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Abstract 
We present an approach for recovering surface shape from the occluding contour using an active (i.e., moving) 
observer. It is based on a relation between the geometries of a surface in a scene and its occluding contour: If the 
viewing direction of the observer is along a principal direction for a surface point whose projection is on the contour, 
surface shape (i.e., curvature) at the surface point can be recovered from the contour. Unlike previous approaches 
for recovering shape from the occluding contour, we use an observer that purposefully changes viewpoint in order 
to achieve a well-defined geometric relationship with respect to a 3-D shape prior to its recognition. We show 
that there is a simple and efficient viewing strategy that allows the observer to align the viewing direction with 
one of the two principal directions for a point on the surface. This strategy depends on only curvature measurements 
on the occluding contour and therefore demonstrates that recovering quantitative shape information from the con- 
tour does not require knowledge of the velocities or accelerations of the observer. Experimental results demonstrate 
that our method can be easily implemented and can provide reliable shape information from the occluding contour. 

1 Introduction 

There has been considerable interest in recovering in- 
formation about the structure of a scene from sequences 
of images, assuming an observer in motion--e.g., work 
on optical flow (Horn 1986) and shape-from-motion 
(Aloimonos et al. 1987). One common feature of these 
approaches is the use of known viewer motion in order 
to recover quantitative properties of the scene such as 
surface curvature (Cipolla & Blake 1992). Recently, 
however, there has been considerable interest in em- 
ploying simple observer behaviors that either make the 
recovery of scene properties easier and more efficient 
(Ballard 1989, 1991; Ballard & Brown 1992; Krotkov 
& Bajcsy 1993; Wixson & Ballard 1993; Rimey & 
Brown 1993), or combine simple behaviors in order 
to perform complex tasks such as tracking, navigation, 
and obstacle avoidance (Aloimonos 1990; Coombs & 
Brown 1993; Papanikolopoulos et al. 1993; Grosso & 
Ballard 1993; Nelson & Aloimonos 1989; Brooks 
1986, 1989). These approaches rely on maintaining 
specific geometric relationships between the observer 

and the environment. However, without knowledge of 
viewer motions they only recover qualitative informa- 
tion about the viewed scene--e.g., relative-depth order- 
ing with respect to the fixated scene point (Ballard & 
Ozcandarli 1988). 

This article presents a new approach which com- 
bines the above two paradigms in order to recover sur- 
face curvature from the occluding contour. We show 
that shape for a selected point on the viewed surface 
can be recovered from the occluding contour of two 
views. The only requirements are that (1) the surface 
point is projected on the occluding contour in both 
views, and (2) the viewing direction of the observer 
for one of the views has a specific relationship with the 
surface geometry at the selected point. The main idea of 
our approach is to use an active (i.e., moving) observer 
that purposefully changes viewpoint in order to achieve 
such a well-defined geometric relationship with re- 
spect to a 3-D shape prior to its recognition. We show 
that this relationship is characterized by specific image- 
computable quantities and enables an analysis sim- 
ilar to the one by Krotkov (1987). In addition, our 
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approach does not require any knowledge of observer 
velocities or object models, and assumes the use of a 
world-centered coordinate frame (Ballard 1989). 

It is well known that the occluding contour is a valu- 
able source of information about surface shape (Bar- 
row & Tenenbaum 1981; Giblin & Weiss 1987; 
Koenderink 1984; Mart & Nishihara 1978; Ulupinar 
& Nevatia 1988). The occluding contour is the projec- 
tion of the one-dimensional set of points separating the 
visible from the hidden parts of the surface. It is also 
defined as the projection of the visible rim, the one- 
dimensional set of visible surface points at which the 
line of sight of the observer is tangent. There have been 
several approaches to deriving information about sur- 
face geometry from the occluding contour. These ap- 
proaches are based on three important properties of the 
contour's geometry: 

1. The geometry of the occluding contour is surface- 
dependent. 

2. The occluding contour is the projection of a limited 
set of surface points. 

3. The geometry of the occluding contour is viewpoint- 
dependent. 

The dependency of the occluding contour's geometry 
on the surface has been investigated by several research- 
ers. It has been shown that the geometry of the occlud- 
ing contour severely constrains the underlying surface 
geometry (Barrow & Tenenbaum 1981; Giblin & Weiss 
1987; Koenderink 1984; Richards et al. 1988). The 
major problem, though, is that the occluding contour 
is created through a projection process and, in general, 
the information it provides is ambiguous, that is, several 
different surface rims can project to the same occluding 
contour. This has been the major motivation for using 
the occluding contour to derive qualitative rather than 
quantitative information about the surface shape (Koen- 
defink 1984; Richards et al. 1988; Leyton 1988; Malik 
1987). On the other hand, approaches that derive quan- 
titative shape descriptions from the occluding contour 
assume that additional information is available in order 
to adequately constrain the shape-recovery process 
(Cipolla & Blake 1992; Giblin & Weiss 1987). Such 
approaches require other means for deriving the addi- 
tional shape information. For example, Cipolla and 
Blake (Cipolla & Blake 1992) used a moving observer 
to change viewpoint and measured the relative accelera- 
tions of image features near the occluding contour in 
order to measure surface curvature. Even though their 
approach was not very sensitive to errors in viewer 

motion, they assumed the existence of image features 
near the occluding contour and knowledge of the ob- 
server's translational velocity. 

The second property of the occluding contour sug- 
gests that it can provide only a limited amount of infor- 
mation about the complete shape of the surface. Indeed, 
only a one-dimensional set of surface points projects 
to the occluding contour. If the only information avail- 
able is the occluding contour of the surface from a par- 
ticular viewpoint, we can at best derive only a quali- 
tative description of the entire surface. For example, 
Barrow and Tenenbaum (1981) attempted to constrain 
the recovery problem using additional smoothness 
assumptions about the surface, but these assumptions 
do not hold in general. 

The dependency of the occluding contour on view- 
point has been used to resolve both of the above am- 
biguities. A slight change in viewpoint will affect the 
geometry (i.e., curvature) and possibly the topology 
of the rim, and hence the occluding contour. Moreover, 
the set of rim points changes and therefore new con- 
straining information about the surface shape becomes 
available. It has been shown that if we know how the 
geometry of the occluding contour changes with view- 
point, we can derive a parameterization of the surface 
and determine its shape (Giblin & Weiss 1987). Fur- 
thermore, algorithms for tracking such contours over 
a sequence of images are becoming increasingly more 
sophisticated (Blake et al. 1993). The issue here is how 
to accurately measure such changes in the contour's 
geometry with small viewpoint changes. For example, 
we must be able to measure the velocity and accelera- 
tion of surface points entering and leaving the rim 
(Cipolla & Blake 1992; Vaillant & Faugeras 1992), a 
problem that requires first- and second-order differen- 
tiation operations, and hence is sensitive to noise. 

The basic assumption used by all of the above ap- 
proaches was that the viewpoint is arbitrary. This 
means that the viewpoint is not related in any way to 
the geometry of the rim or the occluding contour. (For 
example, there are surfaces for which their rim is planar 
when viewed from a particular set of directions (Marr 
& Nishihara 1978).) This is a reasonable approach, 
however, only if the observer cannot control viewpoint. 
When the observer has the ability to control the view- 
ing direction, the choice of viewpoint(s) does not have 
to be arbitrary. Our approach uses an active observer 
to obtain a view based on the observed object's geom- 
etry in order to recover exact shape information from 
the occluding contour. 
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1.1 Active Shape Recovery 

Our goal is to actively derive a quantitative shape de- 
scription for surface points in the vicinity of the rim. We 
accomplish this goal by using properties of the occlud- 
ing contour. The basic step of our approach involves 
selecting a point on the rim and recovering the surface 
shape (i.e., principal curvatures and principal direc- 
tions) at that point. In addition, we present a strategy 
for applying this shape-recovery step to neighboring 
surface points. The surface description is therefore in- 
crementally extended by successively including new 
points on the rim and recovering the surface geometry 
for those points. 

