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Dual Method for the Solution of a One-Stage 
Stochastic Programming Problem with Random 
RHS Obeying a Discrete Probability Distribution 

B y  A.  P r 6 k o p a  I 

Abstract: In this paper we present a method for the solution of a one stage stochastic 
programming problem, where the underlying problem is an LP and some of the right hand side 
values are random variables. The stochastic programming problem that we formulate contains 
probabilistic constraint and penalty, incorporated into the objective function, used to penalize 
violation of the stochastic constraints. We solve this problem by a dual type algorithm. The 
special case where only penalty is used while the probabilistie constraint is disregarded, the 
simple recourse problem, was solved earlier by Wets, using a primal simplex algorithm with 
individual upper bounds. Our method appears to be simpler. The method has applications to 
nonstochastic programming problems too, e.g., it solves the constrained minimum absolute 
deviation problem. 

Zusammenfassung: In dieser Arbeit wird eine Methode vorgestellt zur Ltisung einstufiger stocha- 
stischer Programme, wobei das zugrundeliegende Problem ein LP mit zuffilligen rechten Seiten 
darstellt. Das resultierende stochastische Programm enth~lt Wahrscheinliehkeitsrestriktionen und 
Strafterme, letztere innerhalb der Zielfunktion zur Bestrafung yon Abweiehungen in den stochasti- 
schen Restriktionen. Wit  l~3sen dieses Problem mit einem dualen Algorithmus. Der Spezialfall, in 
dem ansschlieglich Strafterme benutzt werden und Wahrscheinlichkeitsrestriktionen unberiick- 
sichtigt bleiben, d.h. das einfache Kompensationsmodell, wurde bereits frtiher yon Wets mittels 
eines primalen Simplex-Algorithmus mit einzelnen oberon Schranken gel6st. Unsere Methode 
scheint einfacher zu sein, Die Methode ist auch auf nicht-stochastische Programme anwendbar, 
z.B. auf das Problem minimaler absoluter Abweichungen yon Nebenbedingungen. 

1 Introduct ion  

S t o c h a s t i c  p r o g r a m m i n g  p r o b l e m s  a re  f o r m u l a t e d  so  t h a t  f i r s t  w e  s t a r t  f r o m  a n  

u n d e r l y i n g  p r o b l e m  t h a t  w o u l d  b e  t h e  o p t i m i z a t i o n  p r o b l e m  i f  t h e r e  w e r e  n o  

r a n d o m  v a r i a b l e s  i n  it.  H a v i n g  o b s e r v e d  t h a t  s o m e  o f  t h e  p a r a m e t e r s  in  t h e  

u n d e r l y i n g  p r o b l e m  a re  r a n d o m ,  w e  f o r m u l a t e  a n e w  p r o b l e m ,  b y  u s i n g  s o m e  

s t a t s t i c a l  d e c i s i o n  p r i n c i p l e .  O n e  u n d e r l y i n g  p r o b l e m  w e  are  d e a l i n g  w i t h  is  t h e  

f o l l o w i n g  t y p e  
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min imize  cT x 

subject to Ax = b, x > O, Tx > 4,  (1.1) 

where A is an m x n, T is an r • n matrix and the vectors c, x, b, ( have dimen- 
sionalities consistent with the formulation (1.1). Assuming ( to be a random 
vector, the expectation of which exsists, we reformulate (1.1) in the following 

manner 

f minimize cYx + ~ qiE[~i - ~ x ]  + 
i=1 

subject to P(Tx >_ ~) >_ p, Ax = b, x > 0, (1.2) 

where ~z 1 . . . . .  ~r r are the components of ( and T1 . . . . .  Tr are the rows of T; ql . . . . .  
qr are positve constants, the symbol E designates the expectation, [z] + = z if z > 0, 
otherwise it is 0 and p is a fixed probability, given in advance. Typical values for 

p are 0.8, 0.9, 0.95, 0.99. Problem (1.2) is a one stage problem because decision 
is made in only one stage. For the expectation of a random variable ~7 we will use 

both notations E0)) and ET). The second underlying problem we are dealing with 
differs from (1.1) by the last constraint and it has the form 

minimize c~ x 

subject to Ax = b, x > O, Tx = ~. (1.3) 

For this case the sochastic programming problem is 

minimize 

subject to 

cTx+ ~ q + E [ ~ i - ~ x ]  + + ~ q;E[T ix -~ i ]  +} 
i=1 i=1 

A x = b ,  x > 0 .  (1.4) 

Here we assume that q+ + qT > O, i = 1 . . . . .  r. We have not included a 

probabilistic constraint of the type P(Tx = ~ > p. The reason for this is that i f p  > 
1/2 than ( can take only one value, if any, for which the above probabilistic 

inequality can be satisfied. If this possible value of ( is designated by z then the 

constraint (Tx = ~ > p can be replaced by Tx = z which, in turn, can be included 
among the deterministic constraints of the problem. 

