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Abstract: We present a general method of determining the structure and charge of globular 
ionic micelles, using neutron small-angle scattering. The micellar solutions may have any 
concentration within the micellar phase. The method is based in part on an analytic 
calculation of the interparticle correlations between monodisperse spherical micelles, and 
we discuss the theory in some detail to justify its application to polydisperse globular 
particles. Experimental results are presented for several cationic and anionic micellar 
systems. 
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1. Introduction 

In a earlier study of sodium dodecyl sulphate (SDS) 
micelles [1], we showed that it was possible to analyse 
neutron small-angle scattering data from concentrated 
micellar solutions, using the methods of liquid theory 
to handle the intermicellar correlations [2]. Two 
features emerged from that study. First, although a 
general three-shell micelle geometry was used, the 
experimental results showed that a two-shell model 
was in fact sufficient; for SDS, we found that the outer 
(polar) shell thickness corresponded to about 1.5 
headgroup diameters, indicating a surface roughness 
on the scale of a few tenths of a nm. Secondly, the data 
was extremely well fitted by a model with only two 
parameters (aggregation number and net charge), 
despite a theoretical description which assumed the 
micelles were monodisperse spheres. The same analyt- 
ical method has since been applied to a number of 
other concentrated micellar systems [3-6] and found 
to work very well in all cases. 

In the present paper, we first address the question 
of why a theory based on monodisperse spheres 
works so well for systems which are unlikely in detail 
to be either monodisperse or perfectly spherical. To 
this end, we shall outline the derivation of the 
fundamental scattering relation in a way designed to 
emphasize the inherent assumptions; we shall show 
that the latter are not in fact restrictive for charged 
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micelles. In particular, the main effect of not too large 
deviations from sphericity or monodispersity will be 
shown to be the addition of a diffuse background to 
the scattered intensity, which may be modelled and 
subtracted from the data. We shall then discuss the use 
of a general two-shell model for (nearly) spherical 
micelles. Finally we give some experimental details, in 
particular the use of absolute scaling, and present as 
examples of the application of the method results on 
sodium dodecyl sulphate (SDS), dodecyltrimethylam- 
monium chloride (C12TAC1) and bromide (C12TABr) 
and hexadecyltrimethylammonium chloride 
(C16TACI). The earlier SDS results have been re- 
analysed in terms of the present two-shell model and 
new measurements at lower concentrations have been 
analysed, using a recent rescaling extension of the 
liquid theory on which the analysis is based [7]. 

The results on SDS confirm our earlier conclusions. 
In contrast, we find a much lower degree of surface 
roughness for the alkyl-trimethylammonium micelles. 

2. Theory 

The scattering of a slow neutron by a nucleus is 
characterized by a single parameter, b, the nuclear 
scattering length. The neutron-nuclear interaction 
occurs over a distance very much smaller than the 
neutron wavelength 4, so the scattered wave is spheri- 
cal. If the momenta of incident and scattered waves are 
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k i and kf, respectively, a wave scattered by a nucleus at 
a point r in the sample will thus be phase-shifted with 
respect to scattering at the origin by a phase-factor exp 
(i Q.r), where Q = k i - kf is the momentum 
transferred in the scattering process. (Q = (4:r/3.) sin 0 
for elastic scattering through angle 20). 

Numerous texts are available on the general theory 
of neutron scattering [see, e.g. 8-11] and we shall 
restrict the present discussion to a clarification of 
those features strictly relevant to the problem of 
small-angle scattering from charged micelles. In par- 
ticular, this means that we shall be concerned with 
calculating the coherent super-position of scattered 
waves, and we shall assume the data has been cor- 
rected for incoherent scattering due to isotopic and 
nuclear spin effects, as well as for multiple scattering 
and absorption (see section 3). The relevant differen- 
tial scattering cross-section, a, per unit solid angle,/2, 
is thus calculated from a straightforward summation 
of amplitude-weighted phase-shifts 

Fig. 1. Geometrical notation used to specify inter- and intramicellar 
relationships (see text) 

where j =-j(n) refers to the f t h  atom in the n'th micelle 
and rik is the relative separation of two atoms. Then 
(see fig. 1) 

