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Introduction 

For each positive squarefree integer, Shimura [11] and Niwa [9] constructed a 
lifting of cusp forms of weight k + 1/2 for F0(4N) with character X to cusp forms of 
weight 2k for lo(2N) with character Z2 ; here k denotes an integer > 3. Now one can 
look for a subspace which under the above or similar liftings corresponds to the 
space of cusp forms of weight 2k for Fo(N). The present paper investigates this 
problem in the simplest case, where N = 1 and Z is trivial. Probably our results can 
be generalized to arbitrary level N. However, we have not checked this as yet. 

Notation 

If z ~ *  and x ~ ,  we put zX= e ~l°g~, where logz= logM +ia rgz  and the argument 
is determined by -~z<argz=<rc. The letter S5 stands for the upper half-plane 
{z~¢lImz>0}.  For zsS5 we set q=eZ~iL 

Thesymbol(d) definedforc, de2~,dW-O, isusedasin[ll]. 

If K is a quadratic number field, we denote by O r its ring of integers and by 6 r 
its different. We write v' for the conjugate of v in K. If v is totally positive, we write 
v>>0. 

Throughout the paper we assume that k is an integer. We write Mk(1) and Sk(1 ) 
for the space of modular forms and cusp forms of weight k for SLz(/~), respectively. 
The space of modular forms (cusp forms) of weight k + 1/2 for/o(4) is denoted by 

Mk + 1/2(4) (Sk + 1/2(4))- 

1. Statement of Results 

We have subdivided our results into two propositions and three theorems. 
Defne M[+ 1/2(4) as the subspace of Mk+ 1/2(4) consisting of modular forms 

whose n-th Fourier coefficients vanish whenever (-1)kn=2,3(mod4),  and put 
S++ + 1/2(4)=Mk+ 1/2(4) Sk+ 1 / 2 ( 4 )  " 
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We let 0=  ~ q"~ be the standard theta function, which is in M~/2(4 ). 

Furthermore, if k > 2, Hk+ 1/2 denotes the uniquely determined linear combination 
of the Eisenstein series of weight k + 1/2 on/'o(4), which is contained in M]+ 1~2(4) 
and equals 1 at infinity. This series was introduced and studied by Cohen [3]. 

Proposition 1. I f  k is even the spaces Mk(1)@ M k_ 2(1) and M ]+ 1/2(4) are isomorphic 
under the map (g(z),h(z))~-+g(4z)O(z)+h(4z)Hs/2(z), I f  k is odd the spaces 
M k_ 3(1)@Mk_ 5(1) and Mk++ 1/2(4) are isomorphic under the map 

"m + (g(z), h(z))~-'g(4z)Hv/2(z ) + h(4z)H 11/2(z). One has dl Mk+ 1/2(4) =dimM2k(1 ) and 
dim S~-+ 1/2(4)= dimSzk(1). For k > 2 we have M~+ 1/2(4)=lrHk+ 1/2®S~+ 1/2(4). 

Now define operators U 4 and W 4 acting on Mk+1/2(4) by 

1 ~ / z + v \  
( f tU4(z )=  ~ L f ~ ) ,  

vmod4 \ ~ ! 

These operators leave Sk. 1/2(4) stable. Niwa [10] proved that U4W 4 is hermitian 
on the Hilbert space S~+ 1/2(4) (with respect to the Petersson scalar product), and 

( 2 )2kand that it satisfies the equation ( U 4 W 4 - ~ I ) ( U 4 W a - e z ) = O  with c~ 1 = 2 k ~  
1 

ez = - ~el .  Thus we have an orthogonal decomposition 

~ k +  1/2t ~'~ 
, ;=1 ,2  

where ~') S~+ 1/z(4) is the eigenspace for the eigenvalue a~. 