Let Fi(z) designate the probability distribution function of ~:i, i.e. Fi(z) = P((i  
< z) for every real z. It is well known that problems (1.2) and (1.4) can be 
reformulated as 
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minimize 

C T x +  ~. qi f [l-Fl(Z)]&=crx+ qi ]d i -T i  x +  5 f i ( z ) d z  
i=1 Tix i=1 -~ ,  

subject to 

P ( T x > ~ ) > _ p ,  A x = b ,  x>_O, (1.5) 

and 

IrE minimize c r x  + ~. q+ (gi - ~X)  + (q+ 
i=1 

subject to Ax = b, x _ O, 

II +q;) j  (z)dzJl 
(1.6) 

respectively. The objective function of problem (1.6) reduces to that of problem 
(1.5) by setting q+ = qi, q i  = O, i = 1 . . . . .  r. 

Stochastic programming problems of the type (1.6) were formulated first by 
Dantzig (1955) and Beale (1955) whereas the probabilistic constrained stochastic 
programming model was introduced by Carnes, Cooper and Symonds (1958). 
The combined use of penalties and probablilistic constraint, as in problem (1.5) 
was proposed by the author of this paper (1973). Problem (1.6) is called by Wets 
(1983) the simple recourse problem. For other references regarding this model 
construction the reader is referred to his paper. 

Assume that the random variables (1, ..-, (r have discrete probability 
distributions with finite possible values. Let zib ..., ziki be the possible values of ~'i 
arranged in increasing order. Assume furthermore that there exist two numbers zio 

and zi~i + 1, corresponding to each i (1 < i < r), such that for every x satisfying A x  

= b, x > 0, we have zio < Tix <ziki + 1 and 

ZiO < Zil < "'" < Ziki < Ziki+l. 

Under this condition the objective functions of problems (1.5), (1.6) can be 
written in the forms of separable, piecewise linear, convex functions, by 
introducing some additional, linear constraints. This can be done by the use of 
two different lineari-zation methods wich are the & and the A-methods. 

Given a continous, piecewise linear, convex function f, defined in the 
interval [z0, zk + 1] with breakpoints at z0 < "'" < zk + 1 we define 

~ j = f ( z j ) - f ( z j - 1 ) ,  j = l , . . . , k + l .  (1.7) 
zj  - z j -1  
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By the assumptions, we have 61 < 62 < ... < 6k + 1 and any function value f(y), 
corresponding to y e [z0, zk + 1], can be represented in the form 

f ( y )  = rain 

subject to 

k+l } 
f ( z o ) +  ~, c~jVj 

j=l  
k+l 

ZO+ ~. Dj = y  
j=l  

0<_ Vj <_ 2 j - Z j _ l ,  j = 1 . . . . .  k + l .  (1.8) 

This is the 6-representation of the function valuer(y). The A-representation is the 
following 

f ( y )  = min 

subject to 

k+l 
~, f (z j ) )~j  

j=0 
k+l 
Z Zj~.j = y 

j=0 
k+l 
Z ) ~ j = I ,  •j>_O, j = O  . . . . .  k + l .  

j=o 
(1.9). 

Both representations can be applied to problems (1.5) and (1.6). We will con- 
sider problem (1.6) first. Disregarding a constant term, the objective function is 
the sum of cTx and Z r T i=lJ~(ix), where 

Yi 
fi(Yi) : + (1.10) -qi  Yi + (q+ + q?) ~ Fi(z)dz, i : 1 . . . . .  r. 

zio 

These are piecewise linear convex functions in the intervals [Z/0 , 2ik i + 1], i = 1 . . . . .  
r thus, both the 6- and the/~- representations are applicable. Wets (1983) applied 
the 6- representation and solved the problem by the use of a primal simplex 
method with individual upper bound technique. He exploits the special structure 
of the problem but the number of variables is large and the presentation of the 
method is somewhat complicated. We will apply the ,~- representation, work with 
much smaller number of variables and present a simple, dual type algorithm. This 
is done in section 2. In section 3 we show how the proposed algorithm can be 
applied to solve other problems, e.g. the constrained minimum absolute deviation 
problem. In section 4 we solve the problem (1.5). 

Let us introduce the notations 
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z6 
c i j=-q+z i j+(q++q?)  S Fi(z)dz, j = 0  . . . . .  ki+l ,  i = 1  . . . . .  r. 

z i o  

Using the fact that the functions (1.10) are piecewise linear and convex, we apply 
the A- representation and reformulate problem (1.6) in the following manner: 

minx cTx + minx ~; 2 cij~,ij 
i=1 j=O 

k i + l  
subject to ~, zij2ij = Yi 

j=0  

k i + l  
Z ~ i j  = 1, ~ i j  ~ 0 all i, j 

j=0  

Tix=yi ,  i = 1  . . . . .  r 

A x = b ,  x > 0 .  (1.11) 

This, in turn, can be written in the following manner 

minx,), cTx+ i=lk j~,cij2iJ?=o J 
subject to Ax = b, 

ki+l 
Tix -  Y~ zij,lij = O, 

j=0 

x = 0 ,  ~ij_>0, j = 0  . . . . .  ki+l ,  i = 1  . . . . .  r. (1.12) 

The matrix of the equality constraints has the following structure (on the top the 
objective function coefficients are listed): 

C1 "'" Cn 

A 

T 

c10 "'" Clki + 1 " "  CrO "'" Crkr + 1 

--Zl 0 - z l k l  +1 

1 1 

--ZrO . . . .  Zrkr +1 

. . .  1 
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2 Dual Method for the Solution of Problem (1.12) 

Problem (1.9) has a fundametal property that makes possible the development of 
a simple dual algorithm for the solution of problem (1.12). This is expressed by 

Lemma 2.1: All dual feasible bases of problem (1.9) are dual non-degenerate and 
consist of tw 9 consequtive columns of the matrix of the equality constraints. 