( da) = < l E-b iexp( iQ.  R)12> (1) 
" - ~  COH i 

where the bar on the scattering length indicates that 
the value has been averaged over the isotopic and 
nuclear spin distribution of each atomic species, and 
Rj is the position of the atom relative to an arbitrary 
origin in the sample. (The bound scattering length 
should be used, since the momentum transfer is small 
in forward scattering; the present calculation would of 
course apply equally well to X-ray or light scattering 
provided the nuclear scattering lengths b were re- 
placed by the appropriate electronic form-factors.) 
The sum is over all atoms in the sample, and < >  
represents an average over all possible configurations 
of atoms, which for the systems under consideration 
may be taken as a classical ensemble average; we shall 
also use <>Q to denote averaging over particle 
orientations with respect to the direction of Q. 

2.1 Separation of intermicellar from intramicellar 
scattering 

We now take advantage of the fact that the relative 
positions of certain sets of atoms in the sample are 
constrained by the requirement that they form a 
rnicelle. It is then convenient to include this specifical- 
ly by writing all atomic positions in a given micelle 
relative to its geometric centre, so that (1) becomes 

( da) = < ~ ~. ~ bi-bkexp(iQ.rj, k)> (2) 
COH n,m i(n) k(m) 

l'i(.),k(m ) = Rmn + F(k(ra) -- iWj(n) 

where m,n refer in general to different micelles 
separated by a centre-to-centre distance Rmn. Equa- 
tion (2) thus separates naturally into intermicellar (m 

n) and intramicellar (m -- n) terms: 

( d a )  = < ~ ~ b i b k exp [iO" (r i - rk)] > 
COH i(n) k(n) 

+ < ~ exp ( iQ 'R~n)  ~ ~ b i b k exp [ i Q . ( r  k -  ri) ] > 
n~=m fin) k(m) 

(3) 

We first assume for the sake of clarity that all micelles 
have the same shape and size; the effect of polydisper- 
sity will be discussed later. The first term to be 
averaged in (3) is than just N times the square of the 
single-micelle form-factor, defined as 

F(Q) = E b/exp (iQ'rj) (4) 

where Nis  the number of micelles, the sum is over all 
atoms in the micelle and the distances are relative to 
the micelle centre. 

The first term in (3) is calculable for any specified 
micelle geometry. The second term, however, cannot 
be evaluated without further specifying the prob- 
abilities (a) that the micelles are separated by a given 
distance Rmn, and (b) that at that distance they have 
the particular relative orientation specified by rk(m) - 
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rj(n). Here the strong electrostatic repulsion between 
charged micelles comes to our aid, since it makes close 
contact unlikely between neighbouring micelles. Pro- 
vided the micelles are relatively globular, strong 
correlation of orientation due to steric effects will thus 
occur only rarely, and over the centre-to-centre 
distances usually encountered there will be little 
correlation between orientation and intermicellar dis- 
tance. (Since a sphere has no orientation, such correla- 
tions are of course rigorously absent in the case of 
spherical micelles). The sum over orientations in the 
second term of (3) (indices j and k) then no longer 
depends on the intermicellar distance, Rmn, and the 
sums may be averaged separately: 

d o )  = N <  IF(Q)[ 2 > Q 
" - ~  COH 

+ < E exp (iQ "Rmn ) > 
n+m 

< E • bj h k exp [iQ" (rk - ri)] > 
An) k(m) 

Further, under the above assumption, multipolar 
terms in the interaction potential will be dominated by 
the Coulombic (zero-order) term, so that any angular 
dependence will be relatively weak. The intermicellar 
potential will thus be an effectively central potential 
over the distances of interest, and hence the orienta- 
tions rk(~) and rjcn) will be statistically independent, so 
that finally we may write 

d c r) = N <  [F(Q)i2>Q 
" - ~  COH 

+ < E exp (iQ.Rmn) > 
n+m 

< E bj exp (iQ.rj) > 
j(n) 

where we have used the fact that the sign of Q is 
irrelevant when averaging over all orientations. The 
term involving different micelles (n + m) is just 
N[S(Q)-I ] ,  where the intermicellar structure factor 
s(Q) is defined as 

