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Dual Method for the Solution of a One-Stage
Stochastic Programming Problem with Random
RHS Obeying a Discrete Probability Distribution

By A. Prékopal

Abstract: In this paper we present a method for the solution of a one stage stochastic
programming problem, where the underlying problem is an LP and some of the right hand side
values arc random variables. The stochastic programming problem that we formulate contains
probabilistic constraint and penalty, incorporated into the objective function, used to penalizc
violation of the stochastic constraints. We solve this problem by a dual type algorithm. The
special case where only penalty is used while the probabilistic constraint is disregarded, the
simple recourse problem, was solved earlier by Wets, using a primal simplex algorithm with
individual upper bounds. Our method appears to be simpler. The method has applications to
nonstochastic programming problems too, e.g., it solves the constrained minimum absolute
deviation problem.

Zusammenfassung: In dieser Arbeit wird eine Methode vorgestellt zur Losung einstufiger stocha-
stischer Programme, wobei das zugrundeliegende Problem ein LP mit zufilligen rechten Seiten
darstelll. Das resultierende stochastische Programm enthilt Wahrscheinlichkeitsrestriktionen und
Strafterme, letztere innerhalb der Zielfunktion zur Bestrafung von Abweichungen in den stochasti-
schen Restriktionen. Wir losen dieses Problem mit einem duvalen Algorithmus. Der Spezialfall, in
dem ausschlieBlich Strafterme benutzt werden und Wahrscheinlichkeitsrestriktionen unberiick-
sichtigt bleiben, d.h. das einfache Kompensationsmodell, wurde bercits frither von Wets mittels
eines primalen Simplex-Algorithmus mit einzelnen oberen Schranken gelost. Unsere Methode
scheint einfacher zu sein. Die Methode ist auch auf nicht-stochastische Programme anwendbar,
z.B. auf das Problem minimaler absoluter Abweichungen von Nebenbedingungen.

1 Introduction

Stochastic programming problems are formulated so that first we start from an
underlying problem that would be the optimization problem if there were no
random variables in it. Having observed that some of the parameters in the
underlying problem are random, we formulate a new problem, by using some
statstical decision principle. One underlying problem we are dealing with is the
following type
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minimize c¢Tx
subjectto Ax=b, x20, Tx2¢, 1.1

where A is an m x n, T is an r x n matrix and the vectors ¢, x, b, £ have dimen-
sionalities consistent with the formulation (1.1). Assuming £ to be a random
vector, the expectation of which exsists, we reformulate (1.1) in the following
manner

.
minimize {ch+ > GiEl& —Tix]+}
i=1

1

subjectto  P(Tx2&)=p, Ax=b, x=0, 1.2

where &1, ..., & are the components of £ and T4, ..., T, are the rows of T g1, ...,
g are positve constants, the symbol £ designates the expectation, [z]* =z if z >0,
otherwise it is 0 and p is a fixed probability, given in advance. Typical values for
p are 0.8, 0.9, 0.95, 0.99. Problem (1.2) is a one stage problem because decision
is made in only one stage. For the expectation of a random variable n we will use
both notations E(n) and En. The second underlying problem we are dealing with
differs from (1.1) by the last constraint and it has the form

minimize ¢Tx
subjectto  Ax=b, x20, Tx=¢. (1.3)

For this case the sochastic programming problem is

r r
minimize {ch + Y GE[E —Tix}* + X g7 ElLix — &i]’L}
2 )

1= 1

subjectto Ax=b, x=0. (L4

Here we assume that g + g7 >0,i = 1, ..., . We have not included a
probabilistic constraint of the type P(Tx = &) 2 p. The reason for this is that if p >
1/2 than £ can take only one value, if any, for which the above probabilistic
inequality can be satisfied. If this possible value of £ is designated by z then the
constraint (Tx = £) 2 p can be replaced by Tx = z which, in turn, can be included
among the deterministic constraints of the problem.

Let F(z) designate the probability distribution function of &, i.e. Fi(z) = P(¢;
< z) for every real z. It is well known that problems (1.2) and (1.4) can be
reformulated as



Dual Method for the Solution of a One-Stage Stochastic Problem 443
minimize

F oo r Tix
{CTX+ Y[ NI-F@ldz=c"x+ 3 CIi|:,ui_Tix+ [ E'(Z)dz}}
j =1 )

i=l Tix i= -
subject to
P(Tx2&E)>p, Ax=b, x20, 1.35)

and

i=1 -

r Tix
minimize {ch + ¥ |:qi+(ui -Tx)+(gf +q7) | E‘(Z)dZi!}
subjectto Ax=b, x20, (1.6)

respectively. The objective function of problem (1.6) reduces to that of problem
(1.5) by setting ¢f = q;, g7 =0,i=1, ..., .

