
International Journal of Parallel Programming, Vol. 21, No- 4, 1992

Attempting Guards in Parallel:
A Data Flow Approach to Execute
Generalized Guarded Commands 1
R. Govindarajan, 2 S. Yu, 3 and V. S. L a k s h m a n a n 4

Received March 1991; Revised March 1993

Earlier approaches to execute generalized alternative/repetitive commands of
Communicating Sequential Processes (CSP) attempt the selection of guards in
a sequential order. Also, these implementations are based on either shared
meomry or message passing multiprocessor systems. In contrast, we propose an
implementation of generalized guarded commands using the data-driven model
of computation. A significant feature of our implementation is that it attempts
the selection of the guards of a process in parallel. We prove that our implemen-
tation is faithful to the semantics of the generalized guarded commands.
Further, we have simulated the implementation using discrete-event simulation
and measured various performance parameters. The measured parameters are
helpful in establishing the fairness of our implementation and its superiority, in
terms of efficiency and the parallelism exploited, over other implementations.
The simulation study is also helpful in identifying various issues that affect the
performance of our implementation. Based on this study, we have proposed an
adaptive algorithm which dynamically tunes the extent of parallelism in the
implementation to achieve an optimum level of performance.

KEY WORDS: Communicating sequential processes; data-driven evaluation;
fairness; generalized guarded commands; liveness; performance evaluation;
safety.

l The first author's work was supported by a MICRONET, Network Centers of Excellence,
research grant. Support for the second author is from the NSERC (Canada) Grant. The last
author's work was supported by grants from NSERC (Canada) and FCAR (Quebec).

2 Department of Electrical Engineering, McGill University, Montreal, H3A 2A7, Canada.,
govindr @ pike.ee.mcgill.ca.

3 Department of Computer Science, University of Western Ontario, London, N6A 5B7,
Canada., syu@uwocsd.uwo.ca.

4 Department of Computer Science, Concordia University, Montreal, H3G 1M8, Canada.,
laks@cs.concordia.ca.

225

828/21/4-1 0885-7458/92/0800-0225$06.50/0 �9 1992 Plenum Publishing Corporation

226 Govindarajan, Yu, and Lakshmanan

1. I N T R O D U C T I O N

Communicating Sequential Processes (CSP), as proposed by Hoare, (1~
does not allow output commands to appear in the alternative/repetitive
commands. The inability to use output guards in the guarded commands
necessitates additional signals and greatly constrains the expressibility of
the language. (1-5) This is observed especially in the bounded buffer and
the dining philosopher programs. Following these arguments, the guarded
commands of CSP have been generalized to allow output commands to
appear in them. While such a generalization is easy to perceive, an
implementation is quite involved and requires reaching an agreement
among the communicating processes. To understand this, consider the
following example.

Process Pl Procsss P2 Process P3

*[true;P2!xl --> SI *[true;PlTyl --> S3 *[trus;Pl!zl --> $5

[] trus;P3?x2 --> $2 [] true;P3!y2 --> S4 [] true;P2?z2 --> $6

3]]

In one specific iteration either (i) P1 and P2 execute statements S1 and $3
respectively after agreeing to select their first guards, or (ii) P2 and P3
agree to select their second guards and execute statements $4 and $6
respectively, or (iii) P3 and P1 agree to select, respectively, the first and
second guards. Let P1 and P2 make the agreement (or rendezvous). Then
it is clear that P3 should not initiate a rendezvous with either P1 or P2.
Thus the agreement is not only between the processes that rendezvous,
P1 and P2 in this example, but also with other processes, P3 in this
example, with which P1 and P2 can potentially communicate in the
alternative/repetitive command. Thus a global agreement among mutually
communicating processes is required to select a guard in the generalized
guarded command.

Proposing an implementation for the generalized guarded command
has been of constant interest to the research community. Starting from the
restricted implementation of Silberschatz, (6) several solutions have been
reported (3'6-8) over a decade, including the recent ones. ~5'9'1~ The work
reported in Refs. 5, 7, 8, and 10 demonstrate a progressive improvement in
terms of the number of messages communicated to reach an agreement.
Fujimoto's solution (9~ is based on a shared memory model unlike the earlier
ones which employ a loosely-coupled architecture. A commonality observed
in all these solutions is they are based on the conventional von Neumann
framework. Also, the selection of guards in a particular process has so far
been done sequentially. As a consequence, in reaching an agreement some

Attempting Guards in Parallel 227

guards of a process are favored by virtue of the selected order of execution
of the guards. The set of favored guards in a process need not be the same
over different agreements of the guarded command. Nonetheless, there is a
preferred order of execution of the guards in a single agreement, and hence
the selection process cannot be called a 'pure' nondeterministic choice.

In contrast to the earlier proposals, we use data-driven evaluation (11)
as the basic computation model for implementing generalized guarded
commands. The implementation parallelizes the selection of guards in a
process which can significantly reduce the execution time of an alter-
native/repetitive command. Also, as the guards of a process are attempted
possibly concurrently without any preferred order of execution, the
selection of guards in a process is purely non-deterministic. Furthermore,
in our implementation, Processing Elements (PEs) do not busy wait for
synchronization of guarded commands.

This paper is organized as follows. In the next section, we briefly intro-
duce data-driven evaluation and discuss the issues related to implementing
generalized guarded commands. Section 3 describes the implementation
scheme. The subsequent section establishes the correctness of the imple-
mentation. A simulation model for our implementation has been developed
to obtain certain performance parameters to demonstrate the efficiency
and fairness of the implementation in Section 5. Based on the simulation
results the implementation is tuned to further improve its performance.
A comparison is drawn between our implementation and the existing ones
in Section 6.

2. B A C K G R O U N D

Data-driven evaluation has been chosen as the model of computation
for our implementation for the following two reasons. Firstly, data flow
model does not impose any order (other than what is dictated by data
dependency) on the execution. The guards in a process can thus be
concurrently attempted in a natural way. Further, fine grain asynchronous
concurrency exploited by data flow machines ensures both inter- and intra-
process parallelisms in a CSP program. To make this paper self-contained
some preliminaries on data flow computation are in order. The reader is
referred to Refs. 11 and 12 for more details.

2.1. D a t a - D r i v e n Evaluat ion

In data-driven evaluation ~11) an instruction may be executed as
soon as all its operands are ready. Thus the flow of data determines the

228 Govindarajan, Yu, and Lakshmanan

execution sequence of a program in this model. Moreover, the exploitation
of parallelism is at the instruction or fine-grain level.

The simplest form of a data flow program consists of an acyclic
directed graph, called the data flow graph/TM In a data flow graph,
the nodes or actors are the low-level data flow instructions. Each node
in the graph has a unique node address. Tokens carrying data values
traverse the arcs between the operators. Formally,

Definition 2.1. An actor is any asynchronous computation
representing a specified operation on the values carried by the tokens
present on the input arcs.

Definition 2.2. An actor is said to be enabled as soon as all its
input arcs contain at least one token.

A set of basic data flow actors has been defined in Ref. 13. In addition
to arithmetic, boolean, and logical operations, the set includes special actors
such as the True Gate, False Gate, Switch and Merge actors to express
conditional and iterative program structures. For a description of these
actors and their operational semantics the reader is referred to Ref. 13.

An enabled actor is executed by a processing element which performs
the operation specified by the actor. When the execution completes, tokens
are removed from the input arcs and results are produced on the output
arcs. Thus, in the data flow evaluation, control is purely data-driven: the
availability of tokens triggers the computation.

O b s e r v a t i o n 2.1. Any basic data flow actor, when enabled,
trivially completes its execution in a finite time.

In an acyclic data flow graph each operator is instantiated just once
during the execution of a program. However, practical programs require
features like iterations and function calls. Such requirements make a
data flow graph cyclic. In a cyclic graph, an operator inside a loop or a
function body is activated as many times as that body is iterated or called.
To ensure the proper execution of reentrant routines, it is necessary to
distinguish the various tokens destined to a single node but belonging to
different instantiations.

Static data flow systems ~14) do not permit concurrent execution of
two instantiations of a reentrant code. The triggering rule is augmented
to ensure that two tokens are never placed on the same arc at any instant.
This rule restricts the parallelism and asynchrony. In dynamic data
flow models, also called tagged-data flow model, an environment tag is
associated with each token. (12'15) The tag identifies the context. Compared

Attempting Guards in Parallel 229

to static systems, dynamic data flow models are more general and can
exploit higher parallelism and asynchrony. Further, they do not suffer
from control overheads due to token acknowledgment. (14) However, the
increased cost in generating and matching tags is the price paid for these
advantages.

The execution of a data flow graph on the multi-ring Manchester data
flow machine (refer to Ref. 12) is described here.

In Fig. 1, the Switch Unit acts as an interface between the host com-
puter and the data flow system. The Switch Unit routes tokens to the
Matching Unit in one of the rings using a simple hash function. The hash
function ensures that all tokens destined to a node are routed to the same
ring. The function of the Matching Unit is to synchronize tokens arriving
on left and right input arcs of a two-input node (known as dyadic tokens).
A dyadic token, on entering the Matching Unit, searches for its partner in
the Matching Store. The Matching Store stores the dyadic tokens awaiting
their partners. A match is successful if the node address and the environ-
ment value of the incoming token match with those of a stored token. On
a successful match, the partner is removed from the Matching Store and a
group-token is formed. If the match is unsuccessful, then the incoming
token is stored in the Matching Store, and awaits its partner.

Tokens leading to a single input node (called monadic tokens)
perform a dummy operation in the Matching Unit. As no matching is

P.E.

m

I .N .

M . U . - - Matching Uni t

N . S . -- Node Store

P .E . -- Process ing Elemenl

I .N. -- ln te rconnec t ion Ne twork

M, M. -- Memory M o d u l e

Fig. 1. The Multi-ring manchester machine.

230 Govindarajan, Yu, and Lakshmanan

required for a monadic token, the incoming token itself is sent as the
group-token. The group-token formed by the Matching Unit is sent to the
Node Store Unit. A group-token extracts the node information (such as
opcode, destination address, type of result tokens) from the Node Store
and forms an executable-token. The processing element executes the
operation specified by the executable-token and sends the output token to
the Switch Unit. The execution of the data flow graph proceeds this way.

