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Abstract: An analysis of micro-hardness and elastic modulus data for different iamellar 
systems in the light of both eutectoid copolymer and chain folded Iamellar microphases is 
presented. A novel thermodynamically derived expression offering a fair description of 
hardness (stress required to plastically deform a crystal) of autonomous non-homogene- 
ous microphases in terms of the average crystal thickness, including a defective surface 
boundary is developed. The present results characterize the mechansim of plastic defor- 
mation as primarily governed by the initial mosaic-block structure controlling the "solid 
state" mechanism underlined. The average dimensions of the remaining blocks after crys- 
tal destruction are thus related to the original block dimensions before plastic deforma- 
tion. Within this context it is shown that the dissipated energy for crystal destruction 
increases very rapidly with the molar mass-function of crystalline material. 

The elastic deformation of these lamellar systems at small strains is correlated to the 
rubber-like behaviour of the cluster-network. Finally, the role of the average thickness of 
the non-homogeneous microcrystallites is stressed as describing concurrently the elastic 
and plastics properties of the polymer allowing a quantitative description of the correla- 
tion found between micro-hardness and elastic modulus. 

Key words: Semicrystalline polymers, hardness, modulus, non-homogeneous micro- 
phase, structure. 

Introduction 

The developing interest in polymeric materials with 
improved properties has led to many attempts to relate 
their macroscopic mechanical behaviour to that of the 
microscopic constituent phases. Several theoretical 
developments have been focused along this line to de- 
scribe the mechanical behaviour of semicrystalline 
polymers using the two-phase concept [1-5]. In this pic- 
ture the crystalline and "non-crystalline" regions are 
visualized as alternating stiff and compliant homoge- 
neous micro-phases with well established intrinsic 
values. Application of this approach poses, never- 
theless, certain difficulties when comparing different 
properties in the light of the detailed micro-structure of 
the model [6]. 

*) Dedicated to Professor E R. Schwarzl on his 60th birthday. 

K 911 

The object of this paper is to offer from a thermody- 
namical and functional point of view a model 
approach for the microstructure of semicrystalline 
polymers relating to their elastic and plastic behaviour. 
Here, it is convenient to consider the system to be com- 
prised of equivalent subunits of deformation with identi- 
cal average intrinsic properties. The model of the clus- 
ter-network is based upon this concept. Accordingly, 
sufficiently large stacks oflamellar crystallites alternat- 
ed by rubbery layers taken as such subunits, allows a 
comparably simple description of the small-strain 
modulus for semicrystalline polymers [7]. 

According to this model the traditionel definition of 
an autonomous phase as a homogeneous part of the 
system having necessarily sharp interfaces has to be 
adequately modified to the demands of a colloidical 
system like a semicrystalline polymer. The possibility 
of operating with non-homogeneous "continuous" m,- 
crophases possessing thermodynamically well defined 
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fined intrinsic properties will be shown. The character- 
istics of these non-homogeneous microphases are 
related to the presence of defects in the stereoregularity 
of the chemical structure as well as in restriction of 
conformational abilities on crystallization (chain folds 
or entanglements). From the lack of a thermodynamic 
compatibility of imperfections within the crystal lat- 
tice, it turns out that the defects are always rejected 
from the crystal core. The topological feature of these 
microphases thus is the formation of non-autonomous 
defective interfaces [7-11]. The adequate phenomeno- 
logical characterization of the latter is one of the crucial 
points of our considerations. 

The capabilities of appropriate models are tested in 
the light of the mechanical properties, embracing both 
elastic and plastic deformation of polyethylene with 
different morphologies. 

Basic model 

Polymers crystallize from the melt in the form of 
stacks of lamellar "crystals" alternated by non-crystal- 
line (amorphous) layers. The lamellae are in turn 
arranged within spherulites radially growing in all 
directions [20]. In recent papers [7,12,13] we have 
proposed a model in which these lamellar stacks are 
considered to constitute "clusters,,. These clusters are 
assumed to represent the smallest functional elements 
which behave as "equivalent subunits of deformation" 
within a cluster network [7]. Within this context it is 
essential to properly understand the detailed organiza- 
tion within the clusters in order to adequately predict 
the macroscopic mechanical properties of the semi- 
crystalline polymer. 

