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Abstract 
Computing the motions of several moving objects in image sequences involves simultaneous motion analysis and 
segmentation. This task can become complicated when image motion changes significantly between frames, as 
with camera vibrations. Such vibrations make tracking in longer sequences harder, as temporal motion constancy 
cannot be assumed. The problem becomes even more difficult in the case of transparent motions. 

A method is presented for detecting and tracking occluding and transparent moving objects, which uses tem- 
poral integration without assuming motion constancy. Each new frame in the sequence is compared to a dynamic 
internal representation image of the tracked object. The internal representation image is constructed by temporally 
integrating frames after registration based on the motion computation. The temporal integration maintains sharp- 
ness of the tracked object, while blurring objects that have other motions. Comparing new frames to the internal 
representation image causes the motion analysis algorithm to continue tracking the same object in subsequent frames, 
and to improve the segmentation. 

1 Introduction 

Motion analysis, such as opticalflow (Horn & Schunck 
1981), is often performed on the smallest possible 
regions, both in the temporal domain and in the spatial 
domain. Small regions, however, carry little motion in- 
formation, and such motion computation is therefore in- 
accurate. Analysis of multiple moving objects based on 
optical flow (Adiv 1985) suffers from this inaccuracy. 

Increasing the temporal region to more than two 
frames improves the accuracy of the computed optical 
flow. Methods for estimating local image velocities with 
large temporal regions have been introduced using a 
combined spatio-temporal analysis (Fleet & Jepson 
1990; Heeger 1988; Shizawa & Mase 1990). These 
methods assume motion constancy in the temporal 
regions, that is, motion should remain uniform in the 
analyzed sequence. 

The major difficulty in increasing the size of the 
spatial region of analysis is the possibility that larger 
regions will include more than a single motion. Exist- 
hag approaches for the analysis of multiple motions can 
be classified into methods that compute the multiple 

motions without using segmentation (Bergen et al. 
1991; Bergen et al. 1992b; Burt et al. 1991; Darrell 
& Pentland 1991; Shizawa 1992; Shizawa & Mase 
1991), and those that separate the motions by segmen- 
tation (Meyer & Bouthemy 1992; Peleg & Rom 1990). 

Analysis of multiple motions without segmentation 
has been suggested using the dominant motion approach 
(Bergen et al. 1991; Burt et al. 1991), which finds the 
parameters of a single translation in a scene with mul- 
tiple motions without performing segmentation. The 
dominant-motion approach has also been used to com- 
pute two motions from three frames (Bergen et al. 
1992b), with the assumption that the motions remain 
constant in the 3-frame sequence. The motions are com- 
puted between registered frame differences, rather than 
between the original frames. The use of frame dif- 
ferences makes it possible to avoid the segmentation 
problem, but introduces temporal derivatives which in- 
crease the order of the derivatives used in this method. 
Another method for computing multiple motions with- 
out segmentation uses the principle of superposition 
(Shizawa 1992; Shizawa & Mase 1991). It provides an 
elegant framework to construct motion transparency 
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constraints from conventional single-motion constraints, 
but requires the use of high-order derivatives. In another 
approach, a robust estimation technique for detecting 
multiple translating objects (Darrell & Pentland 1991) 
has been introduced. It assumes motion constancy over 
several successive frames in the analyzed sequence. 

Analysis of multiple motions using segmentation has 
been suggested (Peleg & Rom 1990) for the simple case 
of two planar moving regions of constant depth. A more 
general approach with good experimental results has 
been presented in a region-based tracking method 
(Meyer & Bouthemy 1992). Kalman filters are used to 
predict and update the polygonal shape approximation 
and the 2-D motion parameters of the tracked regions. 
Motion-based segmentation (Francois & Bouthemy 
1992), based on a statistical regularization approach 
using MRF models, is being used in that approach to 
initially separate the moving objects. 