Proposition 2. One has + (1~ Sk+ 1/2(4)= Sk+ 1/2(4) • 

Let p be a prime. If f =  ~ a(n)q" is an element of m~-+ ~/2(4), define 
n > 0  

f[ k + l / 2 t P  I = Z a(p2n) + Pk-~a(n)+P 2k la q" 
( -  l)kn-=0,1 (mod4) 

[for a number-theoretic function a(n) we put a(x)= 0 if x¢ N u  {0}]. Note that, if p 
T+ , 2, is odd, k+ ~/ztP ) is the restriction of Shimura's Hecke operator of degree p2 to 

M~+~/z(4) (cf. [11]), and that the definition of Tk+~ ~,.:(4) is already implicitly 
contained in Shintani's paper [12]. 

We denote by Tzk(p) the Hecke operator of degree p acting on Meg(1 ) by 

,~oC(n'q"[T2k(P)= ~o(c(pn'+P2k-lc@))q"-  

Our first main result says that S~+ t/2(4) and S2k(1 ) are isomorphic as modules over 
the Hecke algebra. 

Theorem 1. i) The operators T. + 2 + 4 k+l/z(P ) preserve Mk+I/2(  ) and S~+1/2(4). On 
S~+ 1/z(4) they are hermitian. 
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ii) The space S[+ 1/2(4) has an orthogonal basis of common eigenfimctions for all 
Tk++ 1/2(p2), unique up to multiplication with non-zero complex numbers. I f  f is such 
an eigenform, and f lT~+ 1/2(p 2) = 2p f ,  then there is an eigenform F 6 S2k(t), uniquely 
determined up to multiplication with a non-zero complex number, which satisfies 
F[ T2k(P ) =).pF for all primes p. The Fourier expansions oJ J and F are related as 
follows: if f =  ~ a(n)q ~ and F= ~ A(n)q ~, and if D is a fundamental discri- 

n> 1 n>= 1 

minant (i.e. D equals 1 or is the discriminant of a quadratic field) such that 
( -  1)kD>0, then 

L ( s - k +  l,(D--)) ~ a([D[nZ)n S=a(lD,) ~ A(n)n -~. 
n> l n>  l 

iii) I f  D is as in ii) and (D,k)#:(1,0), the map 5~, + defined by D , k  

D k-~ nZ 
,,~ob(n)q"~+b(~)L(1-k'(D)) + , ~  (a~l, (d) d b(~[Dl)) q" 

maps M]+ 1/2(4) to M2k(1 ) and S2+ 1/2(4) to $2k(t ) and commutes with the action of 
Hecke operators. There exists a linear combination in the Sgo~ k which is an 
isomorphism. 

The proofs of Propositions 1 and 2 and of Theorem 1 are based on a result of 
Niwa's [10], who using a trace formula of Shimura's, showed that Sk+ 1/2(4) and 
the space of cusp forms of weight 2k on F0(2 ) are isomorphic as modules over the 
Hecke algebra. 

Remark l. Shimura's main theorem in [11] in case of level 4 and trivial character 
is very similar to our theorem. Examples, however, show that a "multiplicity 1 
theorem" does not hold for Sk+ 1/2(4). 

Remark 2. By using Theorem t and the methods of [5] one can prove that if 
g = ~ c(n)q"eMk(1) and K is a real quadratic field of discriminant D, then 

n > O  

1';% 
dk-lc ~ D  e 2=i{~z+''~') 

d e N  
d[(v)aK 

is a Hilbert modular form of weight k for SL2((gK ). Note that g[l k is the Doi- 
Naganuma lifting of g, cf, [6, 14] and [16, Sect. 6]. 

The next theorem gives a relationship between the map ~ +  and the non- 1,k 

vanishing of the Dirichlet series attached to a Hecke eigenform of weight 2k on 
SL2(7/) at the real point of the critical line. The existence of such a relationship is 
indicated by Shintani's paper [12]. 

Let g = ~ c(n)q" be a normalized Hecke eigenform of weight 2k for SL2(JE ) 
n>_l 

and denote by Lg(s)=(2~)-~F(s) ~ c(n)n -S (Res>>0) the associated Dirichlet 
n>_l 
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series completed with the gamma factor. Recall that Lo(s) has a holomorphic 
continuation to the entire complex plane and satisfies the functional equation 
Lo(2k- s) = ( -  1)k Lg(s). 