It has been previously shown [7, 8, 22] that a rea- 
sonable way of describing such polymer systems is 
through definition of thermodynamic "microphases". 
Within this context, one of the emerging problems is to 
describe the role played by the continuous interfaces 
bridging the crystal cores and the rubbery amorphous 
layers. 

Eutectoid copolymers [14] 
The crystallization of linear copolymers consisting 

of randomly distributed eutectic comonomer units 
demands a controlled segregation of crystallizable 
CH2-chain sequences (n~) giving rise to a crystal stem 

thickness distribution. The latter is directly related to 
the distribution of the co-units along the chains: 

(y) = X.cX  - 1  (1) 

the molar fraction of the "non-crystallizable" units 
(nc-units) being defined through: 

(2) 

where nc and n,c are the molar numbers of the corre- 
sponding co-units. 

According to this model the chain defects (for 
example short chain branches, unsaturations) are 
rejected from the coherently diffracting crystal core as 
"non-crystallizable units" (nc-units) into the longitu- 
dinal interfaces and "amorphous" regions. A lamella- 
shaped defect-saturated extended CH2-sequence 
mixed crystal thus arises as comprising c-sequences of 
different lengths with the maximum disparity in sequ- 
ence lengths given by: 

Ay = A y  + t3 (3) 

where y is the average length of the c-sequences (in 
CHa-units), and A and B are constants. A conse- 
quence of this model is that the average thickness of 
each longitudinal crystal interface AyB is described by 

AyB = Ay/2 (4) 

figure 1 also depicts the average density, in accordance 
with the model, as a function of length. This picture is 
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Fig. 1. Model of an extended c-sequence mixed crystal illustrating 
the rejection of defects (nc-units) from the coherently diffracting 
core (Qc, Qm density of in the crystal lattice and in the non-crystal- 
lized regions) 
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supported by SAXS investigations [15-18]. The crys- 
tal density Qc is constant at the core and continously 
diminishes along the increasingly distorted interface, 
reaching the minimum value, Qa, for the amorphous 
layer within the interfaces (see fig. 1). 

Most significant in this model is the fact that the inter- 
nal properties of the non-homogeneous micro-phase 
(MP) are independent of its environment, i. e. the micro- 
phase can be treated as a thermodynamically autonom- 
ous region. This is true in spite of the fact the crystals are 
crosslinked by a fraction of tie-molecules, developing a 
three-dimensional network. The presence of tie-mole- 
cules does not severely impede c-sequence segregation 
on crystallization so that flow of matter (exchange of c- 
sequences!) is locally feasible [15]. 

The molar mass fraction of the MPs, wp, including 
the defective parts of each c-sequence, has been shown 
to be given by [14]: 

Wp = XYC --1 { 0  - -  1) xno + xJ 

y(T) is here associated to the lowest thermodynami- 
cally stable crystal at the temperature T (smallest pos- 
sible thickness). 

In contrast to the above definition, the "usual two- 
phase" molar mass fraction of crystallinity, w~ can also 
be derived from the model as: 

wc = (1 - A/3) x~ -1 {(y _ 1 - Yk) X,,c + xJ (6) 

where 

= ( B / 3  - 1 / 2 ) / ( 1  - A / 3 ) .  

c) Average thickness in the assembly of non-homoge- 
neous rnicrophases summing up all c-sequences crystal- 
lized 

( y p  = xclxnc + y .  (lO) 

d) Average thickness of the amorphous interlayers 
representing, according to our model, homogeneous 
autonomous microphases as well. This parameter is 
derived from the cluster model as: 

= (yp ( 1 -  (11) 

