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Introduction

For each positive squarefree integer, Shimura [11] and Niwa [9] constructed a
lifting of cusp forms of weight k+ 1/2 for I',(4N) with character y to cusp forms of
weight 2k for I;(2N) with character x?; here k denotes an integer = 3. Now one can
look for a subspace which under the above or similar liftings corresponds to the
space of cusp forms of weight 2k for I(N). The present paper investigates this
problem in the simplest case, where N=1 and y is trivial. Probably our results can
be generalized to arbitrary level N. However, we have not checked this as yet.

Notation

If zeC* and xe @, we put z*=¢*"#%, where logz=log|z| +iargz and the argument
is determined by —zn<argz=<n. The letter $ stands for the upper half-plane
{zeC|Imz>0}. For ze$H we set g=e*™=.

The symbol G) defined for ¢, deZ, d=+0, is used as in [11].

If K is a quadratic number field, we denote by Oy its ring of integers and by 6,
its different. We write v’ for the conjugate of v in K. If v is totally positive, we write
v>0.

Throughout the paper we assume that k is an integer. We write M (1) and S,(1)
for the space of modular forms and cusp forms of weight k for SL,(Z), respectively.
The space of modular forms (cusp forms) of weight k+1/2 for I(4) is denoted by

My 1)2(4) (Sps 124D

1. Statement of Results

We have subdivided our results into two propositions and three theorems.
Define M/, ,,,(4) as the subspace of M, ,,(4) consisting of modular forms
whose n-th Fourier coefficients vanish whenever (—1)*n=2,3(mod4), and put

Sk++ 1/2(4) =M1j+ 1/2(4)nSk+ 1/2(4)~
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We let 6= ) ¢ be the standard theta function, which is in M| ,(4).

neZ
Furthermore, if k22, H,, ,,, denotes the uniquely determined linear combination

of the Eisenstein series of weight k+1/2 on I,(4), which is contained in M., , ,(4)
and equals 1 at infinity. This series was introduced and studied by Cohen [3].

Proposition 1. If k is even the spaces M (1)®M, _ 2(l) and M, 1/2( ) are isomorphic
under the map (g(z), N2)—>g(4z)0(z)+M4z)H; 5(z). If k is odd the spaces
M, s(H@eM, (1) and M/, ,(4) are isomorphic under the map
(9(2), M2))—>g(4z)H ; 5(z) + h(4z) H  ; 5(z). One has dimM{+1/2(4)=dimM2k(1) and
dimS;, , ,(4)=dimS,,(1). For k=2 we have M, ,(4)=CH, ,,®S,",  ,(4).

Now define operators U, and W, acting on M, ,,(4) by

OUNCEE W et

vmod4

(1 W) (2) =(—2iz) "+~ 172 f(_ %)

These operators leave S, ., ,(4) stable. Niwa [ 10] proved that U, W, is hermitian
on the Hilbert space S, . ,,(4) (with respect to the Petersson scalar product), and

. . . 2
that it satisfies the equation (U, W, —a ) (U, W, —a,)=0 with «, = <2k )2" and

1 .
A== 50y Thus we have an orthogonal decomposition

k+ 1/2(4)'— @ Sk+ 1/2

where S{') ,,,(4) is the eigenspace for the eigenvalue «,.
Proposition 2. One has S, | ,(4)=S" (4.
Let p be a prime. If f= Y a(n)g" is an element of M,", , 12(4), define

nz0
K
M= % (a2t )
(-l)kn;%,ol(mod4) P P

[for a number-theoretic function a(n) we put a(x) =0 if x¢ NU {0}]. Note that, if p
is odd, T, | ,(p?) is the restriction of Shimura’s Hecke operator of degree p? to
M/, @4 (cf. [11]), and that the definition of T, ,,(4) is already implicitly
contained in Shintani’s paper [12].

We denote by T,,(p) the Hecke operator of degree p acting on M,,(1) by

2 cmq" | Tylp)= Y. (c(p m+p ZJHC(E)) T
#z0 nz0o P

Our first main result says that S, , ,(4) and S,,(1) are isomorphic as modules over
the Hecke algebra.

Theorem 1. i) The operators T, ,,(p?) preserve M, ,(4) and S/, ,(4). On
S, 1)2(4) they are hermitian.
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it) The space S, , /2(4) has an orthogonal basis of common eigenfunctions for all
Ty /z(pz), unique up to multiplication with non-zero complex numbers. If f is such
an eigenform, and f| T, | ,(p*) =24, f, then there is an eigenform FeS,,(1), uniquely
determined up to multiplication with a non-zero complex number, which satisfies
F|T,{p)=2,F for all primes p. The Fourier expansions of f and F are related as
follows: if f= 3% an)g" and F= Y Aln)q", and if D is a fundamental discri-

nz1 nzi

minant (i.e. D equals 1 or is the discriminant of a quadratic field) such that
(—1)*D>0, then

L(s—k+1,(2>) Y a(iDIn*)n"*=a(|D)) Y. A(m)n~*.

nz1 nz1

iii) If D is as in ii) and (D, k)= (1,0), the map &, defined by

b0 D b ?
Y bma= O 1=k (P + 3 (2 (2) a5 (" 1)) ¢
220 2 nz1 \din d d

maps M, ,(4) to M, (1) and S, | ,,(4) to S,,(1) and commutes with the action of
Hecke operators. There exists a linear combination in the ¥y, which is an
isomorphism.