Stochastic programming problems of the type (1.6) were formulated first by
Dantzig (1955) and Beale (1955) whereas the probabilistic constrained stochastic
programming model was introduced by Carnes, Cooper and Symonds (1958).
The combined use of penalties and probablilistic constraint, as in problem (1.5)
was proposed by the author of this paper (1973). Problem (1.6) is called by Wets
(1983) the simple recourse problem. For other references regarding this model
construction the reader is referred to his paper.

Assume that the random variables £, ..., & have discrete probability
distributions with finite possible values. Let z;1, ..., z, be the possible values of &
arranged in increasing order. Assume furthermore that there exist two numbers z;g
and zj, 4+ 1, corresponding to each i (1 £i <), such that for every x satisfying Ax
=b,x 20, we have z;o < Tix <zj, , 1 and

Zjg < zj1 <+ < Zigy < Zif; +1-

Under this condition the objective functions of problems (1.5), (1.6) can be
written in the forms of separable, piecewise linear, convex functions, by
introducing some additional, linear constraints. This can be done by the use of
two different lineari-zation methods wich are the &, and the A-methods.

Given a continous, piecewise linear, convex function f, defined in the
interval [zg, z; + 1] with breakpoints at zg < --- < z; 1 | we define

5, = [C=1Gim).

Zj=2Zj-1

=1,.... k+L 1.7
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By the assumptions, we have §; < 8, < ... < 8+ 1 and any function value f(y),
corresponding to y € [zg, z; + 1], can be represented in the form

k+1
f(y) =min {f(Zo) + Zl 51”1}
j=

k+1
subject to 2o+ X Vj=y
j=1
OS’l)jS.Zj—Zj_l, j=1L..,k+1 (1.8)

This is the 6-representation of the function value f{y). The A-representation is the
following

k+1

f(y) = min _Zof(lj)M
j=

k+1
subject to 2 zZjhj =y
j=0
k+1
SAj=1 A;20, j=0,..k+L 1.9).
j=0

Both representations can be applied to problems (1.5) and (1.6). We will con-
sider problem (1.6) first. Disregarding a constant term, the objective function is
the sum of cTx and X [ fi{(Tx), where

Yi
oD ==q¢fyi+lgf +q7) | E@dz, i=1,...,r. (L10)

Zi0

These are piecewise linear convex functions in the intervals [z, zi; + 1}, i =1, ...,
r thus, both the 6- and the A- representations are applicable. Wets (1983) applied
the 5- representation and solved the problem by the use of a primal simplex
method with individual upper bound technique. He exploits the special structure
of the problem but the number of variables is large and the presentation of the
method is somewhat complicated. We will apply the A- representation, work with
much smaller number of variables and present a simple, dual type algorithm. This
is done in section 2. In section 3 we show how the proposed algorithm can be
applied to solve other problems, e.g. the constrained minimum absolute deviation
problem. In section 4 we solve the problem (1.5).
Let us introduce the notations
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zij

cj=—qfzj+(qg+q;7) | F(2dz, j=0,...k+1 i=1...

Zi0

s F.

445

Using the fact that the functions (1.10) are piecewise linear and convex, we apply

the A- representation and reformulate problem (1.6) in the following manner:

. . r ki+1
min, Ix+miny ¥ ¥ ¢y
i=1 j=0
ki+1
subject to Y zijhij = i
Jj=0
ki +1
Ag=1 Ay20 all i,
j=0

This, in turn, can be written in the following manner

v kj+1
min, 3 Ix+ 3 Y ki

i=1 j=0
subjectto  Ax =b,
ki+1
Tix- X Zij/lij =0,
j=0

x=0, Aj=0, j=0,.. . k+l, i=1,...

s F.

(1.11)

(1.12)

The matrix of the equality constraints has the following structure (on the top the

objective function coefficients are listed):

L Cp 10 Clhky +1 Cr0 Cri, +1
A
=210 *t —Zlky +1
T
—ZrQ ~Zrky +1
1 1
1 1
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2 Dual Method for the Solution of Problem (1.12)

Problem (1.9) has a fundametal property that makes possible the development of
a simple dual algorithm for the solution of problem (1.12). This is expressed by

Lemma 2.1: All dual feasible bases of problem (1.9) are dual non-degenerate and
consist of two consequtive columns of the matrix of the equality constraints.

