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A b s t r a c t  

We present a new approach to the problem of matching 3-D curves. The approach has a low algorithmic complex- 
ity in the number of models, and can operate in the presence of noise and partial occlusions. 

Our method builds upon the seminal work of Kishon et al. (1990), where curves are first smoothed using 
B-splines, with matching based on hashing using curvature and torsion measures. However, we introduce two 
enhancements: 

--  We make use of nonuniform B-spline approximations, which permits us to better retain information at high- 
curvature locations. The spline approximations are controlled (i.e., regularized) by making use of normal vec- 
tors to the surface in 3-D on which the curves lie, and by an explicit minimization of a bending energy. These 
measures allow a more accurate estimation of position, curvature, torsion, and Frtnet frames along the curve. 

- -  The computational complexity of the recognition process is relatively independent of the number of models 
and is considerably decreased with explicit use of the Frtnet frame for hypotheses generation. As opposed 
to previous approaches, the method better copes with partial occlusion. Moreover, following a statistical study 
of the curvature and torsion covariances, we optimize the hash table discretization and discover improved in- 
variants for recognition, different than the torsion measure. Finally, knowledge of invariant uncertainties is used 
to compute an optimal global transformation using an extended Kalman filter. 

We present experimental results using synthetic data and also using characteristic curves extracted from 3-D 
medical images. An earlier version of this article was presented at the 2nd European Conference on Computer 
Vision in Italy. 

1 I n t r o d u c t i o n  

Physicians are frequently confronted with the very prac- 
tical problem of registering 3-D medical images. For 
example, when two images provided by complement- 
ary imaging modalities must be compared (such as X- 
ray Scanner, Magnetic Resonance Imaging, Nuclear 
Medicine, Ultrasound Images), or when two images 
of the same type but acquired at different times and/or 
in different positions must be superimposed. 

*Andr6 Gutziec is currently a Visiting Researcher and an Adj. Faculty 
at New York University, Courant Institute, 251 Mercer Street, New 
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A methodology exploited by researchers in the Epi- 
daure Project at Inria, consists of first extracting highly 
structured descriptions from 3-D images, and then us- 
ing those descriptions for matching (Ayache et al. 1989; 
Ayache et al. 1990). The structured descriptions usually 
come from the extraction of regions of interest, obtained 
with a 3-D edge extraction algorithm (Monga, Deriche 
& Rocchisani 1991; Herlin & Ayache 1992), potentially 
in conjunction with curve or surface deformable models 
(Cohen & Cohen 1990; Cohen et al. 1991). Then, 
characteristic curves on the surface are extracted. These 
curves describe either topological singularities such 
as surface borders, borders of holes, simple or mul- 
tiple junctions, etc., (see Malandain et al. (1991)), or 
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Fig. 1. Extraction of characteristic curves (ridges) from the surface of a skull (using X-ray scanner image data). 

differential structures, such as ridges, parabolic lines, 
and umbilic points (Monga, Ayache, & Sander 1991). 

The characteristic curves are stable with respect to 
rigid transformations, and can tolerate partial occlusion 
due to their local nature. They are typically extracted 
as a connected set of discrete voxels, which provides 
a much more compact description than the original 3-D 
images (involving a few hundreds of  points compared 
to several millions). Figure 1 shows an example of 
ridges extracted from the surface of a skull (Monga, 
Benayoun, & Faugeras 1992). These curves can be used 
to serve as an invariant of  the skull and to establish land- 
marks to match skulls between different individuals, 
yielding a standard approach for complex skull model- 
ing (Cutting 1989). 

The problem we address in this paper is the use of  
these curves to identify and accurately locate 3-D ob- 
jects. Our approach consists in introducing a new 
algorithm to approximate a discrete curve by a suffi- 
ciently smooth continuous one (a spline) in order to 
compute intrinsic differential features of  second and 
third order (curvature and torsion). The analytical 
description of this curve allows the computation of the 
Fr~net frame attached to each point of  the curve (refer 
to do Carmo (1976) for a precise definition. 

Given two curves, we then wish to find, through a 
matching algorithm, the longest common portion, up 
to a rigid transformation. We describe three possible 
approaches, specifically: prediction-verification, ac- 
cumulation, and geometric hashing. Using the third 
approach, which we call an indexing method, we intro- 
duce logical extensions of  the work of Kishon et al. 
(1990), Saint-Marc & Medioni (1990) and Bartels et 
al. (1987) in order to use splines to smooth and match 
points along curves in the presence of  noise. Our work 
is also closely related to the work in (Ayache 1986) and 

(Grimson & Lozano-Per6z 1984) on the identification 
and positioning of 3-D objects. 

We begin by outlining the problems and the 
approaches. 

In section 2, we discuss approaches to fitting curves 
to collection of voxels (points) in 3-D imagery. Fig- 
ure 2 illustrates the problem of smoothing noisy data. 
The method that we ultimately use has two stages, and 
makes use of  an adaptive criterion for smoothing. The 
two stages are summarized as follows. 

/ 
Fig. 2. Given a noisy curve, the degree of smoothing should depend 
on the noise level, and the desired accuracy in the computation of 
curvature. All of these curves can be viewed as different noisy ver- 
sions of a single curve. We applied our smoothing method to curve 
1, thus obtaining curves 2, 3, and 4. We notice that the left and right 
parts of the curve behave differently because the oscillation amplitudes 
and frequencies are different. 
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1. We set a threshold e= which is a maximum allowed 
distance between the approximation and the curve. 
This threshold corresponds to the important notion 
of scale of observation. It is also linked to the noise 
level and to the spatial resolution of the 3-D image. 
We then compute a polygonal approximation (of 
class G °) of the curve using this threshold (Duda 
& Hart 1973). Using the vertexes of this polygonal 
curve to guide the distribution of the knots, we con- 
struct a fourth-order B-spline approximation of the 
initial data (the spline will be of class G3). 

The idea is to concentrate the knots in the neigh- 
borhood of high-curvature points, which roughly 
corresponds to the results of a polygonal approxima- 
tion (Pavlidis 1977). As a further refinement, it is 
possible to optimize the position of the control points 
by minimizing a mean square distance, e2, between 
points and the spline approximation. 

2. The spline approximation is refined by making use 
of surface normals from knowledge of the surface 
on which the curve lies. Typically, the surface has 
been previously extracted as a noisy iso-intensity 
surface, by means of some 3-D (surface) edge detec- 
tor. Knowledge of the surface normals constrains the 
approximating spline curve, and a penalty term is 
added to the quadratic criterion to be minimized that 
is used to define the spline approximation. The 
resulting spline thus balances a measure of the viola- 
tion of the surface constraints against a measure of 
the bending or torsion energy based on a sum of 
squares of derivatives along the curve. 

In section 3, we discuss three classes of methods for 
rigid-transformation curve matching. By considering 
the algorithmic complexities, we then implement a 
matching system based on the indexing table (geometric 
hashing) approach, whose complexity is relatively inde- 
pendent of the number of models in the database. Cer- 
tain modifications are required for use with the differ- 
entiable spline-curve representation, and other enhance- 
ments are suggested, in order to make the method 
robust to partial occlusion of the curves (potentially in 
multiple sections). In sum, we considerably extend 
previous indexing-based curve-matching methods. 

We further conduct a statistical study of various in- 
variants that may be used to replace the curvature and 
torsion methods we have used in our indexing-based 
matching, and suggest alternative invariants that might 
be used for hashing. 

In section 4, we provide experimental results ob- 
tained using real data, and we indicate future work that 
is planned. 

Compared with iterative object matching methods, 
as described by Besl and McKay (1992) and also, for 
the specific case of curves, as described by Zhang 
(1992), our method does not need to iterate, and is 
much faster. 