Theorem2. Let k be even. The image of the restriction of 5e+t,k to S~-+1/2(4 ) is 
generated by those normalized Hecke eigenJbrms g in Szk(1 ) which satisfy L0(k ) ~ 0. 
The map 5el,k + is an isomorphism if and only if L0(k ) # 0 for all normalized Hecke 
eigenforms 9 in S2k(1 ). 

Corollary. Let k be even, and let r be the dimension of $2~(1). Then of  the r 

normalized Hecke eigenforms g e Szk(1), at least [ ]Sfr ] satisfy Lo(k ) :t= O. 

The heart of the proof of Theorem 2 consists of an application of a result of 
Zagier's [16], which is based on Rankin's convolution idea. It is not difficult to see 

that dim S£-+ 1/z(4){~l+k > [ ]//~r ], hence the corollary. 

Remark. As was communicated to me by Zagier, Buhler verified by a numerical 
computation that for k<200 the Hecke algebra on S2k(1 ) is irreducible over ti). 
From this it follows easily that if k<200, L0(k)#0 for all normalized Hecke 
eigenforms g in S2k(1 ). 

The last theorem of this paper gives congruences for the Hecke-Eisenstein 
series associated to real quadratic fields and is a consequence of the cor- 
respondence, first discovered by Cohen [4, 5], between liftings of modular forms of 
half-integral weight to modular forms of integral weight in one variable and 
liftings of the latter to Hilbert modular forms in two variables. 

Fix a fundamental discriminant D > 1 and put K = Q(]/~).  Suppose that k is 
even and >2. The Hecke-Eisenstein series g~(z , z ' ) ( z , z '~ )  of weight k for K is 
defined by 

where ( r  is the Dedekind zeta function of K, and where the inner sum runs over all 
integral ideals 9.1 in (9 r that divide the integral ideal (v)6 r. The series r .  9k lS a Hilbert 
modular form of weight k for SL:(~)K ) (cf. e.g. [7], Kap. 20); its Fourier coefficients, 
except for the constant term, are by definition rational integers. Thus the 
restriction to the diagonal r _ r G2k(Z)--gk(Z,Z) is contained in the Z-module M~k 
consisting of modular forms of weight 2k on SL2(Z) whose q-coefficients, apart 
from the constant term, are all integral. The module M2k is free of rank dimM2k(1), 
and m ek(1)= M~k @ tlT. 

Z 

Theorem 3. For 2 <- k <-- 10 and K not belonging to the finite set 

(*) {Q(I~)}~(Q(]//P)Ip prime, ( p -  1),t'k, ( p -  1)12k) 

the function G~k is contained in the lattice ,.a2kNItE~.~2k f" ~ Z  given by the following table 
(in which Q. and R denote the normalized Eisenstein series in M4(1 ) and M6(1 ), 
respectively) : 
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r M z .  ~s~L1 k Basis for M ~  t. 2t.~-,2~3 

l 
2 2-4 Q 2.5 = 10 

1 
4 }40 Q2 2 

1 3 5 R2 24.32.52.t3 = 46,800 
6 24 Q ' 504 

7 Q,, 5 
8 ~ 6  , ~ Q R  2 2s.32.5 .7 .17 = 171,360 

147Q~ 5 Q 2 R 2  22.34,53.7 ~ =7,938,000 ~o ~ -  , ~  

This result was conjectured on the basis of extensive numerical evidence by 
Zagier [15]. He also conjectured that there are similar results for higher weights 
and that the lattice m 2  nE c a n n o t  be made smaller by enlarging the finite set (*), but 
up to now we do not see a way to attack these problems. Note that (as described in 
detail in [ 15]) the statement for k = 2 and k = 4 and part of the statement for larger 
k follow from the results of Fresnel, Serre, and Deligne-Ribet on the denominator 
of ~K(1 - k) (these imply that G~k lies in a certain sublattice of M~k, denoted MS~, in 
[-15], which for k = 6, 8, and 10 has index 130, 34, and 50, respectively). The point of 
the above theorem is that the restrictions of the Hecke-Eisenstein series to the 
diagonal satisfy many congruences above and beyond those needed to give the 
right denominator for the constant term. It is also of interest that the set (.) of 
exceptional fields for the congruence G~k C M2~ is the same (i.e. no larger) than the 
set of fields which must be expected to get the best bound on ~K(1 -- k). 