The main step of our approach is based on a relation 
between the geometries of a surface in a scene and its 
occluding contour: If the viewing direction of the ob- 
server is along a principal direction for a selected sur- 
face point whose projection is on the contour, the corre- 
sponding principal curvature at the point can be recov- 
ered. Hence, even though, in general, surface curvature 
computation from the occluding contour of a single view 
is an underconstrained problem, for any given point 
there do exist viewing directions that make this recovery 
problem well defined. If the observer can move to one 
of those special viewing directions, the ambiguities 
caused by the projection process can be resolved. We 
show that the observer can in fact deterministically find 
these special viewing directions by simply maximizing 
or minimizing a geometric quantity of the occluding 
contour (curvature at a point) while changing viewing 
direction in a constrained way. Furthermore, we show 
that we can recover the shape of the surface at the se- 
lected point (i.e., both principal curvatures) from the 
occluding contour of one additional view for which the 
selected point is projected onto the contour. Thus an 
active observer selects a point on the surface rim and 
purposefully moves to one of the special viewpoints in 
order to make shape recovery a well-defined problem. 

The significance of our method lies in the use of 
purposive observer motion to achieve and maintain 
purely geometrical relations between a surface and its 
occluding contour in order to recover surface shape. 
Hence, there is no need to perform any velocity or ac- 
celeration measurements in the vicinity of the rim, a 
process requiring point-to-point correspondences in the 
images and precise knowledge of viewer motion. Fur- 
thermore, since there is a well-defined procedure to 
reach the desired viewpoint, the observer does not need 
to perform a complicated search in order to find it 
(Bajcsy 1988; Hager & Mintz 1987). 

Even though our approach is limited to the recovery 
of surface shape in the vicinity of a single point on the 
rim, we show that there is an important special case 
for surtaces of revolution, for which we can derive 
shape information for the complete set of rim points. 
In this case the observer actively "aligns" itself with 
the viewed surface in order to find a viewpoint giving 
complete surface information (i.e., one perpendicular 
to the surface's axis of rotation). 

We also present an extension to the above approach 
that recovers the shape of points in the vicinity of the 
rim. After the shape of a selected rim point is recov- 
ered, the observer changes viewpoint in order to bring 
a new surface point onto the rim and to recover its 
shape. Since our basic shape-recovery step involves 
aligning the observer's viewing direction with one of 
the principal directions at the new point, it is impor- 
tant for this visual alignment process to require only 
small viewpoint adjustments. We show that if (1) the 
new point selected is in the normal plane of the 
previously selected point, and (2) the new point is suf- 
ficiently close to the previously selected point, these 
adjusmaents will in fact be small and their extent will 
depend entirely on the intrinsic properties of the sur- 
face. This is a major difference from approaches using 
"passive" motion, where the points selected for recon- 
struction cannot be controlled. 

The rest of this article is organized as follows. 
The next section reviews basic terminology. Section 3 
discusses the relation between the geometries of the 
occluding contour and the surface, and presents the 
major result enabling us to actively recover surface 
geometry from the occluding contour. Section 4 uses 
this result to describe the main shape-recovery step of 
our approach. Our results are then extended in the 
following two sections. Section 5 discusses shape 
recovery for the case of surfaces of revolution, and 
section 6 describes the viewing strategy used to select 
a new point for shape recovery. Finally, section 7 
presents experimental results on synthetic and real im- 
ages to demonstrate the applicability of our theoretical 
results. 

2 Viewing Geometry 

Let S be a smooth, oriented surface in ~t 3, viewed 
under orthographic projection along a viewing direc- 
tion 4. Viewing directions can be thought of as points 
on the unit sphere S 2, with s and t being the slant and 
tilt of the camera respectively (figure 1). 
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Fig. t. Viewing direction ~ is represented as the point p = 
(cos t cos s, cos t sin s, sin t) with s E [0, 2~r), t E [0, 70. 

Let x be a parameterization of S and p = x(u, v) 
be a point on S. The partial derivatives xu (p) ,  xv (p)  
of  x with respect to u and v define Tp(S), the plane 
tangent to S a tp .  The rim of  S is the set of  those points 
p for which Tp (S) contains a line parallel to ~. The oc- 
cluding contour of S is the projection of the visible rim 
on the image plane (figure 2). The shape of the occlud- 
ing contour depends on S and the viewing direction. 
Our goal is to use this contour information to recover 
a description for the parameterization x at points of S 
in the vicinity of  the corresponding rim points. 

Local surface shape (i.e., curvature) is completely 
expressed by the first and second fundamental forms of 
S with respect to x (doCarmo 1976; Koenderink 1990). 
Specifically, let N(p)  : S ~ S 2 be the Gauss map of 
S, assigning a unit normal vector N(p)  in the direc- 
tion of the vector product x u A xv at every point p E 
S. The normal section of S along a direction ~ in 
Tp(S) is the plane curve produced by intersecting S 
with the plane of ~ and N(p).  The second fundamental 
form, II(p),  gives an expression for the curvature of  
this curve at p. II(p) has a single maximum and 
minimum, kn~ and kn2, along two orthogonal direc- 
tions, e 1 and e2, respectively. These directions are 
called the principal directions atp.  We can use the two 
quantities k~, kn2, called the principal curvatures of S 

S 

!!!!!!!!!!!!! .... 

ewing di-rection 

Fig. 2. Point p on the rim of the sphere S is projected to the occluding 
contour point q on the image plane. 

at p, to compute the curvature of the normal sections 
along any other direction using Euler's formula: 

k , (~ )  = k~l cos 2 4~ + k, 2 sin 2 4~ (1) 

where 4~ is the angle between the new direction and 
el. Hence, we can recover the local shape of S com- 
pletely from the principal curvatures of S. A qualitative 
description of the local shape of S can be given by look- 
ing at the sign of their product K = kn~kn2, the Gaus- 
sian curvature of  S at p (figure 3). 

Our goal is to recover the principal directions and 
principal curvatures at selected points on S. We focus 
on the general case where p is not an umbilic point, 
that is, a point where any pair of orthogonal directions 
on Tp(S) is a pair of principal directions; recovering 
the local shape of the surface at umbilic points is then 
straightforward. In the vicinity of nonumbilic points 
there exists a special parameterization x(u, v) of S such 
that the tangents to the curves x(u, Vo) and x(uo, v) 
(u0, v0 constant) are along the principal directions. 
These curves are called lines of  curvature and their prop- 
erties are intrinsically related to the underlying surface. 
Therefore they serve as a natural basis for describing 
a surface (Brady et al. 1985; Stevens 1981). In the rest 
of  this article, x will refer to such a parameterization. 

The geometry of a point on the occluding contour 
and the information we can derive from it depend on 
whether the point is a projection of an elliptic, hyper- 
bolic, or parabolic point. This qualitative classification 
is therefore especially important in order to evaluate 
the results of our approach. 
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Fig. 3. Classification of the surface point p based on K: (a) p is elliptic, (b) p is hyperbolic, (c) p is parabolic, and (d) p is planar. 

3 Local Surface Geometry from Occluding Contour 

The problem of recovering surface geometry from the 
occluding contour has been mainly studied under the 
assumption that the viewing direction is arbitrary. This 
means that the viewing direction is not related in any 
way to the geometry of the rim or the occluding con- 
tour. For example, there are surfaces for which their 
rim is planar when viewed from a particular set of 
directions (Marr & Nishihara 1978). The assumption 
that the viewing direction is arbitrary immediately ex- 
cludes such viewpoints from consideration since the rim 
is not always planar (Koenderink 1990). This is a 
reasonable assumption, however, only if the observer 
cannot control the direction of gaze. Unfortunately we 
can only derive a limited amount of information from 
the occluding contour when this assumption is in effect. 

Letp  be a point on the visible rim of S when viewed 
from direction ~ and let q be its projection on the image 
plane. There are three main results describing what can 
be recovered from the shape of the occluding contour 
under orthographic projection and from an arbitrary 
viewing direction: 
1. We can recover the surface normal and the tangent 

plane at p from ~ and the tangent to the occluding 
contour at q. This is because, by definition, Tp (S) 
contains both ~ and the tangent to the occluding con- 
tour (Barrow & Tenenbaum 1981). 

2. Let ko be the curvature of the occluding contour at 
q. Then k o and the Gaussian curvature K of S at p 
have the same sign (Koenderink 1984; Brady et al. 
1985). 