2 Approximation of Noisy Curves 

2.1 Motivation for Modeling with B-Splines 

Our goal is to begin with noisy data, given as a se- 
quence of points in three-space, and to convert this data 
into a collection of estimates of curvature, torsion, and 
Fr~net frame measurements along the curve. A stand- 
ard problem with such approximations is that a criterion 
for fit frequently allows large but local errors to be com- 
pensated by precision in tracking elsewhere. Further, 
the quality of the approximation should be independent 
of the resulting parameterization of the curve. Accord- 
ingly, we constrain the approximation to fit the data 
to within a maximum deviation distance, which is a 
parameter that depends on knowledge of expected 
errors due to image acquisition, discretization, and 
boundary detection--see Malandain et al. (1991). Espe- 
cially large deviations must be dealt with as outliers, 
and filtered before the representation is formed. 

One possible approach involves the use of the poly- 
gonal curve formed by joining the points. This solu- 
tion clearly satisfies the maximum-deviation criterion, 
but also tracks the noise, supplying no smoothing. 
Another method, used by Schwartz and Sharir (1987) 
is to form the shortest polygonal path through a tube 
surrounding the polygonal interpolation of the points. 
Polygonal representations have two major difficulties, 
however. Vertexes concentrate unstably around high- 
curvature regions, which makes matching more diffi- 
cult. More importantly, the only information that is 
available is the length of the segments and the angles 
between the segments. We are more interested in dif- 
ferential invariants along the curves, and thus favor 
higher-order spline approximations. 

B-spline curves, which include the class of polygonal 
curves, offer good approximation properties--see Nil- 
son, Ahlberg, and Walsh (1967)--can readily provide 
differential information at any point along the spline 
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curve, and satisfy certain optimality properties, viz., 
they minimize a certain measure of the bending energy 
(Hotladay 1957). More generally, B-splines of odd 
degree have best approximation properties, viz. approx- 
imation with minimum energy. The reader may con- 
suit Nilson et al. (1967). Moreover, successive 
derivatives are particularly easy to compute by com- 
bining lower-order functions. (The formula (1) that 
we prove later in this section is very similar to the 
recurrence relation which defines B-spline functions.) 
There is an extensive literature on B-splines (Bartels 
et al. 1987; de Boor 1978; Farin 1988; Cinquin 1981, 
1987). A survey is provided by Bohm et al. (1984). 
We provide a very brief introduction, using the nota- 
tion of Bartels et al. (1987) and Saint-Marc & Medioni 
1990). 

Given a sequence of n + 1 points Pi(xi, Yi, zi), 
i = 0 . . .  n in three-space, a G r -z  approximating B- 
spline consists of the following components: 

1. A control polygon of m + 1 points is given, such 
that Vj(Xj, Yj, Z j ) , j  = 0 . . .  m are known points. 

2. We are given m + 1 real-valued piecewise poly- 
nomial functions, Bj,K(U), representing the basis 
splines, which are functions of the real variable ti 
and consist of polynomials of degree K - 1, and 
are globally of class G ~;-2 (so that K - 2 
derivatives match at the knots). The location in 
three-space of the approximating curve for a given 
parameter value fi is given by 

Q(fi) = [Xq(t~), Yq(li) ,  Zq(/~)]  = ~ VjBj,K(U ) 
j=O 

m 
= 

j=0 

3. The knots must also be specified, and consist of m 
+ K + 1 real values {tTj}, with t7 o = 0 and ~m+K 
= l, partitioning the interval [0, l] into m + K in- 
tervais. This is the de Boor convention. Here, l is 
the length of the polygon joining the Pi's. If the in- 
tervals are uniform, then we say that the approxima- 
tion is a uniform B-spline. 

We use the global parameter ti along the interval 
[0, l], and denote by u the relative distances between 
knots, defined by u = (~ - ~li)/(bli+ 1 -- Ill). The basis 
spline functions are defined recursively. The basis 
splines of degree 1 are simply the characteristic func- 
tions of the intervals: 

Bj, I(~) = ( i  ~j<- 5 <  fij+l 

otherwise 

Successively higher-order splines are formed by blend- 
ing lower-order splines: 

Bj,K + I(tg ) = Bj, K(Ct ) 
Uj+K -- ~j 

/gj+K+ 1 --  /~ 
+ Bj+I,K(U) 

/~j+K+I - -  g j + l  

It is not hard to show that 

B~K+I(U) = K 

Bj+.____I,K(Ft) ~ (1 ) 
Uj+K+a -- ui+1 A 

We apply the recurrence hypothesis to B~K and to 
Bj+I.K and we notice that 

~Tj+K+I - -  ~ ~7 - -  ~j 

/gj+K+l --  /gj+l ~lj+K -- Uj 

lij+K -- Uj /gj+K+l --  /gj+l 

Thus quadratic splines, the Bj,3, are G I, cubic splines 
(Bj:), are G 2, etc. Derivatives of the approximating 
B-spline can be written in an especially simple fashion, 
involving vector directions that depend on scaled dif- 
ferences of the control points Vj: 

m 
o r o _ Z v: 

o~¢r j=O 

~ j  Vj r Bj,K+l_r(U), Vff = Wj 
j=r 

Vj r-x - vjr-11 
Vf = ( K -  r) 

Uj+K-r+I -- Uj 

Because of this simple formula, we may incorporate 
constraints on the derivatives in our measure of the 
quality of an approximation, for the process of finding 
the best control points and knots, and we will also be 
able to easily make use of differential measures of the 
curve for matching purposes. 

Given any smooth space curve Q(fi), the curvature 
and torsion of the curve at a point ~ are defined by: 
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Ila ' ( t i )  m 0"07)t l  
k ( ~ )  = 

IIQ'(~)II 3 

det [Q'(t7), Q"((t), Q "  (z~)] 
~(~) = 

IIQ'(~) ^ Q"(u)N 2 

Here, A denotes the vector cross product. The Frdnet 
frame (t, n, b) is defined as follows: 

Q '(ti) 
t(fi)  - 

I Ia ' (a ) l l '  

Q'(ft) A O"(h) 
b(tT) = 

k(~)l lQ'(~)l l  3 

and n is defined as the vector cross product of b and t. 

2.2 A Previous Approximation Scheme 

We next recall a classic approximation scheme due to 
Barsky (Bartels et al. 1987). This scheme has been used 
by Saint-Marc and Mddioni (1990) for curve matching. 
Our emphasis is on the shortcomings of the approach 
of our objectives and on proposed modifications. 

It is known that uniform B-splines are optimal in 
a certain least-squares sense. This can be justified by 
the supposition that the positions of the data points lie 
on a polynomial curve, perturned by identically dis- 
tributed Gaussian noise. A least-squares derivation then 
corresponds to a maximum-likelihood reconstruction 
of the data (Lancaster & Salkauskas 1986). 

Given n + 1 data points Pi(xi, Yi, zi), i = 0 . . .  n, 
we seek m + 1 control vertices Vj, j = 0 . . .  m and 
m + K + 1 corresponding knots tTj, j = 0 . . .  m + K 
minimizing the sum of square distances between the 
B-spline Q(ti) of degree K - 1 and the data Pi. The 
notion of distance between a spline Q(~) and a data 
point Pi is based on the parameter value fii where the 
curve Q(fi) comes closest to Pi. Thus, the criterion is 
to minimize 

2xl = ~ IQ(~i)  - e ,  II 2 
i=0 

= ~ {[Zq(ui) - xi] 2 + [~(ui)  - yi] 2 
i=o 

+ [zq(~0 - zd z} 

+ ~ ~ B:.~:(?~O - y~ 
j=O 

The calculation of the t~ i values is critical, since 
IIa(~i)  - Pilt is supposed  to represent the Euclidian 
distance of the point Pi to the curve. On the other 
hand, an exact calculation of the values fii is difficult, 
since they depend implicitly on the solution curve Q(ti). 
As an expedient, Barsky suggests using for t~i the cur- 
rent total length of the polygonal curve from P0 to Pi, 
realling that 0 _ fi _< L, and L is the length of the 
entire polygonal path (see figure 4). Thus as an 
estimate, we can use 

p - I  

@ = Z t lP i+ l  - P~It (2)  
i=0 

Since the sum of errors A 1 to be minimized is 
quadratic, it is easy to show that the collection of 
unknowns Vj(Xj, Yj, Zj), j = 0 . . .  m satisfy 

OXj - 2 Bj, K({li) X l Bl,K(tti) -- x i = 0 
i=0 I=0 

OYj - 2 Bj.K(~i) Yl Bt,K((ti) -- Yi = 0 
i=0 l=0 

OZj - 2 Bj,K(Ui) Zl B1,K(~ti) -- Zi = 0 
i=0 t=0 

Asj  ranges from 0 to m, we obtain three linear systems 
of size m + 1 for the unknowns Xj, Yj and Zj. For the 
Xj variables, for example, we have the system 

j=o j=o  i=0 

Bm,K(Ui)Bj,K(Ui) Xj = Z xiBm,K(~ti) 
j=O i=m i=m 
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If  the approximating curve is not a closed curve, then 
we require that the first and last data control points coin- 
cide with the first and last data points, thereby sup- 
pressing two degrees of freedom for each variable. For 
a closed curve, the final K - 1 control vertices are 
also the first K - 1 vertices, with corresponding knot 
discrepancies. 