Proof." This lemma is a special case of theorem 3.1 in the paper by Pr6kopa 
(1990). A simple direct proof is presented below. 

The dual feasibility of a basis means that the (sufficient) condition of 
optimality is satisfied. Let ai, i = 0 . . . . .  k + 1 be the columns in the equality 
constraints of problem (1.9) and let B = (ai, aj), where i < j .  Let furthermore 3~ = 
f(zi), i = 0 . . . . .  k + 1 and f8 be the vector of basic components of the coefficient 

T - 1  vector of the objective function. Finally, let Zp = fJ ap, dp = b-lOOp, p = O, ..., 
k + 1. Since we have 

(~fTI-I(fPI=(1--fTBB-1 

it follows that 

(; fT](fP-zP)=(af~]B)~ dp 

and by Cramer's rule we get 

fP-fTB-lap=~BI apfp fiai ajfJ[' (2.1) 

where IBI designates the determinant of B. For this we have IBI - Zi lj 1 __ = Zi--ZJ 
< 0. On the other hand, given i < j  <g,, we have 

fj  fl 
ai aj al 

=--(2l--ZJ)(ZJ--Zi)(f~12l -fj- Zj fJ--fi) < O ' Z j  -- Z i (2.2) 

because, by the convexity of the function f, the difference ~ -j~) (zt - z )  - 1  - ( j~  - 

fi) (zi- ti) -1 is positive. Hence, the value fp-frBBqa p in(2.1) is always different 
from 0 and is positive for every nonbasic p if and only i f j  = i + 1. In fact, by (2.2) 
we get that if the column containing fp, ap in (2.1) is in its right place, allowing 
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for an increasing order of the subscripts, then the result ia a positive number. This 

excludes the case j > i + 1 because otherwise the choice p = i + 1 would produce a 

negative value in (2.1). 
The stucture of the matrix (1.13) implies that every feasible basis of problem 

(1.12) has at least one but at most two columns from any block i(2 < i < r) .The 

above theorem, on the other hand, implies that in the latter case the two columns 
must be consecutive. 

Below we present our algorithm to solve Problem (1.12). We assume that A 

* 0, T ~ 0 and designate the columns of A and T by a l  . . . . .  an  and t l  . . . . .  tn,  

respectively. The columns of the matrix (1.13) will be designated by h i  . . . . .  hn ,  

hi0 . . . . .  h i &  + 1 . . . . .  hro  . . . . .  hrkr + 1, respectively. We will say that the matrix 
(1.13) is subdivided into r + 1 blocks. The first block consists of the first n co- 

lumns and the i + 1st block consists of the columns hio . . . . .  hiki + 1. 

Our solution of problem (1.12) applies to the general case, i.e., we do not as- 
sume that the coefficients ci j  a re  those, derived for the stochastic programming 

problem (1.6). We assume, however, that for every 1 < i _< r the discrete function 

f i ( z i j )  = c i j ,  j = O, . . . ,  k i + l  

is convex, in other words, its second order divided differences are positive. Let us 

introduce the notations for the first and second order divided differences, respecti- 

vely: 

ciy + l - ciy _ [ z q ,  zq  + l ]ci ,  

Z q + l  - zij 

[z/j, z/j+l ] - [zty-l, zi j]  _- [zty-1, z i j ,  z i j+ l]Ci ,  
z i j+ l  - z q _  1 

j = 0  . . . . .  ki 

j = l  . . . . .  k;. (2.3) 

In the case of  the stochastic programming problem (1.6) we have the 
following equalities 

q+ +q7  z/j+1 
[zij ,  zij + 1 ]ci = + t - q i  + S 

zij + l - zij  zij 
~(z)z  

= -q+ +(q? +q?)(pm + ... +po), (2.4) 

1 
[zq-1, zi j ,  z q + l ] c i  - ( q+  + q F ) p i j .  (2.5) 

z i j + l  - z i ] - i  

In steps O, 1 an initial dual feasible basis is constructed, whereas in the other 
steps we perform iterations according to the dual method of linear programming. 



448 A. Prdkopa 

Step O: Select two consequtive vectors out of the last r blocks of the matrix (1.13). 
Let jl, jl  + 1 . . . . .  jr, jr + 1 be the subscripts of the selected vectors in the 2nd . . . . .  r 
+ 1st blocks, respectively. Solve the systems of linear equations 

--Zljl~)I + Wl = C l j l ,  

- -Z l j l  +1~)1 + W1 = Cljl  +1, 

--Zrjr 'Or "4" W r  = Crjr , 

--Zrjr + l Dr + Wr  ~- Crjr + l 

a n d  d e f i n e  t h e  v e c t o r s  v r = (v  1 . . . . .  Vr) , w T = (Wl, . . . ,  Wr). 