3. If  k,, is the normal curvature of S at p along ~, then 
K = k, ko (Giblin & Weiss 1987; Koenderink 1984; 
Brady et al. 1985)? 

Similar results hold for perspective projection where 
the plane of projection is not positioned at infinity, and 
for the case where k o = 0 (Brady et al. 1985). 
Because K is defined as the product of two curvatures 
on the surface (i.e., knt, kn2), these results suggest that 
if we know k o then we only need to measure one 
curvature on the surface instead of two. In fact k,, and 
k o determine the second fundamental form at p. This 
was the main idea behind the surface reconstruction 
approach of Cipolla and Blake (1992). 

The above results are important but they also imply 
that if we have no additional information about the 
shape of the viewed surface, the information provided 
by the occluding contour is primarily qualitative. How- 
ever, when the observer can actively control the view- 
ing direction, we can exploit the existence of directions 
that allow the derivation of complete information about 
the surface. We show this by presenting three simple 
corollaries to a result of Blaschke (Koenderink 1990). 
Blaschke's result is analogous to Euler's formula and 
relates the curvature of the occluding contour with the 
principal curvatures of S at the rim: 

Theorem 1 (Blaschke): Let q5 be the angle between 
and the principal direction e 1 at p. I f  K ~ 0, 

ko--l(q~) = kn~ 1 sin 2 ~b + kn2-1 cos 2 q~ (2) 

Corollary 1: I f  ~ is along el, then ko = kn2. 2 
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Corollary 2: Let ~, ~' be two distinct viewing direc- 
tions in Tp(S) from which p is visible, and let ko, ko 
be the curvatures of the occluding contour at the corre- 
sponding projections of p. I f ( l )  K ;~ 0 at p, (2) ~ = 
el, and (3) the angle between ~ and ~ ' is known, then 
we can compute knl, e2, and K at p. 

Corollary 3: Let p be a point on the visible rim of 
S with K ~ O. Let 4~ ~ [-7r, 70 be the angle between 

~ T,(S) and el. (1) I fp  is elliptic and nonumbilic, 
the function ko(~ ) takes its minimum and maximum 
values only when ~ coincides with one of the principal 
directions. (2) I f  p is hyperbolic, ko(~) is well-defined 
only when [ < a rc tan  ~/(knl]-kn2) for I ~Pl < 7r/2, 
or ~ - I~1 < arctan ~knJ-kn2)  fo r IdPl >- 7r/2. For 
these directions, ko(~) takes its maximum value when 
coincides with el and it has not minimum value. (3) I f  
p is umbilic, ko(~) is constant. 

Proofs. If ~ is along el, ~b = 0 in equation (2). Cor- 
ollary 1 immediately follows. For corollary 2, note that 
k,1 is derived using corollary 1, and that 4~ is known. 
Since K ;~ 0, equation (2) is well defined and we can 
use it with k,1 as the unknown. The other principal 
direction is also computable since e 2 must lie on Tp(S) 
and be perpendicular to ~. In fact, ~ is perpendicular 
to the rim even though this does not hold in general 
(Koenderink 1990). 

Finally, the derivative of ko(¢p) is 

k ' ( , ~ )  = 

Q 1 1 ~ sin2th (3) 
kn 2 knl (kn~ 1 sin 2 ~b + k~ 1 cos 2 ~b) 2 

In the case of an elliptic, nonumbilic point, k,~ ~ kn2 
and therefore k" becomes 0 for ~ = 0 or ~ = 7r/2, that 
is, when ~ is along a principal direction. I fp  is hyper- 
bolic, the expression in the denominator tends to 0 as 
th approaches arctan ~/(k,1/-k~z ) which is the angle 
between e 1 and the asymptote of the surface at p. In 
the interval [arctan ~/(knl/-kn2), - arctan ~/(knl/-kn2) 
+ re] p becomes occluded and therefore ko(dp) is un- 
defined. In the interval where ko(dp) is defined, equa- 
tion (3) shows that ko(4~) has a maximum only for 
~b = 0 or 4~ = It. Finally, when p is umbilic, k,1 = kn 2 
by definition, and k'(dp) is identically zero. [] 

Corollary 1 suggests that the principal directions at 
p form a special set of directions providing explicit in- 
formation about surface geometry in the vicinity ofp. 

Now assume that we are viewing a point p from a par- 
ticular viewing direction and can measure the curvature 
of the occluding contour atp's projection. If somehow 
we can adjust our viewing direction to coincide with 
a principal direction at p and know what this adjust- 
ment is, corollary 2 shows that we can derive the sec- 
ond fundamental form orS atp. This solves the shape- 
recovery problem for p. The most important result is 
given by corollary 3. It shows that the problem of find- 
ing the principal directions at a point can be treated 
as a simple maximization (or minimization) problem. 
We describe the implications of this result in the next 
section and show how it can be used by an active 
observer to find the principal directions at p. 

4 Recovering the Local Geometry of a Surface Point 

The basic step of our surface reconstruction approach 
is to select a point on the occluding contour and recover 
the local surface geometry for its corresponding rim 
point. We do not address the point-selection problem 
directly. The reason for this is that we cannot decide 
a priori which point on the occluding contour will prove 
the most useful. This will depend on the context in 
which the approach is used. However, there are specific 
types of points for which our reconstruction method 
may not work. Therefore, our task will be to select a 
point on the rim for which we can ensure that our ap- 
proach is effective. Below, we first outline the main 
ideas, and in section 6 we present more details. 

4.1 The Active Reconstruction Approach 

Suppose we have selected a point p on the rim of sur- 
face S. For simplicity we will assume that p is at the 
origin. We first consider the case where p is non- 
umbilic. Corollary 3 says that if p is a hyperbolic 
point or a nonumbilic elliptic point, there are only 
two viewing directions in Tp(S) for which k o obtains 
a local maximum value and two directions for which 
ko obtains a local minimum. Our goal is to find one 
of these directions since they correspond to el and ez. 
We discuss the problem of finding e2; e 1 is treated 
similarly. 

Viewing directions in the plane Tp(S) can be 
thought of as points on a unit circle, C, defined by the 
intersection of the sphere S 2 centered at p with Tp (S) 
(see figure 4). As the observer changes viewing direc- 
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C 

direction  ...  rincipal 
' direction 

Fig. 4. Viewing directions on Tp(S). Viewing directions correspond to points on the unit circle C lying on Tp(S) and centered at p. 

tion on Tp (S), the corresponding point moves on C. 
Our goal is to smoothly move the point on C until the 
viewpoint with maximum ko is found. To do this we 
must answer two questions: (1) Which direction should 
the observer move on the unit circle, and (2) how can 
the observer detect when the viewing direction is equal 
to e2? 

We have only two possibilities for moving on the 
unit circle, either clockwise or counter-clockwise. 

Obviously, we prefer the minimal-motion solution in 
which the desired extremum is attained with the small- 
est possible change in viewing direction. In particular, 
if we move in the direction of increasing ko, the first 
extremum we reach is a maximum. It easily follows 
from the local geometry of elliptic and hyperbolic 
points that this strategy will in fact produce the smallest 
viewing direction change (figure 5). On the other 
hand, parabolic points do not have this property. 

m a x  
C 

min min 

d e c r ~ ~  

i n c r e a s e  

m a x  
C 

"i 

decrease 

increase 

(a) (b) 

Fig. 5. Finding the principal directions. Top views of the tangent plane are shown. The axes represent the principal directions, and the origin 
con'esponds to the point of contact, p, with the surface. The viewing direction makes an angle 4~ with the first principal direction. C represents 
the set of  viewing directions on the tangent plane, and D is Dupin's indicatrix for p. (a) p is an elliptic point. Clockwise change in viewing 
direction decreases k o. The viewing direction can change by at most 7r/2 before a local minimum or a local maximum is reached. (b) p is 
hyperbolic. The only achievable extremum is a local maximum, obtained in this case by a counter-clockwise rotation. Shaded areas, delimited 
by the asymptotes of the point, represent the directions where p is occluded. The maximum viewing direction change before an extremum 
is found, in this case, decreases to the angle between e~ and the asymptotic directions. (Note that the axis labels have been reversed.) 
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The second question, detecting when the viewing direc- 
tion is equal to e2, is partly answered by corollary 3. 
It says that we can detect this event by detecting a local 
maximum of ko. However, in order to detect this local 
maximum, p must be visible; k o cannot be measured 
otherwise. The visibility of p is affected by the local 
surface geometry at p as well as by the global geom- 
etry of S. Ignoring for a moment the case where p is 
occluded by some distant point on S, we arrive at the 
following two conclusions: (1) I f p  is elliptic, we can 
align the viewing direction with either el or e2. Fur- 
thermore, the maximum possible direction change 
before the alignment takes place is 7r/2 (figure 5a). 
(2) I f p  is hyperbolic, we can align the viewing direc- 
tion only with el. The maximum possible direction 
change in this case is determined by the point's asymp- 
totes (figure 5b). 