2. Proofs 

2.1. Preliminaries 
For details on modular forms of half-integral weight the reader is referred to [I 1] 
and [3]. 

We introduce the group (5 consisting of all pairs (A,c~(z)), where 

A = ( ~  bd)~GL+(~) and 4)(z) is a comptex valued function holomorphic on ~ 

satisfying IqS(z)l = (detA)- 1/4 [cz + dl t/2, with group law defined by (A, 4~(z)) (B, tp(z)) 
=(AB, 4)(Bz)~(z)). If f :.~--.lr and ~=(A,q~(z))e15, we put flk+l/2~=fl~ 
= c~(z)- 2k- i f(Az). Then f i l l [  ~2 = f l~l~2. We have a monomorphism Fo(4)--* 15 

c - 4  -1/2 
givenbyA~-~A*:=(A,j(A,z)),wherej(A,z)=(-d)(-~- ) (cz+d)l/ZifA=(~ bd). 

Recall that Mk+ 1/2(4) consists of all complex valued functions f holomorphic 
on .~ which satisfy flA* = f  for every Ae F0(4), and which are holomorphic at the 
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cusps, while Sk+ 1/2(4) is the subspace of Mk+ 1/2(4) consisting of those f which 
vanish at the cusps. 

The Riemann-Roch theorem gives 

dimMk+ 1/2(4) = sup{0, 1 + [~]}, 

dim Sk+ 1/2(4)=sup{0, - 1 + [-k21}. 

Put F 2 = Z cra(n)q" Then F 2 is a modular form of weight 2 for F0(4), and 
n > l  
nodd 

{ a } OaFb 2 a, beN, ~ + 2b=k + l/2 i s abas i so fMk+t /2 (4  ). 

For k>_2 we have i~ o _ Mk+ 1/2(4) =(FE~+ 1/2®(I?Ek+ 1/20Sk+ 1/2(4), where 
iQo - -  [ Ek+ 1/2-- ~j(A, z)-2k-1 is an Eisenstein series for the cusp ioQ summation over a 

A 

system of representatives for the action of l_+ (10 ~)[nE71}onFo(4)],andE°+12 

1/2E~ {_ 1) = (_ 1)kiz-k- k+l/2~ 4ZZ_ is an Eisenstein series for the cusp 0. Define 

.iv + 2 - 2 k - 1 ( 1 _ ( _  k. 0 Hk+ 1/2 = Ek+ 1/2 1) OEk+ 1/2" 

One has (cf. [3]) 

Hk+l/2 = 1 +  ~ hk+l/2(n)q", 
n>_l 

(-- 1)kn-=- 0, l(mod4) 

where 

hk+,/2(n)=(L(l-k,(D))/~(l-2k)) d;#(d)(d)dk-la2k-1 (f), 
if (--l)kn--Df 2 and D is the discriminant of Q{[ {/~-l)kn)/Q. 

Let f =  ~ a(n)q" be an element of Mk+ 1/2(4). If p is an odd prime, define 
n>0  

The Hecke operators Tk+ ~/2(p 2) map cusp forms to cusp forms and are hermitian 
on Sk+ 1t2(4). 

2.2. Proof of Propositions 1 and 2 

We shall prove Propositions 1 and 2 in four steps. 

i) The maps defined in Proposition t are injective. One has 
dimM2k(1) __< dim M~-+ 1/2(4). 

Proof. If g(4z) O(z) + h(4z) Hs/2(z) or #(4z) HT/2(z) + h(4z) H 11/2(z) is identically 
zero and h4:0,  the function H5/2(z)/O(z)= 1 - 1 2 q +  ... or Hl l12(z)/Hv/2(z) 
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= 1 -  144q2+ ... would be invariant under z ~ z +  ¼, a contradiction. Hence our 
maps are injective. In particular we conclude 

dimM;+l/2(4)>fdimMk(1)®Mk_2(1)] if k is even 
- dimMk_3(1)@Mk_5(1) if k is odd.  