The proofs of Propositions 1 and 2 and of Theorem 1 are based on a result of
Niwa’s [10], who using a trace formula of Shimura’s, showed that S, , , ,(4) and
the space of cusp forms of weight 2k on I;(2) are isomorphic as modules over the
Hecke algebra.

Remark {. Shimura’s main theorem in [11] in case of level 4 and trivial character
is very similar to our theorem. Examples, however, show that a “multiplicity 1
theorem” does not hold for S, ,,,(4).

Remark 2. By using Theorem 1 and the methods of [5] one can prove that if
g= Y cn)qg'eM(1) and K is a real quadratic field of discriminant D, then

nz90
D ! . .
B YL N P L PN et
2 vedg ! deN d d
vi>0  dj{(v)}ég
(z,Z€9)

is a Hilbert modular form of weight k for SL,(@f). Note that g|i, is the Doi-
Naganuma lifting of g, cf. [6, 14] and [16, Sect. 6].

The next theorem gives a relationship between the map %, and the non-
vanishing of the Dirichlet series attached to a Hecke eigenform of weight 2k on
SL,(Z) at the real point of the critical line. The existence of such a relationship is
indicated by Shintani’s paper [ 12].

Let g= Y c(n)q" be a normalized Hecke eigenform of weight 2k for SL,(Z)

nz1

and denote by L (s)=(2n)"°I" (s) Z c(njn™® {Res>0) the associated Dirichiet

nz1
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series completed with the gamma factor. Recall that L (s) has a holomorphic
continuation to the entire complex plane and satisfies the functional equation
L,(2k—s)=(—1)*L (s).

Theorem 2. Let k be even. The image of the restriction of %", to 8,7, ,(4) is
generated by those normalized Hecke eigenforms g in S, (1) which satisfy L (k)=+0.
The map &%, is an isomorphism if and only if L(k)*0 for all normalized Hecke
eigenforms g in S,,(1).

Corollary. Let k be even, and let v be the dimension of S, {1). Then of the r
normalized Hecke eigenforms ge S, (1), at least [1/27] satisfy L (k)+0.

The heart of the proof of Theorem 2 consists of an application of a result of
Zagier’s [ 16], which is based on Rankin’s convolution idea. It is not difficult to see

that dim S, , ,(4)|.%,", =[]/2r]. hence the corollary.

Remark. As was communicated to me by Zagier, Buhler verified by a numerical
computation that for k£200 the Hecke algebra on S,,(1) is irreducible over @.
From this it follows easily that if k=200, L (k)+0 for all normalized Hecke
eigenforms g in S,,(1).

The last theorem of this paper gives congruences for the Hecke-Eisenstein
series associated to real quadratic fields and is a consequence of the cor-
respondence, first discovered by Cohen [4, 5], between liftings of modular forms of
half-integral weight to modular forms of integral weight in one variable and
liftings of the latter to Hilbert modular forms in two variables.

Fix a fundamental discriminant D> 1 and put K =@Q( 1/5). Suppose that k is
even and =2. The Hecke-Eisenstein series gi(z,z')(z, e 9) of weight k for K is
defined by

giz,2)= L (1 —k)+ Z ( Z N (Y 1) R+
vedg L \U|(v)ég

where { is the Dedekind zeta function of K, and where the inner sum runs over all
integral ideals 2 in O that divide the integral ideal (v)dg. The series g5 is a Hilbert
modular form of weight & for SL,(0,) (cf. e.g. [ 7], Kap. 20); its Fourier coefficients,
except for the constant term, are by definition rational integers. Thus the
restriction to the diagonal G%,(z)=g¥(z,2) is contained in the Z-module MZ,
consisting of modular forms of weight 2k on SL,(Z) whose g-coefficients, apart
from the constant term, are all integral. The module M ,, is free of rank dim M (1},
and M, (H=MZ X C.
z

Theorem 3. For 25k =10 and K not belonging to the finite set
() {Q/23{Q)/p)| p prime, (p— ).k k, (p—1)| 2k}
the function G%, is contained in the lattice M%E C M%, given by the following table

{in which Q and R denote the normalized Eisenstein series in M (1) and M (1),
respectively) :
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& Basis for MYE [ME:MYE]