Proof: This lemma is a special case of theorem 3.1 in the paper by Prékopa
(1990). A simple direct proof is presented below.

The dual feasibility of a basis means that the (sufficient) condition of
optimality is satisfied. Let a;,i =0, ..., k + 1 be the columns in the equality
constraints of problem (1.9) and let B = (a;, a;), where i < j. Let furthermore f; =
flzp),i=0, ...,k + 1 and fp be the vector of basic components of the coefficient

vector of the objective function. Finally, let z, =fF _locp, dy=b"lap, p=0, ...,
k + 1. Since we have

1fF ‘l(fp]* 1-fFB! fpj_ o=
0B) \a) (0 B! jla,) \ dp |

it follows that

o B8

and by Cramer’s rule we get

L\fp fi f
—fTB-15 = _— , 2.1
To =I5 B7ap \Bl|lay a aj @D
where 1B| designates the determinant of B. For this we have |1Bl = Zl’ z 11 =z -z
< 0. On the other hand, given i <j </,, we have
- f _f £
i fj f =—(Zl—Zj)(Zj—Zj)(Il—f—]—f—]—f—lJ<0, (2.2)
a; 4aj ] Z1—Zj Zj—Z

because, by the convexity of the function f, the difference (f; — fj) (z;—2)~1 - (f; -
fi) (zi— ;)71 is positive. Hence, the value fp — flT;B—lap in(2.1) is always different
from O and is positive for every nonbasic p if and only if j =i + 1. In fact, by (2.2)
we get that if the column containing fp, ap in (2.1) is in its right place, allowing
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for an increasing order of the subscripts, then the result ia a positive number. This
excludes the case j > i + 1 because otherwise the choice p =i + 1 would produce a
negative value in (2.1).

The stucture of the matrix (1.13) implies that every feasible basis of problem
(1.12) has at least one but at most two columns from any block i(2 <i < r).The
above theorem, on the other hand, implies that in the latter case the two columns
must be consecutive.

Below we present our algorithm to solve Problem (1.12). We assume that A
# 0, T # 0 and designate the columns of A and T by ay, ..., a, and ¢, ..., ty,
respectively. The columns of the matrix (1.13) will be designated by 4y, ..., k,,
R10s -5 Plky + 15 «oos Br0s o5 Brk, + 1, TESpECtively. We will say that the matrix
(1.13) is subdivided into » + 1 blocks. The first block consists of the first » co-
lumns and the i + 1st block consists of the columns %y, ..., Aig; + 1-

Our solution of problem (1.12) applies to the general case, i.e., we do not as-
sume that the coefficients c;; are those, derived for the stochastic programming
problem (1.6). We assume, however, that for every 1 < < r the discrete function

ﬁ(zij)'_:cijv j=0"--ski+1

is convex, in other words, its second order divided differences are positive. Let us
introduce the notations for the first and second order divided differences, respecti-
vely:

Cij+1 Gy .
"——_‘=[Zij,2ij+1]cl', ]=07'--’ki
Zij+1 — Zjj
[zij> zij+1]—Lzi-1, 4]

Zij 41— Zij—1

=lzij_1, zij, zj411ci, =L k. (2.3)

In the case of the stochastic programming problem (1.6) we have the
following equalities

T +gm G+l
[z, i1l = —qF +—2— 2 [ Fy(2)z
Zl'j+1'—Zl.j zjj
=—qf +(q; +q7)(pio + ... + pij), (2.4)
1 .
(zij-1, zij» Zij+1]ci = ————— (g} + g; ) pij- (2.5)

Zij+1 — Zij~1

In steps 0,1 an initial dual feasible basis is constructed, whereas in the other
steps we perform iterations according to the dual method of linear programming.



448 A. Prékopa

Step 0: Select two consequtive vectors out of the last  blocks of the matrix (1.13).
Letji,j1+ 1, ..., J jr+ 1 be the subscripts of the selected vectors in the 2nd, ..., r
+ 1st blocks, respectively. Solve the systems of linear equations

—Z1j01 +wi = Clji»
—Z1j +101 + Wi = Clji+1,
_‘errl)r + Wy = err N
—Zpj, +1 U + Wy = Crjy +1
and define the vectors v = (vy, ..., v,), wl = (wy, ..., wy).