Note that the number on the right-hand side is precisely dimM2k(1), as follows 
from the well-known formula 

rsupIo,[kt '~ if k is even, k - 2 ( m o d l 2 )  
i t [12]j 

dimMk(1 ) = 
r r l . ] /  

s u p / O , l + / ~ / [  i fk is even, k~2(mod l2 ) .  

ii) One has + m Mk+ ~/2(4)C Mk+ 1/2(4): = { fe  Mk,  1/2(4)I f l  U4W 4 = ~ f} .  

Proof. Let f be an element of M[i~ 1/2(4). By definition 

f l g 4 W 4 = f l  + f2,  

where 

fl = 2 k - 2 + ' / 2 ( f  ((10 14),21/2)+f ((:, 34),21/e)) W4 

and 
1 z z + 2  W , 

We have 

-~) 2~ iz~l,2)+,p((i ~ -~) 2~ izll,2) 

-d((; ~)~ ~'~t ~d((; ~)-';~) 
= 2- 1/2(ik(1 + i)f(z -- ¼) + i- k(1 -- i) f (z  + ¼)). 

Since the n-th q-coefficients of f vanish for (-t)kn--=2, 3(rood4), we have 

i k ( l + i ) f ( z - - : ) + i - k ( 1 - - i ) f ( z + ~ ) = 2 ( 2 ~ + ~ ) f ( z )  

[no t e tha t (2~ )= ig~+k]and  
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ttence 

= ( _ _ ~ 2 / 2 k -  
f l  \ 2 k + t ]  * f '  

1 

f~ = -} f l  U~W~. 

From this we get f [ U 4 W 4 = c~lf. 
iii) One has M ~  1/2(4)=tFHk+ 1/2(~)S~ 1/2(4). 

Proof. By ii), Hk+ 1/2 is in Mk+m 1/2(4) . If f e M ~  1/2(4), there exis ts / le~ such that 

vanishes at infinity. Since glW4= ~ g l U 4 ,  we conclude that 
, 1  

# :=f - -2Hk+i /2  # 
, t  

vanishes at the cusp 0, too, hence is a cusp form. This proves iii). 
iv) We have d i m M ~  l/2(4)_<dimM2k(1) and dimS ~1~ - k+ 1/2(4) <---- dimS2k(1) • 

Proof. Using basis elements the first formula is easy to check for k < 2. For k > 2 
one has ~,(1) dim~wk+ 1/2(4)= 1 + d i m ~  1/2(4) and dimM2k(1)= 1 +dimSzk(1), hence it 
suffices to prove that dim S ~  1/2(4) _< dimS2k(1). 

Note that the Hecke operators Tk+l/z(p 2) commute with U 4 and W4, hence 
preserve the space S ~1~ (4~ Since they generate a commutative IF-algebra of k + l / 2  ~, J '  

(1~ 4 hermitian operators, Sk+ l/Z( ) has an orthogonat basis {fi} of common eigenfunc- 
tions for all Tk+l/2(p2). 

Write $2k(2 ) for the space of cusp forms of weight 2k for F0(2 ). On $2k(2 ) we 
have Hecke operators T2k(p ) (p an odd prime) and U 2 defined by 

c(n) q"[ T2k(p ) = ~ (c(pn) + p2k- l c(n/p) )q., 
n>= l n >  l 

c(n)q~tU2 = ~ c(2n)q ~. 
n >  l n >  l 

According to Niwa (theorem in [10], Sect. 1) there exists an isomorphism 
~p :Sk+l/z(4)~S2k(2) satisfying U4tp=lpU 2 and Tk+t/2(pZ)lp=lPTzk(p) for all odd 
primes p (in [10] this is proved for k > 2; note that for k < 2 we have ~'k÷e~l~ ~2(4) = {0} 
= S2k(2)). 