S(Q) = N -i < E exp (iQ'Rr~.) > 
nm 

----- I + N  - l <  ~ e x p ( i Q ' R m .  ) > 
n+m 

The coherent differential scattering cross-section 
for monodisperse globular charged micelles is thus to 
a good approximation 

( da), = N[S(Q) �9 < F(Q) >8  + A(Q)] (5) 
" - ~  COH 

where 

z (Q) = < f f (O)r 2 > Q -  < f(O) >8 (6) 

has the familar form of a mean square deviation. In a 
monodisperse system, A(Q) is identically zero for 
spheres, and will be small for nearly spherical globular 
micelles. However, we shall see below that such a term 
will be non-zero, even for spherical micelles, if the size 
distribution is polydisperse. Note that this coherent 
disorder term is "switched on" by the correlations, 
and its effect disappears when the system is sufficient- 
ly dilute (S(Q) = 1). 

In principle, the introduction of polydispersity into 
the above analysis requires us to return to (3) and to 
take specific account of an added complication, name- 
ly correlations between micelle size and position. In 
the case of uncharged hard spheres, for example, the 
calculations of van Beurten and Vrij [12] show that 
this can be a particularly important effect. In a very 
real sense, however, hard spheres represent a patho- 
logical case when discussing particle suspensions, 
since their packing is determined only by geometrical 
considerations. That is, the only potential in the 
system (the hard-sphere potential) is infinite and 
hence independent of temperature. Contact between 
hard spheres is highly probable in a dense system, so 
that in a polydisperse mixture a small sphere is likely 
to be found, for example, in the "cage" formed by a 
cluster of larger spheres. This is very different from 
the pair distribution found for charged spheres, when 
close contact is a most unlikely configuration because 
of the strong electrostatic repulsion. (If this were not 
the case, the suspension would no longer be stable). 
Thus, not only are clusters energetically unfavorable 
when the particles are charged, but a smaller sphere 
whose charge had the same sign would be unlikely to 
enter any "cage" so formed, and indeed similarly 
charged spheres of any size would be repelled. 

In an electrostatically stabilized real colloidal su- 
spension, therefore, it is reasonable to assume that 
correlations between particle size and position are 
very much weaker than would be the case in a 
sterically stabilized suspension of equivalent poly- 
dispersity. Equation (5) should thus remain a good 
approximation for polydisperse charged globular mi- 
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celles, provided neither the polydispersity nor the 
asphericity is too large, with the disorder term A(Q) 
effectively accounting for the deviations from mono- 
disperse spherical particles. Returning to (6), the 
disorder due to polydispersity among spherical parti- 
cles becomes 

a ( q )  = E P m  I < Fm((~) > Q - -  i ~ ( Q ) ]  2 (7) 
m 

where Pm is the (normalised) probability of finding a 
micelle with form-factor Fm(Q), and the mean (size- 
averaged) form factor is 

F(Q) = Epn < Fn(Q) >Q 
n 

= Y.p. Ebjs in(Q,) ) / (Qr j )  (8) 
n j(n) 

Here we have used the fact that <Fm(Q)>~ = 
<F~_~Q) > Q for anygiven s phere, and we have written 
the angular average of (4) explicitly. The disorder term 
(7) is thus a sum of non-negative Fourier components 
with similar amplitudes but a wide distribution of 
phases, and we expect it to exhibit no sharp Q- 
dependent structure. (This is analogous to the well- 
known coherent diffuse scattering due to defects in 
solid materials [13]. It is also similar in nature to the 
term which gives rise to the diffuse background now 
considered important in light scattering [14]). In the 
systems we shall consider, A(Q) is numerically very 
small, but if necessary it may be calculated using a 
model distribution function. The intensity function of 
interest, I(Q), may thus be derived from the measured 
cross-section (per micelle) as 

I((2) - e ( @  s (Q)  

= N-i(da/d~2co H - A(Q) (9) 

where the size-averaged scattering function P(Q) = 
I l~(Q) v. Note the difference between the approxima- 
tion we propose and the form used for hard-spheres 
by van Beurten and Vrij [12], who defined an effective 
S(Q) multiplying a mean scattering factor ~Pn 
<F~Z(Q)> Our result corresponds to writing down Q. 
the coherent part of their equation (1) with the 
assumption that their interference function Hik is 
independent of i and k for not too polydisperse 
(paucidisperse) charged systems. 