The problem of recovering the local surface geom- 
etry at an umbilic point on the visible rim is even 
simpler. Corollary 1 suggests that if we know p is um- 
bilic, we can recover the local surface shape at p by 
simply measuring the curvature of the occluding con- 
tour atp's projection. It therefore suffices to find a way 
of detecting that p is umbilic. Corollary 3 shows that 
this can be done by determining whether ko remains 
constant as the viewing direction moves on the circle C. 

These results suggest a simple algorithm to align the 
observer's viewing direction with e2 and recover the 
local surface shape at p :  

Step 1. Perform a small change of viewing direc- 
tion on Tp(S) and measure the difference between the 
previous and current value of ko. If  it increases, con- 
tinue to change the viewing direction in the same way 
so that e2 will be reached first. If  it decreases, move 
the viewing direction in the opposite way. If  it remains 
constant, stop moving; knl and kn2 are both equal to ko 
(i.e., p is umbilic). 

Step 2. Continue moving in the same direction un- 
til ko reaches a maximum. This viewpoint corresponds 
to e2 and therefore the observer can stop moving and 
use the current value of ko for kn~. 

Step 3. Measure the total change of viewing direc- 
tion between the initial and final directions. Corollary 
2 says that this angle along with knl and the initial 
value of ko can be used to determine kn2. 

The above algorithm assumes that the observer can 
measure relative changes in viewing direction. For 

elliptic points this requirement can be relaxed at the 
expense of additional motion: The observer can recover 
the principal curvatures at the selected point by moving 
to the viewpoints corresponding to the maximum and 
the minimum value of ko. Hence, in this case shape 
recovery can be achieved without relying on any quan- 
titative measurements involving the observer's motion; 
the observer must simply be able to control viewpoint 
around the selected point by moving clockwise and 
counterclockwise on its tangent plane. 

4. 2 Selecting Surface Points for Reconstruction 

Any observer motion minimizing or maximizing ko 
must take into account the effects of global surface 
geometry: Irrespective of its local structure, p may 
become occluded by distant points on S. The follow- 
ing proposition shows that (a) there are at least some 
points on the visible rim of S that cannot be occluded 
by S if the observer changes direction as described 
above, and (b) these points are easily detected on the 
occluding contour (figure 6). 

I' 

Fig. 6. Determining the complete visibility of rim points. Since the 
tangent at q does not intersect the occluding contour elsewhere, q 
corresponds to a rim point visible from ever), direction in its tangent 
plane. 

Proposition 1: (1) Letp  be a visible, elliptic point 
on the rim of a smooth surface S when viewed from 
direction ~ under orthographic projection. Let q be 
the projection o fp  in the image plane and let l be the 
tangent to the occluding contour at q. Then, p is vis- 
ible from every direction on Tp(S) iff l does not inter- 
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sect the occluding contour and is not tangent to it at 
any point other than q. 
(2) Let C be the occluding contour of S when viewed 
from direction ~. Then there is at least one point on 
S projected in C that is visible from every direction in 
Zp(S). 

Proof." (1) (Only If) Consider the intersection of S 
with Tp(S). I f  the intersection contains only the point 
p, then the intersection of any line m ~ Tp (S) with S 
will either be empty or equal to p. Recall that while 
changing viewing direction, Te(S) is viewed edge-on 
and its projection is the line I. Since l is the projec- 

tion of all lines in Tp(S) (except those lines parallel to 
~), it follows that 1 will only intersect the occluding con- 
tour at q. 

(If) Assume there is a viewing direction in Tp(S) 
from which p is not visible. Let ~'  be the first such 
direction while moving clockwise (figure 7). The view- 
ing direction ~' must contact S at p and at at least one 
more point, say s. Now consider the intersection of S 
with Tp(S). The intersection will consist of a set of 
closed curves and isolated points. Since p is elliptic 
there must exist a small disk in Tp(S) centered at p 
that does not contain any other points of S. Therefore 
p and s must be in different components. We distinguish 

%(s) 

(a) 

%(S) \\ \ 

Q , ,  
\ 

(b) (c) 

Fig. 7. The effects of global occlusion. (a) A "side" view of Tp (S). Viewing direction 4' is the first direction in which p becomes occluded. 
s is the point occluding p from that direction. Q is the component of S O Tp(S) containing s. Co) "Top" view of the tangent plane of S at 
p, shown in (a). ~ is the original viewing direction. (c) "Top" view of the tangent plane Tp(S) for a surface S in which S n Tp(S) contains 
two components, Q and Q'. 



122 Kutulakos and Dyer 

two cases, namely whether s is an isolated point or a 
point on a curve. I f  s is an isolated point then Tp(S) 
must be tangent to S at s. But then s is also part of 
the rim when viewed along the original direction ~. In 
addition, s must be on the visible rim because it is 
the first point that occludes p when changing viewing 
direction from ( to ~'. This implies that the projec- 
tion of an imaginary line joining s and p will contact 
the occluding contour at two points, the projections of 
s and p. 

If  s is not an isolated point, let Q c S f) Tp(S) 
be the closed curve containing s. Now consider the 
family of lines parallel to (. A line of the family will 
contact Q, say at point r. Without loss of generality 
assume that r is the first such contact point when Q 
is traced in a counter-clockwise fashion starting from 
s. This point, by definition, must be on the rim of S 
when the viewing direction is (. If  it is also on the 
visible rim (figure 7b), the projection of the imaginary 
line joining r and p must intersect the occluding con- 
tour at at least two points (i.e., at the projections of 
r and p).  

Now suppose r is not on the visible rim. To treat 
this case, note that by definition, s must be visible when 
the viewing direction is (. Let s '  be the first occluded 
point on Q when Q is traced in a counter-clockwise 
fashion starting from s (figure 7c). The point r '  oc- 
cluding s '  must necessarily belong to the visible rim. 
Therefore, the projection of the imaginary line connect- 
ing r '  and p intersects the occluding contour at at least 
two points. 

(2) Consider any point q on C that is also contained 
on the convex hull of C. Since C cannot be a straight 
line, q is, by definition, the only point in common be- 
tween C and the tangent at q. 

But then q also satisfies the conditions of (1) above. 
[] 

Figure 8 shows the results of applying proposition 1 
to the occluding contour of a candlestick. The proposi- 
tion implies that the only points ensuring the correct- 
ness of the algorithm are elliptic. However, this is a 
necessary requirement for the absence of occlusion but 
not a sufficient one. This means that there are cases 
where the geometry of hyperbolic points can be recov- 
ered with our approach. In fact, shape recovery for 
hyperbolic points requires less observer motion on 
average since the extent of the visibility of these points 
is limited by their asymptotic directions. 

iiiiiiiii 
\ 

Fig. 8. Selecting points for surface recovery. Solid lines on the oc- 
cluding contour of a candlestick show the points that cannot become 
occluded while changing viewing direction in their tangent planes. 
The arrow indicates the point having the greatest (absolute) curvature 
of all acceptable points. 

5 Surfaces of Revolution 

In the last section we presented an algorithm for 
recovering the shape of a single point on the surface 
rim. However, there are surfaces for which the local 
shape of a single rim point reveals global properties 
of the surface. Surfaces of revolution present an ideal 
example of such surfaces. The properties and appear- 
ance of surfaces of revolution and their generalizations 
have been studied extensively (Marr & Nishihara 1978; 
Ulupinar & Nevatia 1988; doCarmo 1976; Brady et al. 
1985; Stevens 1981; Horaud & Brady 1987; Ponce & 
Chelberg 1987; Richetin et al. 1991). Here, we focus 
on the specific relation between their global structure 
and the local shape of points on the rim. 