Step 1: Solve the linear programming problem 

minimize {(cl -- ~ ) r t l ) X l  + . . .  + (On -- VTtn)Xn } 

subject t o  a l X l  + . . .  + a n X n  = b ,  Xl  >- O, . . . ,  Xn >- O, (2.6) 

by a method which provides us with a primal-dual feasible basis. Let B be this 
optimal basis and let d be a dual vector corresponding to this optimal basis B, i.e., 
any solution of the equation dr/ /= ~ - vTTs, where c8 and TB are those parts of c 
and T, respectively, which correspond to the basis subscrpits. If A has full rank 
then B is a sqare matrix and y is uniquely determined. 

We have obtained a dual feasible basis for problem (1.12)�9 It consists of 
those vectors that trace out B from A and TB from T, in the first block, 
furthermore the previously selected consecutive pairs from the other blocks�9 If A 
has full rank and the optimal basis in problem (2.6) consists of the vectors al . . . . .  
am, then for problem (1�9 we have the dual feasible basis 

~ a l l  "'" a l m  

a m l  "'" a m m  

tll "" tim 

t r l  "'" trm 

0 ... 0 

. , ,  

0 ... 0 

--Zljl  --Zljl  +1 

1 1 

m Z F j r  

1 

--2rjr +1 

(2.7) 



Dual Method for the Solution of a One-Stage Stochastic Problem 449 

In the later steps of the procedure the basis structure may change so that out 

of the variables Xl . . . . .  Xn, there are m + s in the basis and out of s of the variable 

pairs Zlj~, zlj~ + 1; ...; Zrjr, Zrjr+ 1, only one is in the basis, where 0 < s < r. Go to 

step 2. 

S tep  2." Let S designate the set of those row subscripts of T, corresponding to 

which only one - z i j  is in the basic column and let it be -z/j~ . We designate 
furtermore by Q the set { 1, ..., r} - Sand let - zije, -ziji.+ 1 be those elements in row 

i ~ Q which are in basic columns. 

Determine the basic components of the basic solution corresponding to the 

basis. Let xg be the vector consisting of  the basic components out of Xl . . . . .  Xn (XB 

may have more components than the rank of A), determined by the equations 

A B X B  = b 

~BXB = 2iji, i ~ S, (2.8) 

where Tie is that part of Ti (the row of T) which correponds to xs. 
As regards the basic components of {A/j} we easily find that 

~'iji = 1 

zij~ + l - TiBxB 

~ij~ +1 

zij~ + I - z i j  ~ 

ziji  + 1 - ziji 

for i ~ s ,  

i ~ Q .  

S tep  3: Test for primal feasibility: XB > O, Aiji > O, Aiji + 1 >- O, i:: Q. If all these in- 
equalities are satisfied then stop, the basis is optimal. If it is not the case then 
choose any basic component which is negative and let the corresponding vector 

leave the basis. Go to step 4. 

S tep  4:  Update nonbasic columns, i.e., represent them as linear combinations of 

the basic vectors and compute the corresponding reduced costs that we designate 

by the symbols Jp, @, j = O, . . . ,  ki + 1, i = 1 . . . . .  r. Not all nonbasic vectors have 

to be updated, just those which may enter the basis.This depends, however, on the 

outgoing vector, as described below. 
I. Let a column from the first block leave the basis. Then either a column 

containing - - Z i j i -  1 ( i f j i  > 0) o r  - - z i j  i + 1 ( i f j i  < k i + 1),~ 'S o r  a column from the 
first block may enter. 

Ia. To update the column containing - z i j i -  1, where j i  > 0 and i~ S, first we 
represent a part of it by solving the equation with respect to u: 
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ABu  = O 

TiBU - ziji = - z i j i - 1 ,  

Thsu=O, h e S ,  h * i .  

Let u i be the solution of the equation 

ABUi = 0 

TiBUi = 1, 

ThBUi = O, h ~ S ,  h , i .  

Then we have u = Igi(zij i - Zij i _ 1). To update the remaining part of the column of 
ziji- 1, we solve the equations for dhl, dh2: 

ThBU-- dhlZhjh-- dh2Zhjh+l = 0 ,  
h ~ Q  

dhl+ dh2 = 0, 

and obtain 

ThBU 
dh2 = - d h l  - , h ~ Q.  (2.9) 

Z ~ h + l  --  Z~h 

For the reduced c o s t  cji - 1 we deriv e 

CiJi - 1 cTu  --~ Cij i -t- (ZOi -- Zij i - 1 )  Z[ghjh ,  2hjh +l]ChZhBUi -- Ciji-1 
heQ 

( % - zia~ - i) 