Step 1: Solve the linear programming problem

minimize  {(c; —vTt)x + ... +(cn — VT ty)xs)}
subjectto  aix1+...+anxn=b, x120,...,x, 20, (2.6)

by a method which provides us with a primal-dual feasible basis. Let B be this
optimal basis and let d be a dual vector corresponding to this optimal basis B, i.e.,
any solution of the equation d’B = clT; — UI'Tpg, where cp and Ty are those parts of ¢
and T, respectively, which correspond to the basis subscrpits. If A has full rank
then B is a sqare matrix and y is uniquely determined.

We have obtained a dual feasible basis for problem (1.12). It consists of
those vectors that trace out B from A and T'p from 7, in the first block,
furthermore the previously selected consecutive pairs from the other blocks. If A
has full rank and the optimal basis in problem (2.6) consists of the vectors ay, ...,
ay,, then for problem (1.12) we have the dual feasible basis

ar o Adlm
amt " Qmm
1 - hm  —Zj I+l
2.7
b1 o b ~Zrjy  TIrjy+1
0 0 1 1
0 0 1 1
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In the later steps of the procedure the basis structure may change so that out
of the variables x, ..., x,, there are m + s in the basis and out of s of the variable
PAirs zijy, Z1j, + 15 +++3 Zrjps Zrj, + 1, ODly ONE I8 in the basis, where 0 < s <r. Go to
step 2.

Step 2. Let S designate the set of those row subscripts of 7, ‘corresponding to
which only one —z;; is in the basic column and let it be —z;; . We designate
furtermore by Q the set {1, ..., r} - Sandlet - z;;, —z;;, + 1 be those elements in row
i € Q which are in basic columns.

Determine the basic components of the basic solution corresponding to the
basis. Let xg be the vector consisting of the basic components out of xy, ..., x, (xg
may have more components than the rank of A), determined by the equations

Apxgp =b
Tipxp = zij;, (€S, (2.8)

where T;p is that part of T; (the row of T) which correponds to xp.
As regards the basic components of {A;;} we easily find that

Aij; =1 for ies,
Zij; +1 — bpxB
Aij; =,
Ziji +1 — Zij; .
ieQ.
’Zz:‘BxB - Zyj;
Ajiv1 = ——,
Zij; +1 7 Zij;

Step 3: Test for primal feasibility: xz 20, A;;; 20, A+ 1 20, € Q. If all these in-
equalities are satisfied then stop, the basis is optimal. If it is not the case then
choose any basic component which is negative and let the corresponding vector
leave the basis. Go to step 4.

Step 4: Update nonbasic columns, i.e., represent them as linear combinations of
the basic vectors and compute the corresponding reduced costs that we designate
by the symbols ¢y, ¢, j =0, ..., k;+ 1,i=1, ..., r. Not all nonbasic vectors have
to be updated, just those which may enter the basis.This depends, however, on the
outgoing vector, as described below.

I. Let a column from the first block leave the basis. Then either a column
containing —z;;;,_ 1 (if j; > 0) or ~z;;;, . 1 (if j; < k;+ 1)& S or a column from the
first block may enter.

Ia. To update the column containing —z;; _ 1, where j; > 0 and & S, first we
represent a part of it by solving the equation with respect to u:
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Agu=0
Tipu ~ zjj, = —zjj; -1,
Twpu=0, heS, h#i.

Let u; be the solution of the equation

Apu; =0
Tipu; =1,
Thpu; =0, heS, h#i

Then we have u = u;(z; — z;;;, - 1)- To update the remaining part of the column of
zj;;— 1, we solve the equations for dy1, dp):

Thgu—  dmzpj, — dnazhjy,., =0,

heQ
dy+ di2 =0,
and obtain
ThBu
dh2 = _dhl = . he Q . (2.9)
Zhjp +1 — Zhyj,
For the reduced cost ¢j; _ | we derive
Gj-1 = chu+cy +(zyj; — 2z, —1) Tlzw,» znj, +1lcnThsui ~ cij -1
heQ
= (zy; = zij;-1)
X (Cgui +zij, —15 zij Jei + 2Zlzn, > zay, +1]ChThBuz‘) 2.10
heQ

Ib. To update the column of —z;;, . 1, where j; < k; + 1 and i€ S, the same re-
asoning can be used, the only difference is that now we define u = ugz;;; — zjj; + 1),
while u; is the same as before. The coefficients (2.9) change accordingly. The
reduced cost ¢y, 1 equals '

Gii+1=  —(zi 41— zijy Ychuw + 2z, zij; 1]
+ X [znjns znjy +11cnThpus)- (2.11)
heQ

Ic. To update that column from the first block which traces out g, from A, we
solve the equations for dy:



Dual Method for the Solution of a One-Stage Stochastic Problem 451

Y;de = tlpa l € Sa

furthermore, the eqautions for dy;, dpo:

Tuwgdy —  dpizyj, — dpazj, 1 =ty
dh1+dh2 =0, hEQ.