We now apply ~0 to the basis {f~} of S ~  1/2(4). We claim that f~l ~ cannot be a 
new form (for the theory of new forms cf. [1], Sect. 4, in particular Theorem 5, and 
[8], Chap. VIII). Indeed, if it were, f~l~P would be an eigenfunction of U 2 for the 
eigenvalue + 2 k- 1, hence __ 2 k- 1 fi  = fi] U4, which implies 

oqf ,=f , t  U , W , =  +_2 k- l f~ I W4, 

a contradiction since W 2 = 1. 
So fiftP is old, and we have fil~peIFFi(z)@IFFi(2z), where F~eSzk(1) is a 

(uniquely determined) normalized eigenform of T2k(P) for all primes p. To 
complete the proof we shall show that the association f~-~F~ extends to an 
injective linear map ~p+ ". o~+~m 1/:(4)~Szk(1). This follows from the following 

Lemma. Suppose f and f '  are two non-zero elements of S ~  ~/2(4) which are 
eigenfunctions of Tk+ ~/~(p2) for all odd primes p with the same eioenvalues. Then 
II? f =IF f ' .  
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Proof. Put h=fltp,  h'=f'l~p. Assume IFh+~h'. Then we may suppose without 
loss of generality that h(z)=F(z) and h'(z)=F(2z), where FeS2k(1) is a Hecke 
eigenform. Thus h = h'lU 2, which implies f = f ' l U  4. Hence 

1 1 
cqf '  = f ' [  U4W4=f[ W4= - -  f[ U4= - -  f'[ U 2, 

5~ 1 5~ 1 

from which it follows that 

i.e. 

22kh ' = h'l U~, 

22tF(2z) = (Vl U2) (z). 

Let F I T2k(2)= 2F. We obtain 

2F(z) = (F[ U2) (z) + 2 2k-lF(2z) = (2 2k + 2 2k- 1) V(Zz), 

which clearly implies F = 0 ,  a contradiction. Therefore we must have ~Th=~?h', 
hence (IJf = (I?f'. 

Propositions 1 and 2 obviously follow from i)-iv). 

2.3. Proof of Theorem / 

We shall first prove that S;+ 1/2(4) has an orthogonal basis of common eigenfunc- 
tions of the operators Tk++ 1~2(p2). 2 

If p is an odd prime, Tk+ 1/2(P ) is the restriction of Tg+ 1/2(p 2) to M~+ 1/2(4). 
Assume f =  ~ a(n)q" is in Mk++ 1/2(4). We wish to prove that 

n>0 

f[ Tk++ 1/2(4)=(f [ W4)l(U4W4-~2) 

[-note that U4W4-c~ 2 is up to a constant factor the orthogonal projection of 
+ - -  (1) • maps m~-+ 1/2(4) and S~  1/2(4) to Sk+ 1/2(4)--Sk+ 1/2(4)], this implies that T +k + 1/2(4) 

Sk~+1/2(4) to themselves; furthermore it follows that T + k+1/2(4)  is  hermitian on 
S~-+ 1/2(4), since U4W 4 is hermitian and W 4 is an unitary involution. 

By definition 

(flW4)I(U4W4-c(2)= ~ s~(f), 
O_<v_<4 

where 

s~(f)=2k-2+l/2(flW4)((~ :),21/2) W4 

and 

for 0 < v < 3  

s4(f) \2k+ 1] flw4. 
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We have [compare with Sect. 2.2ii)] 

(sl +s3+s4)(f)=2 k-2+l/z ~ --flU,, ,2 ~/2 +s4(f) 
v = l , 3  

= ~ a(4n)q". (1) 
n>_O 

( -  1)kn~.O, l(mod4) 

Obviously 

So( f )=22k-~a(4)q" ,  (2) 

Finally let us compute sz(f). Suppose that k is even. Assume f(z)= (j(4z)O(z) 
with geMk(1 ). Then 

/ 16z \ 1 s2( i t=22~s2~01~~)~ - s z r  k 

The reader will easily verify that 0[ W4I(Ua W 4 - ~ 2) = 0[ T~ 2(4). Thus applying (1) 
and (2) to 0, we see that 

1 ~ [ n 2 \  

_ ~  ~ 1~ ~mo~ (~)O(z+~) 
Y e 2 r ~ i v ( n / 8 )  = 2-1 - [recall that vmoa8(~) t/2(~)]. 