X (  cTui  "b [2iji - x' giji ]Ci + heQ~[ahjh ' Zhjh + l]ehrhBUi ) 2.10 

Ib. To update the column of -ziji.+ 1, where ji < ki + 1 and ie  S, the same re- 

asoning can be used, the only difference is that now we define u = ui(ziji - ziji + 1), 
while ui is the same as before. The coefficients (2.9) change accordingly. The 

reduced cost 6ij~ + a equals 

Ciji+l = --(Ziji +1 -- a•i ) ( cTu i  + [aiji, Ziji +1]Ci 

+ s [Zhjh, Zhjh+l]ChThBUi). 
h~Q 

(2.11) 

Ic. To update that column from the first block which traces out ap from A, we 
solve the equations for dp: 
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ABdp = ap 

TiBdp = tip, i ~ S, 

furthermore, the eqautions for dhl, dh2:  

T h B d p  - dhlZhjh  --  dh2Zhjh +1 = thp 

d h l + d h 2  =0,  h ~ Q .  

For the latters we obtain 

d h  1 --  

d h 2  - 

-rh clp 
Zhjh + 1 - Zhjh 

ThBdp - thp 

Zhjh + 1 -- Zhjh 

h ~ Q (2.12) 

For the reduced cost gp we derive 

?p = c~dp + ~, [zhjh, Zhjh +l]ch(ThBdp - thp) - Cp.  (2.13) 
h 6 Q  

II. Assume now that one of the columns -Zqjq, -Zodq + 1, qe  Q, leaves the ba- 

sis. 
IIa. To update the column of-Zqjq _ 1, where jq > O, we solve the equations for 

d q l ,  dq2:  

- d q l Z q j q  - -  d q 2 z q j q  +1 • - Z q j q  - 1, dql + dq2 = 1 

which gives 

d q l  = Zqjq +1 - Zqjq - 1  , d q 2  _ Zqjq -1 - Zqj , (2.14) 
Zqjq + 1 --  Zqjq Zqjq + 1 -- Zqjq 

From here we derive the reduced cost 

Cqjq - 1  = Cqjq + l d q 2  Av Cqjqdq]  - Cqjq - 1  

= - ( Z q j q  -i- 1 -- Zqjq - 1 ) (Zqjq --  Zqjq - 1 ) [Zqjq - 1, Zq jq ,  Zqjq + 1 ]Cq. (2.15) 

IIb. To update the column of-Zqjq + 2, where jq < kq, we solve the equations 
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-dqlZqjq -dq2zqjq + 1  = -Zqjq +2, 

dql +dq2 = 1 

which gives 

dql = Zqjq +1 - Zqjq + 2 ,  dq2 - Zqjq + 2  - -  Zqjq 
Z ~ q + l -  Z~q Z q j q + l -  Z~q 

From here we derive the reduced cost 

eqjq +2 = Cqjq +ldq2 + Cqiqdql - Cqjq +2 

= --(Zqjq + 2  --  Zqjq + a ) ( Z q j q  + 2  -- Zqjq )[Zqjq, Zqjq +1,  Zqjq + 2 ] C q .  

(2.16) 

(2.17) 

IIc. The update formulas and the reduced costs concerning the columns of 
-zi j i -  1 (ifji  > 0), -zji+ 1 (ifji < ki + 1),~ S and the nonbasic columns in the first 
block are given in Ia, b, c. 

Step 5: Determine the vector that enters the basis. The two cases handled below 
are the same as those mentioned in the description of step 4. 

I. Let the outgoing vector be the/ th nonbasic vector from the first block�9 De- 
signate by u(1) and ui( l )  the/ th components of the vectors u and ui, respectively�9 If 
u is defined concerning -z i j i -  i, then u(l) = ui(1) (Zijg - 2i jg-  1) and if u is defined 

concerning -ziji + 1, then u(/) = ui(1) (Zii i -- Ziji + 1)" 

These have to be compared with the reduced costs (2�9 and (2�9 
respectively. If, on the other hand, we look at a nonbasic column in the first 
block, the subscript of which is p, say (i.e., it is the column intersecting A at ap), 
then the/ th component of dp, that we designate by dp(l'), has to be compared with 

gp in (2.13). If the matrix (As~)is nonsingular then 

dp  .rs, ) t tsp) 

Thus the incomming vector is determined by taking the minimum of the 
following three minima (in the first two lines ziji -Zi jg_ 1 and z i j i -  zij~ + 1, 
respectively, are already cancelled): 

�9 L ui 1 (1) I} mm I - - ( c ~ u i + [ z i j i - 1 ,  + ~,[zhA, +l]ChThBUi ( / ) > 0 "  " ~ Ziji ]Ci ZhJh ' i~S,ji <O,ui h~Q 
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rain 
ieS'ji<ki'ui(l)>O~ ui(l) k B z + [Ziji, Ziji +l]Ci 

+ y [zhj , zhjh+l]chrh .elt, 
hEQ y j  

min I - - ( c o d .  T ~,[Zhjh,  Zhjh+l]Ch(ThBdp--thp)--Cp)}.  
heQ 

(2.18). 

If the minimum is attained in the first line at i, then the column of - zi j i -  1 is 
the incoming one. 