2 Lo 25 10
2 : B

4 L g 2
240

6 igs igz 24325213 = 46,800
247 504 ) ’

g T ot SR 25.32.5.7.17 = 171,360
4807 12 '
147 5

| Al s 2 g 22.3%.53.72 7,938,000

0 g ¢ %R s

This result was conjectured on the basis of extensive numerical evidence by
Zagier [15]. He also conjectured that there are similar results for higher weights
and that the lattice MYF cannot be made smaller by enlarging the finite set (), but
up to now we do not see a way to attack these problems. Note that (as described in
detail in [ 15]) the statement for k=2 and k=4 and part of the statement for larger
k follow from the results of Fresnel, Serre, and Deligne-Ribet on the denominator
of {(1—k) (these imply that G%, lies in a certain sublattice of M%,, denoted M3; in
[15], which for k=6, 8, and 10 has index 130, 34, and 50, respectively). The point of
the above theorem is that the restrictions of the Hecke-Eisenstein series to the
diagonal satisfy many congruences above and beyond those needed to give the
right denominator for the constant term. It is also of interest that the set (x) of
exceptional fields for the congruence G5, C M4£ is the same (i.e. no larger) than the
set of fields which must be expected to get the best bound on ({1 —k).

2. Proofs

2.1. Preliminaries

For details on modular forms of half-integral weight the reader is referred to [11]
and [3].
We introduce the group & consisting of all pairs (4, ¢(z)), where

A= (a Z)EGL;’ (R) and ¢(z) is a complex valued function holomorphic on §
c

satisfying |¢(z)| = (det A)~*/*|cz +d|*/?, with group law defined by (4, ¢(2)) (B, y(2))
=(AB, p(Bz) p(2)). If £ :9—>C and {=(A4, $(2))e G, we put fly, ;=S¢
=¢(z)" 1 f(Az). Then f|&,1¢,=f|£,&,. We have a monomorphism [(4)— 6
— 4\~ 12 . b
given by Ai>A*: = (4, (4, 2)), where j(4, )= (2) (7) (cz+d)V? if A= (Z d).
Recall that M, , ;,,(4) consists of all complex valued functions f holomorphic
on $ which satisfy f|A*= f for every AeI(4), and which are holomorphic at the
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cusps, while S, ,(4) is the subspace of M, ,,,(4) consisting of those f which

vanish at the cusps.
The Riemann-Roch theorem gives

k
dika+1/2(4)=sup{0, 1+ {5}},
. k
dim S, ;,(4) =sup{0, -1+ H}

{aaFg
For k=2 we have M,  ,#=CEZ ,®CE],,,®S,,,,4. where

a,beN, g 4 2b=k+ 1/2} is a basis of M, ;,,(4).

E% 2= Y J(A,2)”** 1 is an Eisenstein series for the cusp ico {summation over a
A

. . 1 n
system of representatives for the action of { +

nel} on F0(4)}, and E7. | ,

=(—1riz7*"¥2Ei% | — —}is an Eisenstein series for the cusp 0. Define
k+1/2 4‘Z

H,, 1/2:E§coi 1/2+2~2k_1(1‘(— 1)ki)E1?+ 1/2-
One has (cf. [3])
Hy, 1/2:1+ Z hy s 1/2(”)qn,

nx1
{— 1}*n=0, 1{mod4)
where
/

=2 0) g2 )

if (—1)*n=Df? and D is the discriminant of Q(}/(— 1)'n)/Q.
Let f= ) aln)q" be an element of M, ,(4). If p is an odd prime, define

nz0

T
AT = 3 (a(p2n>+((«I?i)pk-‘a(n)+p2k“la(§)) .

nzo

The Hecke operators T, , /2(p2) map cusp forms to cusp forms and are hermitian
on S, (4

2.2. Proof of Propositions 1 and 2
We shall prove Propositions 1 and 2 in four steps.

i) The maps defined in Propositionl are injective. One has
dimM, (1) =dimM,;",  ,(4).

Proof. If g(42)0(z) + h(4z) H;,,(z) or g(4z)H, ,(z) + h(4z) H,,,(z) is identically
zero and h=%0, the function H,,(z)/0(z)=1-12q+ ... or H, ,(2)/H; ,(2)
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=1—144¢4>+ ... would be invariant under z+>z+ %, a contradiction. Hence our
maps are injective. In particular we conclude

dimM(DBM, _ (1) if kiseven
dimM, (D®M,_,(1) if kisodd.