Surfaces of revolution are formed by rotating a 
planar curve around a straight axis that does not meet 
the curve. Therefore, we can completely describe a sur- 
face of revolution by the axis and the generating curve. 
Approaches for recovering the axis of a surface of revo- 
lution have been mainly geared toward detecting sym- 
metries in their occluding contour or outline (Marr & 
Nishihara 1978), or utilizing their viewpoint-invariant 
properties (Horaud & Brady 1987; Ponce & Chelberg 
1987; Ponce et al. 1989). The problem with detecting 
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symmetries in the occluding contour is that the exis- 
tence of such symmetries depends on viewpoint. On 
the other hand, the identification, detection, and utiliza- 
tion of viewpoint-invariant properties is a nontrivial 
task. For example, in (Ponce et al. 1989) the axis was 
recovered using a Hough transform-based technique. 
However, such a technique largely depends on the num- 
ber of rim points actually detected. In addition, the axis 
is severely foreshortened for near-top views of a surface 
of revolution (i.e., when the viewing direction is almost 
parallel to the axis of rotation), limiting the applicability 
of methods relying on a single, arbitrary view to pre- 
cisely recover the axis. Our active approach neatly lends 
itself to these problems in order to make them easier to 
handle. The idea is that if the viewer can align the view- 
ing direction with a principal direction of a rim point, 
then shape and symmetry analysis of the occluding con- 
tour becomes especially simple. This is because one of 
the principal directions corresponds to a "side" view 
of the surface (i.e., a view for which the viewing direc- 
tion is perpendicular to the axis of rotation). If the 
generating curve of the surface can be written in the 
form y = f(x), then the recovery of the axis of rota- 
tion allows us to recover the generating curve directly 
from a side view. Even further, the surface rim from 
such a view is guaranteed to be completely visible. In 

the rest of this section we focus on surfaces of revolu- 
tion whose generating curve has this property. 

Consider a point p on the rim of a surface of revolu- 
tion when viewed from an arbitrary direction (figure 
9a). The two principal directions at p correspond to 
the tangents to the parallel and the meridian passing 
through p. Since the parallel is a planar curve, if the 
visual ray is tangent to the parallel at p it is contained 
in the plane of the parallel. Hence, it is perpendicular 
to the axis of rotation and the view corresponds to a 
side view of the surface. The occluding contour from 
such a side view is symmetric. Therefore, the axis of 
rotation (as well as the generating curve) can be 
recovered by simply using existing symmetry-seeking 
approaches (e.g., Horaud and Brady (1987)) which are 
well defined for such a viewpoint. However, the direc- 
tion and position of the axis can also be constrained 
by recovering the principal curvatures corresponding 
to the parallels for two points on the rim of a side view 
(figure 9b). This approach is similar to the one used 
by Richetin et al. (1991) where the geometry of the 
occluding contour at two parabolic points was used to 
hypothesize the pose for surfaces that are straight 
homogeneous generalized cylinders. 

The observer must choose between moving toward 
the principal direction of minimum curvature or moving 
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P3g. 9. (a) A surface of revolution. The x-axis is the axis of rotation. (b) Constraining the axis of rotation from the principal curvatures of 
two rim points from a side view. Curve C is a segment of the occluding contour corresponding to a side view. Since the view is a side view, 
C belongs to a generating curve at the surface. Let the principal curvature corresponding to the parallels at p and p '  be k and k', respectively. 
The distance o f p  and p '  from the projection of the axis of revolution, l, is 1/k and 1/k', respectively. Let q and q '  be the projections of the 
points of intersection of the axis with the planes of the parallels at p and p', respectively. The axis must be perpendicular to the lines along 
p q  and p'q'. Therefore the axis must be tangent to the circles of radius 1/k and 1/k', centered at p and p '  respectively. There are at most two 
such lines that do not intersect the generating curve C, namely l and l'. The direction of the axis is the normal of the plane defined by the 
viewing direction and the line through pq.  
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toward the one of maximum curvature. Although the 
curvature extremum corresponding to a side view for 
a selected point is not known a priori, this choice is 
easy if the visible rim contains hyperbolic points. Recall 
that the only principal direction from which these points 
are visible is the direction of maximum curvature and 
that if the generating curve of the surface can be writ- 
ten in the form y = f ( x ) ,  then these points must be 
visible from a side view of the surface. Hence, the 
observer can select one hyperbolic point and align the 
viewing direction with the principal direction of max- 
imum curvature (corollary 3). 

It is also easy to show a more general property of 
surfaces of revolution with this type of generating curve: 
If the viewing direction smoothly changes on the tan- 
gent plane of a selected rim point, this point will not 
become occluded if the viewing direction is approach- 
ing the direction of a side view. This fact can be used 
to decide how to change viewing directions on the 
tangent plane in order to approach a side view of the 
surface when no hyperbolic surface points are visible. 

Our discussion above deals with a specific type of 
surface of revolution. However, it can be generalized 
to an arbitrary surface of revolution and to the case of 
straight homogeneous generalized cylinders where the 
axis is perpendicular to the cross-section. Consider the 
case where the observer selects a rim point that belongs 
to a parallel that is also a geodesic. If such parallels exist 
on the surface, our approach can be used to obtain both 
the top and the side views of the surface as well as its 
axis. Consider the case where the generating curve of 
the surface of revolution cannot be written in the form 
y = f ( x )  (e.g., a toms). In this case, we can still recover 
the axis of rotation from the side view using occluding 
contour symmetries, and find points on the generating 
curve for which the tangent to the generating curve is 
parallel to the axis. These points belong to parallels 
that are geodesics and their principal directions corre- 
spond to the side and top views of the surface. There- 
fore, the observer can align the viewing direction with 
the top view for any type of surface of revolution. 

Points on the rim that belong to geodesic parallels 
are also important because they can be used to recover 
the axis of surfaces of revolution and straight homoge- 
neous generalized cylinders. The surface normals at 
these points lies on the plane of the parallels. The view- 
ing direction corresponding to a side view also belongs 
to this plane. Therefore, we can recover the plane of 
the parallels. Since the axis of rotation is normal to this 
plane we can also recover the direction of the axis of 
the surface. It is in fact possible to detect such a point 

on the rim if it exists (without having already deter- 
mined the axis). 

The next section extends our basic shape-recovery 
step by (1) selecting a new point on the surface in the 
vicinity of the previously selected point, and (2) ap- 
plying the shape-recovery step presented in section 4 
to the new point. We also briefly discuss how this two- 
step approach can be used to select rim points that 
belong to geodesic parallels. 

6 Extending Surface Recovery to Neighboring 
Points 

Our main objective is to recover the complete shape 
description for a single rim point. In this section we 
consider an extension to this approach--selecting a new 
point and applying the shape-recovery process to that 
point. We must consider two important issues in order 
to demonstrate the effectiveness of such an extension: 
1. The extent of the viewing direction adjustments 

needed to align the viewing direction with one of 
the principal directions at the newly selected point. 

2. The extent of the viewing direction adjustments 
required by our basic shape-recovery algorithm in 
order to produce reliable shape information for the 
newly selected point. This is because if the view- 
ing direction adjustment is close to zero, then 
numerical problems are introduced in the calcula- 
tions of the principal curvatures from corollary 2. 

We will discuss the issue of selecting new points for 
shape recovery based on these two issues. The process 
has as a primary goal the removal of the first point from 
the rim and its replacement by" a new point at which 
the first step will again be applied. 

Let p be the previously selected point. After apply- 
ing the shape-recovery step, the viewing direction ( of 
the observer is aligned with one of the principal direc- 
tions atp, say e2. We have seen that if we change direc- 
tions in Tp (S), p will not leave the rim. Therefore, we 
must change viewing directions in some other plane 
containing ez. The important issues here are (a) which 
plane should be selected for changing the viewing direc- 
tion, and (b) how much should the viewing direction 
change in that plane? The motivation for our approach 
is to ensure that the shape-recovery step for the new 
point will need only small viewing direction adjust- 
ments. In other words, we require that the new view- 
ing direction does not form a large angle with one of 
the principal directions at the new point. 