I f  we write the three linear systems in the form 

A X =  Bx, A Y =  By, A Z  = B z (3) 

we discover that A is a symmetric banded matrix with 
2K - 3 nonzero bands (for a nonclosed curve). For 
a closed curve approximation, extra nonzero values 
appear in the upper right and lower left corners of the 
matrix. 

As an example, consider the case where we desire 
seven control vertexes. The system then has the form 

~ Bt,K(Ui) 2 B1,KB2,K 
i = 0  

n 
Z O2,K(tti)B1,K (fii) 2 B2,K 
i = 0  

B3,KB1,K B3,KB2,K 

0 B4,KB2,K 

0 0 

B1,KB3, K 0 0 

B2,KB3,K B2,KB4,K 0 

BZ, K B3,KB4,K B3,KBS,K 

/ 4,K83,K B42,K B4,K85,K 

Bs,KB3,K B5,KB4,K B~,K 

Thus, given the approximate locations of the t~ i values 
as suggested by Barsky, the matrix system A may be 
constructed in linear time (in the number of data 
points), and the systems may be solved, for example, 
by a Crout factorization or, more efficiently, using a 
Cholesky decomposition. Instabilities of the spline 
fit can appear in the case when a model has a larger 

number of control vertices m + 1 than needed (e.g., 
consists of a straight line). This is due to the fact that 
splines are not well conditioned and a small perturba- 
tion of the tangent at the origin will produce oscillations 
in the whole curve. Numerical problems occur if we 
interpolate the data rather than approximate. This is due 
to Cholesky's method. We have recently discovered that 
efficient methods alleviate this problem--see de Hoog 
& Hutchinson (1987)--via a QR-factorization of a dif- 
ferent matrix. 

There is an easier way to obtain the linear system 
(3) if  we use a matrix notation: We call B the matrix 
of the Bj,K(Fti) with m + 1 lines and n + 1 columns, 
X the matrix of the control vertices with m + 1 lines 
and three columns, x the n + 1 by three matrix of data 
points coordinates: A 1 = (BtX - x ,  B tX  - x ) ,  (x, y )  
is the scalar product of vectors x and y. By differen- 
tiating the scalar A1 with respect to the matrix X, one 
obtains 

B B t X - B x  = 0 ,  thus A X = B x  

From the equality XtBBtX = IIn'xll 2, we know that 
A and B have the same rank. Thus if m < n, A is sym- 
metric positive definite up to numerical error as well 
as the inverse A-1 (AA -1 = I = (A -1)t A t = (A -1)t 
A). The B-spline solution can be written as Sx = B t 
A -1 Bx. 

In working with this method, we have observed that 
m, the number of control points, must be quite large 
in order to obtain a good visual fit to the data points. 
Worse, small amplitude oscillations often appear, cor- 
rupting the derivative information, and making deriv- 
ative-based matching methods unworkable. For exam- 
ple, using the synthetic data of a noisy helix (figure 3a), 
we reconstruct figure 3b using the Barsky method for 
spline approximation. It can be seen that curvature and 
torsion measurements along the approximation curve 
will be unstable. In the next section, we explain how 
the results shown in figures 3c and 3d are obtained. 

2.3 Improvements 

2.3.1 Better Knot  Distribution. The vertices of an 
approximating polygonal path will concentrate around 
locations of high curvature (Pavlidis 1977). We make 
use of this property to distribute B-spline knots non- 
uniformly with respect to segment lengths, so that the 
knots are denser around high-curvature points. In this 
way, the B-spline will more closely approximate these 



Smoothing and Matching of 3-D Space Curves 85 

%. 

~ .  :.#:':':~ ........ .....,,..,.~.,...~= 
z": .-" 

~.~ ~" • 
/ _ , q . ,  , z ' : '  

(a) 

, , / I I  

6e '04  

l,'=J4 e - l 

W 

,~'- ,," .:" 

%.04 e Oh ' . , . . .  4 .40.e 0:~ .... 
• . ,  . . . .  , . , ,  

~) 

p, 

2 , ~ 6 e - .  , - " "  . .  • " " . . . .  

j"  

J /  

O ~ ; 0 ~ " , . : ,  4.~0eO2""" 

(e) (d) 

Fig. 3. (a) Noise is added to a helix, and points are sampled with a limitation on the distance between successive points. The curvature and 
torsion are plotted in the top and the right panels of the cube, as a function of arclength. In a perfect reconstruction, the curvature and torsion 
would be constant. (b) In the reconstruction method as suggested by Barsky, curvature and (especially) torsion values are extremely noisy, 
despite the quality of the reconstruction (in terms of position) of  the original curve. (c) A more precise estimate of model-data distances 
improves the estimation of curvature and torsion• (d) The constraint on the second derivative also improves the estimation. In fact the torsion 
should not be better estimated, but for helices the product curavature-torsion is a constant. 
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portions of the curve. In order to obtain the initial 
polygonal approximation, we use the classical recur- 
sire algorithm of Duda and Hart (1973), which can be 
easily stated: Initially, a single line joins the two end- 
points of the curve; then iteratively, a vertex is added 
at the point of the curve of maximum distance from 
the polygonal path. The number of knots m is also 
determined by the number of vertices. 

However, we utilize the following approach to locate 
the initial placements of the points representing the 
locations of closest approach to the data points, tTi: 
Rather than following Barsky's suggestion (which 
makes use of the interpolating polygonal path IP (see A 
in figure 4), as opposed to the approximating polygonal 
path AP (see B in figure 4), we simply project each 
point Pi onto the approximating polygonal path AP and 
considering the relative position of the projected points 
in terms of total cordlength of the path. This method, 
projection onto the approximating polygonal path, 
seems to outperform Barsky's proposal, especially 
when data points are densely populated around the 
curves. To set the knot values of the spline (m + K 
real values {tij}), we notice that for a B-spline of 
order 1, that is a polygon, approximating the data within 
the tolerance e~, the best ~i correspond to cordlength 
values on the approximating polygon PA. In this case, 
the global parameter ti is the cordlength and the best 
order 1 spline is this very polygon PA. We simply keep 
the same knot values for higher-order splines. Guided 
by texts such as Matin (Matin 1984), we are now invest- 
igating possibly better knot values for higher-order 
splines. We might optimize {tij } values with a gradient 

Fig. 4. A comparison of the initial positions for the projected point 
locations ~i, represented as distances (thick line) on a polygon us- 
ing Barsky's method or interpolating polygon IP  (A) and our modifica- 
tion or approximating polygon AP (B). The tolerance e~ of this 
polygon fit is related to the quality of the data and the discussion 
in section 1. 

descent approach as Wang and Ferrari do in Irvine 
(Wang 1990). But our solution seems to be a good com- 
promise, as our experimental results show. 

2.3.2 Improved Distance Estimates (Plass & Stone 
1983). Estimation of the ~i is based on the follow- 
ing hypotheses: 

1. The global parameter ~ behaves as arclength, and 
thus the curve is traversed with constant speed. 
However, the derivatives of the spline will depend 
on control vertex positions. Thus, all other param- 
eters being equal, if distance increases between suc- 
cessive control points, so does the speed of the 
parameterization. 