Chain-folded lamellae 

The dense stacking of lamellae a few hundred Ang- 
str6m thick, with large lateral widths, features the mi- 
crostructure of stereoregular homopolymers, particu- 
larly polyethylene, crystallized from the melc Each 
lamella presents a uniform thickness, as evidenced by 

(5) electron microscopy and Raman spectroscopy [19, 
20]. Both the uniformity and the temperature depend- 
ence of the lamellar thickness are in support of the con- 
cept of chain folding at the lamellar surface [20]. Fold- 
ing provides a means for ending the growth of the crys- 
tal along the molecular direction, though a fraction of 
chains can be visualized as coming out from one 
lamella and entering the next one. These chains con- 
tribute to a three-dimensional crystal network (see fig. 
2). 

The treatment of alternating crystalline lamellae and 
disordered intedamellar layers as independent regions 
violates certain thermodynamic preconditions [8-10, 
21]. Thus, the present approach visualizes a chain-fold- 

(7) ed lamella as a non-homogeneous growth-constrained 

Equation (6) sets out, of course, a systematically lower 
value for wc as obtained from equation (5). 

For the discussion of the results below it is conven- 
ient to define as well, the following microstructural 
parameters: 

a) Average thickness of crystal cores (coherently dif- 
fracting length) 

(yco) = xcl .  + y - ,Jy l2 .  (8)  

b) Average thickness of EMCs according to the usual 
two-phase model 

= (1 - A I 3 ) ( x J x . c  + y - y D .  (9) 

::i( 

Fig. 2. Model of chain folded crystal having a crystallographic 
ordered core and a non-crystallizable interphase consisting of chain 
folds, loops and entanglements 
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cooperative element possessing a limited autonomy due 
to the absence of  a f low of  matter. We further consider 
non-crystallizable defects, such as entanglements and 
molecular folds, as permanent defects to be located at 
the surface of the crystalline core. Hence, the average 
thickness, of each lamella can be given by the average 
distances between the outer defects. The lamella is seen 
according to this view, as a non-homogeneous micro- 
phase with a frozen-in flow of matter which is other- 
wise analogous to the eutectoid copolymer MP. 

The degree of order of such a non-homogeneous 
microphase can be expressed as [8]: 

wi = ( y , -  Ye)/Yf (12) 

where Yl is the average thickness of the chain folded 
lamella and y J2 is the corresponding average thickness 
of the distorted surface lamella (fig. 2). Let us consider 
a lamella with sharp core-defective surface interfaces as 
having a surface free enthalpy 2 oe. The free enthalpy 
of the chain-folded lamellae is thus defined by: 

g,  = W,gc  + (1 - w , ) g m  + (2o  + g,,)/y, (13) 

where gc and gm are respectively the free enthalpies per 
unit volume in the core and at the boundary. The 
excess term ge, takes care of the average difference in 
enthalpy between the boundary and the melt. 

The melting temperature of an "infinitely large" 
crystal is defined as 

T m =  Ah/ds  (14) 

where Ah and As are the usual molar-melting enthalpy 
and -melting entropy per chain unit respectively. The 
dependence upon temperature of Ah is given by [14]: 

Ah(T) = Ah(Tm) - AC(Tm - T) (15) 

and AC is the molar temperature coefficient of the 
melting enthalpy. 

From equations (12) and (13) and from the defini- 
tion gex = D/(1 - wi) one derives for the equilibrium 
degree of order wi(T) at constant Yi 

wi = 1 -- (DlYlAg)ll2; Ag = Ah (1 - TIT. ,  ) (16) 

where D is a parameter which characterizes the excess 
enthalpy of the permanent defects at the interface. 