For the latters we obtain

dyy = Inp —Tthp
Zhjh +1 = Zhjh
heQ (2.12)
dry = Thpdp — tp
h2 — s

Zhjp +1 ~ Zhj,

For the reduced cost ¢, we derive

Tp = chdp+ X [z » 2hjy +11cn(Tupdp ~ trp) = Cp. (2.13)

heQ

II. Assume now that one of the columns —z,,, ~Zgj, + 1> 4€ 0, leaves the ba-
Sis.

ITa. To update the column of —z,;, _ 1, where j; > 0, we solve the equations for
dqlv dqzl

_dqlijq — ququq+1 = -—quq —1, dql + qu =1

which gives

Zgjo +1 — Zgj, - Zgj, -1 — Zgj
giq+1 7 2gjg -1 giq—1 7 Zqj
dy = L L dg = = ¥ (2.14)

Zgjq +1 ~ 2qjq Zgjq +1 ~ Zqj,
From here we derive the reduced cost

Cgjy—1 = Cqjg +1dq2 + Cqj, dg1 — Cgj -1

= ~(Zgjg +1 ~ Zaj, - 1) (Zgjy — Zajg ~1)2gj, 15 Zgjy » Zgjg +11cq- (2.15)

IIb. To update the column of —z,;_ ; », where j,; < k4, we solve the equations



452 A. Prékopa

—dqizgj, —dqpZgi,+1 = ~Zgjg+2,
dy1 +dg2 =1

which gives

2ot — 2 7 —
_ lqigH1l T Agjg +2 g +2 ~ 2qjq

dql = __—.____' ) , dq2 = —_—q — (2.16)
Zgjg +1 — Zgj, 2qjg +1 ™ Zgj,

From here we derive the reduced cost

Cqjy+2 = Cqjy +1dq2 + Cgj,dg1 — Cgjy +2

= —(2gj, +2 — 2qj, +1)(2gj, +2 — 2gj, N Zqj, » Zqj, +15 Zgjy +2)Cq- (2.17)

IIc. The update formulas and the reduced costs concerning the columns of
—zjj;— 1 (if j; > 0), —zj; 4 1 (if j; <k; + 1),& S and the nonbasic columns in the first
block are given in Ia, b, c.

Step 5: Determine the vector that enters the basis. The two cases handled below
are the same as those mentioned in the description of step 4.

1. Let the outgoing vector be the /th nonbasic vector from the first block. De-
signate by u(/) and u;(I) the /th components of the vectors u and u;, respectively. If
u is defined concerning —z;;; _ 1, then u(l) = ug(l) (zy; — z;;; - 1) and if u is defined
concerning —z;; + 1, then u(l) = u;(1) (zj5, — zjj; + 1)-

These have to be compared with the reduced costs (2.10) and (2.11),
respectively. If, on the other hand, we look at a nonbasic column in the first
block, the subscript of which is p, say (i.e., it is the column intersecting A at ap),
then the /th component of d,, that we designate by dy(0), has to be compared with

¢y in (2.13). If the matrix (]{ZIZ )is nonsingular then

d, = (AB )—1 i
Tsg) \Isp
Thus the incomming vector is determined by taking the minimum of the

following three minima (in the first two lines z;; —z;, _ 1 and Ziji — Ziji + 1
respectively, are already cancelled):

: T
min —\ chi; +1z5, 1, 25, Ic; + Zhi s Zhi cpTypl;
iES,ji<O,ui(l)>0{ui(l)( B v hE‘Q[ i h]h+1] ek
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min +[z ci + Xlzn,, 2z 7; ¥
i€, i <ki i (>0 (l)[cBul [zj;» zije +1]ci th[ hji> Zhjn +11Ch Tt |

1
—_— + , Z, cn(Thpd, — ¢, cp o 2.18).
dp(l)<0{dp(l)[ p Z [Zh]h hin +1len (T D hp) p) ( )

If the minimum is attained in the first line at i, then the column of - z;; _ 1 is
the incoming one.

If the minimum is attained in the second line at i, then the column of —z;; 4
is the incoming one.

If the minimum is attained in the third line at p, then the column of a,, is the
incoming one.