2.2. I m p l e m e n t i n g CSP

The proposed implementation is based on the multi-ring data flow
architecture described in the previous section, though the implementation
is suitable for any data flow model. [This includes even the static data flow
machines. This is because, the semantics of the repetitive commands of
CSP does not allow concurrent execution of loop instantiations, and hence
fits well in the static data flow framework.] The underlying architecture
that will be assumed in this paper is similar to the Manchester multi-ring
data flow machine. (12) The processing elements (or simply the processors)
of the data flow machine access and modify certain shared variables
used in the implementation which are stored in a shared memory. The
processing elements and the shared memory are connected by means
of an interconnection network. The shared memory consists of many
memory modules which are low-order interleaved to form a contiguous
address space. The processors can access the multiple memory modules
concurrently, though access to a single module is restricted to one
processor at a time. Thus the shared memory system exhibits an EREW
(Exclusive Read and Exclusive Write) model in the sense that a read or
write access to any memory cell is exclusive. Furthermore, we assume that
the interconnection network that arbitrates requests to memory modules is
assumed to be fair to all requests. That is, it cannot postpone a memory
request indefinitely. Such fair arbitration can be realized by simply using a
first-in-first-out order. Besides these two properties, the topology of the
network does not play any role in the implementation. Therefore our
implementation can be supported with any network topology; as long as
the network satisfies these properties, viz. fair arbitration and exclusive
read/write operation to individual memory blocks. In the simulation
experiments, the topology of the network is varied and thus the effect of
network on the performance of our implementation will be studied.

Viewed from the processing elements, the shared memory organization
resembles any shared memory multiprocessor. We will use two synchroni-
zation primitives, namely fetch and increment (~6) and test and set in our
implementation. It should be noted that two synchronization primitives are

Attempting Guards in Parallel 231

used in the description only for reasons of simplicity and they can be
replaced by a generalized synchronization primitive such as fetch and q~.~16)
The synchronization primitives are performed as atomic operations. The
realization of such synchronization primitives is common in shared memory
machines, and therefore is realistic to assume in our architecture.

A CSP program consists of a set of communicating processes. We
propose to execute a CSP program by converting each process into a data
flow graph and executing the resulting graphs on the data flow machine.
Since the processes of a CSP program must be executed concurrently, the
data flow graphs corresponding to the processes are executed concurrently
in our implementation. In this paper we restrict our attention to generalized
guarded commands. Implementing simple commands of CSP, namely skip,
assignment, and parallel commands are straightforward. Also, work on
implementing CSP with constrained guarded commands (i.e., allowing only
input commands in the guards) has already been reported. ~17~ The
implementation of the generalized guarded commands will be discussed in
the following section. Before proceeding to the implementation we establish
certain terminology that will be followed in the rest of this paper.

2.2.1. Terminology

In a distributed program, the processes are given distinct process iden-
tifiers, called process-ids. Each invocation of an alternative or repetitive
command is referred to as a transaction. A unique identifier, called trans-id,
is generated by concatenating the process identifier (of the process which
invokes the transaction) and a sequence number. The trans-ids are totally
ordered. A transaction contains a number of guarded commands, each
guard having a distinct index. We use the guard index to refer to the guard
itself whenever there is no confusion. Consider the guarded command bi;
ci ~ S in a process P,-, where b~ and ci are the Boolean and I/O guards
respectively. The I/O guard ci is said to be matching with an I/O guard cj
of Pj, if (i) Pj is the process addressed by c, and (ii) the type of the
variable used in c~ matches with that used in cj. If c~ and cj communicate
a signal (rather than a value) then the signal name used in both guards
should be the same. Further, we say c~ and cj are compatible if one of them
is an input command and the other is an output command. From the
definition of matching and compatible guards, we make the following
observation.

Observa t ion 2.2. The relations 'matching' and 'compatible' are
symmetric.

If the I/O parts of the guards g~ and gj in processes P~ and
Pj, respectively, are matching and compatible, then gi is a potential

232 Govindarajan, Yu, and Lakshmanan

communicating complement (or simply a complement) of g / a n d vice-versa.
Also, we can say that Pi is a potential complement of Pg and vice-versa.

As there can be many guarded commands in a transaction, there are
many potential communicating complements. Hence implementing a
generalized alternative or repetitive command is equivalent to reaching an
agreement among the potential communicating processes and electing one
of the many communicating complements. If the processes Pi and Pj agree
to communicate, then we say Pi and P/ rendezvous. Equivalently, P~ is
committed to Pj and vice-versa.

2.3. Related Issues

In the first place, a data flow implementation forbids a process from
owning a Processing Element (PE). Also, since we allow parallel execution
within a single process, various instructions (constructs) belonging to a
process can reside at a number of PEs. As a consequence, a single (process)
state cannot be assigned to a process. This is in contrast to the existing
implementations (3"5'7'9~ which rely heavily on the existence of a unique state
for each process.

Secondly, the execution of I/O commands in CSP warrants the
synchronization of the communicating processes. If a PE executing a
communication construct is allowed to 'busy wait,' then this may lead to
a deadlock situation: a situation where each PE executing a communica-
.tion construct is waiting for synchronization, but the corresponding com-
municating complement is denied a PE due to nonavailability. Thus, to
avoid deadlocks, busy waiting in PEs must be prohibited. That is, a PE
must be set free while the communication construct executed by it (PE)
waits for synchronization. The details of the communication construct need
to be stored in the shared memory to enable the execution of the construct
later when its complement becomes ready.

3. THE I M P L E M E N T A T I O N

First we present an informal description of our implementation of the
alternative command. The subsequent subsection presents a precise descrip-
tion of the implementation. In Section 3.4, we extend our implementation
to handle repetitive and simple I/O commands.

3.1. Informal Descript ion

Consider the execution of an alternative command in a process P+.
First a unique trans-id, t+, is assigned to the transaction. Then the guards

Attempting Guards in Parallel 233

of the transaction are attempted, possibly concurrently, to establish a
rendezvous. For any guard g~ in tt, if Pr is its complement process,
attempting the guard g~ results in the following actions.

1. An entry indicating the willingness of g~ to communicate with its
complement, is written in a shared data structure for P~.

2. The data structure for Pr is searched to find out if Pr is willing to
communicate with P~.

3. The absence of a matching and compatible guard indicates the
complement process is not ready at this moment to communicate
with P~. Therefore the attempt to establish an agreement fails,
terminating the actions of the guard gt. On the other hand--i.e.,
if a match is found--then an attempt to make the processes
commit to the agreement is undertaken. This is accomplished by
acquiring exclusive access to the process variables and modifying
the process variables within a mutually exclusive section, thereby
guaranteeing that a transaction commits to only one rendezvous.
If the attempt to commit the respective processes (or equivalently,
transactions) fails, then the guard gt is unable to establish the
agreement and therefore the actions performed by the guard are
terminated.

If one of the guards of the transaction tz is successful in reaching the
agreement, then that guard is responsible for triggering the execution of the
respective guarded statement (statement following the guard) in the local
process P~ as well as its complement guarded statement in process Pr. The
implementation guarantees that only one guard of a transaction can
succeed as the process variables are modified in a critical section. If none
of the guards are successful, then the transaction reaches a state of
'waiting,' and eventually some other transaction will force a rendezvous. In
Section 4, we prove that our implementation ensures safety--that exactly
one guard in a transaction establishes a rendezvous with exactly one com-
plement transaction--and liveness--whenever there is a possibility of a
rendezvous it will eventually take place. [The formal definitions of safety
and liveness are presented in Section 4.]

3.2. A l t e r n a t i v e C o m m a n d

The following variables are associated with each process Pz.

Seq-Num (PI): This integer variable Seq-Num (Pt) is used for generat-
ing a unique trans-id for each transaction in process Pt. Seq-Num (Pt) is

234 Govindarajan, Yu, and Lakshmanan

initialized to 0 at the commencement of the execution of the program and
is incremented atomically for each transaction invoked in Pt.

Active (Pt): This variable stores the trans-id of the active transaction.
The precise definition of an active transaction will be given shortly and
it may be seen at that point that having an active transaction in Pt is
equivalent to having a nonzero value in Active (Pt).

For each transaction tt, the following variables are stored in the
shared memory.

Committed (tt): A boolean variable indicating whether transaction tt is
committed to some other transaction. Once Committed (tt) is true, no
transaction can establish a rendezvous with t~. To ensure that a transaction
commits to exactly one transaction, the Committed variable is set to True
in a critical section.

Excl (tt): This flag is used to enter the critical section described earlier
in a mutually exclusive fashion. The Excl flag is set atomically using the
synchronization primitive 'test and set.'

G-list (tt): G-list (tt) is the data structure where an entry is written
when each guard attempts to establish an agreement. The data structure is
an array of linked lists indexed on the processes. For each process Pr,
irrespective of whether P~ wishes to comunicate to Pr or not, there is an
entry G-list (tt, Pr). [The arguments for indexing G-list (tl) on the
processes rather than on the guard indices are: (i) more than one guard can
address the same process; (ii) when the complement process checks the
G-list (tt) all the guards (of t~) which are ready and willing to communicate
with the complement process need to be tried; and (iii) the linked list
representation helps faster access to the available guards compared to a
scheme in which the G-list (tz) is indexed by the guard indices.] We will use
G-list (t~) and G-list (tt, Pr), respectively, to refer to the G-list of tt and the
list of entries corresponding to process Pr in the G-list of tt. Associated
with G-list (t~) is a reference count indicating how many guards of t~ have
not been attempted. The reference count is used for the purpose of garbage
collection which will be explained in Section 3.3.

Initially all entries of G-list (t~) will contain nil pointers, and the
reference count will be set to the number of guards in the alternative com-
mand. When each guarded command gt is attempted for execution, a new
entry will be linked to G-list (tt, Pr), where P~ is the remote process
addressed by gt. The entry stores a tuple, (gl , c) , where gt is the guard
index of the local guard and c stores the remote process name, the signal
name, and a flag to identify whether the command is input or output.

Attempting Guards in Parallel 235

D e f i n i t i o n 3.1. A guard gt in a transaction tt is said to be ready if
there is an entry (g l , c) in G-list (t~, Pr), for some remote process Pr with
which gt wants to communicate.

We are now ready to define the term active transaction.

Definition 3.2. A process PI is said to have an active transaction if
Active (Pz) has a nonzero value tt.

In a CSP program, two guarded commands (where one is not nested
in the other) of a process are executed sequentially. Thus any two rendez-
vouses that take place in a process does not occur concurrently. This is true
even for nested guarded commands. [A brief discussion on nested guarded
commands is presented in Section 3.5.] In other words, ~t is not possible to
have multiple simultaneously active transactions in a process. In the data
flow implementation, such a sequentialization of rendezvouses is enforced
by data dependency between two transactions. In the absence of such a
data dependency, sequentialization can be enforced using a dummy data
dependency.

An alternative comand can be executed by converting it into a data
flow graph. In the data flow graph, certain abstractions have been followed
for the sake of brevity. For example, a set of input arguments is passed to
a guarded statement through a single True gate. In practice a number of
True gates have to be used for this purpose. Also, we have assumed
unlimited fanout for each data flow actor.

A few new data flow actors have been used in our implementation.
These data flow actors with their respective input and output arguments
are shown in Fig. 2. The operational semantics of the new data flow actors
used in our implementation is presented next. The semantics of other data
flow actors is same as that presented in Ref. 13.