According to this model chain-folded crystalliza- 
tion is visualized as involving a local segregation of 
defects: as soon as on crystallization a crystal network 

is formed the number of permanent non-crystallizable 
defects increases during crystallization. A fractitm of 
the defects is then attached directly to the surface of the 
chain-folded lamellae. The rest of them are located 
within the amorphous layers. Accordingly, the relative 
molar mass-fraction of folded chain lamellae wf can be 
defined by [9]: 

w I = W~-l', n > 1. (17) 

Thus the total volume of crystallized material wc can 
be expressed as: 

w ~ =  w i w t =  w~. (18) 

This equation is supported thermodynamically. 
Indeed, on the one hand, the defect concentration 
within chain folded lamellae is limited by stability con- 
siderations (defect-saturated microphase). On the 
other, the excess of permanent non-crystallizable 
defects is rejected from the chain folded lamellae, thus 
contributing to the amorphous layer. 

Finally, we postulate that the fraction of permanent 
defects within chain folded lamellae is related to the 
average density of conformational defects or irregula- 
rities in the melt. The concentration of these defects 
should, on the other hand, be proportional to the ratio 
between the volume (y3/2) occupied by the coiled chain 
and the excluded volume of a molecular chain itself (y). 
This ratio is proportional to  yl/2. If on crystallization 
the total number of these conformational defects is 
preserved, then the parameter, D, characterizing the 
defective interphase will be proportional to yl/2. 
However, since crystals with extended stems of thick- 
ness y < yc having no other permanent defects as chain 
ends (the excess contribution of the chain ends is in- 
cluded in 2 oe), also appear, D will be consequently 
proportional to: 

D = a (3/1/2 __ ylc/2). (19) 

The latter equation underlines the fact that quasi-per- 
manent non-crystallizable defects represent a relevant 
feature of chain folded crystallization whereby the 
value of yc is dependent on the crystallization history 
[20]. 

Small strain modulus of cluster networks 

The elastic behavior of the Cluster-network can be 
conveniently explained under the assumption that the 
stresses in the crystal lamellae and amorphous layers 
are equal. In contrast to usual two-phase model 
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Fig. 3. The elastic behaviour of a semicrystalline polymer can be de- 
scribed in terms of the cluster-network model: lamellar stacks (dus- 
ters) consisting of mosaic blocks alternated with amorphous layers 
are conne&ed to neighbouring clusters by means of many tie mole- 
cules 

theories we shall use the autonomous subunits as 
essential elements for describing the elastic response of 
the semicystalline system. 

Figure 3 schematically illustrates dusters oflamellae 
consisting of mosaic blocks alternated by amorphous 
layers. The clusters are connected by means of tie- 
molecules to the neighbouring ones. For the descrip- 
tion of the macroscopic elastic properties it is sufficient 
to analyse the microstructure of one representative 
cluster using the average values of the structure param- 
eters. The elastic modulus of such a cluster, E, has been 
shown to approximate to a series model [7] of crystal 
lamellae as defined by the MPs, separated by amor- 
phous layers: 

1 wp 1 - Wp (20) 
E - Ep + E---~ 

where Ep is the quasi-isotropic, averaged modulus of 
the MPs embracing its defective boundaries. The 
modulus of the rubbery amorphous layers Em can, on 
the other hand, be written as: 

wp 
Em = 3aoZ/<Yrn> = 1 ~ gOp (21) 

where Go is a constant, and T the absolute tempera- 
ture. According to this concept, each crystal is consid- 
ered as a multifunctional crosslinked body, in which 
the number of linkages is equal to the number of chains 
emerging from the crystals. This assumption justifies 
the (yp)- 1 dependence of Era. 

Hardness relating to microstructure 

Microindentation hardness is measured by quasi- 
static penetration of the specimen surface with a stan- 
dard indenter at a given force and temperature [22]. A 
convenient measure of hardness is obtained by divid- 
ing the peak-contact load, p, by the projected area of 
impression A 

H = k*p/A = k p t - 2  (22) 

where k* is a gemetric constant, k* = 9.272 10 3, and 
6 is the penetration depth of the indenter within the 
surface for a Vickers pyramid d = 2 ~ / 7  [23], ([H] = 
M N  m-2; [p] = M N ,  [6] = 10 -6 m). 

The hardness, so defined, can be considered as an 
indicator of irreversible plastic deformation of a small 
volume element (typically VI - 10 +15 nm3). The rest of 
the material acts as a constraint. 