II. Let the outgoing column be either the column of ~z,;, or the column of
~Zgj,+ 1, Where g€ Q.

Ha. If it is the column of —z,;, then the column of ~Zgj, + 2 May enter,
provided j, < k,;. The other cadidates can be subdivided into three disjoint groups.
The first group is formed by the nonbasic columns of the first block. The second
(third) group is formed by the columns of —z;;, _ 1(~z;; 4+ 1), € S. We take the
minimum of the fractions of the reduced costs and the coefficients of the outgoing
vector, in the representation of the candidates in terms of the basic vectors,
restricting ourselves to negative coefficients, as prescribed by the dual method.
The coefficient that multiplies the column of —z,; in the representation of —z,;, 4 2
is negative and is given by (2.16). We take the fraction of ~Cg4j, + 2 and this
number.

To determine the incoming vector we have to take the minimum of the thus
obtained four numbers. Since all of them contain, as factor, the difference ~Zgjy+ 1
~ Z4j,» We can cancel it everywhere and obtain the following

(Z‘Ijq"'z - Z‘Ijq )[quq ’ quq +1» quq+2]cq,
. C,
min P ,
Typdp >ty Lgp —Typd,
Cij; -1

_ min , (2.19)
i€, ji >0,Typu; >0 —(Zl'ji - Zjj; —I)Tuni

. Cij; -1
. min y
ieS, ji<kiquBui<0 (Ziji+1 -'Zl‘jl. )Tuni

where the reduced costs are given by (2.10), (2.11) and (2.13). Some of the lines
in (2.19) may be absent. E.g., the first line is absent if j, = k.

If the minimum of the four numbers in (2.19) is attained in the first line then
the column of ~z,;, ; » comes in. If it is attained in the second line at p then the co-
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lumn of a, comes in. If it is attained in the third (fourth) line at i then the column
of —zjj; _ 1 (~zij;+ 1), € S comes in.

IIb. Let the outgoing column be that of ~z,;, + 1. The four numbers which are
analogous to (2.19) are the following

(2gjy+1 — Zgj, -1\ 2gj, -1, Zgj, - Zgj,+11cq>
] C
min < —2
Tpdp<iyy  Typdp —tgp

. Cij; -1
) ) min s
ie§, ji>0,Typu; <0 (Ziji - Zij,-—l)TqB”i

(2.20)

. Cij; —1
min )
ie$, ji<ki, Tpui >0 —(Zjj; +1 — Zjj; YT yput;

The reduced costs are given by (2.10), (2.11) and (2.12). Some of the lines may
be absent. If the minimum of these four numbers is attained in the first line then
the column of —z,;, _; comes in. Otherwise the determination of the incoming
vector is the same as in Ila. Go to step 2.

To avoid cycling, the application of Bland’s rule is the simplest. Originally it
was formulated for the simplex method but it applies word for word for the dual
method too: take the first candidates to go out and come in, where “first” refers to
the arrangement of the columns in the matrix of the equality constraints.

Hllustrative Example: To illustrate the steps in the above described algorithm let

33 10 21 13 33 41 2 31

23 2 21 5 14 25 10
=(11 25 23 8 24 21 26 26)
T =(12 8 0 4 6 12 7 10),
T =(219189), ¢ =¢5 =0, gf =q5 =1.

_(39 47 35 37 9 10 1 41]

The possible values of &, & and the corresponding probabilities are (the same for
bot random variables):

0 10 20 30 40 50 60 70 80

i1 1 1 1 1 1
037 37 7 37 35 7 70
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We have checked that 0 < T;x < 80, i = 1, 2 whenever Ax = b, x 2 0.For the objec-
tive function coefficients ¢;; we obtain c19 = c20 = c11 = ¢21 =0, ¢1;= ¢, = 10/7 (1
+2+...+i-1),i=2,3,4,5,6,7,8.

To describe the results in the subsequent steps we number the columns of the
matrix (1.13) from 2 trough 25. The initially chosen pairs from blocks 2 and 3
have subscripts 11, 12, 20, 21 (Step 0). Corresponding to these we have obtained
the vectors subscrited by 3 and 4, from the first block (Step 1). The subsequent
dual feasible bases are

Block 1 Block 2 Block 3
Initial 3,4 11,12 20, 21
Iteration 1 3,4 11,12 21,22
2 3,4 11, 12 22,23
3 0,3,4 11, 12 23
4 0,3,4 12 23,24
5 0,3,4 12,13 24
6 0,3,4 13 24, 25
7 0,3,4 13, 14 25
8 0,3,4 14 25,26
9 0,34 14, 15 26
10 0,3,4 15, 16 26
11 0,3,4,5 16 26
12 0,3,5 16, 17 26

The optimal solution is

x1 = 2.45386571, x4 =2.954389113, 1.398684014
A1, =0.1025123374, 1,9 =0.8974876626, A9 =1.