Equation (9) is the central result which allows P(Q) 
to be obtained from the measured scattering cross- 
section (da/d~ coil- The data is first placed on an 

absolute scale (see section 3). P(Q) is modelled by 
taking a suitable geometry for the micelle; we discuss 
a typical spherical geometry in the next section. S(Q) 
may then be calculated for a given micellar charge, 
following Hayter and Penfold [2] and Hansen and 
Hayter [7]. The structural parameters and charge are 
then refined by fitting the product P(Q)S(Q) to the 
derived intensity I(Q), using a standard least-squares 
procedure; in a polydisperse system, the standard 
deviation of particle sizes may also be a fitting 
parameter, with A(Q) re-evaluated at each cycle of the 
fit. 

2.2 Model calculation of P( Q) 

In the case of single-chain surfactants comprising a 
paraffin chain CH3(CH2)n, a headgroup (HG +-) and a 
counterion (CI7~), we have found that the two-shell 
model of figure 2 works generally very well over the 
globular micelle range. In its simplest form, the model 
replaces individual monomer configurations by a 
conceptual "average monomer". The latter is charac- 
terised by having its methyl group and a fraction a of 
its methylenes inside a dry core of radius RI. The 
remaining methylenes, the hydrated headgroups and 
any non-ionized hydrated counterions are distributed 
uniformly in the outer layer, while the methyl distri- 
bution in the inner core is taken as random. Refine- 
ments such as Dill-Flory [15] or Gruen [16] distribu- 
tions of methyls are easily incorporated, as are ellips- 
oidal deformations and polydisperse size averaging 
[see, e.g. 5]. We have found in practice, however, that 
the present experiments (which do not use specific 
isotopic substitution to mark sites) are described 

/ ~  (C H2)(1-oc)~n 

R 2 

Fig. 2. Mean disposition of a surfactant molecule CH3(CH2),, 
(HG) -+ (CIT) in a two-shell micelle of mean radii R 1 and R 2. H G  = 
headgroup; CI = counterion, 6 = degree of ionisation. Both H G  
and CI are assumed to carry hydration shells. Note  that even when 
the micelle is physically smooth, it may be chemically rough; that is, 
the outer shell is filled but headgroups may be found at varying 
distances from the centre. 
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within error by the simple liquid-like centre. This 
point is discussed by Hayter and Zemb [3], and we 
only remark here that the use of nearly random core 
packing to calculate the scattering does not necessarily 
imply a liquid core. The indistinguishability of car- 
bons from different chains means that a mixture, for 
example, having mostly radial order for some chains 
and substantial tangential order for others will not be 
distinguished from a different arrangement of bonds 
which leads to about the same arrangement of nuclei. 

Two important features of the model are worth 
discussing. The first is that when R I ~ l o the length of 
the hydrocarbon chain, a may still be less than unity. 
Tanford [17] has argued that the micelle must then be 
ellipsoidal. Provided the major-to-minor axial ratio is 
within the range of order 0.8-1.2, numerical calcula- 
tions show that it is experimentally very difficult to 
distinguish such a shape from an equivalent sphere 
after isotropic averaging. A good fit to the model thus 
indicates globularity within, say, 20% of spherical, 
rather than true sphericity. We note, however, that 
micelles may contain more monomers than would 
correspond to R1 = l, with a = 1 (see below) without 
becoming highly elliptical; approximate sphericity 
may be maintained by absorbing new monomers onto 
a small micelle with some degree of tangential order in 
the chains [3]; that is, by a "wrapping" process. 

The second feature is that the micelle described by 
the average sphere may be rough, in the sense 
described in [1]. The parameter which indicates a 
rough micelle is the distance r = R 2 -  R 1. If r is equal 
to the diameter of a headgroup, the micelle is smooth; 
if it is larger, we interpret that to mean a rough 
disposition of headgroups within the shell of thickness 
r. In all cases, the inner sphere of radius R 1 is 
considered smooth. 