The hardness of a semicrystalline polymer can be 
visualized as that of a material consisting of separate 
distinct hard and compliant elements [24]. On the 
basis of the above model we suggest: 

H = wpHp + (1 -- wp)Hm (23) 

where Hp and H,, are the intrinsic hardness values of 
the MPs and the amorphous layers respectively. 

Since Hp > H~ it turns out that the energy dissipat- 
ed by plastically deformed crystallites is given by 

Adl) ~d = Acb l V  ca (24) 

where the volume Vca can be written as 

V~d = wp A  6. (25) 

The mechanical work which is performed must be 
equal to: 

W = p 6 = A~b. (26) 
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Fig. 4. Model of deformation oflamellae consisting of mosaic blocks 
beneath the stress-field of an indenter. A heterogeneous destruction 
of crystals involving the generation of a system of shear planes is 
assumed 

Hence, by using equations (24), (25) and (26) we are 
led straightforwardly to the relationship: 

Hp = k* Aq~ca ; (p = const). 

Since indentation involves yielding, it seems plausible 
that a substantial destruction of crystallites will take 
place [24]. Therefore, it is interesting to express Vca in 
terms of the micro-structural elements left after such a 
severe deformation. Let us assume that the destruction 
of crystallites is "heterogeneous" and involves the gen- 
eration of a more or less dense system of shear-planes, 
wherein the energy is grossly dissipated (see fig. 4). By 
assimilation of the original MP to cubes, the relative 
fraction of the "shear planes" is straightforwardly 
obtained to a first approximation from the ratio: 

surface/volume - (yp}-i 

Hence, we can approximate Vcd to 

Vca = Vo(1 + b~(ypS-1). (29) 

Thus one can rewrite equation (27) as: 

Hp = k*Ar ; Ho = k*Ac~/Vo 

Hp = Hal(1 + bl @p}-1). (30) 

This expression is of major interest because it relates 
the "crystal hardness" of a material to the size @p} of 
tide cooperative units building the mosaic block struc- 
ture. It is worth noting that for @p} --, oo, Hp 
approaches Ho, which is the maximum value of dissi- 
pated energy by plastic deformation which can be 
reached (for PE: Ho ~- 170 MN m -2 [24]). 

From equation (30) one can, therefore, reasonably 
predict that Hp, as a measure for intrinsic plastic defor- 
mation, substantially decreases with decreasing size of 
the constituent MPs. The hi-factor in equation (30) 
will be further discussed below in the light of experi- 
mental data for polyethylene with different morpholo- 
gies. 

Discussion 

Hardness data for different lamellar systems 

Most interesting is the analysis of hardness values 
for different lamellar systems in the light of both eutec- 
told copolymer- and chain-folded lamellae micro- 
phases. For this purpose we have selected a variety of 
hardness data from references [22-25]. F ibre  5 illus- 
trates the plot of Hp as a function of (yp}- for a series 
of chain-folded and short-chain branched polyethyl- 
enes and n-paraffins. The plot shows an excellent 

(27) agreement with the calculated values according to 
equation (30) if one uses for bl a value of b l  = 20 nm. 
This value of bl only applies for samples crystallized at 
atmospheric pressure [26]. We have shown, in fact, 
that bl is a decreasing function of crystallization pres- 
sure [26]. Thus, for PE samples crystallized, for ins- 
tance, at a pressure of 150 MN/m 2, a fitting constant b l 
= 10 nm is required. 