In this article we propose a method for detecting and 
tracking multiple moving objects using both a large 
spatial region and a large temporal region without 
assuming temporal motion constancy. When the large 
spatial region of analysis has multiple moving objects, 
the motion parameters and the locations of the objects 
are computed for one object after another using seg- 
mentation. The method has been applied successfully 
using parametric motion models in the image plane, 
such as affine and projective transformations. Both 
transparent and occluding objects are tracked using 
temporal integration of images registered according to 
the computed motions. 

Section 2 describes the method for detecting the dif- 
ferently moving objects and computing their motion 
parameters between two successive frames. The tools 
used for the motion computation and the segmentation 
are described in that section. Section 3 describes the 
method for tracking the detected objects using temporal 
integration of image frames. Section 4 shows how this 
technique is used for tracking and reconstructing 
transparent moving objects. 

2 Detection of Multiple Moving Objects in Image 
Pairs 

To detect differently moving objects in an image pair, 
a single motion is first computed, and the object that 
corresponds to this motion is identified. We call this 
motion the dominant motion, and the corresponding 
object the dominant object. Once a dominant object has 

been detected, it is excluded from the region of analysis, 
and the process is repeated on the remaining region to 
find other objects and their motions. This section 
describes the methods used for object detection and 
motion computation between two images. 

2.1 The Motion Model 

We use 2-D parametric transformations to approximate 
the projected 3-D motions of the objects on the image 
plane. This assumption is valid when the differences 
in depth caused by the motions are small relative to 
the distances of the objects from the camera. The choice 
of a 2-D motion model enables efficient motion com- 
putations and is numerically stable (since the 2-D pro- 
blem is highly overdetermined due to the small number 
of unknowns). Full 3-D motion computation may be 
difficult and ill conditioned (due to the very large 
number of unknowns--" the 3-D motion parameters plus 
the depth at each point). 

Given two grey-level images of an object, I(x, y, t) 
and I(x, y, t + 1), we use the assumption of grey-level 
constancy: 

I(x + p(x,  y, t), y + q(x, y, t),  t + 1) 

= l(x, y, t) (1) 

where [p(x, ); t), q(x, y, t)] is the displacement in- 
duced on pixel (x, y) by the motion of the object be- 
tween flames t and t + 1. Expanding the left-hand side 
of equation (1) to its first-order Taylor expansion around 
(x, y, t) and neglecting all nonlinear terms yields 

I(x + p, y + q , t  + 1) 

= l(x, y, t) + plx + qly + It, (2) 

where 

Ix - Ol(x, y, t) OI(x, y, t), it OI(x, y, t) 
Ox , Iy = Oy = Ot ' 

p = p(x,  y, t),  q = q(x, y, t) 

Equations (1) and (2) yield the well-known constr~nt 
(Horn & Schunck 1981) 

pIx + qly + It = 0 (3) 

We look for a motion (p, q) which minimizes the error 
function at frame t in the region of analysis R: 

Err0~(p, q) = ~ (pIx + qly + It) 2. (4) 
(x,y )ER 
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We perform the error minimization over the parameters 
of one of the following motion models: 

1. Translation: 2 parameters, p(x, 2,; t) = a, q(x, y, t) 
= d. In order to minimize Err(t)(p, q), its deriv- 
atives with respect to a and d are set to zero. This 
yields two linear equations in the two unknowns, a 
and d. Those are the two well-known optical-flow 
equations (Lucas & Kanade 1981; Bergen 1992a), 
where every small window is assumed to have a 
single translation. In this translation model, the en- 
tire object is assumed to have a single translation. 

2. Affine: 6 parameters, p(x ,  y, t) = a + bx + cy, 
q(x,  y, t) = d + ex + fy. Deriving Err(t)(p, q) 
with respect to the motion parameters and setting 
to zero yields six linear equations in the six un- 
knowns: a, b, c, d, e,f(Bergen et al. 1991; Bergen 
et al. 1992a). 

3. Moving planar surface (a pseudo projective trans- 
formation): 8 parameters (Adiv 1985, Bergen 1992a), 

p(x ,  y, t) = a + bx + cy + gx 2 + hxy 

q(x, y, t) = d + ex + f y  + g©' + hy z 

Deriving Err(O(p, q) with respect to the motion 
parameters and setting to zero, yields eight linear 
equations in the eight unknowns: a, b, c, d, e, f, g, h. 