Get-id: An invocation of an alternative command commences with this
actor. When the Get-id actor is invoked from a process PI, the PE execut-
ing this actor fetches Seq-Num (PI) and increments its contents by one
using the fetch and increment primitive. A unique trans-id, tl, is generated
by concatenating Pz with the fetched Seq-Num. The Get-id actor resets the
Exel(tl) and Committed(tz) to False and then sets Aetive(Pz) to tt. This
order is crucial to the correctness of the implementation.

The Tryguard actor uses the following procedures:

Store (P,, it, gl, c): This procedure links (g l , c) to G-list (tl, P,).

Fetch (t r, Pt): The linked list pointed by G-list (tr, P~) is fetched and
returned to the PE executing the Fetch procedure.

236 Govindarajan, Yu, and Lakshmanan

Trigger Tok~t~t p/

(a) Get-id Actor
< g/,gr,I r >

r

(c) Split Actor

Fig. 2.

L, l

< g l , g r , t r > < g~gl,tl>

Co) Tryguard Actor

< g r , t r >

+--
(d) Ext-lnfo Actor

(e) DumnlyTry Actor

New data flow actors.

Checkguard (gl, P~, c): This procedure is responsible for searching a
matching and compatible entry for the guard gt in G-list (t r) , where t, is the
active transaction in Pr. This task is accomplished by searching for a
matching and compatible entry in G-list (C, PI). When this procedure
succeeds (in finding the matching and compatible guard), it returns gr, the
guard index in the remote transaction. A failure is indicated by returning
a zero value.

Tryguard! If the boolean component of a guard evaluates to True; then
the guard is attempted by executing the Tryguard actor. The details of the
communication guard are specified by the input c as shown in Fig. 2. The
execution of the Tryguard actor for the guard gl in transaction tt results in
the following sequence of actions:

1. The reference count associated with G-list (tt) is decremented by 1.

2. An entry (gl, c) is appended to G-list (tt, P~) using the procedure
Store described earlier.

Attempting Guards in Parallel 237

3. If there is an active transaction t r in the complement process P~
and the Committed variables of t~ and t~ are False, then G-list
(L, P/) is fetched using the Fetch procedure. Otherwise, the
execution of the Tryguard actor terminates.

4. A matching and compatible guard is searched in G-list (tr, PI)
using the Checkguard procedure. Failure to find a match results in
the termination of the execution of the Tryguard actor.

5. When the complement guards are ready, the processor executing
the Tryguard actor attempts to gain exclusive access to the
Committed variables of the complement transactions. This is done
using the Excl flags. Exclusive access to the Committed variables
of the complement transactions is gained in the strict order of
their trans-id values to avoid possible deadlocks due to cyclic
dependencies.

6. If the processor is successful in gaining exclusive access, then it sets
Committed (t~) and Committed (t~) to True. It sends the appropriate
tokens on the output arcs as shown in Fig. 2. The variables Active
(Pt) and Active (Pr) are reset to zero. If the processor is unsuccess-
ful in gaining exclusive access, then the processor relinquishes the
exclusive access by setting the corresponding Excl flags to False.

A complete description of the operational semantics of the Tryguard actor
is presented in Fig. 3.

DummyTry: Whenever the boolean component of a guard fails, the
DummyTry(guard) actor is executed. The execution of this actor results in
decrementing the reference count associated with G-list (t~). The reference
count is used for the purpose of garbage collection which will be explained
in Section 3.3.

Def in i t i on 3.3. A guard g~ in a transaction t~ is said to have failed
if its boolean component evaluates to False.

D e f i n i t i o n 3.4. A process P, or a transaction tr is said to be
captured by a guard gt if the processor executing the Tryguard actor for g~
is successful in gaining exclusive access to Committed (tr).

Note that in our implementation the attempt to capture a transaction tr
takes place only if Committed (tr) is False. Also, in this definition tr could
be t l. This is because for establishing a rendezvous the guard gz must
capture both tt and tr.

238 Govindarajan, Yu, and Lakshmanan

PROCEDURE Tryguard (tl, gt, c);
(* Pt, h, gt : local process id, trans-id, and guard index;
(* c: communication details of the IO guard; *)
(* Pr, t~, g~ refer to remote process-id, trans-id, and guard indez *)
beg in

Store (P~, h, 9~, c); (* store an entry in G-list (h) *)
tr := Active (P~);
i f t, = 0 t h e n skip;
e lse
beg in

fetch (tr, Pt);
gr := Checkguard (gt, c);
i f gr ~ 0 t h e n
beg in

tmi~ := mia (tt, t~); tma= := max (tt, t~);
flag := TI~UE; release (t~i~) := FALSE; release (tma~) := FALSE;
whi le (flag AND (NOT Committed (tmi~)) AND (NOT Committed (t~a~))) do

flag := test-and~set (Excl (t~i~))
(* capture the transaction with a lower trans-id *)

i f (not flag) then
beg in release (tmln) := TRUE;

if (NOT Committed (t~a~)) t hen
beg in

flag := true;
whi le (flag AND (NOT Committed (t~=))) do

flag := test-and_set (Excl (t~=x)); (* capture the other transaction *)
i f (not flag) t h e n
beg in release (t ~) := TRUE;

Committed (t~i~) := TI~UE; Active (t~i .) :~ 0;
Gommitted (t~a~) := TRUE; Active (tin==) := 0;
output-token ((gl,gr,t~), Split-Node (tl)); (* output to the Split actor of tl *)
output-token ((g~,gl,tl), Spllt-Node (tr)); (* output to the Split actor o f t r *)

end
end

end
i f release (t~in) t h e n Excl (t~ i~) : - FALSE; (* release captured transactions, if any *)
i f release (t ~ =) t h e n Excl (t ~ =) : = FALSE;
end

end
end ;

Fig. 3. Operational semantics of Tryguard Actor.

D e f i n i t i o n 3.5. A captured process or transaction is released by
resetting the Excl flag of the transaction to False.

D e f i n i t i o n 3.6. A transaction is said to be committed if its
Commited flag is True.

Split: The Split actor receives a triple (gt, gr, fr) a s its input from a
Trygoard actor. [Or from a False gate when all boolean guards of a trans-
action are False.] This actor splits the triple and outputs the value g~ on
one output arc and the pair (gr , t~) on the other output arc. The value gl
is used to enable the appropriate guarded statement. The pair (gr , t ,)
provides the necessary information for the extraction of input data in the
I/O guards whenever the guard is an input command.

Attempting Guards in Parallel 239

Ext-Info: When the I/O guard is an input command, the corresponding
Tryguard actor only achieves the synchronization. The actual communica-
tion (reception of data) has to be performed with the help of an Ext-Info
(meaning, extract information) actor. As the necessary synchronization
has already been achieved, the data can be input without further syn-
chronization delay.

Lemrna 3.1. Any of the newly introduced data flow actors, namely
Split, Get-id, Tryguard, DummyTry, and Ext-Info, when enabled, will
complete their execution in a finite time.

Proof. We will prove this lemma for each of these actors.

Get-id Actor: In order to prove that the Get-id actor completes its
execution in a finite time, we just need to show that the processor executing
the Get-id actor eventually gets access to the shared variable Seq-Num.
This is guaranteed by the fact that the network arbitration is fair.

Tryguard Actor: As mentioned earlier, clearly any access to shared
memory can only take a finite time. Let g~ in transaction tt be the guard
corresponding to the Tryguard actor. Further, let Pr be the remote process
addressed by gz. The execution of the Tryguard actor terminates if at least
one of the following is true.

1. Pr does not have an active transaction.

2. Pr has an active transaction tr and, for every guard gr in tr, either
gr is not matching and compatible with gz or gr is not ready.

3. P~ has an active transaction tr, Committed(tr) is True and, further,
gt has not captured tr.

4. Committed(tt) is True and gt has not captured t~.

In these cases the attempt to establish a rendezvous fails and the
execution of the Tryguard actor terminates.

Now, suppose that none of the conditions (1)-(4) are true. That is,
each of the following conditions is true.

1. Pr has an active transaction, say tr.

2. There exists at least one guard gr in t~ such that (a) g~ is matching
and compatible with gl, and (b) gr is ready.

3. Committed(t~) is False or g~ has captured t~.

4. Committed(tl) is False or gl has captured t~.

The logical disjunction in conditions (3) and (4) leads to four different
nontrivial cases; in all four cases (1) and (2) are also true.

240 Govindarajan, Yu, and Lakshmanan

Case 1. Committed(tt) is False, g~ has not captured tz, Com-
mitted(tr) is False, and gl has not captured t r . In this case, the execution
of the Tryguard actor terminates, resulting in a rendezvous between tt
and L. This readily follows from the following observations.

(a) Any guard g, other than g~, that captures tl must eventually
release it.

(b) Any guard g, other than g~, that captures tr must eventually
release it.

(c) The number of guards in each process and the number of
processes in a program are finite.

(d) The implementation ensures that any pair of complement
transactions (t~, t2) are captured by a guard in the strict order of
the trans-ids of t~ and t2.

(e) The trans-ids are totally ordered.

Case 2. Committed(t1) is False and gt has not captured tl but gl has
captured tr. Subsumed by-Case 1.

Case 3. gz has captured tt and Committed(L) is False but gt has not
captured t , Subsumed by Case 1.

Case 4. gz has captured both tt and t r. The proof for this case is
trivial.

Split Actor: Follows from the semantics of the Split Actor.

Ext-Info Actor: As the Ext-info actor does not need to synchronize
(the synchronization has already been achieved by the corresponding
Tryguard actor), its execution will complete in a finite time.

DummyTry Actor: The action performed by this actor is decrementing
the reference count of G-list (tt). Since access to shared memory is
guaranteed by fair network arbitration, the execution of a DummyTry
actor completes in a finite time. |

We now describe our implementation in the data flow framework.
The execution of an alternative command is started by sending a trigger
token (refer to Fig. 4) to the Get-id node in the data flow graph. The execu-
tion of the Get-id actor assigns a unique trans-id for the alternative com-
mand. It also resets the Committed and Excl flags. The boolean guards bl
and b2 are evaluated, possibly concurrently. The boolean values bl and b2
control the two Switch actors. The value arriving at the input of the Switch
actor is sent either to a Tryguard actor or to a DummyTry actor depending

Attempting Guards in Parallel

input input

241

input input input
arguments . ,

F i g . 4. D a t a f l o w g r a p h f o r [bl;P2?x~Sl~b2;P3!y~S2].

on whether the boolean value is True or False. Thus, if the boolean compo-
nent of a guard evaluates to True, then the corresponding Tryguard actor
receives the trans-id value sent by the Get-id node. Otherwise, i.e., when the
boolean guard evaluates to False, the DummyTry actor gets the trans-id
value and decrements the reference count associated with the correspond-
ing G-list. As there is no data dependency between the guards of a trans-
action (or the respective Tryguard guard actors), they could be executed in
any order, possibly concurrently. Though more than one Tryguard actor of
a transaction can attempt to establish a rendezvous, only one of them can
succeed, as the Tryguard actors must capture the respective transactions
before setting their Committed variables to True. The successful Tryguard
actor sends a token containing (g~, gr, tr) to the Split node of the local
transaction and (gr, gt, tt) to the Split node of the remote transaction.
The local guard name in the token is useful to identify which guard was
successful in establishing the rendezvous and enable the corresponding

828/21/4.2

242 Govindarajan, Yu, and Lakshrnanan

guarded statement. The guard index and the trans-id of the remote process
are used by input guards to perform the communication (by the Ext-Info
actor).