As an example of the calculation of the micelle 
geometry for a given aggregation number v and a 
given degree of ionisation 6, we consider the simplest 
case of the average spherical micelle. The parameters 
required are the volume V~va and hydration number 
w~r c of the headgroup, together with the correspond- 
ing values Vcz and wcl for the counterion. We first 
calculate the radius of the sphere which would contain 
a//of the hydrocarbon: 

Rh = [3v(VcH, + n VcR2)/4Jr] 1/3 (10) 

where VCH ~ and VCH ~ are the volume of the methyl and 
methylene groups, respectively. If R h ~< 1r we set a = 
1 and take R 1 = R h. Otherwise, we set R I = lr and 
calculate 

a =- ( V  1 - VVcH~)/nVVcH~ (11) 

where 171 = 4;rR~/3. From the total volume 

V2 = V[VcH, + nVcH2 + Vnc + wnG Vs 

+ (1-e)(vc  + wc Vs)] (12) 

we obtain R 2 = (3 V2/4;r) v3, where Vs is the volume of 
a solvent molecule in the headgroup or counterion 
hydration shell. 

Once the geometry and contents of each shell is 
thus specified, the calculation of P(Q) proceeds as 
described in [1]. For more complicated models leading 
to elliptical geometry, appropriate formulae are given 
in [18]. If desired, P(Q) may also be averaged over a 
distribution of sizes. We have taken [17] 

lr = 0.2765 + 0.1265nnm (13) 

and have used for the other parameters the values 
given in table 1. 

2.3 A note on the use of  Guinier plots 

In the absence of interactions (S(Q) -~ 1) the 
scattering function at very small Q may be written in 
the well-known Guinier form 

( dcr/dQ) oc exp ( -  Q2 Rg /3 ) (14) 

where R_ is the radius of gyration of the particle [19]. 
In micel~ar solutions near the cmc, the Guinier plot 
(log (da/dQ) vs Q2) is often found to be linear, and it 
is tempting to draw the conclusion that interactions 
are therefore absent. For the case of p-emulsions, 
Cebula et al. [20] have noted that this need not be 
correct. We wish to emphasize here that the problem 
is general. As a straightforward example we consider 
the case of low-Q scattering from monodisperse 
spherical micelles interacting through a screened Cou- 
lomb potential. Such a potential is tempered; that is, it 

Table I. Volumes (V) and hydration numbers (w, where applicable) 
used in the data analysis 

i Vi/nm 3 w i 

CH 3 0.0543 
CH 2 0.0248 
SO 4- 0.0606 
N+(CH3)3 0.1023 
Na § 0.0136 
C1- 0.0289 
Br-  0.0393 
D20 0.0302 
H20 0.0299 
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decays faster than any power of the distance. It can be 
shown quite generally [21] that for any tempered 
potential, S(Q) has no linear term, so that at small Q 

S ( Q )  = Sl + . . .  (15) 

Expanding (14) and using (5) and (15) then yields 

(da/d#) o~exp {[($2/S~) - R~ / 3 ] Q  2} (16) 

to second order in Q, so that the Guinier plot remains 
linear, but the slope is no longer a direct measure of 
the radius of gyration. Since S2/S1 > 0 for a tempered 
repulsive potential, the radius of gyration will be 
underestimated by a Guinier analysis if interactions 
are present. 

The effect can be dramatic, even for small interac- 
tions, and it is worth following Cebula et al. [20] and 
evaluating a numerical example. Consider the limit of 
weak interaction, namely uncharged micelles, so that 
only excluded volume effects are present. For a 
volume fraction of 1%, expanding S(Q) [2] at small Q 
yields $1 = 0.92 and $2 = 0.008 02, where o is the 
(spherical) micelle diameter. The corresponding radius 
of gyration is 0.3870, and the Guinier slope predicted 
by (16) is -0.041 o 2 . The use of (14) to interpret this 
slope would yield an apparent radius of gyration of 
0.352a; that is, excluded volume effects alone would 
cause the radius to be underestimated by nearly 10% 
at a volume fraction of only 0.01. For charged micelles 
similar effects would be noted at even lower volume 
fractions. 