2.2 Processing the First Object  

When the region of support of a single object in the 
image is known, its motion parameters can be computed 
using a multiresolution iterative framework (Bergen & 
Adelson 1987; Bergen et al. 1991; Bergen et al. 1992b). 
The basic components of this framework are: 

- -  Construction of a Gaussian pyramid (Rosenfeld 
1984), where the images are represented in multiple 
resolutions. 

- -  Starting at the lowest resolution level: 

1. Motion parameters are estimated by solving the 
set of linear equations to minimize Err(t~(p, q) 
(equation (4)) according to the appropriate mo- 
tion model (section 2.1). When the region of sup- 
port of the object is known, minimization is done 
only over that region. 

2. The two images are registered by warping accord- 
ing to the computed motion parameters. Steps 1 
and 2 are iterated at each resolution level for fur- 
ther refinements. 

3. The motion parameters are interpolated to the 
next resolution level, and are refined by using the 
higher resolution images. 

Motion estimation is more difficult when the region 
of support of an object in the image is not known, which 
is the common case. It was shown by Burt et al. (1991) 
that the motion parameters of a single object translating 
in the image plane can be recovered accurately by ap- 
plying the above motion computation framework to the 
entire region of analysis, using a translation motion 
model. This can be done even in the presence of other 
differently moving objects in the region of analysis, and 
with no prior knowledge of their regions of support. 
A thorough analysis of hierarchical translation estima- 
tion is found in (Burt et al. 1991). This, however, is 
rarely true for higher-order 2-D parametric motion 
models (e.g., affine, projective, etc.), which are much 
more sensitive to the presence of other moving objects 
in the region of analysis. 

Following is a procedure to compute higher-order 
(affine, projective, etc.) motion parameters of an ob- 
ject among differently moving objects in an image pair: 

1. Compute the dominant 2-D translation in the region 
by applying a translation computation technique 
(section 2.1) to the entire region of analysis. This 
locks onto an existing translation in the region of 
analysis. In the case of a motion that is not a trans- 
lation in the image plane, the computed translation 
is an approximation of the motion of an object 
segment. 

2. Segment out the region that corresponds to the com- 
puted motion (the segmentation technique is de- 
scribed in section 2.4). This confines the region of 
analysis to a region containing only a single motion. 

3. Apply a higher-order parametric motion computa- 
tion (affine, projective, etc) to the segmented region 
only, to improve the motion estimation. 

4. Iterate steps 2-3-4 until convergence. 

The above procedure segments a single object and 
computes its motion parameters using two frames. This 
object will be referred to as the dominant object, and 
its motion as the dominant motion. The choice of the 
motion model is done gradually. First a translational 
motion model is used, then an affine motion model, 
and finally a projective motion model, with segmenta- 
tion refinements in between. In many cases an affine 
model suffices, but since the scheme is automatic we 
apply the projective model as well. This scheme could 
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theoretically be further extended to yet higher-order 
parametric transformations in the image plane. 

An example of a detected dominant object between 
two frames will be shown in figure 2e. This sequence 
contains two moving objects: a flying helicopter and 
a background moving due to camera motion. In this 
example, noise has strongly affected the segmentation. 
The problem of noise is overcome once the algorithm 
is extended to handle longer sequences using temporal 
integration (section 3). 

2.3 Processing Other Objects 

After detecting the dominant object between two im- 
ages, attention is given to other objects. The dominant 
object is excluded from the region of analysis, and the 
detection process is repeated on the remaining parts of 
the image to find other objects and their motion param- 
eters. More details are found in section 3.2. 

2.4 Segmentation 

Once a motion has been determined, we would like to 
identify the region having this motion. To simplify the 
problem, the two images are registered using the de- 
tected motion. The motion of the corresponding region 
is canceled after registration, and the tracked region 
is stationary in the registered images. The segmenta- 
tion problem reduces therefore to identifying the sta- 
tionary regions in the registered images. 