The data flow graphs corresponding to other processes are also
executed concurrently on the data flow machine. Even if all the Tryguard
actors of a transaction fail to establish a rendezvous, one of its many
potential complements will eventually force a rendezvous and send the
necessary token to the Split node of the transaction.

From this discussion we can define the establishment of a rendezvous
a s ;

Def in i t ion 3.7. A guard gt of a transaction tl selects (rendezvouses
with) gr of tr if the Split node of t t receives a non-zero tuple {gt, gr, t r) on
its input arc.

In this definition, we exclude the case where the Split actor received
the tuple ~0, 0, 0) . This corresponds to the case where all boolean guards
in the alternative command have failed, and no rendezvous takes place.

In a successful rendezvous between a pair guards (or transactions) gt
and gr (or between t t and tr), either gt or g~ (but not both) must have been
successful in capturing (see Definition 3.4) the transactions tl and t~.
Suppose that gt was successful in capturing t t and tr. In this case, we say
that gt is the declaring guard and gr is the accepting guard of this rendez-
vous. Also. we can say that gt initiates the rendezvous. Extending this
terminology to transactions, tt is the declaring transaction and tr is the
accepting transaction.

If all the boolean guards of an alternative command fail, then a run-
time error results. The data flow actor UND is used for this purpose.
It may be observed that in our implementation more than one guard of a
process can be executing the respective Tryguard actors in parallel; some of
them may even succeed in finding their respective partners. The order in
which the Tryguard actors of a process are executed is purely data-driven.
Even though multiple guards of a transaction may concurrently attempt for
the rendezvous, only one guard will succeed. This will be established in
Section 4.

3.3. Garbage Collection

In our implementation, the memory space associated with the variables
for each transaction is reclaimed after the transaction commits to a rendez-
vous. In our implementation it is possible for a transaction to commit even
before some of its guards become ready. If the process variables are
reclaimed immediately after the transaction commits, then some guard of

Attempting Guards in Parallel 243

the transaction may become ready at a later point in time. This, in turn,
would cause an error if an attempt is made to access the process variables
that are already reclaimed. To avoid this problem, the reclamation is
deferred until (i) every guard in the transaction has become ready or failed
and (ii) the Committed variable is True. The reference count associated
with the corresponding G-list can be used to check condition (i). Thus, if
the reference count is zero and the Committed variable is True, the process
variables can be reclaimed.

3.4. Repeti t ive and Simple I/O Commands

The scheme for alternative command can be extended to implement
repetitive and simple I/O commands. The data flow graph for the repetitive
command is shown in Fig. 5. The repetitive command is executed loop
sequentially, circulating the input arguments and the trigger token at the

From W,

~ T F input input arguments arguments x~~ i

Fig. 5. Data flow graph for *[bl;P2?x~S1Nb2;P3!y--*S2].

244 Govindarajan, Yu, and Lakshmanan

end of execution of each repetition. [The recirculation of input arguments
is not shown in Fig. 5 for the sake of clarity.] Such a sequentialization is
necessitated by the semantics of the repetitive command. The execution of
a repetitive command terminates when all the guards in that command
fails. This is achieved by sending a tuple (0, 0, 0) to the Split node as
shown in Fig. 5.

Finally, an input command P r ? x generated by a process Pt is
implemented by considering it as an alternative command

True; Pr ? x --* skip.

Similarly, an output command Pr !Y is translated to:

True; Pr ! Y ~ skip.

The reason for considering a simple I/O command as an alternative com-
mand in the implementation is as follows. Consider the situation in which
a guard of some transaction has as its complement a simple I/O command.
This guard will never succeed as the proposed implementation searches the
matching compatible guards only in other alternative/repetitive commands.
To take care of this situation, either the search (for matching and com-
patible guard) should be extended to simple I/O commands as well or the
simple I/O commands be made as alternative/repetitive commands. We
chose the latter as it makes our implementation simple and uniform.

3.5. Remarks

In this subsection we discuss how our implementation handles certain
special cases.

3.5.1. Nested Guarded Commands

Consider a program in which a process has a nested guarded
command as:

Process Pl

,[true;P2!xl -->
[true;P2?x3 --> S3;

[3 true;P3?x4 --> 54;
]

]

In this case there is only one guard in the repetitive command. Whenever
P1 rendezvous (with P2), it has to execute an alternative command, which

A t t e m p t i n g Guards in Parallel 245

itself is a transaction. However, the transaction (due to the outer repetitive
command) has already reached an agreement, and hence is no longer
active. Thus even in the case of nested guarded commands, the transactions
in a process take place sequentially. Further, as mentioned earlier, the
transactions corresponding to a repetitive guarded command also take
place sequentially. Thus it is never the ease that a process has multiple
simultaneously active transactions.

3.5.2. Serf Communication

Consider, the case in which a process tries to communicate to itself in
a guarded command. For example,

P r o c e s s P1

["Cz'ue;Pl!xl - -> $1;
[] t rue;P1?x2 - -> 52;
]

This program is erroneous since process P1 must agree to select both
guards of the alternative command for the communication to happen. Such
an error could easily be detected by a compiler. However, it is still possible
to write such self-communicating processes when a family of processes are
defined, as in:

P r o c e s s P[1..n]

[(i:-l .. n) true;P[i]!xl --> SI;

[] (i:=l .. n) true;P[i]?x2 --> 52;
]

In this case, each process P[i] tries to communicate with every other
process P[j], for j = 1,..., n, including j = i. To the best of our knowledge,
there does not exist an accepted semantics, and several possible interpreta-
tions could be given for this program. For example, this process can always
result in an error. Alternatively it may be allowed to execute as long as
P[i] rendezvouses with P[j], for j r We believe the latter is more
appropriate particularly since the guards are chosen nondeterministically.

Our implementation handles one part of this interpretation, viz., when
P[i] communicates with a different P[j]. To abort the rendezvous of a
process with itself, the semantics of the Tryguard actor need to be modified
as follows. After a guard has captured the transaction which corresponds
to the smaller trans-id, it should check whether the trans-ids of the local
and the remote transactions are equal. If not, the execution of the Tryguard
actor proceeds as before. When the trans-ids are equal, a transaction is

246 Govindarajan, Yu, and Lakshmanan

trying to communicate to itself. In this case, the Tryguard actor sets the
Committed flag to True, resets the Active variable to zero, and sends a
tuple (- 1, - 1, - 1) to its Split node along the solid arc. No token is sent
along the dotted arc. The Excl flag is also set to True. An input tuple of
(- 1, - 1, - 1) at the Split node corresponds to an error and the program
can be aborted using the Und actor as shown in Fig. 4. With this modifica-
tion, our implementation can now handle self-communicating processes.
Further, for preciseness, Definition 3.7 is modified to exclude the case
where the Split actor receives tuples with negative values.

In the following section, we establish the correctness of our implemen-
tation. Even though in the proof we do not explicitly consider various
special cases, such as nested guarded commands, and self-communicating
processes, it can be seen that the arguments given in the proof hold for
these special cases as well.

4. PROOF OF C O R R E C T N E S S

The correctness of our implementation can be established by proving
that during the potentially infinite execution, all processes (of the applica-
tion program) and their interplay maintain 'safety' and 'liveness. '~18'19) The
first property, safety, means any rendezvous that occurs is correct. Liveness
ensures two processes which should rendezvous eventually will, provided
either of them does not rendezvous with any other process. In the following
two Subsections we define the safety and liveness properties and establish
that our implementation satisfies both of them.

To prove safety and liveness properties, we make the following
assumptions.

(i) The functional units of the data flow system are free from
failures.

(ii) An enabled data flow actor will eventually be scheduled for
execution in one of the processing elements.

(iii) No message communicated between any two functional units of
the data flow machine is lost.

(iv) A processing element of the data flow machine cannot be denied
access to the shared memory for an indefinitely long period.

(v) The memory system behaves as an EREW model. Whenever
there are simultaneous access requests to a single memory cell,
the network resolves the conflict by means of some arbitration
logic and allows the accesses to proceed in some fair order.

Lastly, we use the notation gt(t~) to represent the guard g~ of a trans-
action t~.

Attempting Guards in Parallel 247

4.1. S a f e t y

The safety property requires every rendezvous that takes place must
obey the semantics of the generalized guarded commands. By this we mean
that each instance of an alternative/repetitive command must select exactly
one guarded statement in the alternative/repetitive command. This means
that every transaction rendezvouses with exactly one transaction. The
selected guarded statements in the respective transactions must have guards
that are both matching and compatible, so that communication can take
place between the processes. Finally, the agreement between the two trans-
actions must be mutual. This can be formalized as:

Def in i t i on 4.1. The rendezvous between the guard gt in trans-
action tz and the guard gr in transaction tr is safe if whenever gt selects gr,
the following conditions are satisfied:

1. g~ selects gt,

2. gt and gr are matching and compatible, and

3. no transaction, other than tr, can select tt.

An implementation is safe if all the rendezvouses between guards that it
allows are safe in this sense.

T h e o r e m 4.1. The implementation described in the previous section
is safe.

ProoL Suppose that a guard gl(t t) selects gr(tr). Then we will prove
the conditions (1)-(3) in Definition 4.1 hold.

P a r t 1: Here we need to prove the rendezvous is mutual. There are
two cases to consider.

Case 1. If gt is the declarer, then by definition gl must have successfully
captured tl and t r. Then the Tryguard actor for gt sends the tuple
(gr, gl, tz) to the Split node of t r.

Case 2. If gr is the declarer, then its Tryguard actor must have sent the
tuple (g t , gr, tr) to the Split node of t t. It can be seen from Fig. 3 that
the same Tryguard actor would also send the tuple (gr , g/, t t) to the
Split node of tr.

Thus in either case, the Split node of tr receives the tuple (g r , gt, tl). From
Definition 3.7, it follows that gr(tr) selects g1(tt).

P a r t 2. Here also there are two cases to consider.

248 Govindarajan, Yu, and Lakshmanan

Case l. If g1 is the declarer of the rendezvous, then the execution of its
Tryguard actor ensures g~ and gr are matching and compatible (see
Fig. 3).