2. The arclength is well approximated by the length 
along the polygon joining the data. This hypothesis is 
valid in the sense that the arclength converges to the 
true value as the number of vertices increases, but 
discretization errors and especially noise will cause 
errors, whereas our aim is to accurately smooth the 
noise and achieve a continuous representation. 

Accordingly, the projection method has advantages, but 
can still lead to problems. 

Thus we next study the distance between a point and 
a polynomial curve of arbitrary degree. The true ui 
corresponds to the minimum of lla(~Ti) - Pi II. Let us 
thus consider the following equation, where t~ i is 
unknown: 

a l l a ( f i i )  - P i l l  
Fi([li) = = 0 

c35~ 

= ollr ?:o V j B j , K ( ; , i )  - Pill 

( K -  1)(Vj-  Vj_I) ] 
= 2 Bj,K- 1(~7~) 

j=l uj÷K-1 - ~j 

~a VjBj,K(ui) - Pi] 
j=0 

We update t7 i by Newton Raphson iteration, using the 
quantity 8~ = Fi(Tti)/F/((ti). Defining 

( K -  1)(Vj - ~_~) 
DVj=  

flj  + K _  - -  ~lj 

(K - 2)(DVj - DVj_I) 
D2Vj  = D2Vj = 

t l j+K_ 2 - -  l_tj 
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(with similar equations for each component Xj, Yj, and 
Zj), we obtain 

Cm 1 + ~DY:Bj ,~_I(ul)  • Y:B:,~(~i) - yi 

L/=1 ] 
m m 

L i=I j 

F ~ ' ( / t i  ) = D 2 ~ . ~ ,~:- 2(u~ ,~:(ul)  - x i  

] + ZD2Y:B jK_2(~ )  • Y]B:,K(~i) - y~ 

U= 2 " j 

+ D ,K-z(Ui " ,K i) - zi 

J j = l  j = l  

[j~=IDZjBj(u)] 2 ~- ,K-1 i 

Despite the apparent complexity of these equations, 
these computations are not very expensive, since 
Bj,K-1 and Bj, K-2 were necessarily calculated before 
Bj,K (by the recursive definition). Moreover, once all 
ui are updated by the amounts 8i, (the Newton-Raph- 
son correction amount), we must once again solve the 
linear system for new control vertexes { Vj }. We may 
repeat this operation until the solution satisfies the e~ 
criterion or until no substantial decrease of the max- 
imum error is observed. Figure 5 illustrates our 
method. Moreover, for security, {t~ } values must be 
sorted and rescaled after each iteration. There is no 
guaranty for the convergence for this method, neither 
locally for a specific value t~ i nor afortiori globally for 
all {t~}. The reader will find in (Grossman 1971) a 
description of the problems that could arise. Thus we 
do a divergence test and stop the process if we en- 
counter a bad case. Figure 3c shows the improvement 

that iterations effect on the approximation curve. 

Q(u ) 

Fig. 5. For each point P, the corresponding t~ value follows a grad- 
ient descent, The least square curve is modified each time the { fi } 
values are modified. 

Up to now in this section, we have only been con- 
cerned with the placement of the knots and the param- 
eter values fii associated with each point that is used 
to define the spline approximation. In the two next 
subsections, we address the problem of refining the ap- 
proximation and the control point positions so as to ob- 
tain good model regularization by constraining the first 
and second derivatives of the curve. 

2 .3 .3  Minimizat ion o f  Curvature. Cubic B-splines 
have an optimal approximation property (Nilson et al. 
1967), namely, that among all interpolants they 
~ e  the norm of the second derivative. This result 
was first proven by Holladay (1957). Alternative criteria 
can be posed for smoothing; for example, we might 
choose to minimize a weighted sum of the squared sec- 
ond derivatives of the approximating curve (evaluated 
at the projection points) together with the distance 
error from the data points: 

~2~ I Ia '%)[I  z A__.!I 
A 2 = o~ + ~ 

where 

{ a~ = var [llQ(~i) - Pill] 

a~ = var f l l a ' % ) l l ]  

and var designates the observed variance of the argu- 
ment values over the index i. 
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The second term is related to the bending energy 
of the spline, with a smoothing parameter r set as r = 
(a2/al) 2. In appendix A we discuss several ways to op- 
timize r. But it is NOT the bending energy. We have 
here a compromise that provides a better curvature 
evaluation with a small additional computation. Note 
that with our implementation, the sum can be taken over 
more than n + 1 points, thus accounting for high cur- 
vature sections of the curve between sample points. 
Since the second derivative values are linear in terms 
of control vertices, A2 is again quadratic. With the 
previous matrix notations, and with B" as the m + 1 x 
n + 1 matrix of the BTK(fii) we can write 

A2 
- -  = (BtX - x, BtX - x)  + r(B"tX, B"tX) 

A~ = Bt f .  + rB"B "t 

We solve a linear system of size m + 1, and the con- 
struction and complexity are as before, and the result 
is a spline Sx = B t A~ -1 Bx. In fact, the complexity 
will be linear in terms of the number of data points and 
cubic in terms of the number of control vertices. Figure 
3d illustrates results of minimizing A2. 

We have also tried to constrain the third derivative 
for cubic splines or the fourth derivative for quartic 
splines to improve the estimation of the torsion. This 
idea of minimizing the highest nonzero derivative is not 
so classical as we thought. However, we discovered that 
Arbogast (1990) experienced it. This derivative is 
piecewise constant for splines and presents jumps. 
These jumps can be used as a measure of the irregular- 
ity of the spline. By penalizing higher derivatives, we 
smooth them out. 

2.3.4 Incorporation o f  Surface Normals. Finally, we 
assume that the curve is supposed to lie in a surface 
whose normals are known. Thus, at every point along 
the approximating curve, the tangent direction should 
lie normal to the surface normal hi. Monga, Ayache, 
and Sander (1991) study the stability of surface nor- 
mal measurements. Accordingly, we penalize our op- 
timization criterion by a measure of the violations of 
this condition: 

with 

~i=n i=O [ Q ' ( t ~ i )  " nO 2 
A 3 = A  2 -t- 

/2 

cr 2 = var [Q'(~/) • hi] 

Note that the surface normals are a function of posi- 
tion, and must be provided in all of three-space (or in 
any case, near the surface), even though the normal 
vector field is only truly defined on the surface. This 
is the case when dealing with 3-D medical images in- 
cluding (possibly noisy) iso-intensity surfaces. The 
gradient of the intensity function is identified with the 
surface normal direction, and is available at any 3-D 
point. Also, note that although the surface normal ni 
is not in general identical to the curve normal n (see 
figure 6), it is always orthogonal to the curve tangent 
Q', establishing the validity of our A 3 criterion. 

We note N, the n + 4 matrix of normal vectors ni 
associated to curve points gathered in matrix x, and 
v the regnlarization parameter related to the surface 
normal penalization term (v = (tr3/o02). Moreover, 
we introduce the following 3(m + 1) × 3(n + 1) 
matrixes: 

( 3  \3 ( )  

Fig. 6. The curve tangent lies in the tangent plane of the surface and is thus orthogonal to the surface normal. 
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N3 = [diag (Nx) diag (Ny) diag (Nz)l 

B 3 =  o B  o 

0 0 B 

B~ = 0 B'  , etc. 
0 0 

With the new vectors X3--the 3(m + 1) vector 
representing X-in-fact for the machine, X3 and X are 
identical--and x3--the 3(n + 1) vector representing 
x--we can write 

A3 
- -  = ( 8 ~ x 3  - x3,  8 ~ x 3  - x3)  

+ r(B~" x3, Bj" X3) 

+ v(N~B;tX3, N~B; 'X  3) 

and thus 

A3.r,~ = B3B~ + rB~' B~ 't + vB~N3N~B~ t 

Finally, A 3 is still quadratic, the result is again a 
spline Sx3 = B~ A~l~ B3x3 but due to the scalar product, 
variables cannot be separated and the system size is mul- 
tiplied by three. The matrix A3r,~ is no more a band 
matrix and the complexity of the resolution is in O(m3). 