In this implementation, pixels are classified as mov- 
ing or stationary, using simple analysis based on local 
normalized differences. A more elaborate statistical 
scheme (Hsu et al. 1984) is also possible. A simple 
grey-level difference between the registered images is 
not sufficient for the classification, for two reasons: 

1. Regions having uniform intensity may be interpreted 
locally as both moving and stationary. In order to 
classify correctly regions having uniform intensity, 
a multiresolution scheme (Rosenfeld 1984) is used; 
as in low-resolution pyramid levels the uniform 
regions are small. Classification is first performed 
on the lowest resolution level and is then interpolated 
to be used as an initial classification for the next 
resolution level. Higher resolution information is 
used to update the initial classification. 

2. Intensity difference cased by motion is also affected 
by the magnitude of the gradient in the direction of 

the movement. Therefore, rather than using a sim- 
ple grey-level difference as a motion measure for 
classifying the pixels, the grey-level difference norm- 
alized by the gradient magnitude is used as a local 
motion measure (5). 

A pixel with a high motion measure is very likely 
to be moving. However, a low motion measure does 
not necessarily indicate that the pixel is stationary, as 
in the case of a motion along an edge or in uniform 
regions. In order to detect stationarity, the reliability 
of the motion measure is computed. A pixel is classified 
as stationary only if its motion measure (5) is very low, 
and the reliability of this measure (7) is high. 

Following are the definitions of the motion measure 
and its reliability of the motion measure and its reliabil- 
ity as used in the segmentation procedure: Let I(x, y, 
t) and I(x, y, t + 1) be the intensities of pixel (x, y) 
of the two registered images at times t and t + 1, and 
let VI(x, y, t ) be the spatial intensity gradient at time 
t. The motion measure M(x, y, t) used is the weighted 
average of the normal flow magnitudes over a small 
neighborhood N(x, y) of (x, y) (typically a 3×3 neigh- 
borhood). The weights are taken to be [VI(xi, Yi, t)t 2: 

II(x,, y,, t + 1) - l(x,, Ye, t ) ["  IVl(xi, y~, t)[ 
def (x~, yl)EN(x, y) 

M(x, y, t ) -  ~ [VI(xi, Yi, t )  2 q- C 

(x~, y~)~N(x, y) 

(5) 

where the constant C is used to avoid numerical 
instabilities. 

The reliability of the motion measure at each pixel 
is determined by the numerical stability of the two well- 
known optical-flow equations (Lucas & Kanade 1981; 
Bergen et al. 1992a): 

(~ Ixly ) (~ Iy 2) Ay (--~ Iylt) J 
(6) 

where for each pixel (x, y) the sum is taken over the 
neighborhood N (x, y ). The reliability R (x, y, t) is ex- 
pressed by the inverse of the condition number of the 
coefficient matrix in (6): 

R(x, y, t) de=f Xmin (7) 
Xmax 

where ~ and Xrnin are the largest and smallest eigen- 
values, respectively. 
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The propagation of the motion measure from the 
lowest resolution level to the highest resolution level 
in the pyramid is performed as follows: First, all pix- 
els at the lowest resolution level are initialized as 
"unknown to be moving or stationary." Then for each 
pixel at each resolution level in the pyramid both the 
local motion measure (5) and the reliability (7) are com- 
puted. If the computed motion measure is high (i.e., 
pixel is moving) or if it is low with high reliability (i.e., 
pixel is stationary), then the motion measure of the pixel 
at that resolution level is set to be the new computed 
motion measure. Otherwise, if the local information 
available at the current resolution level does not suf- 
fice for classification, then the motion measure from 
the previous lower resolution level is maintained. 

This algorithm yields a continuous function, which 
is an indication of the magnitude of the displacement of 
each pixel between the two images. Taking a threshold 
on this function yields partitioning of the image to mov- 
ing and stationary regions. We usually choose the thresh- 
old to be about 1 (i.e., a displacement of about one 
pixel), to allow for noise. The motion measures M for 
several experiments will be shown in figures 2, 3, 4. 