Case 2. If gt is the acceptor of the rendezvous, then gr must be the
declarer. From Part 1 of the theorem, we know that gr selects g~. Now
using Case 1 of Part 2, gr and gt are matching and compatible. By
Observation 2.2 matching and compatible are symmetric relations.

Part 3. We have to prove that there exists no other transaction tk
where k r l and k r r such that tk rendezvouses with tt. This reduces to
showing that the Split node of tl never receives two tuples. From Part 1 of
the theorem, any rendezvous that takes place is mutual and the Split nodes
of the declarer and the acceptor receive one tuple each. Therefore to prove
the theorem it remains to show that a Split node receives at most one tuple.

From the semantics of the Tryguard actor (refer to Fig. 3), a Split
node cannot receive more than one tuple on any given arc. Notice that the
Split node of a transaction tt can receive tuples via two arcs only when two
different guards of any two transactions, not necessarily distinct, have cap-
tured the transaction tt. This is impossible since capturing the transactions
takes place in a mutual exclusion region. Mutual exclusion is guaranteed
as the Excl flag is set by the test and set synchronization primitive and,
further, read/write access to memory is exclusive. Once a rendezvous takes
place, the Committed flags of the respective transactions tt and tr are set to
l'rue. After this, no other guard can capture tt. Therefore the Split node of
tt receives exactly one tuple. |

In the following subsection we establish that our implementation is
live.

4.2. Liveness

Under liveness, we need to ensure the following two things. First every
rendezvous that takes place leads to the completion of the respective trans-
actions which participated in the rendezvous. Also, liveness must capture
the notion that the implementation does not prevent any rendezvous that
is allowed by the semantics of the guarded commands. More precisely, if
two transactions can possibly rendezvous, and neither of these two trans-
actions rendezvouses with a third transaction, then the implementation
must ensure a rendezvous between the first two transactions takes place in
a finite time. The condition, 'neither of these two transactions rendezvouses
with a third transaction,' carefully avoids 'fairness' issues by not requiring

Attempting Guards in Parallel 249

that every possible rendezvous should take place. The discussion on
fairness is deferred to Section 4.3.

This intuition on liveness can be formalized as:

D e f i n i t i o n 4.2. An implementation of generalized guarded com-
mands is said to be live if

1. for every rendezvous between g~(tt) with gr(tr), the transactions
tt and tr complete their execution and terminate, provided the
statements following the guards gz and gr terminate.

2. if t~ and tr are two transactions with guards g~ and gr, respectively,
such that gz and gr are matching and compatible guards, the
boolean components of gt and gr evaluate to True, and neither tz
nor tr rendezvouses with a third transaction, then eventually t~
rendezvouses with tr.

Unlike the safety property, liveness is inherently temporal in nature.
Therefore one needs to include 'time' in the analysis and proofs of liveness
properties. We do this by explicitly including time as a parameter in the
definition of various events in our implementation.

4.2.1. Notation

We say that an event has occurred by time T to mean that the event
occurred at some time T'<~ T.

enabled (g, T): g has been enabled by time T.

ready (g, T): By time T, the guard g has become ready.

accessed (g, tr, T): By time T, G-list (L) has been accessed by the
Tryguard actor for g.

captured (g, tz, T): By time T, the guard g has captured the trans-
action h.

selected (gx, g2, T): By time T, guard gl has selected guard g2.

selected (tl, t2, T): By time T, the transaction t~ has selected t 2.
(Recall that by Part 1 of Theorem4.1, selected (tl, t2, T),~selected
(t2, tl, T).)

It may be observed that all predicates defined here, including captured,
are monotonic in the sense that if an atom is true at time T, then it is true
at all time T' >~ T.

Theorem 4.2. The implementation discussed in the previous
section is live.

250 Govindarajan, Yu, and Lakshmanan

ProoL We need to prove that conditions 1 and 2 in Definition 4.2
hold.

Part 1: If gt(tt) selects g~(tr), then we will show that the transactions
t t and tr complete their execution and terminate. Since gz selects gr, by
Theorem 4.1 (1), g~ must select gz. This means that the Split nodes of tz and
tr must respectively receive the tuples (gt , g~, t~) and (gr, gt, tz). From
Observation 2.1 and Lemma 3.1 the execution of all data flow actors used
in our implementation terminates in a finite time. From the data flow
graph shown in Fig. 4, it is easy to see that once the Split actor of tt
receives the tuple (gt, gr, tr), the data flow graph for the guarded
statement corresponding to gz will receive its necessary input tokens and
therefore will get executed in a finite time, and by Lemma 3.1 its execution
will terminate. Finally, it is given, in Definition 4.2, that the guarded state-
ment following gz also terminates. Thus the execution of tl itself terminates
in a finite time. A symmetric argument holds for the remote transaction t~.

Pa r t 2: We first prove the following claim.

Claim 4.1. Suppose that gt(tz) and gr(tr) are matching and com-
patible guards, and their boolean components evaluate to True. Then there
exists a (suitably large) time T such that selected (tt, tk, T) and selected
(tr, tk, T) are false, Vk, and

3(T/, T/', Ti, T ; ') [(T /< Ti')/x (T/'~< T)/x (Z~' < TT)/x (T~" ~< T)]/x

[(Taccessed(gt, tr, T/) /x accessed(gt, tr, T/') /x ready(gr, Ti))

v (--qaccessed(gr, tz, T;)/x accessed(gr, tz, TT)/x ready(gl, Tr'))]

ProoL Since the boolean components of gt and gr evaluate to True,
it can be seen from the data flow graph shown in Fig. 4 that the Tryguard
actors corresponding to gz and g~ receive the necessary input tokens on
their input arcs. Therefore there exists some time, say Tz I such that the
Tryguard actor for gz has been enabled by time T]. Similarly, the Tryguard
actor for gr has been enabled by time Tr ~. Let us choose T~ and T 1 to be
the minimum values such that enabled (gt, T]) and enabled(g, Tr hold.
By the underlying assumption of the data flow model (see Section 4), any
enabled data flow actor will eventually be executed on one of the pro-
cessors. From the semantics of the Tryguard actor, it follows that first gt
becomes ready by some time T~ >~ T]. Formalizing these arguments, we
have

(~T~) enabled(gz, T]) /x (~T~)ready(gz, T~) ^ (T~ >/T~)

A t t e m p t i n g G u a r d s in P a r a l l e l 251

Let T 2 be the minimum value such that this condition holds. Also, from
Fig. 3,

ready(g,, T~) ~ (~T~) accessed(gt, G, T~) A (T~ ~ T~)

Without loss of generality, we choose T~ to be the smallest such time.
Similarly, for gr

(3T]) enabled(gr, r)) A (~ r~) ready(gr, r,2.) /x (T~ >~ T)) and

3 ready(g, T~) ~ (3T~) accessed(gr, th r~) A (T~ >I T~)

Once again, T~ 2 and T~ are chosen to be the minimal values required to
satisfy these conditions.

Figure 6 represents the partial order in the chronology of various
events discussed here. Since access to G-list (tt) is required for both the
events ready (gl, I"7) and accessed(g, tz, T~), and by the EREW nature of
the memory system, we have

T~ # T,. 3

Using a symmetric argument,

r r?

Now, to prove the claim, it is sufficient to show that

< < T?)

is true. To show this, notice that

(T 2 > T)) A (T~> T•)

t I I

T' t T'; T

I I !

T r T r T

I 3 i J
1 2 3

T i T / T l T

I I t I
] ~ 3

T r T ~ T r T

Fig. 6. Chronology of events.

252 Govindarajan, Yu, and Lakshmanan

is impossible, since

3 2 (T~ > Tr 3) A (T# > T 3) ~ [(Tt 3 >i T 2 > T 3) A (T r ~ T r > T3)]

Hence, either (T 3 > r #) or (r 3 > T~). Suppose T3> T 2. Since T 3 is the
minimum for which accessed(gt, tr, T 3) is true, we can say,
(~accessed(gt , tr, T#) A accessed(gl, tr, T3)) holds. So choose, T / = Tr 2
and T/ '= T~. Clearly, we have,

-laccessed(gt, tr, T/) A accessed(gt, tr, T/') A ready(gr, T/)

The argument for the case T 3 > T~ is symmetric. To complete the proof,
notice that we can choose T to be any time greater than max(T/ ' , T").
Thus we have,

3(r / , r/', T;, Tr")E(T/< T/') A (r / ' <. T) A (T" < T;') A (r " <~ T)] A

[(-Taccessed(gt, tr, T/) A accessed(gt, 8, T/') A ready(gr, T/))

v (Taccessed(gr, tz, T') A accessed(gr, tl, T") A ready(gt, T~'))] m

Proof (o[Part 2). First we will prove the theorem for the special
case when there is exactly one pair of matching and compatible guards in
the transactions tt and tr. It is given that neither tt nor tr rendezvouses with
another transaction tk. Therefore we have,

(VT)(Vt~)[(tk ~ tt) A (t k ~ tr)

(~selected(tl , tk, T) A (~selected(tr, tk, T))] (i)

Also we know that gt and g~ are matching and compatible. Now,
suppose selected (tt, tr, T), and hence selected (tr, tt, T), is true for some
time T, then we are done. So assume that there is a (suitably large) time
T' such that selected (tt, t~, T') is false. Now, using (i) we have,

(VT')(Vtk)[--qselected(tt, t k, T') A -~selected(t~, tk, T')]

By Claim 4.1, we have

(3T~)[accessed(g,, tr, T 1) A ready(gr, T])]

v (3T])[accessed(gr, tt, T 1)/~ ready(g,, T))] (ii)

for some T], T) ~< T'.
We will prove the theorem for each of these two cases.

Case 1. Supposed accessed(g1, t~, T]) A ready(g~, T)). There are
two cases to consider here. Either tt < t~ or tt > tr.