Note that the number on the right-hand side is precisely dimM, (1}, as follows
from the well-known formula

dimM;mmg{

sup{O, E%D if k is even, k=2(mod 12}
dimM,(1)= L
sup{O 1+ Lz]} if k 1s even, k==2(mod12).
i) One has My, | ,(H MY | ,(4):={feM, @I fIUW,=a, f}.
Proof. Let f be an element of M,, , ,(4). By definition
f|U4W4:f1+f25

where

ey ey )

and

e

We have

2k+2”‘/2f1=f!<<146 "é>,2(-i2)”2)+f‘(<£ )2( P”)
(e Yl o2
S (PRRESER
o el

=27123%1 + 1) fz— D+ i1 — i) f(z+ 1).

Since the n-th g-coefficients of f vanish for (— 1)*n=2, 3(mod4), we have

(1 +i)f(z—— %) +itH1 —i)f<z+ %) =2<~27€3:1->f(z)

2 2
te that ke Tk
note a (2k+ ) A

O E

and
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Hence

I
U2k + 1 ’
1
f2=§f3U4W4'

From this we get f|U,W,=0a, f.
iti) One has M), ,(4)=CH, ., ®S,,,(4).

Proof. By ii), H,, ,,, is in MY} ,(4). If fe M), ,(4), there exists AT such that

e . 1
g:=f—AH,,,, vanishes at infinity. Since g|W, = —&-g{U 4> We conclude that g
1
vanishes at the cusp 0, too, hence is a cusp form. This proves iii).

iv) We have dimM(Y) | ,(4) <dimM (1) and dimS{Y) , ,(4) <dimS$,,(1).

Proof. Using basis elements the first formula is easy to check for k<2, For k=2
one has dimM{Y) | ,(4)=1+dimS}), ,(4) and dimM,,(1}=1+dimS,,(1), hence it
suffices to prove that dimSY, ,(4) <dimS,,(1).

Note that the Hecke operators T, ,(p?) commute with U, and W,, hence
preserve the space SY,,(4). Since they generate a commutative C-algebra of
hermitian operators, S}, ,(4) has an orthogonal basis {f;} of common eigenfunc-
tions for all T, ,(p?).

Write S,,(2) for the space of cusp forms of weight 2k for I(2). On S,,(2) we
have Hecke operators T,,(p) (p an odd prime) and U, defined by

Y g Tylp)= Zx (clpm)+p*~ Le(n/p))q",

nzt
Zl dmg’lU, = ; c2n)q".

According to Niwa (theorem in [10], Sect. 1) there exists an isomorphism
Y1 Se11/2(4)>5,,(2) satisfying U,p=yU, and T, ,,(p")p=1pT,(p) for all odd
primes p (in [10] this is proved for k= 2; note that for k<2 we have S, ,(4)={0}
=5,{2).

We now apply y to the basis {f;} of S{), ,(4). We claim that f,|y cannot be a
new form (for the theory of new forms cf. {1], Sect. 4, in particular Theorem 5, and
[81, Chap. VIII). Indeed, if it were, f;|y would be an eigenfunction of U, for the
eigenvalue +2* % hence 42! f,=f,|U,, which implies

o [i=flU W, = izkﬂfi}Wm

a contradiction since Wi=1.

So fily is old, and we have f;|lpeCF(z2)®CF{2z), where F,e5,,(1) is a
{uniquely determined) normalized eigenform of T,,(p) for all primes p. To
complete the proof we shall show that the association f;—F, extends to an
injective linear map p* :S{}, ,(4)—>S,(1). This follows from the following
Lemma. Suppose f and [’ are two non-zero elements of S1), .(4) which are

K+ 1/2
eigenfunctions of Tk+1/2(p2) for all odd primes p with the same eigenvalues. Then

Ccr=Cy".
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Proof. Put h= f|y, = f'|yp. Assume Ch+Ch'. Then we may suppose without
loss of generality that h(z)=F(z) and h'(z)=F(2z), where FeS,,(1) is a Hecke
eigenform. Thus h=#'|U,, which implies f=f'|U,. Hence

1 1
O‘1f,=f/|U4W4:f|W4= ’"“fIU4= Afllezt’
oy %y
from which it follows that

2%k =h'|U3,
le.
22k F(2z)=(F|U,)(z).

Let F|T,,(2)=AF. We obtain
AF(2)=(F|U,)(2)+2** " 'F(22) = (2% + 22k~ 1) F(22),

which clearly implies F=0, a contradiction. Therefore we must have Ch=Ch’,
hence Cf=Cf".
Propositions 1 and 2 obviously follow from i}-iv).

2.3. Proof of Theorem [

We shall first prove that S, | /2(4) has an orthogonal basis of common eigenfunc-
tions of the operators T, ;,,(p?).
If p is an odd prime, T, ;,,(p?) is the restriction of T, ,,(p?) to M, ,(4).
Assume f= Y a(n)q"is in M;,, 12(4). We wish to prove that

nz0

/1 Tk++ 1/2(4):(f| WU W, —a,)

[note that U,W,—«, is up to a constant factor the orthogonal projection of
S 1 2(4) to Sk+ 2@ =581 ,,,(4)]; this implies that T,7, 1/2(4) maps M[,,(4)and
N 12(4) to themselves; furthermore it follows that T, wr1/2(4) is hermitian on
S+ 1/2(4), since U, W, is hermitian and W, is an unitary involution.