3 Tracking Detected Objects Using Temporal 
Integration 

The algorithm for the detection of multiple moving ob- 
jects described in section 2 is extended to track detected 
objects throughout long image sequences. This is done 
by temporal integration, without assuming temporal 
motion constancy. For each tracked object a dynamic 
internal representation image is constructed. This image 
is constructed by taking a weighted average of recent 
frames, registered with respect to the tracked motion 
(to cancel its motion). This image contains, after a few 
frames, a sharp image of the tracked object, and a 
blurred image of all the other objects. Each new frame 
in the sequence is compared to the internal representa- 
tion image of the tracked object rather than to the pre- 
vious frame. Similar temporal-integration approaches, 
but which were applied only to stationary background, 
are described in (Donohoe et al. 1988; Karmann & 
Bran& 1989). 

3.1 Tracking the Dominant Object 

Let {I(t)} denote the image sequence, and let M(t) 
denote the segmentation mask of the tracked object 

computed for frame l(t), using the segmentation 
method described in section 2.4. Initially, M(0) is the 
entire region of analysis. The internal representation 
image of the tracked object is denoted by Av(t), and 
is constructed as follows: 

Av(O) ~°d I(0) 

Av(t + 1) %f(1 - w ) ' I ( t  + 1) 

+ w" register [Av(t), I(t + 1)] 
(8) 

where register (P, Q) denotes the registration of im- 
ages P and Q by warping P towards Q according to the 
motion of the tracked object computed between them, 
and 0 < w < 1 (currently w = 0.7). Av(t) therefore 
maintains sharpness of the tracked object, while blur- 
ring other objects in the image. An example of the 
evolution of an internal representation image of a 
tracked object is shown in figure 1. 

Following is a summary of the algorithm for detect- 
ing and tracking the dominant object in an image 
sequence: 

For each frame in the sequence (starting at t = 0) do: 

1. Compute the dominant motion parameters between 
the internal representation image of the tracked ob- 
ject Av(t) and the new frame I(t + 1), in the region 
M(t) of the tracked object (section 2). 

2. Warp the current internal representation image Av(t) 
and current segmentation mask M(t ) toward the new 
frame I(t + 1) according to the computed motion 
parameters. 

3. Identify the stationary regions in the registered 
images (section 2.4), using the registered mask M(t) 
as an initial guess. This will be the segmented region 
M(t + 1) of the tracked object in frame I(t + 1). 

4. Compute the updated internal representation image 
Av(t + 1) using equation (8), and continue process- 
ing the next frame. 

When the motion model approximates the temporal 
changes of the tracked object well enough, shape 
changes relatively slowly over time in registered 
images. Therefore, temporal integration of registered 
frames produces a sharp and clean image of the tracked 
object, while blurring regions having other motions. 
The temporal averaging according to equation (8) 
implies that the weights of images are reduced expon- 
entially in time, giving the highest weights to the 
most recent frames. Less recent frames, which are 
blurred by repeated warping and for which the motion 
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Fig. 1. An example of the evolution of an internal representation image of a tracked object. The scene contains four moving objects. The 
tracked object is the ball rolling from right to left. (a) Initially, the internal representation image is the first frame in the sequence. (b) The 
internal representation image after 2 frames. (c) The internal representation image after 3 frames. (d) The internal representation image after 
4 frames. (e) The internal representation image after 5 frames: the tracked object (the ball) remains sharp, while all other regions blur out. 

parameters might loose their accuracy, are "forgotten" 
at an exponential rate. 

Figure 1 shows an example of the evolution of an 
internal representation image of a tracked object. The 
scene contains four moving objects. The tracked object 
is the ball, which is rolling from right to left. The ball 
remains sharp, while all other regions gradually blur out. 

Comparing each new frame to the internal represen- 
tation image (e.g., figure le) rather than to the previous 
frame gives the Algorithm a strong bias to keep track- 
ing the same object. Since additive noise is reduced 
in the average image of the tracked object, and since 
image gradients outside the tracked object decrease sub- 
stantiaUy, both the segmentation and the motion com- 
putation improve significantly. 