Suppose we have selected a particular plane P pass- 
ing through p and containing ez, and that we continu- 
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Fig. 10. Removing p from the rim, The figure shows the intersection of a selected plane P with the surface, The viewing direction ~ changes 
in P and the visual rays graze the surface along the curve/3(s) = S O P, 

ously change viewing direction in that plane. As the 
viewing direction changes, the visual ray contained in P 
will graze the surface along a curve/3 (s) also contained 
in that plane (figure 10). Now suppose that we stop at 
a new viewing direction ('. The visual ray will now be 
tangent to/3 (s) at some new surface point. The shape- 
recovery step will now be applied to this point, attempt- 
ing to align the viewing direction with e2 at the point. 
We must therefore examine how the angle of 8 '(s) with 
e2 varies with s. The basic idea is to examine the prop- 

erties of/3 (s) in light of the following efficiency and 
reliability requirements: 

- - T h e  efficiency requirement is that /3(s) should 
always form an angle with e2 that is as close to 0 
as possible. This means that we require/3(s) to ap- 
proximate a line of curvature. 

- -  The reliability requirement is that/3 (s) should form 
an angle of at least 4~* for some predetermined 
constant q~* that depends on the reliability of the 
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shape-recovery step. This means that we require 
/3(s) to form an angle of at least 8 "  with the lines 
of curvature corresponding to e2. 

The compromise between these two requirements is to 
require/3(s) to form an angle of exactly 4~* with the 
corresponding lines of curvature. This means that/3 (s) 
is a loxodrome for the surface, that is, a line on S that 
forms a constant angle with the lines of curvature. 
Therefore we should trace S along such a curve while 
changing viewing directions. 

We show in the appendix that if the selected plane 
P is the normal plane (i.e., the plane defined by the 
viewing direction and the surface normal at p) and if 
the change of viewing direction on this plane is small, 
then the viewing direction adjustments during the 
shape-recovery step will in fact be smooth and depend 
entirely on intrinsic properties of the surface. Specific- 
ally, we show that these adjustments are (to a first ap- 
proximation) proportional to the geodesic curvature of 
the lines of curvature at p and inversely proportional 
to the normal curvature of the lines of curvature at p. 
This is an important result because it allows us to 
predict the performance of our active viewing strategy 
based on knowledge of the intrinsic properties of the 
surface. 

As an example, consider the case of surfaces of 
revolution. Suppose that the viewing direction of the 
observer is aligned with the principal direction cor- 
responding to the parallels. Now suppose that the 
observer changes viewing direction on the normal plane 
at p and eventually selects a new point p '  for shape 
recovery, as outlined above. I fp  belongs to a geodesic 
parallel, no viewing direction adjustments will be 
necessary during the shape-recovery step at p', that is, 
the viewing direction is also tangent to the parallel 
through p'. On the other hand, if the geodesic curvature 

of the parallel through p is nonzero, some viewing 
direction adjustments will be necessary. In fact it can 
be shown that if the observer repeats this process and 
selects points p', p", p " ,  . . . ,  these points will asymp- 
totically approach a geodesic parallel if such a parallel 
exists. To illustrate this, let us assume for simplicity 
that the axis of the surface of revolution is vertical and 
the point initially selected is p. Then, the new point 
selected will be on a parallel below the parallel through 
p if the surface normal is pointing upward. Therefore 
if there is a geodesic parallel below the parallel through 
p, the points selected will approach that geodesic 
parallel. 

7 Experimental Results 

In this section we demonstrate the applicability of our 
active shape-recovery approach. We have implemented 
a prototype system that (1) automatically selects points 
on the rim of an object, (2) tracks these points while 
changing viewing direction on their tangent plane, and 
(3) computes the curvature of the occluding contour 
at the selected points in order to detect the viewpoints 
where it obtains an extremum value. We have applied 
our algorithms to simulated scenes and have also per- 
formed some preliminary experiments with a real 
scene. Figures 11 and 12 show the objects used in our 
experiments. 

7.1 Simulated Scenes 

The simulations were performed by synthetically 
generating images given a polyhedral object model and 
an observer constrained to move only in a circle of 
viewing directions around the object. 3 The occluding 

Fig. 11. Models of a candlestick and two tori used for the simulations. 
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Fig. 12. A sequence of 120 flames used in our experiments. Frames 1, 30, and 120 are shown. 

contour of the model for the current viewing direction 
was displayed and updated as the viewing direction 
changed smoothly. In our examples, the viewing direc- 
tion was changed on a plane II defined by a horizontal 
line in the image and the viewing direction (i.e., the 
projection of this plane to the image is a horizontal 
line). 

Recall that the process of aligning the viewing direc- 
tion with a principal direction at a point requires that 
the viewing direction changes on the point's tangent 
plane (figure 4). Hence, the one degree of freedom in 
rotation allowed us to detect the principal directions 
only for points tangent to II. Our system automatically 
identified these points by finding the points where the 
occluding contour was tangent to a horizontal line. 
These points were automatically detected, labeled, 
and subsequently tracked while the viewing direction 
changed smoothly (figure 13). 

Point tracking was performed using a simple algo- 
rithm. Note that since the viewing direction changes 
on the plane tangent to the selected points, they will 
always remain on the rim and the occluding contour 
will always be tangent to a horizontal line at these 
points. We use this observation to track points in sub- 
sequent frames by searching for points on the occlud- 
ing contour that have horizontal tangents in the vicinity 
of the previously selected point. Occlusion is detected 
when this simple tracking step fails: Figure 13 shows 
some of the tracked points for the two models. The 
points were initially selected and labeled for the view- 
ing direction ( = 0. Note that after a rotation of 3.93 
radians the only unocchided points are the points 0 and 
6, exactly as predicted by proposition 1 (i.e., the 
tangents to the occluding contour at these points do not 
intersect the contour). 

Curvature computations were performed by first ap- 
proximating the occluding contour in the neighborhood 
of the selected points using cubic B-splines (Conte & 
de Boor 1972). The curvature was measured at the 
points where the tangent to the splines was horizontal. 
Even though splines have the effect of smoothing high 
curvature parts of a curve, we found that even with the 
actual rim curvatures being underestimated the curva- 
ture maxima were very distinct. In the case of poly- 
hedral models, smooth viewpoint changes can result 
in an arbitrary number of model vertexes entering and 
exiting the polyhedral rim. Hence, the shape of the rim 
changes in a very discontinuous fashion, a problem not 
encountered with smooth surfaces where topological 
changes of the rim are not as frequent. This fact resulted 
in discontinuities in the curvature estimates, which 
ideally should vary continuously with viewpoint. How- 
ever, figure 14 shows that the major peaks and valleys 
of the curvature estimates are clearly visible even in 
the presence of the discontinuities caused by the poly- 
hedral approximation. 

Figure 14 also shows how the absolute value of the 
curvature of the occluding contour at the selected points 
varies with viewpoint. Note that the candlestick and 
the torus are surfaces of revolution. Therefore, a "side" 
view corresponds to the viewing direction that is a prin- 
cipal direction for all points on their rim (i.e., the 
direction is tangent to the surface parallels). This is 
illustrated by the fact that the curvature maxima and 
minima occur at approximately the same viewing direc- 
tions for the selected points. View 2 of the candlestick 
and the tori shows the occluding contour from the view- 
point of maximum curvature for point 0. The views in 
fact correspond to side views of the surfaces as ex- 
pected. Also, note that in the case of the candlestick, 
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Fig. 13. Snapshots of the occluding contours of the two models as the viewing direction changes. The numbered points are the points being tracked. 

the curvature maxima are much larger than the minima 
(over an order of magnitude), whereas in the case of 
the tori the extremal values are not very different. This 
is because the difference in the values of the principal 
curvatures at the selected points on the candlestick is 
much larger than for the two tori. 

7. 2 A Real Scene 

In order to perform preliminary experiments with a real 
scene we extended the simple tracking and curvature 

estimation algorithms used in our simulations, and ap- 
plied them to the sequence shown in figure 12. The 
sequence was produced by manually rotating an object 
after placing it on a horizontal turntable. The amount 
of the object's rotation between frames was assumed 
unknown. As in our simulations, this object motion 
allows the observer's viewing direction to be aligned 
only with the principal directions of points on the 
object whose tangent planes are horizontal. 