The progress obtained by minimizing A 3 can be 
shown using real scanner data, with the aim of finding 
the rigid transformation between two views of the same 
object (a skull) from characteristic curves (crest lines). 
In figure 13 we will show such crest lines on the same 
skull scanned in to different positions A and B, which 
permit a matching accuracy of one voxel (our modeliza- 
fion of the chin curve is represented in figure 7a). The 
two crest lines are also present in view B, with an occlu- 
sion and a small shift of the (perceptual) origin for the 
chin B. There are no obvious matching pairs of points 
between the two views (see figure 7b). Using surface 
normals in figure 7c, the curvature values of the chin 
curve in view B are closer to those on the first view 
A. The torsion function in the second view has an 
abrupt negative spike, which is one reason why we in- 
vestigate more stable invariants using lower-order 
derivatives in section 3. However, it is possible to com- 
pute useful torsion measures when we penalize a higher- 
order derivative than the second-order derivative. We 
did some promising tests combined with the automatic 
determination of the regularization parameter, these are 
summarized in appendix A (see especially figure 18). 

In summary, smoothing with regularized B-splines 
can be done in linear time in terms of data points and 
cubic time in terms of control vertices, so in O(n + 
m3). It leads to a minimum of energy with a direct 
solution possessing stable differential parameters up to 
the second order, in real time on a standard workstation. 

3 R e c o g n i t i o n  a n d  L o c a l i z a t i o n  

Having represented a curve by a B-spline approxima- 
tion, we now wish to match an extracted curve with 
a model curve. By localization, we mean the accurate 
positioning of the curve and its features relative to a 
matching model curve. We wilt make use of the analytic 
structure of the approximating spline. Formally, our 
problem is stated as follows: We are given a set of model 
curves {Mi } and an extracted (unknown) curve S. We 
wish to: (i) identify a curve M i which has the largest 
subset of points in common with S after a rigid transfor- 
mation; and (ii) specify that rigid transformation that 
best associates the two curves. 

There are numerous approaches to this problem. 
In order to best compare our method with other ap- 
proaches, we begin by recalling a number of classes 
of alternatives. 

All approaches make use of features extracted along 
the curve, and make fundamental use of the fact that 
an intrinsic reference frame can be associated with each 
point along the model curve (the Fr6net frame). Accord- 
ingly, given a correspondence between two points on 
two respective curves, a unique rigid transformation 
D = (R, u) can be defined that maps one point to the 
other in such a way that the corresponding coordinate 
frames are aligned. 

Specifically, given a pair of points (M, S), point M 
belonging to a model and point S belonging to an ex- 
tracted curve, and also given the associated Fr6net 
flames (t, n, b) and (t; n ', b ) ,  the rotation R that brings 
the two frames into correspondence is given simply by 
the outer product: 

R = (t', n ' ,  b')(t, n, b) t 

For the translational component, suppose that O is the 
origin in a global reference frame, and that OS denotes 
the vector from O to S, while OM is the vector from 
O to M, then 

n = O S  - R ( O M )  

We now consider, in general terms, the complexity 
of three methods of model matching. A more detailed 
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(a) 

Co) (c) 

F/g. Z Approximation of the chin A by our method. We observe curvature (top), and torsion (fight) in terms of  arclength, as well as curve 
tangent and normal along the curve. All irr~rovements of section 2.3 have been implemented for this example. (b) The chin on view B is 
occluded. We do not use here the surface normal penalization. The curvature function is slightly different from the view A. (c) With the help 
of surface normals, the curvature representation is much more reliable (the centered double peak is in A and B). 

complexity analysis would require a closer study of 
the costs of sampling the data along the curves, which 
we do not pursue here. However, under the assump- 
tion that the number of" points on each curve is of the 
order of n, the following analysis suffices to indicate 

relative costs. In all cases, we assume that every curve 
is represented by a sequence of samples, parameter- 
ized by arclength s, with a Fr~net frame, and thus 
curvature c(s) and torsion r(s) are available at each 
sample point along each curve. 
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3.1 Approaches to Curve Model Matching 

3.1.1 Prediction-Verification or Alignment. A subset 
of k significant points of the curve S are selected ac- 
cording to some stable criterion. For example, points 
of curvature extrema might be used. Choosing one of 
the k points, we then attempt to match that point with 
a model Mi and a point along M i having a similar 
curvature and torsion. Each such matching constitutes 
a hypothesis. 

Since A Fr~net frame is associated with both of 
the points used in a hypothesis, a rigid transformation 
can be calculated. In this way, the hypothesis can be 
checked. Initially, only neighboring points in the vicin- 
ity of the matched points are checked, to see whether 
the transformation brings them into proximity. If so, 
a refined transformation may be computed using a least- 
mean-squares approach, iteratively improving the 
hypothesis, for example by making use of a Kalman 
filter (Ayache 1991). 

By checking on all possible hypotheses, we find the 
pair that leads to the greatest number of correspondences. 

The algorithmic complexity of this approach is pro- 
portional to the number of models. For each model, 
we must iterate over all k selected points in the scene, 
and the complexity per model lies somewhere between 
O(kn log n) and O(kn 2 log n). This is because for 
every selected point on the curve S, roughly log n com- 
parisons are needed in order to select the candidate 
points in a single model with similar curvature and tor- 
sion values (assuming the data in the model has been 
sorted in a preprocessing phase). Then, the number of 
verifications that will be required is any one between 
1 and n, depending on the degree of discrimination ef- 
fected by the curvature and torsion, and each verifica- 
tion step is O(n). 

3.1.2 Accumulation of Parametric Evidence (Hough 
techniques). For each and every point on the curve 
S and every point on a model m i having a similar curv- 
ature and torsion, we suppose that the two points are 
matched. For each such association, we compute the 
rigid transformation as defined by the corresponding 
Fr~net frames. The rigid transformation determines six 
parameters, and we register a vote in a quantized six- 
dimensional parameter space. If the curve and model 
match, then there should be a bin in the parameter 
space receiving a lot of votes, corresponding to the rigid 
transformation bringing the two curves into correspon- 
dence. The process is repeated for every model. 

The complexity of this algorithm is proportional to 
the number of models. For each model, the complex- 
ity is between O(n log n) and O(n 2 log n), depending 
on the degree of discrimination introduced by the curv- 
ature and torsion values. 

3.1.3 Model indexing. In a preprocessing phase, we 
construct an indexing table, where entries are associated 
with pairs of values (c, r) .  For each pair, a list of en- 
tries of the form mi,j is formed, denoting the fact that 
point number j on model M i has a curvature and tor- 
sion value that is close to (c, 7"). Note that we assume 
that the model curves have been sampled. 

During the recognition phase, we walk along the list 
of points of S, and for each point st we examine the 
list of entries associated with the index c(sl), z(st). 
For each entry mi, j in the list, we compute a six- 
parameter rigid transformation Dij, l that would bring 
the point on S at s t into correspondence with the point 
mi,j of model Mi. We register a vote for the pair (M i, 
Di,j,t). Note that the first parameter is discrete, 
whereas the second lies in a six-dimensional continuous 
space. This is not a Hough transform. Instead of accum- 
ulating over model-scene pairs of points we simply proc- 
ess the scene points once, provided preprocessing of 
the models be done off-line. 

After processing all of the points along S, we locate 
the pairs of the form (model, displacement) that have 
received a lot of votes (relative to some error measure 
in displacements), and verify the indicated matches. 

The complexity of the recognition phase, disregard- 
ing the preprocessing phase, is essentially independent 
of the number of models. The complexity lies some- 
where between O(n) and O(mn2), depending on the 
level of quantization of the index space according to 
curvature and torsion. The length of a bin's entry is 
at the worst O(mn). The method depends on the ex- 
istence of variation along the model curves; for exam- 
ple, the method will not work for recognition of a helix, 
since the curvature and torsion are constant along a 
helix. 