By definition

(f|W4)|(U4W4_“2): Z s,

0<v=4

b

where

for 0Zv<3

s,(f)=2"2T12(f1Wy)

and

si(f)= )2k W,

(s
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1 172
o 3}>)
_ (ﬁ)l (i"(1+i)( f}U4)(z— ;1;) +rk(1—i)(fw4>(z+ ﬁ)

252 )10e)
- X adng m

nz0
(— 1)*n=0, 1{mod4)

We have [compare with Sect. 2.2ii)]

N P LA
1

v=1,3

W,+s5,(f)

Obviously
(=247 3 al3a @

nz0

Finally let us compute s,(f). Suppose that k is even. Assume f(z)=g{4z)8(z)
with ge M {1). Then

550 =2%s,0) ( 16z

82+1>(1 82"

The reader will easily verify that 6] W, |(U,W, —a,)= 0| T} ,(4). Thus applying (1)
and (2) to 6, we see that

)= T ()2

nz1

= E )

recall that ) (g) e =1 ‘/Z(g)}.

vmod 8

On the other hand
6z \_ [ =1 \_ [t 11 LY
NTezx1) 79T 11792 162)\2 7 162

i (4z+—;—-—1 8z—1\*
:2 g T
24z+H—1)\ 8z

2 16z
=2"% g4z + )8z —1)*.

Thus we obtain

=27 Bl el

LI
=21y (g)a(n)q".

nz0
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If f(z)=hdz)H,,(z) with he M,_,(4), then using H,,|W,|(U,W, —a,)

=H,,|TS,(4), a similar argument gives again s,(f)= Y —;— a(n)q". Since
nz0
according to Proposition 1 any feM,,, 12(4) can be written as f(z) = g(42)0(z)
+h(4z) H 5,,(z) with ge M (1) and he M, _ (1), we are through.
. . — 1)
If k is odd an analogous argument gives s,{f)= ) <( 2) n)a(n)q".
nz0

The T,/ ;,,(p?) generate a commutative algebra of hermitian operators on the
complex Hilbert space S, +1/2(4) hence S, ,(4) has an orthogonal basis of
common eigenfunctions for all T, , /2(p ). We have already proved [cf. lemma in
Sect. 2.2iv) and Proposition 2] that such an eigenfunction f is uniquely de-
termined by its eigenvalues up to multipiication with a non-zero complex number.

Assume f= ) a(mq" and f|T',,,(p*)=4,f, and let D be a fundamental

nzt

discriminant such that (—1)*D>0. A formal calculation as in [117, p. 452 shows
that

> a(‘D‘nZ)rrs:(l_ (§>pk—l—s>(1__/‘{pp—-s_‘_ka—l—ZS)——l

nz1
2. alDin?n~e
(n:lpg)i 1
for every prime p [if p=2 we have to use the fact that, by definition, a(n)=0 for
(—1¥n=2,3(mod4)]. From this it follows that

5 a(IDlnz)n's=a(IDl)H(1—(%)p"‘“‘)(1—/1,,1)“+p2"““2‘)“,

nz1 p

ie.

L(S—k—{—l,(_q)) Z a(lD!nZ)n~s:a(lDDH(l_ipp—s+p2k—1—2s)—1‘
" 14

=1

We will prove now the statements about the maps %, If f is an element of
My, 12(4), a formal calculation shows that /], Tyy(p)= fIT PP for all
primes p; we leave the details to the reader [if p=2, we again have to use the fact
that the n-th Fourier coefficients of f are zero whenever {— 1}*n=2, 3(mod4)].

We shall next show that for (D, k)#(1,0), %, maps M,",, ,(4) to M, (1). If
k<0 or k=1 we have M, ,,(4)={0}, and nothing is to prove. Recall that
M{,,(4)=C6 and note that 6], = %L(l,(—lz))eMO(l) for D#1.

Now suppose k=2. Then we have the decomposition My, ,(4)=CH,,
@S/, ,(4). Using the g-expansion of Hy, . it is a simple exercise to verify

1 D
that Hk,‘,i/zlyuf,c:EL(I—k,(—»Ezk, where E, = 1+C1 .2 ZO’Zk ()

q" is the normalized Eisenstein series in M,,(1). Thus it remains to show that Lo
maps S, ,,,(4) to S,(1). We may suppose k3.