In the example shown in figure 2, temporal integra- 
tion is used to detect and track the dominant object. 
This sequence contains two moving objects: a flying 
helicopter and a background moving due to camera 
motion. Figures 2c and 2d show the motion-measure 

maps obtained by the segmentation process (section 
2.4) for the first frame and after several frames, respec- 
tively. Comparing the segmentation shown in figure 2e 
to the segmentation in figure 2f emphasizes the im- 
provement in segmentation using temporal integration. 

Another example of detecting and tracking the dom- 
inant object using temporal integration is shown in fig- 
ure 3. In this sequence, taken by an infrared camera, the 
background moves due to camera motion, while the car 
and the pedestrian move independently. It is evident from 
figure 3c that the tracked object is the background, as all 
other regions in the image are blurred by their motion. 

3.2 Tracking Other Occluding Objects 

After detecting and tracking the first object, attention 
is directed at other objects. This is done by applying 
the tracking algorithm once more, this time to the rest 
of the image, after excluding the first-detected object 
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Fig. 2. Detecting and tracking the dominant object using temporal integration. (a-b) The fast and last frames in the sequence: both the background 
and the helicopter are moving. (c) The motion-measure map between the first two frames: bright regions indicate a high motion measure. 
(d) The motion-measure map after a few frames with the temporal integration process. (e) The segmented dominant object (the background) 
between the first two frames: black regions are those excluded from the dominant object. (f) The segmented tracked object after a few frames 
using temporal integration. 
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Fig. 3. Detecting and tracking the dominant object in an infrared image sequence using temporal integration. (a-b) The first and last frames 
in the sequence: both the background and the car are moving, and a person is walking at the bottom part of the road (appears as a dark spot 
at the lower part of figure 3a). (c) The internal representation image of the tracked object (the background): the background remains sharp 
with less noise, while the car and the pedestrian blur out. (d) The motion-measure map after several frames: bright regions indicate high 
motion measure. (e) The segmented tracked object (the background): white regions are those excluded from the tracked region. 

from the region of  analysis. To increase stability, the 
displacement between the centroids of  the remaining 
regions of analysis in successive frames is given as the 
initial guess for the computation of  the dominant trans- 
lation. This increases the chance of  detecting small 
objects that move fast (i.e., objects that have a small 
overlap between successive frames), like the car in the 
infrared sequence (figures 3 and 4). 

The scheme is repeated recursively, until no more 
objects can be detected. In cases when the region of  
analysis consists of  many disconnected regions and the 
motion-analysis algorithm does not converge, the anal- 
ysis is repeated on the largest connected component in 
the region. 

In the example shown in figure 4, the second dom- 
inant object is detected and tracked. It is evident from 
figure 4b that the tracked object is the car, as all other 
regions in the image are blurred by their motion. 

The detection and tracking of  several moving objects 
can be performed in parallel, with a delay ofone or more 
frames between the computations for different objects. 

4 Tracking and Reconstructing Objects in 
Transparent Motion 

We consider a region to have transparent motions if it 
contains several differently moving image patterns that 
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Fig. 4. Detecting and tracking the second object using temporal integemtion. (a) The initial region of analysis after excluding the first dominant 
object (from figure 3e). (b) The internal representation image of the second tracked object (the car): the car remains sharp while the background 
and the pedestrian blur out. (c) The motion-measure map after several frames: bright regions indicate high motion measure. (d) Segmentation 
of the tracked car. 

appear superimposed. For example, moving shadows, 
spotlights, reflections in water, transparent surfaces 
moving past one another, etc. In this section, we show 
how the tracking algorithm presented in section 3.1 can 
be used to detect, track, and reconstruct objects in the 
case of transparent motions. 