This description of the method of indexing is essen- 
tially the "geometric hashing" method of Kishon, 
Hastie, and Wolfson (1990), updated in one important 
respect. They use a polygonal representation of the 
curves, and thus vote for a model and a displacement 
length, representing a difference between the arclength 
locations of the point sl and the candidate match- 
ing point mi,j measured relative to some reference 
point along each curve's representation. Since our 
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representation of the curves includes a differentiable 
structure and thus Fr~net frames, we may include the 
explicit calculation of the entire rigid transformation 
as part of the recognition process. 

The advantage of our method is that the arclength 
parameterization can suffer from inaccuracies and ac- 
cumulative errors, whereas the six-parameter rigid 
transformation suffers only from local representation 
error. For example, consider a model curve that suf- 
fers from a number of insertion errors (which might 
arise from frequent local perturbations along the curve, 
due, say, to contact between a surface and some other 
object, or due to a clamp or other surface artifact). In 
using the arclength parameterization, each matching 
subsection will have to be recognized separately, voting 
for the same model but with different arclength dis- 
placements. With the differentiable representation, each 
subsection may vote for the correct model with a 
uniform (approximate) rigid transformation. (Our ap- 
proach, while different, may also be compared with 
that of Stein (1991).) 

Another advantage of voting for rigid transforma- 
tions is that we may use a statistical method to com- 
pute a distance between two such transformations, and 
incorporate this into the voting process and the index- 
ing table. We explain this enhancement in greater detail 
below, and also show how the various transformations 
Di,j, l voting for a winning candidate model can be 
combined for the purposes of verifying the match. The 
results of the complexity study for the three different 
models (Alignment, Accumulation, Indexing) are sum- 
marized in the accompanying table, where m is the 
number of models: 

complexity/ 
method alignment accnmulation indexing 

lower bound O(mkn log n) O(mn log n) O(n) 
upper bound O(mkn 2 log n) O(mn 2 log n) O(rnn 2) 

3.2.1 Indexing Table Quantization. Guided by 
Grimson and Huttenlocher (1991), we collect statistics 
based on experiments with simulation and real data, 
described in more detail in section 3.2.4. These statis- 
tics provide expected variances for the curvature and 
torsion values of typical noisy curves, and also covari- 
ance values for pairs of values taken from intra- and 
intercurve pairs of points. In order to establish an 
"optimal" discretization cell size in the (c, 7") space, 
we study these covariance values. The cell size must 
be sufficiently large in order to account for the expected 
noise that arises due to normal variations, but suffi- 
ciently small in order to provide discrimination between 
different points along a typical curve. We then trace 
an uncertainty ellipse around curvature and torsion 
measures. The principal axes of this ellipse are given 
by intracurve variances. We add an entry in hash-table 
to each cell that has a nonempty intersection with the 
ellipse. 

3.2.2 A Metric for Rigid Transformations. At the 
same time, we compute covariance values for the six- 
parameter rigid transformations obtained by matching 
points along a scene curve with model curves. The re- 
sulting covafiance matrix is used in the definition of the 
Mahalanobis distance metric which we subsequently 
use to determine the proximity of two distinct rigid 
transformations, used during the recognition phase of 
the indexing algorithm. 

3.2.3 Recursive Transformation Estimation. Through- 
out the recognition phase, as soon as a pair of points 
is matched such that the transformation defined by the 
associated Fr~net frames is sufficiently close to some 
previously recognized matching, the estimation of the 
prototype transformation to be used as the matching 
criterion may be refined through the use of a recursive 
filter, such as the Kalman filter, The experiments show 
that this procedure can significantly improve the 
robustness of the method. 

3.2 Enhancements to the Indexing Method 

Since the indexing method offers computational advan- 
tages, especially in terms of its sublinear complexity 
growth in the number of models, we investigate enhance- 
ments and implementation issues for an application in 
medical image processing. 

The following subsections detail the modifications 
to the basic indexing method we have employed. 

3.2.4 Alternative Geometric Invariants for Match- 
ing. We were led by the statistical study of noisy 
curves to search for invaria_nt parameters that can serve 
as alternatives to the curvature and torsion measures 
that are used for indexing. Suppose that we are given 
a reference point B on a model curve, and consider the 
points P on the same curve (see figure 8). For each 
point P, we can define the rigid transformation D = 
(r, u) that maps the Fr~net frame at B onto the Fr~net 
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p 

Ng, 9. Statistical Experiments: A single corresponding basis point 
B is identified on all of the curves, and other homologous points P 
may be determined from the sample number. The intercurve variances 
are computed from the set of all pairs of corresponding points P on 
different curves, and the intracurve variances are computed using 

Fig. 8. Given a basis point B on the curve, all other points P may 
be associated with the rigid transformation required to map the Fr~net 
frame at B to the Fr~net frame at P. If we also include points P on 
nearby curves, then the case where a curve is disconnected may still 
be recognized. 

frame at P, and associate the six parameters with the 
point P. For  a fixed-basis point, these parameters are 
invariant with respect to rigid transformations, and con- 
sist of  the three rotation coordinates (It, rn, ro) with 
respect to the basis frame, and the translation coor- 

dinates (ut, Un, u9), again measured in the basis 
frame. 1 I f  the curve lies in a plane (a planar curve), 

then rt will always be zero, in which case it is 
preferable to use the representation (Or, On, Ob), angles 
between the vectors of  the frame at B and of  the frame 
a t / ' .  

To investigate the utility of  these various invariants, 
we took a single curve of discrete data (from real data), 
and formed a database of 100 random transformations 
of  this curve. For  each transformation, we applied the 
spline smoothing and representation algorithm of sec- 
tion 2, and then sampled each spline curve with a 
uniform sampling. A single corresponding basis point 
B is identified on all of  the curves, and other 
homologous points P may be determined from the 
sample number. For  each such point P, we compute 
the curvature, torsion, and other invariants, as discussed 
above. The intercurve variances are computed from the 
set of all pairs of  corresponding points P on different 

distinct points P along a single curve. 

curves, and the intracurve variances variances are com- 
puted using distinct points P along a single curve (see 
figure 9). Variances are computed for every invariant. 
The quotient between the intercurve variance and the 
intracurve variance measures the stability of  the cor- 
responding invariant. The results of  this study are sum- 
marized in the accompanying tabulation. 

inter 0.0034 0.4069 O. 8932 
intra 0.0192 0.5137 31.774 
ratio 0.17771 O. 7921 0.0281 

U 0 t O n 0 b 

inter 0.0368 0.0832 0.0978 
intra O. 8822 0.5479 0.6602 
ratio 0.0417 O. 1518 O. 1477 

O" U t ltl n U b 

inter O. 8267 1. O089 2.4657 
intra 36.350 8.8191 38.836 
ratio 0.0227 O. 1143 0.0634 

We observe that the invariants Ot and  ut are more stable 
than torsion, and have greater discrimination power 
than llutl, w e  expect to make use of  the parameters 
(c, O, ut) as the index values in a new indexing 
algorithm that we describe in the next subsection. 
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3.2.5 New Indexing Method. In the preprocessing 
phase of the model curves, a basis point B is selected 
for each such curve, and the (c, Or, ut) parameters are 
calculated for every point P on the (sampled) curve. 
This computation is repeated for every model curve, 
and for every possible basis point B along the curve. 

In this way, information about the model curves is 
stored into a three-dimensional table, indexed by (c, 
Or, ue). In each bin of this table, entries consist of a 
model curve, a point on that curve (together with the 
corresponding Fr~net frames), and a basis point B also 
on the curve. Each entry in a bin's list contains a model, 
basis, and point that give rise to the calculation of in- 
variants of the transformation of the basis to the model 
point that lies in the bin. 

For the recognition algorithm, an arbitrary basis 
point is selected on an unknown curve, and transfor- 
mations are computed from that basis point to other 
points along the curve. For each such computation, the 
parameters (c, 0 t, ut) map to a bin in the three- 
dimensional table, which gives rise to votes for model/ 
basis pairs, similar to before. This procedure applies 
also to curves in multiple sections (features are exclu- 
sively local), and last, since our invariant measures are 
local, to scattered points associated with curvature in- 
formation and a local reference frame. Experimental 
results are reported in the next section. In appendix B 
we discuss a Bayesian analysis of this matching method 
done by Rigoutsos and Hummel (1991). It permits a 
likelihood value to be associated to each match. It also 
explains how we can refine a local match and obtain 
a global match by taking more curves into account, as 
will be illustrated in figure 12. 