3. Experimental 

Solutions were prepared in D20 (98.7%, I.L.L. Grenoble) using 
Eastman analytic grade SDS, C12TAC1, C12TABr and C16TACI as 
starting materials. Merck analytic grade NaC1 or NaBr was used as 
appropriate to make solutions of variable ionic strength. All 
measurements in the present series were taken at 313 + 2K using 
standard quartz cells of lmm or 2mm optical path. Measurements 
were performed on the neutron camera D17 at the I.L.L., using 
incident wavelengths Jl of 1.0 or 1.2 nm (A2/A = 0.1) with a sample- 
to-detector distance of 1.4m. Other conditions were as described in 
[1]. Measurements were made in the range Q < 0.25 nm -1. 

Data were corrected for absorption, background, solvent scatter- 
ing, detector efficiency and incoherent scattering from the sample, 
using standard techniques [22]. After all corrections, the intensity 
was found to decay to a small, flat level at the higher momentum 
transfers. This level, which was generally less than I% of the peak 
intensity, was taken as a measure of A(Q). Although the latter will 
exhibit some Q-dependence in our experimental range, we 
considered that the small absolute value observed justified the 
approximation of taking A(Q) as flat in these experiments, and this 
level was merely subtracted from the data. The excellent results 
obtained (see section 4) provide a posteriori justification of this 
procedure. 

All measurements were converted to absolutely scaled cross- 
sections (do/d/2) using light water as a standard [23]. Although the 
statistical precision of the raw data is better than 1%, this scaling 
procedure involves a number of quantities whose precision is of a 
similar order, and the final absolute scale is estimated to be not 
better than 10%. 

4. Results and discussion 

Typical fully corrected scattered intensity data is 
plotted in figure 3. We have chosen to show a low 
surfactant concentration to emphasize that there is still 
considerable interaction present even in this relatively 
dilute system, due to the long range of the Coulombic 
effects. The data was fitted using the model discussed 
in section 2. In calculating P(Q) a number of systema- 
tic errors enter the final absolute scale, mainly due to 
lack of precision in the scattering length densities. 
Although the molar volume of, say, the hydrocarbon 
chain is well-known, the separate contributions of the 
methyl and methylene groups to the local scattering 
length density can be less well estimated. For a given 
model, these systematic errors result in uncertainties 
in the predicted absolute theoretical intensity of the 
same order as those in the measured absolute inten- 
sity. The fitting procedure takes these errors into 
account by first performing a least-squares refinement 
on an arbitrary scale. The factor by which the absolute 
theory must be multiplied to match the absolutely 
scaled data is then calculated. Ideally, this factor 
should be unity. In view of the various systematic 
errors discussed above and in section 3, we accept the 
fit to a given model if (a) the fit converges within 
statistical error, and (b) the ratio of absolute scales 
beween theory and experiment is within 30% of unity. 

The result of this procedure is plotted in figure 3, 
with the separate contributions from P(Q) and S(Q) 
shown as dashed lines. We emphasize the utility of 
absolute scaling, even at the level of precision quoted. 

~.6[ ..... .. 7% ~ 12.o 

............ 1 
% 
.~. s( 

0 .0  " "  - 0.0 
0.0 1.0 2.0 

Q / nrn -I 

Fig. 3. Measured (o) and fitted ( - )  values of I(Q) = P(Q)S(Q) as 
a function of momentum transfer Q for 0.03 M C16TAC1 in D20. 
Note the structure in S(Q) due to charge interactions even at this 
relatively low surfactant concentration. 
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Table 2. Fitted aggregation number  (v) and degree of ionisation (6) 
for SDS solutions at the surfactant and salt concentration shown. 
The derived inner (R 0 and outer  (R2) radii and average number  of 
waters of hydration per monomer  (wa~) are also tabulated 