If  the minimum is attained in the second line at i, then the column of -zij~ + 1 

is the incorfiing one. 
If the minimum is attained in the third line at p, then the column of ap is the 

incoming one. 
II. Let the outgoing column be either the column of-Zqjq or the column of 

-Zqjq + 1, where qe  Q. 
IIa. If  it is the column of--Zqi q then the column of-Zqjq + 2 may enter, 

provided jq < kq. The other cadidates can be subdivided into three disjoint groups. 
The first group is formed by the nonbasic columns of the first block. The second 
(third) group is formed by the columns of -z i j i  - ~(-zij~ + 1), ~ S.  We take the 
minimum of the fractions of the reduced costs and the coefficients of the outgoing 
vector, in the representation of the candidates in terms of the basic vectors, 
restricting ourselves to negative coefficients, as prescribed by the dual method. 
The coefficient that multiplies the column of-zqjq in the representation of-Zqjq + 2 

is negative and is given by (2.16). We take the fraction of-Cqjq + 2 and this 
number. 

To determine the incoming vector we have to take the minimum of the thus 
obtained four numbers. Since all of them contain, as factor, the difference -Zqjq + 1 

- Zqjq, we can cancel it everywhere and obtain the following 

( Zqjq + 2 -- Zqjq ) [ Zqjq , Zqjq +1, Zqjq + 2 ]C q, 

min ?-P 
T q B d p > l q p  t q p - Z q B d p '  

min cij i  - 1 

i~S, Ji >O, TqBUi >0 --(2iji -- 2iji -1)TqBUi ' 

rain c6~ - 1 
i~S, ji<~i,rqB,i<O (zij i+l - z i j i )Tqaui '  

(2.19) 

where the reduced costs are given by (2.10), (2.11) and (2.13). Some of the lines 
in (2.19) may be absent. E.g., the first line is absent i f j q  = kq. 

If the minimum of the four numbers in (2.19) is attained in the first line then 
the column of -Zqjq + 2 comes in. If it is attained in the second line at p then the co- 
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lumn of ap comes in. If it is attained in the third (fourth) line at i then the column 
of-ziji_ 1 (-ziji + 1), (E S comes in. 

IIb. Let the outgoing column be that of -Zqjq § 1. The four numbers which are 
analogous to (2.19) are the following 

(Zqjq+ 1 - Zqjq _1 ) [Z q j q -1 ,  Zqjq, Zqjq+l]Cq, 

rain CP 
Tq,,~p <tqp Tq,  dp - tqp ' 

min giji -1 
i~S,  ji>O,Tq~ui<O (Zij i -- Z i j i_I )TqBU i ' 

rain gij~ - I 
i~S,  ji <ki ,rqBui >0 --(  Ziji +1 -- Ziji )TqBUi ' 

(2.20) 

The reduced costs are given by (2.10), (2.11) and (2.12). Some of the lines may 
be absent. If the minimum of these four numbers is attained in the first line then 
the column of - zq jq_  1 comes in. Otherwise the determination of the incoming 
vector is the same as in IIa. Go to step 2. 

To avoid cycling, the application of Bland's rule is the simplest. Originally it 
was formulated for the simplex method but it applies word for word for the dual 
method too: take the first candidates to go out and come in, where "first" refers to 
the arrangement of the columns in the matrix of the equality constraints. 

I l lus t ra t ive  E x a m p l e :  To illustrate the steps in the above described algorithm let 

'39 47 35 3 7  9 10 1 41 

A =<38 10 21 13 33 41 2 31J '  

( 2 3 2 2 2 1 5 1 4 2 5 1 0 ]  

T = <11 25 23 8 24 21 26 26 

c r =(12 8 0 4 6 12 7 10), 

b r =(219189), q { = q ~ = O ,  q f = q ~ = l .  

The possible values of (1, ~:2 and the corresponding probabilities are (the same for 
bot random variables): 

0 10 20 30 40 50 60 70 80 

0 i ! • • l • • 0 
7 7 7 7 7 7 7 



Dual Method for the Solution of a One-Stage Stochastic Problem 455 

We have checked that 0 < Tix < 80, i = 1, 2 whenever Ax = b, x > 0.For the objec- 

tive function coefficients cij we obtain c10 = c20 = cam = c2~ = 0, Cli = czi = 10/7 ( 1 
+ 2 + ... + i -  1), i = 2, 3, 4, 5, 6, 7, 8. 

To describe the results in the subsequent steps we number the columns of the 
matrix (1.13) from 2 trough 25. The initially chosen pairs from blocks 2 and 3 
have subscripts 11, 12, 20, 21 (Step 0). Corresponding to these we have obtained 
the vectors subscrited by 3 and 4, from the first block (Step 1). The subsequent 
dual feasible bases are 

Block 1 Block 2 Block 3 

Rermion 

InitiN 3 ,4  11,12 20,21 

1 3 ,4  11,12 21 ,22  

2 3 ,4  11,12 22,23 
3 0 , 3 , 4  11,12 23 
4 0 , 3 , 4  12 23 ,24  

5 0 , 3 , 4  12,13 24 

6 0 , 3 , 4  13 24,25 
7 0 , 3 , 4  13,14 25 

8 0 , 3 , 4  14 25,26 

9 0 , 3 , 4  14,15 26 
10 0 , 3 , 4  15,16 26 

11 0 , 3 , 4 , 5  16 26 

12 0 , 3 , 5  16,17 26 

The optimalsolufionis  

xl = 2.45386571, x 4 =  2.954389113, 1.398684014 

21,8 = 0.1025123374, ~ 1 , 9  = 0.8974876626, 22,9 = 1. 