4 Results 

4.1 Matching Two Pairs of curves 

Using two views of the skull of figure 1 and figure 1 la, 
we used the software of Monga, Benayoun, and Fan- 
geras (1992) to find points along crest lines, and then 
fed these points into the curve-smoothing algorithm of 
section 2. For each view, two nonclosed curves are 
represented: the chin curve, and the orbital ridge (sur- 
rounding the eye). Since the two views are of the same 
skull, there should be a precise correspondence between 
the two views. Using the indexing algorithm, we pre- 
process the two curves from one of the views, building 
the indexing (or hash) table, based on measurements 

of (c, Or, ut) along the points of the curves. Applying 
the indexing-based recognition algorithm of section 3.2, 
the chin curve of the second view of the skull is suc- 
cessfully matched and transformed to the chin curve 
in the preprocessed view. The resulting match is shown 
in figure 10a. Since the output of the matching proc- 
ess includes a rigid transformation, we can apply that 
transformation to the entire skull, to place the two views 
in correspondence. The superimposed ridge curves are 
shown in figure l lc .  

We then apply the matching procedure to the orbital 
ridge curve of the second view. Although several can- 
didate matches appear, only one of those matches is 
consistent with the rigid transformation previously iden- 
tified by matching the chin curves. Incorporating the 
match of the orbital ridge curves, we can improve the 
overall rigid transformation estimate, resulting in a 
more precise correspondence (figures 10b and 1 ld). 

4.2 Matching Simultaneously Several Curves and 
Scattered Points. 

We preprocessed all curves from A in this experiment, 
and applied the algorithm of section 3.2.5. Curves from 
B were successfully identified. The resulting trans- 
formations were applied to all curves from B and 
superimposed matches (model, scene) appear in figures 
12b and 12d. We next ran our algorithm on the chin 
and right orbit curves considered as one single curve 
(figure 12e) and finally on all curves simultaneously 
(figure 12f). CPU times on a DEC-workstation (in 
seconds) for recognition and positioning are summar- 
ized in the following table. It confirms the linear time 
hypothesis. 

scene noise right left chin all curves 
curve contour orbit orbit chin orbit from B 

CPU time 1.08 0.96 1.18 2.57 3.56 9.51 

Note that incorporating more curves increased the 
likelihood of the match (see appendix B). We thus start 
from a local curve match and end up with one global 
rigid transformation. We then experimented matching 
by using scattered points (several hundreds) on the sur- 
face of the object, selected for the high curvature value 
on the surface and associated with a surface frame 
(Monga, Benayoun & Faugeras 1992) (figure 12g). 
Last, we registered the entire skull by just applying the 



Smoothing and Matching of 3-D Space Curves 95 

...... i ...... i . / . "  
/ 

• ... s 

/ . . .  

. , .  

• • . . -  f ; <, .. ..-.- 

':~o6e6~ ........................... :i .................................................................................. Fi-5?~~~ ~ ~ ...................................................................................................... 

.2 i i ;J ~i 

7 ." i li ; !i 
7 /,. ::i ~ i i 

.... : : :  ~ , , ,  . .  . . . . . . . . . . . . . . . . . . . . . . . .  ; ; . i ¢  ................... :;:.;.: ii ~; ; , , t '  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  '~ . . . . . . . . . . .  ' Z  . . . . . . . . . .  .;.- 
4 '~7 .eoo  _,.,.~ ~." , . .  ;.,: ,-;:: i:- # ,- ;! . . ¢  . . 

, ; ,  .1, .P . - . " . - -  i , - :~ -  ~ . ~  • ,.£ ! ,--.~- . .  

:: ,-" . ; :: ...-Y:" . " ::i ,'%: . ::.S/.,, .." 

~ 2 , . 2 0 e 0 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - '-~;~'Oe04 ~ .... 7~1.44e04 ' 4 . 2 8 e 0 2  ~7 ...," 

(a) (b) 
Fig, 10. (a) The successful matching of  the two chin curves, superimposed, (Note that the occlusion and translation of the second view are 
handled automatically), (b) Incorporating the matching of the orbital ridge curves improves the global transformation, 

Fig. 11. (a) The extracted ridges of a skull scanned in position A and (b) in position B. (c) The superposition of the ridge points, obtained after 
transforming the points of the second view according to the transformation discovered by matching the chin curves, The best correspondences 
are along the chin points. (d) The improved correspondence of ridge points due to the global transformation determined from both matches. 
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Fig. 12. (a) The successful matching of the two-submandibular curves, superimposed. (Note that the occlusion and translation of the second 
view are handled automatically.). Co) Nose contours matched. (c) Right orbits matched. (d) Left orbits matched. (e) Chin-orbit matched 
simultaneously. (f) All curves matched simultaneously. The matching algorithm is successfully applied in (i) to scattered points associated to 
(g) A and (h) B, represented here together with their reference frame. There is a scale factor on the x and y axes, due to the evaluation in 
image coordinates (as compared to real coordinates in the previous plots). 
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transformation that superimposed the two subman- 
dibular  curves. Incorporating the match of the orbital 
r idge curves, we improved the overall r igid transfor- 
mation estimate, resulting in a more precise correspon- 
dence (figure 11). 

4.3 Matching Dozens of Curves and Thousands of 
Points in a Few Seconds 

We present the latest matching of  crest lines extracted 
with the algori thm of  Thirion and Gourdon (1992). 
Figure 13 shows lines from our skull scanned in two 

different positions, as well as the superposition of those 
lines with our algorithm. These dozens of  lines feature 
thousands of points in total. The matching takes a few 
seconds on a DEC 5900. 

Figure 14 shows two CT-scan images of  a vertebra. 
Figure 15 shows crest lines obtained from the two dif- 
ferent views of  the vertebra of  figure 14, as well as the 
matching of  the crest lines. 

In figure 16 we display new CT-scan data of  the 
head. Figure 17 shows crest lines obtained on data 
from figure 16 along with the registration of  the crest 
lines. 

(b) 

Fig. 13. (a) Crest lines on two images of a skull obtained with the algorithm of Thirion and Gourdon (1992). (b) Superposition of the lines 
of (a) with our software in 7.71 seconds CPU on a DEC 5900. 8 curves are matched out of 15 and 32 curves. 53 points are matched out of 
666 and 1124. 
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Fig. 14. Isosurfaces on two CT-scan images of a vertebra (courtesy of LL. Coatrieux and R. CoUorec). 

Fig. 15. (a) Crest lines on two images of a vertebra obtained with the algorithm of Thirion and Courdon (courtesy of J.L. Coatrieux and 
R. Collorec), (b) Superposition of the lines of (a) and our software in 8.85 seconds CPU on a DEC 5900. Twelve curves were identified out 
of 28 and 33, Eighty-two points were identified among these curves out of 1250 and 1213 points respectively in the two different sets of curves, 
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Fig. 16. (a) Isosurface on CT-scan data of arthur. (b) Crest lines on arthur (courtesy of Alexis Gourdon). 

(a) 

F/g. 17. (a) Crest lines on two 3-D images of arthur (courtesy of GE-CGR). 



100 Gu&iec and Ayache 

(b) 

Fig. 1Z (Continued). (b) Superposition of the lines of (a) with our software in 16.2 seconds on a DEC 5900:42 lines out of 62 were identified. 
262 points from different curves were matched out of 1618 points (view A ) and 1516 points (view B). 

5 Summary Appendix A Penalization Parameters Optimization 

We have presented a very efficient method based on 
geometric hashing that rigidly matches 3-D curves. We 
are still improving the computation of useful differen- 
tial invariants on curves and surfaces. 