Attempting Guards in Parallel 253

Case 1.1. Let t l < t , By (i) we know that any transaction tk,
(t k =fi t l A t k 5/= tr) that captures tt must eventually release t~. Further, there
are only a finite number of guards and a finite number of processes in a
program. From these arguments, and from (accessed(gt, L , T ~) ^
ready(gr, T])), we have

(3T2r)[captured(g~, t,, T2r) /x (T~ >~ T)) A (T~ <~ T')]

v (3T?)[captured(gt, tt, TT) a (T? >/V 1) a (T 7 <<. V')]

The two subcases to consider here are:

Case 1.1.1. Let captured(g,., t~, T2r) hold. Now, tr has captured tl
and will proceed to capture t r. Any other transaction tk (tk ~ tl) that cap-
tures t r must eventually release it, since selected (tr, t~, T) is false for all T.
Also, since t t<tr and t~ has been captured by gr, tl cannot capture tr.
Therefore, (3 T r3)(Tr3 >~ T 2)/x (Tr3 < T ') such that captured(g r, tr, T 3) is
also true. From Fig. 3 and by the monotonicity of events,

captured(g, tl, T 2)/x captured(gr, tr, T 3) ~ selected(t, tl, T4r)

for some (4 3 2 T r ~ T r ~ T r) and (T 4/> T')

Case 1.1.2. Suppose captured (g~, tl, T~). Using arguments similar
to those used in Case 1.1.1., we can say captured(gt, tr, T 3) holds for some
T~ > T 7. Also,

captured(g,, t,, T~) /x captured(g,, tr, T 3) ~ selected(tz, t~, T 4)

for some (T 4 ~> T 3) ^ (T 4 ~> T')

Note that in capturing transactions, a deadlock due to cyclic
dependencies is avoided as the transactions are captured in the strict order
of the trans-ids. By Part 1 of Theorem 4.1,

selected(tt, L, T 4) ~ selected(t~, tt, T~)

Case 1.2. Suppose t t> tr. The proof for this case is similar to
Case 1.1 except that the order in which the transactions are captured by the
guards is reversed.

Case 2. Let accessed(gr, tt, T~) ^ ready(gt, Tr A symmetric
argument to that used for Case 1 can be used to prove this case.

Now, for the case when there is more than one pair of matching and
compatible guards between tt and tr, condition (ii) has many possibilities,

254 Govindarajan, Yu, and Lakshmanan

two for each pair of matching and compatible guards. Using arguments
similar to those used in Case 1.1, it can be easily proved that selected
(tt, tr, T 4) is true in each of these cases. |

4.3. Fairness

Besides safety and liveness, in general, it is desirable to support
'fairness' in implementations involving nondeterministic choices. In par-
ticular two kinds of fairness, weak and strong fairness, have been defined in
literature. (9, 20)

D e f i n i t i o n 4.3. An implementation of guarded commands is
weakly fair if it can be guaranteed that during an infinitely repetitive execu-
tion, a guard that remains continuously available (i.e., its boolean guard
evaluates to True and its complement process is ready to communicate)
will eventually rendezvous.

D e f i n i t i o n 4.4. If it can be guaranteed that a guard which
is available infinitely often (though not necessarily continuously) will
eventually rendezvous, then the implementation is strongly fair.

In our implementation, the guards of a single process can be executed
in any order, possibly concurrently. In the absence of a total order of
execution of the guards, analytically proving fairness (either weak or strong
fairness) is a difficult task. However, using the simulation approach, we
obtain certain performance parameters which are indicative of the extent of
fairness of our implementation. The details are discussed in Section 5.2.

5. P E R F O R M A N C E E V A L U A T I O N USING S I M U L A T I O N

In this section, we evaluate the performance of our implementation
using discrete-event simulation.

5.1. S imulat ion Details

In order to obtain empirical performance metrics of our implementa-
tion, we developed a simulator for the underlying architecture. Various
functional units of the architecture, such as the Switch Unit, the Matching
Unit, the Node Store Unit, the Processing Elements, the Interconnection
Network, and the Shared Memory system, have been simulated at a func-
tional level. In the simulation, each of these units take a specified time to
process a token. The execution time associated with each functional unit is

Attempting Guards in Parallel 255

based on Refs. 21 and 22. In Table I, we list these execution times expressed
in time units. All functional units, except the processing elements, take a
constant time for processing. For the processing element, the execution
time varies depending on the operation performed. This is simulated by
assuming an exponential execution time with a mean value of 20 time units.
Complex data flow actors, namely Tryguard, Get-id, Ext-Info data flow
actors, require additional execution time, over and above the normal
execution time, for accessing shared memory. This has also been faithfuly
simulated in the simulator.

The topology of the interconnection network is left as a parameter in
the simulation. We have experimented with a bus, a multistage network,
and a crossbar network. Buffering of messages is assumed whenever there
is a contention in the network path. The multistage network causes
logarithmic delay, while the bus and crossbar networks cause a constant
delay. The simulator is written in Pascal and run on a Unix platform.
Application programs represented as data flow graphs are input to the
simulator through a simple coding scheme. The simulator executes the
application program, with each functional unit performing the token pro-
cessing as would be done in an actual machine. As mentioned earlier, each
functional unit takes a specified processing time, and remains busy during
this period in the simulation. Tokens arriving at the functional unit during
this period are queued in the input queue associated with that functional

T a b l e I. E x e c u t i o n T i m e of F u n c t i o n a l U n i t s

Functional Unit Execution Time

Switch Unit 2

Matching Unit
Successful Match 8
Unsuccessful Match 16

Node Store Unit 2

Processing Element 20

Shared Memory Unit
Memory Access Time 2

Interconnection Network
Communication Delay

Bus 2
Crossbar Network 2
Multistage Network a 2 * log(n)

a The number of stages in the Multistage Network is log(n).

256 Govindarajan, Yu, and Lakshmanan

unit. Queued tokens are processed subsequently, one after another, in the
order of their arrival.

5. 1.1. Input Parameters

To evaluate the performance of our implementation, a synthetic work
load program was designed. The synthetic program consists of m processes,
each process executing a repetitive command having n guards. The
repetitive commands belonging to the m processes are such that the I/O
guards in one have matching and compatible guards in the complement
processes. Without loss of generality, all the guards (in all the processes)
are enabled; that is, their boolean components always evaluate to True.
The number of rings in the multi-ring data flow machine can be varied and
is an input parameter for the simulator. The number of (interleaved)
memory blocks and the type of network used are other input parameters.
All these parameters can be varied independently.

5. 1.2. Output Parameters
The following performance parameters are measures of efficiency and

fairness of the implementation.

(i) Average Tries: The number of guards that have been tried before
the rendezvous is evaluated for each transaction. The mean value of
this figure is the average tries. It can be evaluated as the ratio of the
sum of the number of guards tried (before a rendezvous) for each
transaction to the total number of transactions. The parameter is of
interest from the efficiency viewpoint. The value of average tries for
our implementation could be between 2 (corresponding to one guard
in each of the complement processes) and 2 �9 n (where n is the number
of guards per transaction). The value of average tries can be
normalized by dividing it by 2 �9 n.

(ii) Average Rendezvous Time: For each rendezvous that took place,
the time elapsed between the initiation (Get-id node) and commit-
ment, called the rendezvous time, is measured. The ratio of the sum of
the rendezvous time for all the transactions to the total number of
transactions gives the average time for a rendezvous.

(iii) Guard Bias Figure: If the implementation is fair, then every guard
is equally likely to participate in a rendezvous. Hence, the number of
times a guard has participated in a rendezvous, called the success
count, should provide a measure of fairness. Ideally, the success count
for each guard should be equal to

2 �9 total number of transactions
number of guards

Attempting Guards in Parallel 257

(The value 2 in the numerator is to account for the fact that two
guards participate in every rendezvous.) Therefore the standard devia-
tion of the success counts of the guards is a measure of biasing. This
figure, referred to as the guard bias figure, indicates the extent to
which a guard is biased/favored. For a fair implementation, this value
should be very low.

(iv) Process Bias Figure: This figure is similar to the guard bias and
can be obtained by computing the standard deviation of the success
counts of the various processes.

Since all the guards are enabled continuously in the simulation study,
the process and guard bias figures are measures of weak fairness.

(v) Average Concurrency: Our implementation is a parallel implemen-
tation for the generalized guarded commands. It would therefore be
interesting to measure the amount of concurrency exploited in our
implementation. In measuring the concurrency in our implementation,
we separate the concurrency in executing communication-related
operations from that in executing other supporting actors. We refer to
these concufrencies as communication-actor concurrency and support-
actor concurrency respectively. As the data flow actors, Get-id,
Tryguard, Split, Ext-Info, and DummyTry are directly useful in estab-
lishing the rendezvous, we call these actors as communication-related
operations. Other data flow actors used in our implementation are
support actors. The average concurrency in executing each of these
kinds of actors is defined as the ratio of the total time spent by all the
processors in executing the actors of this class to the total simulation
period.

5.2. Performance Results

Three different synthetic programs have been used in our simulation
experiments. In the first program, there are five processes, each communi-
cating with every other process twice, once through an input command and
once through an output command. The second program is similar to the
first one, except that nine processes interact with each other. There are
sixteen guarded commands and five processes in the third program, where
the communication between any two processes can take place using any of
the four guarded commands (two input and two output guards).

The input programs were run on the simulator for different configura-
tions of the data flow machine. The number of rings and the number of
memory modules were varied from 1 to 32. In all configurations the three
network topologies, namely a single bus, multi-stage, or crossbar network,
were tried. The simulation period was kept high enough to accommodate

828/21/4~3

258 Govindarajan, Yu, and Lakshmanan

at least 1000 transactions in each process, a total of 5000 to 9000
rendezvous taking place in the entire simulation period. It is observed that
the simulation results settle down fairly quickly, even with a total of 100
transactions.

Average Tries: Table II lists the normalized value of average tries (for
a rendezvous) for various simulation runs. We make the following two
observations:

1. The average tries value varies from 0.6 to 0.97 for the different
runs. In particular, when the number of guards per process is
smaller and the number of rings in the data flow machine is larger,
the value of average tries is high. This can be reasoned as follows.
When there is a low parallelism, i.e., fewer number of guards to
try, and a high resource availability, the chances are high for more
guards of a process to be tried before a rendezvous. Further, since
all boolean guards in the application program trivially evaluate to
True, it is possible that all guards of a transaction are attempted
(i.e. the respective Tryguard actors are executed) more or less at
the same time, accounting for the large value of average tries. This
further adds to the possibility that the Tryguard actors of a
process are executed simultaneously, accounting for the large
number of tries before a rendezvous.

2. There is only a minor variation in the average tries as the network
topology is changed. This is attributed to the low network-
memory traffic. The ratio of memory access time to rendezvous

Table II. Average Tries

Input Programs
with Network

Processes/Guards Topology

Normalized Average Tries
No. of Rings

1 2 4 6 8 12 16 24 32

5 8 Bus 0.73 0.70 0.71 0 .62 0.84 0.84 0.87 0.88 0.90
5 8 Multistage 0.73 0.70 0.73 0.65 0.9l 0.93 0.95 0.97 0.97
5 8 Crossbar 0.73 0.70 0.73 0.61 0.86 0.87 0.87 0.92 0.95

5 16 Bus 0,62 0.61 0,63 0,61 0.70 0.76 0.75 0,84 0.80
5 16 Multistage 0.62 0.61 0.67 0.63 0.73 0.81 0.90 0.88 0,90
5 16 Crossbar 0,62 0,61 0.64 0.62 0.69 0.76 0.76 0.78 0.76

9 16 Bus 0.70 0.66 0.67 0.65 0.72 0.79 0.86 0.85 0.86
9 16 Multistage 0,70 0.67 0.68 0.66 0.75 0.83 0.95 0 .96 0.97
9 16 Crossbar 0.70 0.67 0.67 0.65 0.73 0.79 0.82 0,82 0.82

Attempting Guards in Parallel 259

time is found to be low, less than 12%, in a typical run. From this,
we can say that the network/memory traffic does not dominate the
implementation.