Equation (30) allows a direct description of the 
hardness of the MPs (autonomous non-homogeneous 
micro-phases) in terms of @p}, average crystal thick- 
ness including the defective surface boundary. It is 
interesting to note that n-paraffins can equally well be 
described by means of equation (30) simply by using 

(28) the chain-length parameter. 
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Fig. 5. Micro-harness of"crystals", Hp ~ H/wp against reciprocal 
average thickness of non-homogeneous microphase according to 
equation (30). Data for PE crystallized at: AT ~ 10 ~ ( I ) ;  AT _~ 
68 ~ (@) (24) and melt crystallized paraffins (+) (23) 

Let us next discuss the micromechanism of plastic 
deformation from the initial structure into its final 
state. We admit that plastic deformation of crystals 
mainly proceeds by a multitude of shearing planes. 
Therefore, on the basis of a cubic symmetry for the 
cross-section of the MPs we are led to 

d~/Vca = (Ah/Vo) (4 ao/lp) (31) 

where ao is the average lateral intermolecular distance 
within the crystals. The parameter lp now describes the 
average lateral dimensions of final "crystal blocks" left, 
having on average the invariant thickness (yp). 

4 Ah Vca 
lp= Vo p6 ao. (32) 

Furthermore, with equation (29) and (33) we arrive at: 

Ip = K (1 + bl (yp)-i ao/8; K = 4Ah/p. (33) 

This equation relates the average dimension of the 
newly created blocks lp to the dimensions of the origi- 
nal mosaic blocks before plastic deformation (see fig. 
4). Table 1 collects the Ip- and (y~)-values for a series of 
branched polyethylenes, together with the average 
values of the lateral coherent dimensions of the original 
system (Dc) and the ratio na = (De)tip,  which is pro- 
portional to the number of defects produced on plastic 
deformation. 

These data indicate that the final dimension lp is 
nearly independent of the initial mosaic block length. 
In addition it is seen that lp corresponds to 4-5 inter- 
molecular distances yielding elementary "crystal rods" 
constituted by 16 to 25 stems. The ratio na diminishes, 
however, notably with decreasing size of the original 
mosaic blocks. Figure 6 shows the linear correlation 
found between the reciprocal value of na the molar 
degree of crystallinity (eqs. (6) and (18)). These data 
further illustrate the fact that the maximum number of 
shearing planes increases progressively with crystallin- 
ity. 

Table 1 

x~ yp/nm (Dr w / m o l  % w j m o l  % lp/nm n~ Wai~ C* 

0.0019 26.0 17.1 0.997 0.922 1.95 8.8 202 
0.007 27.0 14.85 0,979 0.849 1.78 8.3 188 
0.0176 12.0 10.9 0.908 0.708 1.95 5.6 85 
0.0263 10.8 9.85 0.829 0.605 2.30 4.3 82 
0.0304 10.0 8.05 0.789 0.56 1.60 5.0 56 
0.0361 9.0 6.45 0.731 0.502 1.58 4.1 41 
0.048 7.0 7.55 0.612 0.396 1.63 4.6 28 
0.0534 5.8 9.8 0.561 0.355 2.12 4.6 27 
0.069 5.0 5.0 0.425 0.254 1.57 3.2 13 
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Fig. 6. Correlation between reciprocal number of shearing planes na 
= (Dc>/lp after crystal destruction and the molar degree of crystal- 
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Fig. 7. Increase of dissipated energy during crystal destruction as a 
function of molar mass fraction of crystalline material 

For low crystallinities the original mosaic blocks are so 
small that they are nearly unmodified after plastic 
deformation. These results illuminate the view of 
plastic deformation of semicrystalline colloidal sys- 
tems as exclusively governed by the primary mosaic- 
block structure regulating the intrinsic "solid state" 
deformation mechanism. It is also found that this 
mechanism is independent of the cluster-structure, 
thus supporting the concept of non-homogeneous mi- 
crophase as a cooperative structural unit with indwend- 
ent intrinsic properties. 

Figure 7 illustrates the striking increase of dissipated 
energy with rising molar mass-fraction of crystalline 
material. The solid line has been computed according 
to (table 1) 

Wdiss C* = 4 <yp> lp Wp. (34) 

It is evident that the smallest crystals contribute with a 
negligible dissipated energy to the overall energy in the 
total system. This solid state deformation process 
increases dramatically, however, for very large MPs. 