3 Applications for Deterministic Problems

Consider problem (1.3), where £ is non-random now and assume that the con-
straints in the equality 7x = £ are not required to be satisfied at any price. Instead,
we define a cost of deviation in its ith row by taking f;(Tx — £;) and then
formulate the following problem
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i=1

minimize {ch + i fi(Tix - 6,-)}
subjectto Ax=b, x=0, 3.1)

where f1, ..., fi are picewise linear convex functions, defined in some intervals.
An important special case of problem (3.1) is the following

¥ r
minimize {ch+ 2| Ztjxj— g ]}

i=1 i=1
subjectto Ax=b, x2z0. (3.2)

Suppose that there exist real numbers z;g, zi» such that z;p < g; < zjp and every
x which satisfies Ax = b, x 2 0, automatically satisfies

zio<Tix<zp, i=1,...,r 3.3)
Defining the functions fi(x) so that (see figure 1)

x—g if g<x<,

o

gi—x if zp<x<g,

fori=1, ..., r, we see that problem (3.2) is in fact a special case of problem (3.1).
Let us introduce the notations z;; = g;, i = 1, ..., . Then problem (3.2) is equiva-
lent to problem (1.12), where k; = -+- =k, = 1 and ¢y = fi(zip), ci1 = 0, ¢ip = fi(zp0),
i=1, ..., r. In other words, problem (3.2) is the stochastic programming problem
(1.4), where the random variable &; has only one possible value g; and gf = g; =
1,i=1, ..., rand it is assumed that (3.3) holds for every x satisfying Ax=5,x 2
0.

Z0 [153 Zi2 T

Fig. 1. Graph of the function fj(x)
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4 Simultaneous Use of Penalties and Probabilistic Constraint

In this section we outline an algorithm for the solution of problem (1.2), where
we assume that each random variable x; has a finite number of possible values
which are z;; < »+- <z, 1 i< r. We also assume that there exist numbers z;y, zj,

+1 such that z;5 < zj1, Zik; < Zik + 1 and we have

zig STix L zjgg+1, i=1,..,r

for every x satisfying Ax = b, x 2 0. Let Fy, ..., F,, F designate the probability dis-

tribution functions of £y, ..., &, &, respectively, i.e.
E(z) =P <2), zeRL, i=1..,r,
F(z) =P(£<2), zeRr,
The vectors (zq;y, ..., Zy,), where 1 <ji < ki, i=1, ..., rwill be considered the

set of possible values of the random vector £ Due to stochastic dependency, some
of these may have probability 0. We will briefly designate one possible value of &
by z0. .

We say that z0) is a p level efficient point (PLEP) of the probability distribu-
tion of £ if F(z()) Z p if there is no possible value z( of & such that

20 <D, 2D #20), Fz®0) > p.

Let z0), je E be the set of PLEP’s. Then the problem (1.2) is equivalent to pro-
blem (1.12), where, in addition to the constraints, we have also the constraint

Tx 2 z() holds for at least one j € E. 4.1

In fact, problem (1.2) is equivalent to problem (1.12) supplement by the additional
constraint

Tx 2 z()  holds for at least one j such that F(z()) > p. 4.2)

However, among all possible values satisfying F(z(/))> p, it is enough to take into

account only those which are PLEP’s because the set of feasible solutions of the

problem is the same, no matter if (4.1) or (4.2) is used as the additonal constraint.
Having all PLEP’s, we reformulate the constraint (4.1) so that

TxeH, (4.3)

where
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H= U H, H={ly2:0)
IeE

and solve subsequently problems of the type (1.12), supplement by the constraints

Jj-1
TxeH;\ UH;, j2L (4.4)
i=1

This way all possible elements in H will be allowed for Tx and an optimal
solution to problem (1.2) will be obtained. The algorithm can be summarized in
the following manner.

Step 0: Enumerate all PLEP’s. This is very easy to do if the code is written in
APL language which handles multidimensional arrays. In fact, applying the
iterated +\ addition for the multidimensional array containing the probablities of
the possible values of & we obtain the probability distribution function F of £.
Then the operation +\ ... H\F > p, where there are as many +\ additions as the
dimensionality of the array, produces an array where exactly those positions
contain 1’s which correspond to PLEP’s. We only have to find the corresponding
possible values of ¢ and the enumeration is done.