3 Applications for Deterministic Problems 

Consider problem (1.3), where ~: is non-random now and assume that the con- 
straints in the equality Tx  = ~ are not required to be satisfied at any price. Instead, 
we define a cost of  deviation in its ith row by taking f i ( T i x  - ~i) and then 
formulate the following problem 
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m i n i m i z e {  c r x  + ~ f ~ ( T ~ x - ~ i )  

subject to Ax = b, x __ 0, (3.1) 

where f l  . . . . .  f l  are picewise linear convex functions, defined in some intervals. 
An important  special case of  problem (3.1) is the fol lowing 

r r  L} minimize c r x  + ~, I ~ , t i j x j  - gi 
i=1 i=1 

subject to Ax = b, x__>. 0. (3.2) 

Suppose that there exist real numbers zio , zi2 such that zio < gi < zi2 and every 
x which satisfies Ax = b, x > 0, automatically satisfies 

Zio <-- Tix <- zi2,  i = 1 . . . . .  r. (3.3) 

Defining the functions3~(x) so that (see figure 1) 

~ x  - gi if  gi < x < zi2, 
y,(x) 

L gi - x i f  zio < x < gi, 

for  i = 1 . . . . .  r, we see that problem (3.2) is in fact a special case of  problem (3.1). 

Let  us introduce the notations Zil = gi, i = 1 . . . . .  r. Then problem (3.2) is equiva- 

lent to problem (1,12), where kl . . . . .  kr = 1 and Cio =3~(zi0), Cil = 0, ci2 =j~(zi2), 
i = 1 . . . . .  r. In other words, problem (3.2) is the stochastic programming problem 

(1.4), where the random variable ~z i has only one possible value gi and q~ = q~- = 
1, i = 1 . . . . .  r and it is assumed that (3.3) holds for  every  x satisfying A x  = b, x >_ 

0. 

~(~ 

ZiO ffi Zi2 

, p .  

Fig. 1. Graph of the functionJ~(x) 
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4 Simultaneous Use of Penalties and Probabilistic Constraint 

In this section we outline an algorithm for the solution of problem (1.2), where 
we assume that each random variable xi has a finite number of possible values 
which are Zil < "" < zik~, 1 < i <_ r. We also assume that there exist numbers zio, Ziki 

+ 1 s u c h  t h a t  zio < Zil , Zik i < Zil ~ + 1 and we have 

ZiO <-- T i x  <- Ziki +1, i = 1 . . . . .  r 

for every x satisfying Ax = b, x _ O. Let F1 . . . . .  Fr, F designate the probability dis- 
tribution functions of (1 . . . . .  (r, (, respectively, i.e. 

Fi(z)  = P(~i  < z), z 6 R 1, i = l  . . . . .  r, 

F ( z )  = P ( ~  < z), z ~ R r. 

The vectors (Zljl, . . . ,  Zrjr), where 1 <-ji < ki, i = 1 . . . . .  r will be considered the 
set of possible values of the random vector (. Due to stochastic dependency, some 
of these may have probability 0. We will briefly designate one possible value of ( 
by zO). 

We say that zq) is a p level efficient point (PLEP) of the probability distribu- 
tion of ~ if F(zq))  > p if there is no possible value z(0 of ~ such that 

2(l) <_ z(J) ,  Z (l) ~ z(J), F ( z ( l ) )  > p. 

Let zq), j e  E be the set of PLEP's. Then the problem (1.2) is equivalent to pro- 
blem (1.12), where, in addition to the constraints, we have also the constraint 

Tx >_ z(J) holds for at least one j ~ E. (4.1) 

in fact, problem (1.2) is equivalent to problem (1.12) supplement by the additional 
constraint 

Tx >>_ z(J) holds for at least one j  such that F(z (J ) )  >_ p. (4.2) 

However, among all possible values sat is fy ingF(z(J))> p,  it is enough to take into 
account only those which are PLEP's because the set of feasible solutions of the 
problem is the same, no matter if (4.1) or (4.2) is used as the additonal constraint. 

Having all PLEP's, we reformulate the constraint (4.1) so that 

Tx ~ H ,  (4.3) 

wh~e  
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H = [..J Ill, 14l = {yly > z(l)} 
l e E  

and solve subsequently problems of the type (1.12), supplement by the constraints 

j -1 
T x e H l j  \ U Hti, j > l .  (4.4) 

i=1 

This way all possible elements in H will be allowed for Tx and an optimal 
solution to problem (1.2) will be obtained. The algorithm can be summarized in 
the following manner. 