We will next study the precision and the robustness 
of the matching procedure with data that has been cal- 
ibrated. We will also investigate the possible generaliza- 
tion of the method to the case of small deformations. 
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A. 1 Generalized Cross-validation 

Suppose we remove one point xk from the curve prior 
to do the spline approximation S, S = B t A71 Bx 
(see section 2.3.3), so that we obtain a new approx- 
imation Sk. We expect the missing point xk to be cor- 
r~ t ly  extrapolated by our new approximation Sk xk. 
The cross-validation function measures the extrapola- 
tion error that is done when each data point is suc- 
cessively removed: 
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n 

vo(~) = ~ IIsk xk - xkll 2 
k=0  

Of course, the cross-validation function V0 depends on 
z, as S depends on r and our objective is to find the 
~- value that minimizes Vo(r). A key fact is that 
matrixes Sick and Sxk are related: 

Sxk - sk 
& x k - - x k - -  1 - - S k k  

This is because the approximation is obtained by solv- 
ing the same system and by replacing the missing value 
x k with the extrapolated value Skx k: S~c k = Sxk - S~xk 
+ S~S~k. Thus, the cross-validation function V 0 can 
be written as 

IlSxk -x~ll  z 
Vo(r) z.a 

k=o (1 - Sgg) 2 

Now, because the computation of the values S~ might 
be too costly, Craven and Wahba (1979) proposed to 
minimize the generalized cross-validation function 
V(r), provided the diagonal term S~ vary little with 
respect to k. 

Itsx  - x l l  2 
V ( r )  = 

Then, researchers like Silverman (1984) or Utreras pro- 
posed methods to approximate efficiently the trace of 
matrix S, Tr(S). Further, a Monte Carlo method was 
introduced by Girard (1989) to estimate that trace. 

We implemented that last Monte Carlo version of 
the genemliz~ cross-validation technique. Thus, we ap- 
plied the spline approximation to a random matrix w 
as well as to the data x for each r value. We also ex- 
perimented with the direct computation of Skk, which 
was workable because our S matrixes were small 
enough (the number of control vertexes defining spline 
curves was between I0 and 50). 

These two implementations produced very similar 
results: r was optimized so as to best fit the spline to 
the data, with a very small approximation error, which 
corrupted the curvature and torsion estimations (see 
figure 18a). This behavior may be due to a high cor- 
relation of the error on our data, as we have recently 
noticed. 

The next Newton method permits setting a higher ap- 
proximation error a (a standard deviation value, as op- 

posed to maximum error e~) and to obtaining smoother 
curves with reliable curvature and torsion estimates. 

A.2 Newton Method 

We call Fx(t) the residue IlSx - xi[ = lIAxll. In this 
method, the ideal value for r is obtained when Fx(r) 
= a, a being given. Let us differentiate with respect 

t o  7": 

A~ = BB t -  rB" B " 

dA 
- -  B "  B . t  

dr 

dA -1 
- -  = - A - I  B "  B "t A - 1  

dr 

Fx(~')F'(r) = (Sx - x ,  - B  t A - 1  B"  B *  A - 1  Bx)  

= - ( A x ,  D t Dx)  

if we set D = B"t A -1 B, Dx  is the second derivative 
computed on the spline. Finally, 

Fx(r)  Fx(r)  = (D Ax, Dx)  

thus 

Fx(z) - a (1)AxH - a)liAxl[ 

F;(:r) (D Ax, Dx)  

This is Newton's correction amount. F A r )  is a 
monotonous increasing function since the quantity (Dx, 
D Ax) is negative (llDSxll <- IIDxll). Otherwise 
smoothing splines would not smooth at all! 

If  S is an exact projection (least squares without 
smoothing), we can write that D Ax = DSx - Dx = 
Dx - Dx  = 0. Thus, with a suitable first guess for r, 
and a a value that approaches the real variance on the 
position of the data, the Newton method converges (see 
figure 18b). It may also diverge in a spectacular fashion. 

Our method is different from Reinsch's (1967, 
1970). Reinsch (1970) proves that the function Fx(1/r ) 
is concave inside the interval ]0, ~ ]  and notices that 
nothing can be told about Fx('r), which we use. To see 
this, it suffices to differentiate Fx(1/r ) twice with 
respect to r. Moreover, Reinsch explains that the op- 
timization of l /z  is sometimes too slow to be useful and 
he proposes to improve it. We were satisfied with the 
results obtained with our method using Fx(r), since it 
diverges only for inappropriate a values. 

We next consider the case of two smoothing 
parameters r and v. It might be possible to find the 
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F/g. 18. (a) Approximations with the generalized cross-validation technique, The ~, parameter is automatically set so that the curve lies close 
to the data. On the other hand, the oscillations necessary for this fit corrupt the curvature and torsion estimations, on top and right panels 
of  the plots. (b) With Newton's method, the ~" obtained with the knowledge on the variance sigma of the data provide in smooth approximations. 
Thus we obtain reliable curvature and torsion values, that can be matched from the two views A and B. Notice that we use a third-order derivative 
penalty that permits us to regularize both curvature and torsion. (Note: All plots are the same scale.) 

minimum of a two-variables function Fx(z, v) with the 
knowledge of the gradient (Fr, F~). We note the 
operator II = N3 ~ B3 't A3 -1 B3, Ilx is the n + 1-vector 
of scalar products tangent-n i and we have 

F(r, v) F, = (IIAx3, IIx3) 

We could also set one of the two variables r and v 
and optimize the second one with the previous equa- 
tion of the residue. 

However, we did all our experiments with a unique 
smoothing parameter. Figure 18 shows the results of 
our algorithms on two significant corresponding curves 
from views A and B of our skull. With the cross- 
validation technique (see figure 18a), we obtain a 

good fit and a poor curvature estimation. With the 
Newton descent, associated with an adequate residue, 
we obtain a smoother approximation together with 
useful curvature and torsion values (see figure t8b). 

Appendix B A Bayesian Analysis for 
Model Indexing 

As in (Rigoutsos & Hummel 1991) we consider the 
probability P(c r) of finding an entry in hash table at 
the location (c, r), as well as the conditional probability 
P (c, T/M i), assuming that the model Mi appears in the 
scene. 
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With Bayes' rule, we can write 

P (c, r/M i) 
H P(Mi/c, ~') = ]-I e(c, ~') P(MI) 

(H is the product over all (c, r) values involved in model 
M~.) 

The log-probability log [P(c, r/Mi)/P(c, r)] > 0 
measures the increase of the likelihood of the hypothesis 
that we recognize model M i from the scene, given the 
evidence that we observe (c, T) values. In hash-space, 
as visualized in figure 19, we expect to observe a back- 
ground distribution of measures (c, r)  as well as peaks 
which attest that model M/is present in the scene. 

Fig. 19. The background distribution of (c, ~') with peaks correspond- 
ing to models present in the scene (inspired by Rigoutsos & Hum- 
mel 1991). 

Once all values (c, T) observed along data curves 
are processed, as described in section 3.1.3, the con- 
sistent matchings of pairs (model point, scene point) 
will score the highest likelihood values: 

P (c, z/M/) 
log P(c, r) 

(E is the sum over all (c, r)  values that contribute to 
the match.) 

The likelihood is bounded above because there is 
a limited number of points that can be matched between 
the models and the scene. However, if we have new 
evidence (new points), the method might select a new 
peak in transformation space that supersedes the 
previous one. This is exactly what happens in figure 
12e: With the incorporation of the orbital crest line, 
we evolve from a local match to a global match. No 
dynamics are involved in this process: we simply pick 
a transformation that scores a higher vote. Alternatively, 

too much evidence will not necessarily improve the 
transformation. In figure 12f, all other curves have been 
incorporated, but the transformation is pretty much the 
same as in figure 12e. 

Thus, local minima of potential as when "one is 
stuck in a local match" are not a big issue in this match- 
ing technique. Moreover, we could set a desirable like- 
lihood threshold and infer the minimum number of 
points that is needed to score this value. We could even 
try to link this likelihood of match with the precision 
on the transformation that is estimated with the Ex- 
tended Kalman Filter (see Section 3.2.3). 
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Note 

1. Recall that a rotation in R 3 can be parameterized by a vector r 
whose direction corresponds to the axis of rotation, and whose 
length represents the angle of rotation about that axis. (Consult 
Ayache 1991). 
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