 