First assume that D=0(mod4). Write D=4d with d square-free and
d=2,3(mod4). Let f= )Y a(nq'eS,, ,(4). According to [11] and [9] the

nz1
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4d 2 . e .
function f|¥, 1= Y, (Z(T)j"“la(gz—ldl)) g" is in S,,(2); if n is odd, its n-th g-

nzt \jjn
coefficient is zero. Hencg 1= (f1F MU, is in S,(1) (cf. e.g. [8], Chap. VII,
Sect. 4, Lemma 7).
Now suppose f is a non-zero Hecke eigenform. We claim that there exists a
fundamental discriminant D=0(mod4) with (—1}*D>0 such that a({D})%0.
Suppose the contrary. Then g := f|U, has the property that its n-th g-coefficients

are zero for n=2(mod4), hence
o b
0 1/

@ oo ol Tyo)ere e,

The right hand side and both terms on the left hand side are in S, ,,,(16), the
space of cusp forms of weight k+ 1/2 on I(16). Let Tr:S,,,,(16)= S, ,,(4) be
the trace operator defined by h|Tr= ) h|A¥, where {4} is a set of representatives

" . 4 +1
for I{16)\I,(4). Applying Tr on both sides of (x) and noting <( - ), 1) oTr
. 4 2
=4—~k/2+3/‘4ei2m(2k+ 1)/8U4w4 and ((0 (1))’4— 1/4) 0Tr=4_k’2+3/4(U4W4)2 (Cf

{10], p. 200f, proof of lemma) we obtain ( )2 glU,W,=g|(U,W,)?, hence

2
2k+1

because U, W, is injective, g|U, W, = 2%, ie. g isin S, |,,(4). Since U
4774 4"a k+1/2 4

(aert
and T, +1/2(P ) (podd) commute, f and g have the same eigenvalues for all
A /z(p }(p odd), hence f and ¢ differ only by a constant factor. Moreover, since
flU,=2"%f|W, and W}=1 we conclude g=+27*f. An easy computation [cf.
Sect. 2.2iv)] then shows that (N T2 = + 2%+ 25" 1)(f]y™), which according
to Deligne’s theorem, previously the Ramanujan conjecture, is impossible unless
flw* =0, ie. f=0, a contradiction.
Now let f,,..., f, be an orthogonal basis of common eigenfunctions of the
1% 1,2(p?), and write fi= Za(n)q For every f; determine a fundamental

discriminant D;=0{mod4) such that a((— 1)"D}H=0 The complex polynomial

PX,,...X,)= ; [T (aD,hXx,+ ..+afiDX,)
sisr

is non-zero, hence there exists (c,...,c)e@ with P(c,,...,c,)+0. Define
K =c,Fp y+ .+, Then for everyje{l L) fi1 % isin S, (1) and is a
non-zero elgenform of all T,.(p). If f;197 f,{yj( , then because y * commutes
with Hecke operators, f; and f, have the same eigenvalues for all T, , /z(p ), and
hence j=I. From this we see that %" is injective, hence bijective. It is clear that the
¢; can be determined such that H,, , ,| %" +0.

Now suppose D=1{mod4). We may assume k=6 if k is even and k=9
if k is odd. Let g be a normalized eigenform in S,,(1) with g| T L{p)=w,g for all

primes p. Then we have g= ) w,p", where the w, are determined by Y wn™*

nzi nz1

=[] —wp~s+p* 17271 Write ¢* for the inversc of %' and put
14
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G=g|¢p" % The function G is a power series in ¢ which converges on $ and
satisfies G| T, (p)= w,G for all primes p. Hence it follows that the coefficient of G at
q" equals co,, where ¢ is the first g-coefficient of g|¢p* %, ie. (gl¢ N Sp=cg.
Since ¢ is bxjecuve we see that &, maps S, ,,,(4) to S,(1).

24. Proof of Theorem 2 and Corollary

If f, f'e M,(N) (where Ne {1,4} and ke Z for N=1, ke +Z for N=4), and at least
one of them is a cusp form, their Petersson scalar product

|1 Fay

Fo\% ¥
will be denoted by {/, f'>. We will suppose that k>6.

Let §9,(1) be the C-linear space spanned by normalized eigenforms g of weight
2k for SL,(Z) satisfying L (k) 3 0. We have to show that S5,()=58,", P@IA As
already mentioned the key for the proof is a result of Zagier’s ([16], Sect. 5,
Proposition 5) based on Rankin’s convolution idea, which we will state now only
for the special case where we need it:

Lemma. Let Ne{1,4}. Let kyeZ. Let k,€2Z,if N=1,and ke % +2Z,f N=4, and
suppose k,zk, +2>2. Let E, (z)= Z(cz«i-d)""z be the normalized Eisenstein
(4

series of weight k, for I(N) {summafion over a system of representatives for the
Let g= ) bn)q'eM,(N) and

. { (1 n)
action of <+
0 1 "2 0
f= Y amng'e Sy, +xk,\N). Then the Petersson product of f and gE, is given by

nz1

neZ} on FO(N)H.