Initialize E©), H©) and x(©) as E©) = E, H©) = {yly > z@F And x() = 0,
where [ is arbitrarily chosen and the letter ¢ refers to the word “current”.
Assuming x = 0 is not a feasible solution of problem(1.12), we assign to this
vector, following a generally accepted convention, the objective function value +

Step 1: Solve problem (1.12) so that we prescribe the additional constraint
Tx € H©) (4.5)

and designate by xop; any optimal solution. When we first execute Step 1, then
(4.5) means the constraint Tx = z®. In later applications of step 1, H®) is the un-
ion of a finite number of rectangular sets, by (4.6). To solve Problem (1.12) with
the additional constraint (4.5) means that we solve as many linear programming
problems as the number of rectangular sets and the LP corresponding to a
rectangular set is obtained so that in problem (1.12) only those z;; values are
allowed which are elements of the rectangular set. The c;; coefficients remain
unchanged but only those are used which correspond to non-deleted z;;. The
Vector X, is defined as that optimal solution which produces the smallest
optimum value among all optimum values of the above-mentioned LP’s.
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Step 2: Check if the objektive function value of x,, is smaller than that of x(9). If
yes, then choose any / € E©), update H©), x(©) as followes

E© = EO\ (),
H(C) = HZ\H(C)’ (46)

x(c) = xOpt

and go to step 1. Otherwise update only E(¢) and H(), following the rule in (4.6)
and go to step 1.

If cycling is somehow excluded (e.g., by applying Bland’s rule) in each LP,
then the algorithm terminates in a finite number of steps, by reaching an optimal
solution. This happens when the updated E®© in (4.6) becomes empty and steps 1
and 2 are executed fot the last time.

The algorithm can considerably be simplified at the expense of some super-
flous computation if instead of (4.4) we simply write Txe Hy; j = 1. In this case
step 1 and step 2 can be combined into one step where we solve problem (1.12)
with the additional constraint Txe€ H;. This is iterated until all sets H;; have been
investigated.

This variant is supported by the fact that if the probability level p in the
probabilistic constraint is relatively large, e.g., p = 0.8, then in many cases there
will be a few PLEP’s only. To see an example, let » = 4 and assume that the
components of x; are independent, each can take the possible values 1, 2, 3, 4, 5,
6, 7, 8 with the same probability 1/8. If p = 0.8 then there are 4 PLEP’s which are
the following

7 8 8 8
8 7 8 8
8§ 8 7 8
8 8 8 7

Thus if we run four times the algorithm presented in section 2, the optimal
solution is obtained.

Computational experience: A code in APL language has been prepared for
the solution of problem (1.12) and test problems were run on an IBM PC AT and
a VAX 8650 mainframe. Problem sizes ranged up to m + r = 60, n = 200 and k; =
1,000. In this first variant of the code the inverse of the “working basis” (as Wets
has called it)

)
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is computed by the APL matrix inversion device at any iteration. The matrices A
and T were randomly chosen. The running times depended very much on the
choices of the initial consecutive column pairs in the second , ..., » + 1st blocks.
Inthe case of m =5, r =4, n =100, k| = ky = k3 = k4 = 1,000, the solutions have
been obtained instantly or in at most 35 minutes on the AT, while in case of m =
50, r = 10, n =200, ky = --- = k1o = 10, the solution times varied between 5 and 40
minutes, on the mainframe. The sizes of the LP’s in these two cases are 13 x 4108
and 70 x 320, respectively. These wide ranges of the solution times suggest that
the problem should be solved in an interactive way so that by observing the
changes of the numbers jj, in the course of the solution, we stop and restart the
run by choosing larger or smaller initial j;, values, in agreement with the
directions of their changes. Using this, the solution times remained in the lower
sections of the above ranges.

The speed of the execution was improved also by the insertion of “primal
steps” as follows. At the end of the execution of step 2, assuming the optimum
has not been reached yet, new initial consecutive column pairs are defined (the
columns of —z;;, =z, + 1,1 = 1, ..., 1) so that the equitations for the A’s:

Tix— Aijzij — Aiji+1zi;+1 =0,
liji + )viji +1 =1

produce nonnegative solutions, where x is the optimal solution of problem (2.6),
obtained by the execution of step 1. We than restart the solution with these

Jis ees i
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