Average Rendezvous Time: The average rendezvous time as the
architectural configuration is changed are tabulated in Table III. The
average time decreases continuously as the number of PEs is increased up
to 6 or 8, and then the value saturates. As in the case of average tries, a
change in the number of memory units or network topology has little effect
on average rendezvous time. Again, this is due to the low network/memory
traffic.

Fairness Measures: Table IV summarizes the guard bias and process
bias figures for the benchmark program with 9 processes. The bias figures
for other benchmark programs exhibit a similar trend and hence are not
shown here. We notice these values are very low, at most 2 transactions out
of nearly 1000 transactions. Such a low degree of biasing is acceptable to
an implementation involving nondeterminism.

Average Concurrency: The average communication-actor concurrency
and the support-actor concurrency for various architectural configurations
using the shared bus interconnection are shown in Table V. The perfor-
mance results exhibit a similar trend when other network topologies are
used, and hence are not included here. As can be observed from Table V,

Table III. Average Rendezvous Time

Input Programs
with Network

Processes/Guards Topology

Average Rendezvous Time (in time units)
No. of Rings

1 2 4 6 8 12 16 24 32

5 8 Bus 2174 910 467 304 336 308 313 318 320
5 8 Multistage 1972 912 489 322 346 321 318 310 322
5 8 Crossbar 2038 912 479 300 328 309 303 314 300

5 16 Bus 3615 1555 840 535 571 532 512 548 536
5 16 Multistage 3500 1555 865 571 585 530 519 534 527
5 16 Crossbar 3615 1555 841 550 560 509 539 517 511

9 16 Bus 5954 2455 1206 890 773 770 769 760 770
9 16 Multistage 5721 2478 1246 930 . 780 765 753 739 748
9 16 Crossbar 5954 2469 1202 898 748 768 748 749 653

260 Govindarajan, Yu, and Lakshmanan

Table IV. Fairness Measures

Input Programs
with

Processes/Guards

Bias Figures (in number of transactions)
No. of Rings

Network
Topology 1 2 4 6 8 12 16 24 32

Bus
9 16 Guard Multistage

Bias Crossbar

Bus
9 16 Process Multistage

Bias Crossbar

3.0 3.2 1.0 1.2 1.6 0.8 1.3 1.2 0.8
1.6 1.0 1.2 1.2 1.2 1.0 1.l 1.0 0.7
1.6 0.7 1.4 0.7 1.2 1.2 0.9 0.9 0.9

1.2 1.2 1.0 1.4 1.4 1.4 1.4 1.6 1.4
1.2 1.2 1.2 1.3 1.3 1.5 1.6 1.5 1.5
1.2 1.1 1.0 1.2 1.4 1.5 1.4 1.7 1.4

the communication-actor concurrency increases continuously with an
increase in the number of processors, while the support-actor concurrency
saturates beyond 16 processors.

5.3. Throttling Parallelism

The simulation results show that average tries for a rendezvous is
quite high in our implementation. This is so especially when there is a high
resource availability. The reason for the high value of this performance
figure is, partly, our greedy approach--attempting all the guards of a
process simultaneously. Though such an approach increases the parallelism
it can result in poor resource utilization and even poor performance in cer-

Table V. Concurrency Figures

Input Programs
with

Processes/Guards

Concurrency Figures
No. of Rings

1 2 4 6 8 12 16 24 32

8 Commn.-Actor 0.29 0.55 1.09 1.41 1.88 2.08 2.35 2.42 2.50
Support-Actor 0.71 1.44 2.77 3.56 3.54 4.21 4.96 5.05 5.06

16 Commn.-Actor 0.29 0.57 1.09 1.58 1.94 2.38 2.74 2.89 3.02
Support-Actor 0 .70 1.43 2.65 3.82 4.57 4.81 4.98 5~05 5.09

16 Commn.-Actor 0.29 0.59 1.15 1.67 2.07 2.48 2.93 3.19 3.39
Support-Actor 0.71 1.41 2.83 4.05 4.75 5.00 5.19 5.19 5.19

Attempting Guards in Parallel 261

tain cases. Similar studies have been reported in Ref. 23, where unbounded
unraveling of loops causes a poor utilization and a performance penalty.
Restricting the amount of parallelism (or unraveling) has been proposed as
a remedy/23) We adopt a similar method to reduce the average tries for a
rendezvous. Instead of allowing all the (enabled) guards of a process to
attempt a rendezvous, we modify our implementation to attempt at most
k guards simultaneously. That is, in each process only k Tryguard actors
can be active at a time. On completion of a Tryguard actor for a guard i
in process P, the (k + i) t h guard (in P) can be initiated. This scheme
facilitates tuning the amount of parallelism in our implementation.

5.3. 1. Simulation Results

The simulator has been modified to implement the new scheme. The
value of k, called the parallelism bound, can be specified at the runtime of
the simulator. The simulation experiments were conducted for the values of
k = 16, 12, 8, 4, 2 and 1. The results of the simulation experiments are
plotted in Fig. 7 for the benchmark program with 9 processes and 16
guards. These experiments were conducted for three different architecture

with 4 rings

N
o v
r 1600 e

m r

z g . 750 - a a ~
i
z
e R
d : e / /

n
A , , . . J ~ x .;'1 v ~ :1 1200 e

~ \ :'1 z
a' 0,2~- - y ;
g x u

e s

T T
r i

e 800 e

\ \ wi th 8 rings
\ \

x \ with 32 rings

x x

\ \

, , / 1 \ . , ' /
. x . . /

. x \ . , ' /

Parallel ism bound

Fig. 7. Effect of parallelism bound.

262 Govindarajan, Yu, and Lakshmanan

configurations with 4, 8, or 32 rings and with a bus interconnection. Other
benchmark programs and architectural configurations have similar perfor-
mance curves and hence are not shown here.

From Fig. 7, we observe that the normalized average tries for a
rendezvous decreases as the parallelism bound k is decreased. The
normalized average tries drops to 0.42 when the parallelism bound is 2.
The average rendezvous time, on the other hand, increases with decreasing
values of k. This is not unexpected, because when the parallelism is
bounded, it is natural for the rendezvous time to go up. Both the average
tries and average rendezvous time are important parameters and need to
be as low as possible for a good implementation. Hence in tuning the
parallelism we must strike a balance between the average rendezvous time
and the average tries. In order to achieve this we propose an adaptive
algorithm in the following subsection.

5.4. An Adaptive Algorithm for Tuning Parallelism Bound

In the adaptive algorithm, the implementation starts with a parallelism
bound equal to the number of guards in any process. After every x rendez-
vous, the adaptive scheme tries to increase or decrease the parallelism
bound (by 1) depending on the performance parameters. This is done by
calculating the current values of the normalized average tries and the
average rendezvous time and comparing them with those calculated pre-
viously (x rendezvous before). If the normalized average tries has decreased
and the average rendezvous time has not increased by, say 5 % then the
previous change in the parallelism bound is accepted. Also, the parallelism
bound is further decreased (by 1), hoping for further improvement in the
performance parameters. On the other hand, if the average rendezvous
times has increased significantly (by more than, say, 5%) then the
parallelism is increased by 1. The current value of parallelism bound is used
for the next x rendezvous. The value of x is critical in the adaptive scheme.
If x is chosen to be too large, then changes in parallelism bound occur
once after a long interval and therefore it may take a long time for the
parallelism bound to settle. On the other hand, if the value of x is too low,
there is more fluctuation in the parallelism bound as the performance
parameters are computed sooner, and therefore may not fully reflect the
changes made in the parallelism bound during the last adaptive step.

The simulator has been modified to implement the adaptive scheme
that tunes the parallelism hound. The results of various run have been
tabulated in Table VI. A bus interconnection network was used throughout
this experiment. Using other interconnection networks does not seem to

Attempting Guards in Parallel

Table VI. Performance of the Adaptive Scheme

263

Number of Rings
Input Programs with

Processes/Guards Performance Parameter 4 8 16 24 32

5 16

9 16

Average Parallelism Bound 4.52 5.44 5.34 5.60 5.50
Normalized Average Tries 0.52 0.55 0.58 0.60 0,60
Average Rendezvous Time 933 561 559 549 558
Commn.-Actor Concurrency 1.06 1.91 2.24 2.31 2.36
Support-Actor ~oncurrertcy 2.67 4,88 4.98 5,02 5.05

Average Parallelism Bound 5.03 5.52 6,10 5.80 6.00
Normalized Average Tries 0.51 0.52 0.58 0.57 0.58
Average Rendezvous Time 1349 858 833 867 858
Commn.-Actor Concurrency 1.12 2.03 2.34 2.52 2.56
Support-Actor Concurrency 2.86 5.03 5.19 5.20 5.20

alter the performance parameters significantly and hence their results are
not reported here.

It can be observed that the adaptive scheme tunes the parallelism
bound depending on the available resources (in this case, the number of
rings in the multi-ring architecture) to strike a balance between the nor-
malized average tries and the average rendezvous time. The effectiveness of
the adaptive scheme can be appreciated by comparing the average tries and
the average rendezvous time for the adaptive scheme with those for an
implementation where the parallelism bound is fixed. The comparison is
done for the benchmark program with 9 processes on an architecture with
32 rings for various values of parallelism bound, namely 2, 4, 8, 12, and 16.
Figure 8 shows how the adaptive scheme achieves a tradeoff between
average tries and average rendezvous time.

Table VI also summarizes the concurrency figures for the adaptive
scheme. Even in the presence of adaptive throttling, our implementation
exploits concurrency in executing both communication and support actors.
However the. values for the communication-actor concurrency in Table VI
are lower compared to the corresponding values in Table V. The difference
is significant for larger number of rings, e.g., with 16, 24, or 32 rings. This
is quite intuitive as the (adaptive) throttling scheme essentially controls the
parallelism bound, especially in executing communication actors. Further,
the throttling scheme is more effective for larger number of processors. The
values for support-actor concurrency figure in Table VI are more or less
equal to those in Table V.

The results shown in Fig. 8 and Table VI were obtained by performing
the adaptive scheme once every 40 rendezvouses (i.e. x=40). Figure9

264 Govindarajan, Yu, and I.akshmanan

N
1.0

o

r

m
a

I
0.8

i

z

e

d

0.6
A

v

e

r

a 0.4
g

e

Y

r
i 0.2

e

s

Fig. 8.