Tk+k a(n) b(n)
<fngkz>= (4n )klﬂi i Z kit

We first show that $9,(1) is contained in S, ,,(4)IS;, Let G,=3{(1-k)
+ Y o,_,(n)q" be the Eisenstein series of weight k for SL,(Z) and let
nzt

g= Y b(n)q" be a normalized Hecke eigenfunction in S,,(1). Then using the

nz1

identity
> a,(n)b(n)n“sz( > b(n}n's)< ¥ n”b(n)n‘jQf(ZS—r——2k~§—1)”1
nz1 nx1 n=1

(Res>r+k+1)
we easily see from the above lemma that
€9,G, G,y =(—1y"227 2 L (2k— 1) Ly(r) (1)

for any even integer r with k+2<r<2k—4, a formula due to Rankin (cf. [16],
p. 117 and p. 146).
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We now show that (1) is also valid for r=k (this is claimed in [16], p. 146).
Indeed, the recurrence relation

Qk—6)2k+1) 1 1 1
12 Gk—2)1 O~ 31K gy O+ Cm-oF g gy o0
i
+ Br= eyt Cak-aCas

valid for kz4, is well-known (cf. e.g. [13], p. 19). Using {g¢,G,,>=0 we obtain
from (1)

-kt 1

1 - ki2—1 1
+4!(2k—-8)! LO)F...+(—1) (k—4)1k!L"(k 2)).
That this is equal to (—1)¥227%**'L (2k—1)L (k) can be deduced from the
“period relations” (cf. [8], Chap. V, Sect. 2, p. 73} by a simple computation. We
omit the details.

Since L (2k—1) %0 and the Hecke algebra acts on M (1) with multiplicity 1, it
follows that G? generates €G,,®S9,(1) as a module over the Hecke algebra. But
we have G,(4z) 0(z)| ", = G}(2) (this is easily checked ; cf. the computations in [4],
24). Since ¥, commutes with Hecke operators, it follows that S;7, ; ,(4)|.%%,
contains §5,(1).

To prove the converse we shall again use the above lemma. Let
f= 2 am)q'eS;, ,(4) be a common eigenfunction of the T, ,(p*), with

nz1

FITY 12(p?) =4, /. We want to compute {f(2), G,(42) 6(z)). Let
G®(z)=—27%G,(22)+ G,(42)
be an Eisenstein series of weight k on I ,(4) for the cusp ico. We have
G2 0D(U W, — ) =(G(2)| U,) B(2) | W, — 0, G(22) 0(z)
=((14+2*"1YG(2)—2¢"1G(22) B W, — 2, G,(22) 8(2)
=(— 172251 +2*"1) G,(42) 8(2)
and
G(42) 0(2)|(U W, —ay)=(—1)¥2-3-2"1G(42) 0(z).
Therefore
G2 0NU W, ~t,)=(— 1325~ 1) G,(42) 6(z),
and we conclude
(= D22 = 1){[f(2), Gy(42) 0(2)> = { f(2), GZ(2) 02U W, — 43))
={f@UU W, ~a,), G*(2) 0(2))
=(= 13- 271 f(2), G;*(2) 6(2))
which by the above lemma is equal to
. 2
(_1)k/2.3.2k~1(1~.2—k)1g(1_k)r(k 1/2) « 2a{n*)

2 (4n)k—1/2 = nZk-l .
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In Sect. 2.3 we proved
Y apn T =a(){(s—k+ 1) [T(1—A,p s +p** 1737

nz1 14

Therefore 3U1—k) Tk—1/2)
{f(2), Gyl42) 0(z)p = all)5 W @ I;I(l—lpp_zk+1+p_2k+l)vi

and hence one has {f{z), G (4z) 6(z)} %0 if and only if the first g-coefficient of the
Hecke eigenform f does not vanish.

Now let f,, ..., f,€ S, 1,,(4) be an orthogonal basis of Hecke eigenforms. Write
fo= 3 ajn)¢" Since the Hecke algebra acts on M/, | 12(4) with multiplicity 1, the

nz1

function G,(4z) 6(z) generates CH, , ,269( P c fv) as a module over the Hecke

ay(1)*£0
algebra. Furthermore, from the definition of %", and the Euler product for

Y. a,(n*)n"° we see that f,|&", =0 if and only if a,(1)=0. Therefore, from the

v

nz1
equality G(4z2) 9(z)|S1+,k=G,f( z) we conclude that S/, , /2(4)[,Vlfk is contained in
$9,(1). Thus Theorem 2 is proved.
Let us now prove the corollary. Put ., ,=E/42)0(z)—H,, ;,,(z). Then
Wit 12€ S0+ 1,2(4). We claim that v, , , , has order 1 at infinity. Indeed, this means
=k
that 2— C(1—2k)
number, and it is well-known that B,=B,, can only happen for k=4. From
this and from the dimension formulae for M, ,,(4) and S, ,(4) we see
inductively that M}, , () =CH,, ,®Cy,,,,DAE2)M,_,,,,,(4), where
Az)=q || (1—g"**eS,,(1) is Ramanujan’s function. In particular we conclude