The occluding contour of the object was tracked 
across frames using a simplified implementation of a 
B-spline snake (Cipolla & Blake 1992). The snake 
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Fig. 14. Variation of the absolute curvature with respect to viewpoint at the selected points on the occluding contour, The models were rotated 
a total of 27r radians. The curves for point 5 on the candlestick and on the tori end at the viewpoint where their occlusion is detected. Left 
column: Viewpoints V1, V2, 1,'3 correspond to views 1, 2, and 3, respectively of the candlestick in figure 13. Right column: Viewpoints V1 
and V2 correspond to views t and 2, respectively of the tori in figure 13. 

was interactively initialized near the object's contour. 
Point tracking was again performed by tracking the 
point on the snake whose tangent is horizontal (figure 
15). Figure 16a shows the variation of  the curvature 
of the snake at the tracked point for one run of the track- 
ing process. Figure 17 shows the views of the object 
corresponding to the minimum and maximum 
measured curvature. 

Curvature measurements were noisy mainly because 
of the snake's tracking behavior, which depended on 
the initial positioning of the snake and did not always 
lead to accurate approximations of the object's contour. 

Clearly, the curvature estimation process can be im- 
proved (especially near viewpoints corresponding to 
curvature maxima) by paying closer attention to the 
snake's tracking behavior. Our purpose here is simply 
to illustrate that the theoretically predicted curvature 
variation at the tracked point can be observed in prac- 
tice. Since the only computations apart from snake 
tracking involve measuring the curvature of the snake 
at a single point, our active reconstruction approach 
is amenable to a real-time implementation; snake 
trackers operating at video rates are already becoming 
available (Blake et al. 1993). 
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Fig. 15. The point being tracked is the snake point whose tangent 
is horizontal. 

Figure 16a shows that it is necessary to incorporate 
measurements from multiple adjacent views in order to 
detect the principal directions of the tracked point. This 
implies that the observer must move past the viewpoint 
corresponding to the point's principal direction before 
the curvature extremum can be realiably detected. 
Figures 16b and 18 give the results from another run 
of the tracking and curvature measurement process. In 
this run, the contour's curvature was averaged over nine 
frames. Although the snake approximated the object's 
contour in a different manner, the principal directions 
of the tracked point are again easily distinguishable. 

We are currently investigating an extension to our 
approach for improving the principal curvature measure- 
ments at the selected point by incorporating informa- 
tion from multiple frames during the observer's motion, 
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and for more accurately localizing the point's principal 
directions. More specifically, when the relative changes 
in viewing direction between frames can be accurately 
measured, the principal curvatures and principal direc- 
tions at the selected point can be predicted using three 
viewing directions on the tangent plane of the tracked 
point that satisfy' the reliability requirement of section 
6 (i.e., they are not too close to each other) (Kriegman 
1993). This observation leads to a prediction-verifica- 
tion scheme for improving the accuracy of our active 
approach, whereby predictions during the process of 
aligning with a principal direction are evaluated against 
the outputs of the contour curvature estimator and the 
extremum detector. We expect this process to be use- 
ful primarily when the observer's viewing direction is 
close to the principal direction of maximum curvature 
where contour curvature measurements tend to be more 
reliable. 

8 Concluding Remarks 

We have demonstrated that an active observer can 
follow a very simple viewing strategy to recover exact 
shape information at selected rim points. Furthermore, 
this strategy is based purely on the computation of a 
simple property of the occluding contour (curvature at 
a point). Our experimental results show that this 
strategy is readily implementable and because of its 
simplicity and its low computational requirements, is 
very suitable for real-time implementation. 

The use of an active observer is the most crucial 
aspect of our approach. The observer's ability to pur- 
posefully change viewpoint makes it possible to reach 
the special viewpoint where the shape of the occluding 
contour provides complete and exact surface-shape in- 
formation. Moreover, our approach demonstrates that 

/\ 
0.014 

0 20 40 60 80 100 120 
Viewpoint (frame #) 
(b) 

Fig. 16. (a) Curvature variation with viewpoint. (b) Curvature estimates averaged over nine frames. 
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Fig. 17. Viewpoints corresponding to the global minima and maxima of the curvature measurements. Also shown is the computed osculating 
circle at the tracked point, i,e., the circle that is tangent to the tracked point and has radius equal to 1/k o, 

recovering quantitative shape information from the 
occluding contour by an active observer does not neces- 
sarily require knowledge of the velocities or accelera- 
tions of the observer, but only knowledge of the ob- 
server's viewing direction. The reason is that observer 
motion is not used to merely change the shape of the 
occluding contour (as in existing approaches), but it 
is used to change it in a well-defined way, factoring out 
the need for differential measurements involving ob- 
server motion. This is a major step toward qualitative, 
active vision, allowing the use of a world-centered coor- 
dinate frame and requiring knowledge of only relative 
viewing-direction changes. 

Current limitations of the approach are (1) the use 
of orthographic projection, (2) the requirement that 
viewing directions change on arbitrary planes, and (3) 
its applicability to only elliptic or hyperbolic surface 
points. We believe, however, that our active approach 
of moving toward viewpoints that are closely related 
to the geometry of the viewed surfaces is a very im- 
portant and general one. Consider, for example, the 
problem of obtaining a "face-on" view of a planar curve 
(or a texture element). This problem has been studied 
extensively in the past and several approaches exist that 
hypothesize face-on views, based on information from 
a single viewpoint--e.g., (Brady & Yuille 1984; Kanade 
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Fig. 18. Viewpoints corresponding to the global curvature minima and maxima for a different run of the tracking process. The extrema were 
found after averaging the curvature measurements over nine consecutive frames. The osculating circle for the view corresponding to the detected 
curvature minimum is not shown because it is not fully contained in the image. Note that both curvature measurements have been underesti- 
mated, and the global curvature minimum now corresponds to the back side of the object. 

1981). We are currently investigating an approach sim- 

ilar to the one presented in this article that enables the 
observer to change viewpoint in order to obtain a face- 
on view of a planar curve. We are also trying to extend 

our results to perspective projection and are investigat- 
ing possible uses of this approach in the context of ac- 
tive surface exploration (Kutulakos & Dyer 1993). 

acknowledged. We also wish to thank the reviewers for 

their helpful comments and suggestions. 

Appendix: The Extent of Viewing Direction 
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Let us assume we have recovered the principal curva- 
tures a tp  and the viewing direction ( is along the prin- 
cipal direction e 2 at p. Now assume that the observer 
changes viewing direction on the plane of ( and the 



Tp(S) surface normal at p in order to introduce new points 
to the rim. We show that the viewing direction adjust- 
ment that will be needed during the shape recovery step 
is proportional (at a first approximation) to kg 2 and in- 
versely proportional to kn2, the geodesic and normal 
curvatures of  the line of  curvature corresponding to e2. 
This is an important result because it allows us to 
predict the performance of this active viewing strategy 
based on intrinsic properties of  the viewed surface. It 
follows that the performance of our strategy smoothly 
degrades as the surface becomes more complicated 
(i.e., k~2 and k" z become large). We first present some 
concepts from differential geometry for the study of 
curves on surfaces. 

The Local Geometry of Surface Curves 

Let c~ (s) : I ---, 9? 3 be a curve parameterized by arc 
length (i.e., [a '(s)] = I). Consider the unit tangent and 
unit normal vector, t (s) and n (s) respectively, at point 
c~(s). We can describe the curve with two quantities, 
its curvature K(s) and torsion r (s ) ,  where c~"(s) = 
K(s)n(s) and [t(s) A n ( s ) ] '  = r(s)n(s) .  The vectors 
t(s), n(s), t(s) A n(s) describe an orthogonal coor- 
dinate frame, the Frenetframe centered at c~(s). This 
coordinate frame can be used to "locally describe the 
curve based on the values of ~ and r at c~ (s). 