Step 0: Enumerate all PLEP's. This is very easy to do if the code is written in 
APL language which handles multidimensional arrays. In fact, applying the 
iterated +\ addition for the multidimensional array containing the probablities of 
the possible values of (, we obtain the probability distribution function F of ~:. 
Then the operation +\ ... +xF _> p, where there are as many +\ additions as the 
dimensionality of the array, produces an array where exactly those positions 
contain 1 's which correspond to PLEP's. We only have to find the corresponding 
possible values of ~: and the enumeration is done. 

Initialize E(c), H(c) and x(c) as E(c) = E, H(c) = {yly >_ z~) F~ /and x(c) = O, 

where 1 is arbitrarily chosen and the letter c refers to the word "current". 
Assuming x -- 0 is not a feasible solution of problem(1.12), we assign to this 
vector, following a generally accepted convention, the objective function value + 
O O  . 

Step 1: Solve problem (1.12) so that we prescribe the additional constraint 

Tx E H(c) (4.5) 

and designate by Xopt any optimal solution. When we first execute Step 1, then 
(4.5) means the constraint Tx > z(t). In later applications of step 1, H (c) is the un- 
ion of a finite number of rectangular sets, by (4.6). To solve Problem (1.12) with 
the additional constraint (4.5) means that we solve as many linear programming 
problems as the number of rectangular sets and the LP corresponding to a 
rectangular set is obtained so that in problem (1.12) only those zij values are 
allowed which are elements of the rectangular set. The cij coefficients remain 
unchanged but only those are used which correspond to non-deleted z/j. The 
vector Xopt is defined as that optimal solution which produces the smallest 
optimum value among all optimum values of the above-mentioned LP's. 
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Step 2." Check if the objektive function value of Xopt is smaller than that of x(C). If 
yes, then choose any l ~ E(c), update H(c), x(c) as followes 

E(c) := E(c) \ {l}, 

H (c) := Hl \ H (c), 

X (c) := Xopt 

(4.6) 

and go to step 1. Otherwise update only E(c) and H(C), following the rule in (4.6) 
and go to step 1. 

If cycling is somehow excluded (e.g., by applying Bland's rule) in each LP, 
then the algorithm terminates in a finite number of steps, by reaching an optimal 
solution. This happens when the updated E(c) in (4.6) becomes empty and steps 1 
and 2 are executed fot the last time. 

The algorithm can considerably be simplified at the expense of some super- 
flous computation if instead of (4.4) we simply write Tx~ Hlj, j -> 1. In this case 
step 1 and step 2 can be combined into one step where we solve problem (1.12) 
with the additional constraint Tx ~ Htj. This is iterated until all sets H 6 have been 
investigated. 

This variant is supported by the fact that if the probability level p in the 
probabilistic constraint is relatively large, e.g., p = 0.8, then in many cases there 
will be a few PLEP's  only. To see an example, let r = 4 and assume that the 
components of xi are independent, each can take the possible values 1, 2, 3, 4, 5, 
6, 7, 8 with the same probability 1/8. I fp  = 0.8 then there are 4 PLEP's which are 
the following 

7 8 8 8  

8. 7 8 8 

8 8 7 8 

8 8 8 7 

Thus if  we run four times the algorithm presented in section 2, the optimal 
solution is obtained. 

Computational experience: A code in APL language has been prepared for 
the solution of problem (1.12) and test problems were run on an IBM PC AT and 
a VAX 8650 mainframe. Problem sizes ranged up to m + r = 60, n = 200 and ki = 
1,000. In this first variant of the code the inverse of the "working basis" (as Wets 
has called it) 
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is computed by the APL matrix inversion device at any iteration. The matrices A 
and T were randomly chosen. The running times depended very much on the 

choices of the initial consecutive column pairs in the second . . . . .  r + 1 st blocks. 

In the case of m = 5, r = 4, n = 100, kl = k2 = k3 = k4 = 1,000, the solutions have 
been obtained instantly or in at most 35 minutes on the AT, while in case of m = 

50, r = 10, n = 200, kl . . . . .  kl0 -- 10, the solution times varied between 5 and 40 

minutes, on the mainframe. The sizes of the LP's  in these two cases are 13 x 4108 
and 70 x 320, respectively. These wide ranges of the solution times suggest that 
the problem should be solved in an interactive way so that by observing the 
changes of the numbers Ji, in the course of the solution, we stop and restart the 
run by choosing larger or smaller initial j i ,  values, in agreement with the 

directions of their changes. Using this, the solution times remained in the lower 

sections of the above ranges. 
The speed of the execution was improved also by the insertion of "primal 

steps" as follows. At the end of the execution of step 2, assuming the optimum 

has not been reached yet, new initial consecutive column pairs are defined (the 
columns of-zijl, -ziji + 2, i = 1 . . . . .  r) so that the equitations for the A's: 

r i x  " ~,iji ziji - ~iji  + lZiji + 1 = O, 

~iji  .-k ~iji  +1 = 1 

produce nonnegative solutions, where x is the optimal solution of problem (2.6), 

obtained by the execution of step 1. We than restart the solution with these 

J 1 , . . - , j r -  
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