+0 or equivalently B, = B,,, where B, is the k-th Bernoulli

nz1
that S, , ,(4) has a basis h, = Z bnyq", hy= Y b,(m)q"... such that the matrix
nz 1
2r—1 dd | . . .
bj) {where i,j=0, 1 (mod4) and lgi,jg{ r %f ’ fs ° is the unit matrix.
2r if r is even

The functions h, hy, ..., h,2, where p= [1/_?] generate a subspace of dimension g,
on which &', is clearly injective. This proves the corollary.

2.5. Proof of Theorem 3

The proof of Theorem 3 is rather technical and computational, and we will prove
here only the case k=6. The cases k=8 and k=10 can be treated along the same
lines.

Comparing g-coefficients we find

G(42) 0(2) = ga7(—65L(—11)H 4,5 +34,5,), (H

where Ay, =(—09+20F)) A,€S,,,(8) and  A,=F,(0*—16F,. Write
Ayy,= Z a(n)q". We have A, ;,|%p¢€8,,(1)=C4, where 4=} t(n)q" is

nz1

RamanUJan s function, hence because of 1(1)=1, 4,5 ,,|.%, =a(D) 4. Furthermore

H13/2|3’D+’6=(L(—5,<#))/C(—11)) 12 (cf. proof of Theorem?2), and
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Go(42)0(2)| S5 =GP (cf. [15], Sect.3). Since A=(Q>—R?)/1728 and
G,,=(4410Q%+250R?)/65,520, applying &, ¢ to both sides of (1) we therefore see
that

QD _, 103 _5_p2
GV =ap35Q° +Bps0a R

with D
—22-32-7L(—5,(—>> +a(D)
%= 2%.3.691 ’
—23-S3L(—5,(B>)—7a(1))
bo= 23.5.691 ’

and we have to show that a,, f,eZ for all positive fundamental discriminants

D+1,5,8,13. Thus, for the rest of the section, we will suppose D=+1,5,8,13.
That 691 does not divide the denominator of a;, and j, follows from the fact

that GRY'D — 4 {oq p{(—5) has integral g-coefficients. Also, because of our assump-

tion on D, L(— 5,(9)) is an even integer (cf. e.g. [157, Sect. 5). Thus we need only

prove that 23.3.5]a(D).
Let us first prove that 8|a(D). Since 6* = (1 +2% q"2>45 1(mod8) we have

n=1
Ays2=—OF,+26F% (mod8). ?)
But
1 0
0F2=—mE5/2, (3)

and the D-th g-coefficient e3,,(D) of EY,, equals

D\, _
e3,(D)=(1+1)2° T__—zt«z——lj(m 3t L(~ 1,(’~>>

(cf. [2]). Since {(— 3)= 135, we have thus

a-wsof- B 1f ).

and since L (— 1, (2)) is an even integer (cf. e.g. [15], Sect. 5), we see from (3) that
the D-th g-coefficient of 6F, is divisible by 8.
On the other hand we have
17
95F2+9F§= mz—lzggiz,

and the D-th g-coefficient €3, ,(D) of EJ, satisfies

11—;2"2eg,2(D)=17-2'12-27(1-2'8)‘1(1—-(§>2“4>C(~7)"L(—3,(2))



Modular Forms of Half-Integral Weight 265

(cf. [2]). Since {(—7)= 545, we obtain

17 ~12, 3[94 D D
72 enD= 2<2 (5)>L(‘3’(‘))’

. DY) . .
and since L(— 3, (~>> is an {even) integer (cf. e.g. [15], Sect. 5), we conclude that

the D-th g-coefficient of 3F, +0F?% is divisible by 8, too. But 6°F,=0F, (mod8),
and because the D-th g-coefficient of 6F, is divisible by 8, we see that the same is
true for the D-th g-coefficient of 8F%. Thus finally from (2) we get 8}a(D).

Now observe 84+ F,=1(mod3), hence 4, =F,(8*— F,)=6%—1{mod3), hence

A13/2:—95A4+29F2A4E—9A4EH—69
= (H—Z y q"2> - (1-4-2 Y q9"2>(mod3),

nz1 nz1

which implies 3]a(D).
Furthermore, from (1) we get

a(D)= 2265( > ZZG(~~- rz)(modS)‘

But we have

25—

D
{cf. [4], Proposition 4.3.1). Therefore, because L( - 1,(—))52, we obtain 5|a(D).
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