Table 4. Parameters for C12TABr; notation as for table 2 

[CI2TABr] [NaBr] v 6 R 1 R 2 Wa~ 
mol. dm -3 mol. dm -3 nm nm 

[SDS] [NaCI] v 6 R 1 R 2 way 0.05 
mol .dm -a mol .dm -3 nm nm 0.10 

0.20 
0.016 0.0 77 0.30 1.67 2.32 9.2 
0.04 0.0 88 0.30 1.67 2.42 9.2 

0.05 107 0.28 1.67 2.59 9.3 
0.2 120 0.20 1.67 2.71 9.8 

0.07 0.0 88 0.34 1.67 2.32 9.0 
0.10 0.0 98 0.24 1.67 2.53 9.6 

0.05 109 0.25 1.67 2.61 9.5 
0.1 117 0.24 1.67 2.68 9.6 
0.2 126 0.21 1.67 2.75 9.7 

0.40 0.0 120 0.22 1.67 2.70 9.7 
0.05 130 0.20 1.67 2.77 9.8 
0.1 138 0.19 1.67 2.85 9.8 
0.2 146 0.19 1.67 2.90 9.9 

0.50 0.0 122 0.19 1.67 2.71 9.9 
0.60 0.05 128 0.20 1.67 2.77 9.8 

0.1 135 0.18 1.67 2.82 9.9 

On an arbitrary scale a number of models may fit the 
data with, say, different degrees of headgroup hydra- 
tion. Absolute scaling usually allows one restricted set 
of parameters to be chosen. As further confirmation, 
we have also calculated the scattering from the model 
particle under different contrast conditions (e.g. H20 /  
D20 mixture as solvent) and compared these predic- 
tions with experiment at several contrasts for each of 
several of the concentrations studied. Good agreement 
was obtained on an absolute scale without any adjust- 
ment of the model parameters. This, in particular, 
tends to confirm that the level of hydration chosen is 
correct, since altering the solvent scattering length 
density concomitantly alters the scattering power of 
the hydrated parts of the micelle. Tables 2, 3, 4 and 5 
summarise the results on the four surfactants. The 
average hydration number per monomer is calculated 
f r o m  

(17) Way = WHG "~- ( 1 -  6) Wci 

Table 3. Parameters for C12TAC1; notation as for table 2 

[CI2TACI] [NaC1] v 6 R 1 R 2 way 
mol .dm -3 mol .dm -3 nm nm 

0.2 0.0 60 0.31 1.67 2.01 3.8 
0.1 60 0.33 1.67 2.00 3.7 

0.4 0.0 59 0.36 1.67 1.99 3.6 
0.1 61 0.36 1.67 2.00 3.6 

0.6 0.0 67 0.30 1.67 2.08 3.8 
0.1 67 0.28 1.67 2.07 3.9 

0.40 

0.60 

0.0 57 0.33 1.64 1.97 3.7 
0.0 68 0.24 1.67 2.12 4.0 
0.0 69 0.29 1.67 2.12 3.9 
0.1 76 0.17 1.67 2.21 4.0 
0.0 75 0.24 1.67 2.19 4.0 
0.1 78 0.16 1.67 2.23 4.1 
0.0 75 0.24 1.67 2.19 4.1 
0.1 82 0.15 1.67 2.27 4.1 

It will be noted that the aggregation numbers for 0.04 
and 0.1 M SDS are somewhat smaller than previously 
quoted [1]. In the original analysis, the approximation 
used to calculate S(Q) was no longer strictly valid at 
the lowest volume fractions involved. This theoretical 
restriction has now been removed [7] and S(Q) may 
be calculated reliably at any volume fraction. 

Near the CMC, the SDS micelles are small and 
smooth, as indicated by the thickness (R 2 -  ~R1) of the 
polar layer. At higher concentrations this layer be- 
comes thicker, indicating the development of a rough 
surface in the sense discussed in section 2.2. We 
interpret the growth as being due to absorption of 
monomers onto existing micelles as the concentration 
increases; these new monomers probably "wrap" 
onto the existing structure rather than penetrating 
radially. 