1

I

l - Normal ized Average Tries

2 - A ve r a ge Rendezvous Time

1

2

A B C

A - F ixed Para l le l i sm Barred = 16

B - Fixed Parallel ism Bound - 12

C - F ixed P~ralh l ism Bound = 8

I

t

1

I

D E F

D - Fixed Parallel ism Bound = 4

E - Fixed Paral le l ism Bound = 2

F Adapt ive Unrave l ing

A
=1100

v

e

r
a

- 10(30 g
e

R

e

n

- 900 d

e
] 2 z

v

o

- 800 u

s

T

i
- 700 m

e

- - 600

Comparison of adaptive scheme with fixed parallelism bound.

shows how the adaptive scheme constantly changes the value of the
parallelism bound during the entire simulation period. The results are
specific to the architecture configuration with 32 rings connected by a
shared bus topology and for the benchmark program with 9 processes.
A similar trend is observed for other configurations and benchmark
programs. To show the effect of x on the adaptive scheme, we plot a similar
curve for the value of x = 5 in Fig. 10. We observe that when the value of

::h .. :

gl
o
E

Fig. 9.

)

T i m e x 1 0 s

Adaptive unraveling: change after 40 rendezvouses.

Attempting Guards in Paral lel 265

14 : ~ : :

i i i i

=- ,10 i :: ::

'!
OI 2 4 6 8 1 0

T i m e x 1 0 s

Fig. 10. Adaptive unraveling: change after 5 rendezvouses.

x is too low the parallelism bound fluctuates to a large extent, but nonethe-
less, does improve the normalized average tries and the average rendezvous
time.

6. RELATED WORK AND COMPARISON

Our implementation uses the data flow model of computation in
contrast to the earlier von Neumann multiprocessing models. As men-
tioned earlier, the data-driven computation facilitates the exploitation of
fine grain asynchronous parallelism and concurrency not only among
processes but also within a process. A marked difference from other models
is that in our implementation the guards are not attempted in any
prespecified sequential order; rather they are tried concurrently. Yet our
implementation ensures the correct semantics of the construct. Further, the
communication constructs which need to wait for synchronization with
their partners relinquish the PEs. This allows other data flow actors to
acquire the PEs and do userful work, which otherwise might have been
wasted in busy waiting.

6.1. Shared Memory Systems

The work reported in Ref. 9 is based on shared memory model and
resembles our implementation in some aspects. In their shared memory
implementation, (9) a rendezvous between two transactions takes place
only after one of them enters the 'waiting' state. This means that all guards
of one transaction have to be attempted before the rendezvous. That is, for
the rendezvous to occur, in the best case (n + 1) guards are attempted. In
the worst case, 2 �9 n tries have to be carried out. The average case results
are not reported in Ref. 9. Theoretically, the best and worst case figures for

266 Govindarajan, Yu, and Lakshmanan

our implementation are 2 and 2 , n respectively. Also, the simulation
results indicate that the normalized average tries is (0.6) when the adaptive
throttling scheme is followed. Fujimoto et a/. (24) have evaluated the per-
formance of their implementation on a BBN Butterfly Parallel Processor.
The average rendezvous time for their implementation is 17.2 milliseconds
for a program with 16 processes and 16 guards per process. However, since
these results were obtained from an actual implementation while ours are
based on simulation, it is unfair to make a direct comparison of these
empirical results.

6.2. Message Passing Systems

The implementation presented in Refs. 3, 5, 7, 8, and 10 use a dis-
tributed memory architecture. Some of them (3'7) are based on a two-phase
algorithm. Our implementation, like the ones presented in Refs. 5, 9, and
10, involves only one phase. There is no need for a second phase as every
Tryguard actor terminates with a definite answer. That is, noncommittal
replies and retrying, as in Refs. 3 and 7, do not occur in our implementa-
tion. A quantitative comparison of any of the implementations based on
message passing system could not be made due to the nonavailability of
quantitative results for these implementation.

Our implementation retains the spirit of the criteria listed in Refs. 5
and 7 for a loosely-coupled multiprocessor system. For instance, five of the
six criteria [Criterion (i) of Ref. 5 is not relevant to the discussion.] can be
appropriately redefined as: (i) the amount of system information stored (in
the shared memory) should be minimal; (ii) when both tt and tr are ready
to select the guards gl and gr, respectively, then at least one of the trans-
actions will select a guard (not necessarily gl or gr) within a finite time;
(iii) the number of attempts made in selecting a guard of a transaction
should be bounded; (iv) the time taken by a Tryguard actor to determine
whether it can establish a rendezvous must be finite; and (v) if a process
has a guarded command that is enabled continuously for an infinite time,
then it should eventually succeed. It can be easily proved, with the help
of the theorems stated in Section 4, that our implementation satisfies
these criteria. In fact it performs better than others (3'5'7 lo) with respect to
(ii) and (iii), as parallelizing the selection of guards significantly reduces the
execution time.

7. C O N C L U S I O N S

In this paper, we have presented a decentralized parallel implementa-
tion of generalized guarded commands of CSP using the data flow model

Attempting Guards in Parallel 267

of computation. The implementation is guaranteed to be safe and live.
Performance parameters for efficiency and fairness of the implementation
have been obtained using discrete-event simulation. The performance
results and comparison reveal the superiority of our implementation over
other existing ones. Various performance parameters have been measured
for different values of parallelism bound. The simulation results reveal a
tradeoff between average tries and average rendezvous time with respect to
the parallelism bound. In order to strike a balance between the two perfor-
mance parameters, we propose an adaptive algorithm which dynamically
tunes the parallelism bound to achieve an optimum level of performance.
The simulation results of the adaptive algorithm establish a marked
improvement in performance, in terms of both average tries and average
rendezvous time.

It can be easily proved that our implementation does not leave linger-
ing tokens in the data flow graph. In the implementation of generalized
guarded commands we have not addressed the issue of process termination.
However, our implementation can be easily extended to take care of
process termination.

The implementation proposed in this paper suits any data flow machine
although we have used Manchester multi-ring data flow computer in the
simulation experiment. One criticism against data flow machines is the cost
involved in explicit synchronization and instruction scheduling. Multi-
threaded architectures (251 overcome this problem by following a hybrid
approach, combining both explicit and implicit instruction scheduling. It is
possible to extend our implementation to multi-threaded architectures (25) as
well.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous referees whose comments
have substantially improved the presentation and organization of this
paper. The authors acknowledge Bhama Sridharan for her many construc-
tive criticisms on the initial drafts of this paper.

REFERENCES

1. C. A. R. Hoare, Communicating Sequential Processes, Commun. of the ACM
21(8):666-677 (August 1978).

2. A. J. Bernstein, Output Guards and Nondeterminism in Communicating Sequential
Processes, ACM Trans. on Programming Lang. and Syst. 2(2):234-238 (April 1980).

3. G. N. Buckley and A. Silberschatz, An Effective Implementation for the Generalized Input
Output Construct of CSP, A C M Trans. on Programming Lang. and Syst. 5(2):233-235
(1983).

268 Govindarajan, Yu, and Lakshmanan

4. R. B. Kieburtz and A. Silberschatz, Comments on Communicating Sequential Processes,
ACM Trans. on Programming Lang. and Syst. 1(2):218-225 (October 1979).

5. S. Ramesh, A New Implementation of CSP with Ourput Guards, Proc. of the 7th lnt'L
Conf. on Distr. Comput. Syst., pp. 266-273 (1987).

6. A. Silberschatz, Communication and Synchronization in Distributed Systems, IEEE
Trans. on Software Engineering SE-5(6):542-546 (November 1979).

7. R. J. R. Back, P. Ekslund, and R. Kurki-Suonia, A Fair and Efficient Implementation of
CSP with Output Guards, Technical Report, Ser. A, No. 38, Abo Akademic, Finland
(1984).

8. R. Bagrodia, A Distributed Algorithm to Implement the Generalized Alternative Com-
mand in CSP, Proc. of the 6th Int'L Conf. on Distr. Comput. Syst., pp. 422-427 (1986).

9. R. N. Fujimoto and Hwa-chung Feng, A Shared Memory Algorithm and Proof for the
Generalized Alternative Construct in CSP, IJPP 16(3):215-241 (1987).

10. R. Bagrodia, Synchronization of Asynchronous Processes in CSP, ACM Trans. on
Programming Lang. and Syst. 11(4):585-597 (October 1989).

11. P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, Data-Driven and Demand-
Driven Architecture, Computing Surveys 14(1):93-143 (March 1982).

12. J. R. Gurd, I. Watson, and C. C. Kirkham, The Manchester Prototype Data Flow
Computer, Comm. of the A C M 28(1):34-52 (January 1985).

13. A. L. Davis and R. M. Keller, Data Flow Program Graphs, IEEE Computer 15(2):26-41
(February 1982).

14. J. B. Dennis, Data Flow Supercomputers, IEEE Computer 13(11):48-56 (November
1980).

15. Arvind and K. P. Gostelow, The U Interpreter, IEEE Computer 15(2):42-49 (February
1982).

16. A. Gottlieh, R. Grishman, C. P. Kruskal, L. Rudolph, and M. Snir, The NYU
Ultracomputer--Designing an MIMD Shared Memory Parallel Computer, IEEE Trans.
on Computers C-32(2):175-189 (February 1983).

17. L. M. Patnaik and J. Basu, Two Tools for Interprocess Communication in Distributed
Data Flow Systems, The Computer Journal 29(6):506-521 (December 1986).

18. S. Owicki and L. Lamport, Proving Liveness Properties of Concurrent Programs, ACM
Trans. on Programming Lang. and Syst. 6(2):455-495 (July 1982).

19. D. A. Reed, A. D. Malony, and B. D. McCredie, Parallel Discrete Event Simulation:
A Shared Memory Approach, Proc. of the ACM Sigmetrics Conf. on Measuring and
Modeling Computer Systems 15(1):36-38 (May 1987).

20. N. Francez, Fairness, Springer-Verlag, New York (1986).
21. J. R. Gurd and I. Watson, Data-Driven Systems for High Speed Parallel Computing:

Part 2: Hardware Design, Computer Design, pp. 97-106 (July 1980).
22. J. G. D. de Silva and J. V. Woods, Design of a Processing System for the Manchester

Data Flow Computer, IEEE Proceedings 128(5):218-224 (September 1981).
23. D. E. Culler and Arvind, Resource Requirements of Data Flow Programs, 15th Ann. Int'l.

Syrup. on Computer Architecture, pp. 141-150 (1988).
24. H. Feng and R. M. Fujimoto, A Shared Memory Algorithm and Performance Evaluation

of the Generalized Alternative Construct in CSP, Int'l. Conf. on Parallel Processing,
pp, 176-180 (1988).

25. R. A. Iannucci, Toward a Data Flow/yon Neumann Hybrid Architecture, 15th Ann. lnt'l.
Syrup. on Computer Architecture, pp. 131 140 (1988).