Table 2 

X.c wp/% Wc/% <yp>/nm 
Hp H E 

M N m  2 M N m - 2  M N m - 2  

0.005 0.986 0.856 28.9 100 99 2107 
0.01 0.956 0.77 16.1 76 73 1728 
0.015 0.916 0.691 11.9 64 59 1208 
0.02 0.868 0.618 9.7 57 49 784 
0.025 0.816 0.552 8.4 51 42 507 
0.03 0.761 0.493 7.6 48 36 338 
0.04 0.649 0.389 6.5 43 28 167 
0.05 0.542 0.306 5.9 40 22 93 
0.06 0.445 0.238 5.5 38 17 57 
0.07 0.361 0.184 5.2 36 13 37 

Ah (TM) = 970 cal/mol unit; 2Oe (TM) = 2050 cal/mol unit; TM = 415 K; H m = 0.5 MNm-2 ;  Hc = Ho (Y~c 12 - C); C = 10; Ho = 
6.5 MNm-2 ;  A = 0.15; B = 46; T = 295 K; Ec = 2.2 103 MNm-2 ;  Go = 2 M N m  -2 



Balt, i-Calleja and Kilian, A novel concept in describing elastic and plastic properties of semicrystalline polymers." polyethylene 705 

Table 3 

Molecular weight: 2 10 6 

n a) yl/nm wp/mol % wJmol  % 
Hk H E 

M N m  -2 M N m  -2 M N m  -2 

1.3 400 0.955 0.818 113 108 1227 
1.55 200 0.883 0.704 85 75 563 
1.8 100 0.763 0.544 57 43 278 
2 60 0.63 0.40 39 24 165 

Molecular weight: 1.5 105 

n a) y j n m  w J m o l  % wc/mol % 
Hk H E 

M N m  2 MNm-2 MNm-2 

1.7 40 0.95 0.884 113 108 1224 
2.2 20 0.882 0.795 85 75 558 
2.7 10 0.773 0.665 57 44 305 
3.2 6 0.644 0.528 39 25 182 

He = Ho/(1 + bl (yv)-l) ;  (Ho)~ = 170 MNm-2;  D = 5; Yc = 30 nm; other parameters are listed in table 2 
a) see equation (17) 

This is so because w~ and (yp) are strictly correlated 
according to tables 2 and 3. 

Small-strain elastic modulus 

Contrary to the mechanism of plastic deformation 
discussed in the previous section, the elastic deforma- 
tion at small strains is correlated to the reversible be- 
havior of the cluster-network [7]. This is demonstrat- 
ed in figure 8 B by the unique correlation obtained be- 
tween E and we. The solid line has been computed 
with the aid of equations (5), (6), (20) and (21). The 
parameters used are listed in table 2. The experimental 
data obtained for commercial branched polyethylenes 
[25] fit very well indeed with the theoretical predic- 
tions suggesting a random distribution of branches 

along the chains for c-sequences larger than y > YMIN = 
27 chain units. 

Moreover, E and H are found to be correlated (see 
fig. 8 A) as calculated with the aid of the equations (6), 
(20), (21) (solid line in fig. 8 A, table 2). 

Figure 9 illustrates, likewise, the good correlation 
obtained between E and the molar mass fraction of 
MPs for a series of linear ch~iin folded polyethylene 
samples having two different molecular weights (see 
table 3) and various morphologies [22]. The data 
adjust very well to the predictions derived from the 
combined description of hardness and small-strain 
elasticity (see next section). 

The data for branched polyethylenes [25] are also 
included for comparison and seems to fit roughly the 
"master curve". However, for larger mass fraction wp 
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Fig. 8. Correlation of elastic modulus E and mi- 
cro-hardness, H (A) and modulus E and crys- 
tallinity wc (B) as predicted from equations (6), 
(20) and (21) (solid lines). Experimental data for 
branched PE are taken from reference [25] 
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Fig. 9. Correlation of modulus E and the molar fraction of MPs, wp, 
from the theoretical predictions derived in table 3. Data for linear 
chain folded PE samples with M~0 = 2 x 106 (O); M~0 = 1.5 x 10 s (O)  

and branched materials (ZX) are from references [22] and [25] 

one detects a systematic discrepancy for the branched 
materials yielding larger E-values than for folded- 
lamellar polyethylenes. This means that, at least in the 
case of EMCs, the elastic storage properties of the 
amorphous layers for branched PE are somewhat bet- 
ter than for folded-chain polyethylene. 