The situation is quite different for the dodecyltri- 
methylammonium surfactants, which form almost 
smooth micelles. For these compounds the size is 
much less dependent on either surfactant or salt 
concentration than is the case for SDS. This may 
indicate an optimal packing geometry for this combi- 
nation of chain length and headgroup, since the 
hexadecyltrimethylammonium monomer again shows 

Table 5. Parameters for C16TAC1; notation as for table 2 

[CI6TACI] [NaC1] v 6 R1 R2 w,,~, 
mol. dm -3 mol. dm -3 nm nm 

0.03 0.0 90 0.28 2.10 2.43 3.9 
0.05 0.0 92 0.28 2.11 2.45 3.9 

0.1 119 0.34 2.17 2.65 3.6 
0.10 0.0 91 0.33 2.10 2.43 3.7 

0.I 116 0.27 2.17 2.65 3.9 
0.20 0.0 109 0.24 2.17 2.60 4.0 

0.1 119 0.20 2.17 2.68 4.2 
0.40 0.0 116 0.20 2.17 2.68 4.2 

0.l 121 0.21 2.17 2.69 4.1 
0.60 0.0 120 0.23 2.17 2.68 4.1 

0.1 125 0.19 2.17 2.73 4.0 
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a tendency to grow with increased concentration. The 
latter micelles are also slightly rough at higher concen- 
trations; as noted earlier, the present experiments do 
not attempt to distinguish this geometry from a 
smoother but slightly elliptical shape. 

The qualitative difference between the SDS and 
TMA micelles is also apparent in the parameter a, the 
average fraction of methylenes which are in a totally 
dry environment. Near the cmc, a is effectively unity 
for all of the cationic compounds, and at the highest 
concentrations studied about 80% of the methylenes 
are still in a dry environment. For SDS, however, a is 
of order 0.7 even near the cmc, and it drops to 0.4 at 
high concentration, suggesting a much less well- 
defined core/polar interface in the anionic micelles 
compared with the alkyltrimethylammonium com- 
pounds. 

The diffuse term A(Q) was small but non-zero for 
all the systems studied, increasing with concentration. 
We have not made a detailed analysis of the values, but 
numerical calculations suggest it corresponds to size 
polydispersity typically of order 15%. (Discussions of 
the effects of polydispersity on scattering from dilute 
systems may be found in [28, 29]. In cases where the 
polydispersity is thought to be large (> 20%), we 
would recommend using a full model calculation of 
A(Q) but in our relatively paucidisperse system the 
subtraction of the residual flat level (discussed in 
section 3) seems a satisfactory procedure. 

5. Conclusion 

We have presented arguments justifying the use of a 
theory of correlations between charged spheres in a 
screening medium to interpret scattering data from 
solutions of charged globular micelles. Application of 
the method to small-angle neutron scattering data 
yields aggregation numbers and degrees of ionisation. 
Analysis of experimental data shows that a two-shell 
model is generally applicable to data on nearly spheri- 
cal micelles, the thickness of the outer shell relative to 
the headgroup size characterising the micelle rough- 
ness. We find that SDS micelles are rough (on the scale 
of several tenths of a nm) in concentrated solution. In 
contrast, dodecyltrimethylammonium halide micelles 
are smaller and smoother, indicating that this mono- 
mer may represent optimal packing. Hexadecyltri- 
methylammonium chloride micelles are intermediate 
between the previous cases. 

The values of aggregation number, charge and size 
derived from the present scattering experiments are 
generally consistent with those reported in the exten- 
sive literature [see e.g. 24-27]. The results indicate that 

the micellar systems studied are relatively paucidisper- 
se (polydispersity ~< 20%). They also confirm that our 
assumption of weak correlation between size and 
position is reasonable for the present systems. It is 
hard to place limits on this assumption a priori; we 
recommend using it where it appears justified by the 
results. The fact that it works very well for charged 
micelles, but rather less well for charged polystyrene 
spheres [31] may indicate that some charge compensa- 
tion mechanism is operational in the micellar systems, 
so that particles of slightly different sizes may have 
similar interaction potentials at short range. 

We believe the present technique has a number of 
advantages over those previously used, especially now 
that access to neutron small-angle scattering spectro- 
meters is becoming relatively widespread. The method 
is experimentally straightforward, data collection is 
rapid and interpretation of the data is now well 
understood. The analytical method is applicable to X- 
ray, light or neutron scattering data measured on 
systems at any concentration, and a number of 
applications has recently been reported [3-6, 30]. 
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