Previous analysis of transparency (Bergen et al. 
1992b; Darrell & Pentland 1991; Shizawa 1992; 
Shizawa & Mase 1990, 1991) assumed constant motion 
over several successive frames, which excludes most 
sequences taken from an unstabilized moving camera. 
Some methods (Bergen et al. 1992b; Shizawa 1992; 
Shizawa & Mase 1991) elegantly avoid the segmentation 

problem. They require, however, high-order derivatives 
(the order increases with the number of objects), which 
increases the sensitivity to noisy data. 

In our work we do not assume any motion constancy, 
and we temporally integrate the image frames rather 
than use temporal derivatives. The temporal integra- 
tion provides robustness and numerical stability, and 
also allows us to reconstruct each of the transparent 
moving objects separately. 

Transparent motions yield several motion compo- 
nents at each point, and segmentation c~nnot be used to 
isolate one of the transparent objects. In practice, how- 
ever, due to varying image contrast, in many regions 
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one object is more prominent than other objects, and 
segmentation can be used to extract pixels that support 
better a single motion in the region of analysis. We use 
the temporal integration scheme described in section 
3.1 to track the dominant transparent object. The tem- 
poral averaging restores the dominant transparent ob- 
ject in the integrated image, while it blurs out the other 
transparent objects, making them less noticeable. Com- 
paring each new frame to the integrated image of the 
tracked object rather than to the previous frame gives 
the algorithm a strong tendency to keep tracking the 
same transparent object, as it is the only object in the 
integrated image that is still similar to its image in the 
new frame (figure 5). 

For recovering the second transparent object, the 
temporal-integration tracking technique is applied once 
more to the sequence, after some delay. Let AVl(t) 
denote the integrated image of the first transparent ob- 
ject. Starting at frame I(t), the algorithm is applied only 
to pixels for which the value of l I ( t )  - AVl(t)l is high. 
This difference image has high values in regions that 
contain prominent features of transparent objects in I(t ) 
which faded out in the integrated image Avl(t), and 
low values in regions that correspond to the first domi- 
nant transparent object. Therefore, we use the values 
of the absolute-difference image as an initial mask for 
the search of the next dominant object in the temporal- 
integration algorithm from section 3.1. The tracking 

Fig. 5. Reconstruction of "transparent" objects. (a-b) The first and last frames in a sequence: a moving tripod is reflected in a glass covering 
a picture of flowers. (c) The integrated image of the first tracked object (the picture of flowers) after 14 frames: the picture of flowers was 
reconstructed; the reflection of the tripod faded out. (d) The integrated image of the second tracked object (the reflection of the tripod) after 
14 frames: the reflection of the tripod was constructed; the picture of flowers faded out. 
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algorithm is applied once again to the original image 
sequence, and not to frame differences as in (Bergen 
et al. 1992b). Now that the algorithm tracks the sec- 
ond dominant object, the new internal representation 
image Avz(t) restores the second dominant transparent 
object, and blurs out the other transparent objects, in- 
cluding the first dominant object. 

In figure 5, the reconstruction of two transparent 
moving objects in a real image sequence is shown. In 
this sequence a moving tripod is reflected in a glass 
covering a picture of  flowers. Figure 5c shows recon- 
struction of the picture of  flowers after the tripod has 
faded out in the integrated image of the first tracked 
object. Figure 5d shows reconstruction of the tripod 
after the picture of  flowers has faded out in the inte- 
grated image of the second tracked object. 

5 Concluding Remarks 

Temporal integration of registered images proves to be a 
powerful approach in motion analysis, enabling human- 
like tracking of moving objects. The tracked object re- 
mains sharp in its integrated image, while other objects 
blur out. Comparing each new frame to the integrated 
image of the tracked object rather than to the previous 
frame gives the algorithm a strong tendency to keep 
tracking the same object. In case of  occluding objects, 
this improves the accuracy of segmentation and motion 
computation. In case of transparent moving objects, this 
also yields an isolated reconstructed image for each of 
the transparent tracked objects. Other objects can then 
be tracked. 

Once good motion estimation and segmentation of 
a tracked object are obtained, it becomes possible to 
enhance the object images, like reconstruction of oc- 
cluded regions and improvement of  image resolution 
(Irani & Peleg 1991, 1992). 
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