Now let S be a smooth, oriented surface, and let & (s) 
be a smooth curve on S. We can locally describe &(s) 
using a coordinate frame similar to the Frenet frame 
called the Darbouxframe (figure 19). Consider a point 
p on &(s). The Darboux frame is defined by N(p) ,  the 
normal to the surface, T(p), the tangent to &(s), and 
V(p) = N(p)  A T(p). Note that the T - Vplane is 
the plane tangent to S. The vector & "(s) defining the 
curvature of &(s) can be analyzed in terms of two com- 
ponents, a tangential component (i.e., on Tp(S)) in the 
direction of V, and a normal component  in the direc- 
tion of N. Therefore we can define the curvature of &(s) 
in terms of the curvatures of its projections kg, k n on 
the tangent plane of S and on the T - N plane, respec- 
tively, kg is called the geodesic curvature of&(s)  and 
kn is the curvature of the normal section of S in the 
direction of T. Intuitively, the geodesic curvature 
measures how far off  the T - N plane the curve ac- 
tually lies. We show that the geodesic curvature of the 
lines of  curvature is closely related to the strategy 
employed by the observer to select new points for shape 
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N(p) 

V 

Fig. 19. The Darboux frame, w(s) ties on a sphere S, and p is a 
point of w(s). N(p) is the surface normal, T = w'(s), and V = 
N(p) A T E Tp(S). The Darboux frame is the orthonormal coor- 
dinate frame of T, V, N. 

recovery. Intuitively, the geodesic curvature of  the lines 
of  curvature measures how the arc length of a curve 
in the el direction changes as one moves along the e2 
direction. 

The curve &(s) can be locally described by the vec- 
tors T, N, Vand their derivatives. These derivatives can 
also be expressed in terms of the three frame vectors: 

dT 
d~ = kg V + knN (4) 

dV 
ds - kgT - 7-gN (5) 

d1¥ 
- knT + TgV (6) ds 

where ~-g is called the geodesic torsion of  &. 

The Dependence of  the VioMng Direction Adjustments 
on kg 2 

Intuitively, the dependence o n  kg 2 is not unexpected: 
Recall that kg 2 measures how far off the plane of ( and 
N(p)  the line of curvature actually lies. On the other 
hand, the curve/3(s) traced by the visual ray that origin- 
ally passed through p lies on that plane (figure 20). 
Therefore, one should expect a connection between the 
angle o f /3 ' ( s )  and e2 and ku2. The following result 
shows that there is a very simple relation between them: 
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viewing / / NpS() 
direction/ / 
c h a n g e / ~  i ~ '~ -~-  . / -  I 

T N  ~ ' ~  ~Srq Np(S) 

ilili ii Tp(S) 

P: i i ':P i viewing 
~ i ~ ! ~ ,  directi°2 

Fig. 20. Changing directions on the TA r plane. Top: Np(S) is the T-N 
plane. The visual ray initially grazes the surface a tp  in the direction 
T. N is the surface normal at p. As the viewing directions change 
on this plane, the visual ray traces the curve/3(s) = S VI l\%(S). 
p '  is the new point selected for shape recovery. Bottom: A view of 
the tangent plane at p. The plane Np(S) and the traced curve are 
viewed edge-on. The change in viewing direction stops when the 
visual ray grazesp', l and I'  are the lines of minimum curvature passing 
through p and p', respectively. The shape-recovery step will require 
a rotation by an angle q~ on the tangent plane a tp '  in order to align 
the viewing direction ~ with e 2 at p'. 

Proposi t ion 2. (1) Let/3(s) be the intersection of S 
with the plane defined by ~ and N(p)  (/3(0) = p,/5'(0) 
= ~). If  ~ is along the principal direction e2 then 

d~b (7) 
kg2 - ds 

where kg 2 is the geodesic curvature of the line of 
curvature along e 2 at point p, and 4~(s) is the angle 
between /3'(s) and the second principal direction at 
/3(s). 

(2) Let 4 '  = /3 ' (s )  be the new viewing direction on 
the plane of ~ and N(p) .  I f  0 is the angle between 
and ~ ', then for values of  0 close to 0 we have 

~b(0) -~ ~ sin 0 (8) 

Proof." (1) The Darboux trihedron for/3(0) is composed 
of the vectors T(0) = /5'(0), N(/3(0)) = N(p) ,  and 
V(0) = N(/3(0)) A T(0), where N(.) is the Gauss map 
for the surface. We use a second-order Taylor series 

expansion and equations (4)-(6) to find T(s) =/3 ' (s )  
with respect to T(0) = ~: 

d T  s 2 d2T 
T(s) - T(O) ~ s -~s + -2 d---~ (9) 

s 2 
= s(kgV + knN ) + ~ (kgV + knl~ )' 

(lO) 

s 2 

[ s2 ] 
+ skg+~(k~+kn~g) V 

+ 
+ $2 

I skn "~(k~ - kgT"g) I N 

(11) 

where all coefficients of s are evaluated at/5 (0). Now 
note that /3(s) is always on the T - N plane and 
therefore T(s) • V(O) = T(O) " V(O) = O, or [T(s) - 
T(0)] • V(0) = 0 for all s. Constraining the V- 
component of  equation (11) to be identically equal to 
zero we get 

kg = 0 (12) 

The geodesic curvature kg can be expressed in terms 
of the geodesic curvatures of the lines of curvature using 
Liouville's formula: 

de, 
kg = kg 1 cos ¢ + kg2 sin ff + ~ -  (13) 

where ¢ is the angle between/3'(0) and el. But/3 '(0) 
is equal to e2, and therefore ~b = 7r/2. Noting that 
4~ = 7r/2 - ¢ and combining equations (12) and (13), 
we get the desired result, f~ 

(2) 4 '  will be tangent to/3(s) for some s. Therefore, 
~' = T(s).  We use equation (11) to get a first-order 
approximation of s for values close to 0: 

[T(s) - T (0 ) ] .  N 
s = (t4) kn2 

Note that [T(s) - T(0)] • N equals sin 0, where 0 is 
defined as above. Now using equation (7) and a first- 
order approximation for 4~ (0) we get the desired result. 

[]  
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Finally, we can draw three conclusions from equa- 
tion (8): 

1. I f  kg 2 = 0, no viewing direction adjustments will 
be done during the shape recovery phase if the 
viewing direction changes in the plane of ~ and 
N(p) in the second step. The curve fl(s) traces a 
part of the line of curvature associated with e 2. 
This can happen only if that line of curvature is also 
a geodesic. 

2. q~(0) can grow arbitrarily large with decreasing 
values of kn2. I f  kn2 is close to 0, the surface is 
locally flat in the e2 direction. Therefore, in such 
a case the approximation is not valid. However, this 
problem is inherent to the use of the occluding con- 
tour for shape recovery in the case of almost flat 
surfaces. The reason is that if the surfaces are locally 
flat, surface points will enter and leave the rim at 
arbitrarily large rates. This problem will also exist 
for methods that measure image velocities in the 
vicinity of the rim--e.g.,  (Cipolla & Blake 1992) -  
since they require that the image points or features 
are not widely separated on the surface. 

3. Equation (8) can also be used as a means to approx- 
imate kg2: After a small rotation by 0 in the plane 
of N(p)  and ~, the shape-recovery step will produce 
a value for q~(0). Hence, we can use the equation 
to approximate kg 2. This means that we will be able 
to completely describe the line of curvature cor- 
responding to e 2 in the vicinity of the previously 
selected point. 

Notes 

1. The quantity k n is also referred to as the radial curvature of S 
at p. 

2. This is also mentioned in (Koenderink 1990). 
3. Our use of polyhedral models was only for convenience in gener- 

ating the occluding contour. The implementation of our algorithms 
did not exploit the polyhedral property of the models. 

4. Occlusion occurs either when the tracked point becomes occluded 
by a distant point on the object's surface, or when the observer's 
viewing direction becomes aligned with an asymptote of the tracked 
point. In the former case, the tracked point wilt project to a T- 
junction, while in the latter case a cusp will be formed. The ability 
to distinguish between these two cases can be used to verify the 
"sidedness" of the occluding contour, that is, on which side of 
the contour the surface lies. For example, if the selected point 
is erroneously assumed elliptic, the contour will cusp at the point's 
projection when the shape-recovery algorithm of section 4 is 
applied to that point. 
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