The unique plot obtained in figure 9 shows the 
advantage of using the parameter wp instead of the 
usual molar mass fraction of crystals, we, in analysing 
the elasitic properties. Indeed a more complex picture 
arises when using wc (see fig, 10). 

The role of the non-homogeneous microphase relating to 
the elastic and plastic-behavior 

By inspection of equations (20), (21), (25) and (30) 
one immediately detects a parallel dependence of 
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Fig. 10. Plot of elastic modulus versus crystallinity for: a) branched 
PE, and chain folded PE with: b) M~ = 2 x 1 0  6 and c) Mw = 1.5 x 105 

100 

80 
�9  

, , , /  
/ @ �9 

B0 

40 

20 

706 Colloid and Polymer Science, VoL 263. No. 9 (1985) 

I% s60 ,0'00 E / M . ~  

Fig. 11. Correlation of micro-hardness and plastic modulus. The 
solid lines were obtained using equations (16), (17) and (25), (30). 
The parameter used are given in table 3. The experimental data are 
taken from references [22] and [25] 

E(wp, <Yp>) and H(wp, <yp>)justifying the theoretical 
prediction of a distinct correlation between both quan- 
tities E and H (see also fig. 8). Such a correlation has 
been previously disputed by several authors [23, 27, 
28]. 

Figure 11 illustrates the experimental relationship 
obtained between E and H [15,18] for chain-folded 
and branched polyethylenes. The solid line Co in 
figure 11 is straightforwardly derived from equations 
(5), (20), (21), (25) and (30) by using the parameters 
listed in table 2. 

The solid line (F) was obtained by using equations 
(16), (17), (25) and (30) and adjusting the parameters n 
and y~ conveniently. The data are recorded in table 3. 
Figure 12 shows the parallel relationship between n 
and yf for the two linear polyethylenes with different 
molecular weights. This result is somehow surprising 
in contrast to previous observations of polyethylene 
fractions and indicates the complexity of crystalliza- 
tion behavior, probably influenced.as well by the 
molecular weight distribution [8, 30-32 I. 

These results underline the dominant role of the 
average thickness of the non-homogeneous micro- 
crystallites, <yp>, in describing the plastic and the 
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Fig. 12. Plot n as a function of thickness of non-homogeneous mi- 
cro-crystal]ites for two linear polyethylenes with differing molecu- 
lar weight 

elastic properties of semicrystalline polymers: thus 
whereas the plastic properties are mainly governed by 
the intrinsic behavior of crystals regulated mainly by 
(yp), the elastic response, on the other hand, is dictated 
by the cooperative effects of both microphases within 
the cluster-network. This difference is best illustrated 
by the different dependence of the overall hardness 
upon the modulus E (see curves F and Co in fig. 11). 
Since micro-hardness is dominantly correlated to 
(yp>, the difference between F and Co admittedly 
arises from the more pronounced rubber-elastic be- 
havior of the amorphous layers in branched polyethyl- 
enes. 

Concluding remarks 
In summary, the discussed results justify the corre- 

lation obtained between elastic modulus and micro- 
hardness for a series of polyethylene samples within 
the framework of the concept of autonomous micro- 
phase as constituent elements of clusters. The above 
picture demands that the "crystals" are built up by a 
well ordered core having a well differentiated defective 
surface-layer providing a continuous bridge to the 
amorphous region. The concept of equivalent units of 
deformation within a cluster-network allows, then, a 
quantitative description of the small-strain modulus 
while the hardness mainly depends on the plastic 
deformation of the crystals as non-homogeneous solid 
microphases. 
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