On the other hand 

( 11 
i6z 

( 4 z + ½ - 1  ) [8z - l ]  k 
= 2-k 9 \ 2 \  ~---- 1/~--87-Z / 

= 2 -  k g(4Z + ½) (8Z-- 1)k 
Thus we obtain 
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If f(z)=h(4z)Hs/2(z) with h eMk_2(4), then using Hs/2[W41(U, W4-~2) 
/ k 

a s m"ar ar um0nt a a,o . . , - -  Z I:la'"'q  Since 
n>0 

according to Proposition 1 any fem~+l/2(4) can be written as f(z)= g(4z)O(z) 
+ h(4z)Hs/2(z) with geMk(1 ) and he M k_ 2(1), we are through. 

Ifkisoddananalogousargumentgivess2(f)= ~ o ( ( - ~ ) a ( n ) q  ~. 
n =  

The T + k+ I/2(P 2) generate a commutative algebra of hermitian operators on the 
complex Hilbert space S ÷ S ÷ ~÷1/2(4); hence k+~/2(4) has an orthogonal basis of 
common eigenfunctions for all T~-÷ ~/2(p2). We have already proved [cf. lemma in 
Sect, 2.2iv) and Proposition 2] that such an eigenfunction f is uniquely de- 
termined by its eigenvalues up to multiplication with a non-zero complex number. 

Assume f =  ~ a(n)q" and f[T~+l/2(p2)=2pf, and let D be a fundamental 
n _ > l  

discriminant such that ( -  1)kD>0. A formal calculation as in [11], p. 452 shows 
that 

a(IDlnZ)n " ~ 
n>_l  

( n , p ~ -  1 

for every prime p [if p = 2  we have to use the fact that, by definition, a(n)=0 for 
( -  1)kn- -- 2, 3 (mod4)]. From this it follows that 

n>l  

i,e. 

L(s-k+l , (D))  ~ a([D[n2)n-~=a([D,)l-I(1--2vp-~+p2k-l-2~) -1. 
n > l  p 

We will prove now the statements about the maps 5°D+,k. If f is an element of 
M~+ 1/2(4), a formal calculation shows that f [  5¢~k T2k(P)= f T T]+ 1/2(pZ)5~k for all 
primes p; we leave the details to the reader [if p = 2, we again have to use the fact 
that the n-th Fourier coefficients of f are zero whenever ( -  1)kn- 2, 3 (mod4)]. 

We shall next show that for (O, k) + (1, 0), 5~'+D,k maps M~-+ 1/2(4) to Mzk(1 ). If 
k < 0  or k=  t we have M2+1/2(4)= {0 }, and nothing is to prove. Recall that 

1 1 M~/2(4)=llTO and note that O,Se~o= ~L( ,(D)) ~Mo(1) for D *  1. 

Now suppose k>  2. Then we have the decomposition M~+ 1/2(4)=t1~Hk+ i/2 
®S~+1 2(4). Using the q-expansion of Hk+ l/z, it is a simple exercise to verify 

that Hk+~/21~k= L l - k ,  E2k, E2k=l+ ~(l_2k~,~lo2k-l(n) 

q" is the normalized Eisenstein series in M2k(1). Thus it remains to show that ~9'~k 
maps $2-+ 1/a(4) to $2~(1). We may suppose k > 3. 

First assume that D_--0(mod4). Write D=4d with d square-free and 
d-=2,3(mod4). Let f =  ~ a(n)q"sS2+l/z(4). According to [11] and [9] the 

n>l  
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~ l a d \ ~ , 2 \ \  
function flS~d ~:= ~ [~,{'"|jk-aa['@ld[}}q" is in $2k(2); if n is odd, its n-th q- 

" .->-~ \ ~ i . \  J / \J / /  
coefficient is zero. Hence f l S ~ k  =(f[5~,k) [ U 2 is in Szk(1 ) (cf. e.g, [8], Chap, VIII, 
Sect. 4, Lemma 7). 

Now suppose f is a non-zero Hecke eigenform. We claim that there exists a 
fundamental discriminant D=0(mod4)  with (--1)kD>0 such that a(IDI)4:0. 
Suppose the contrary. Then 9 := f [ U  4 has the property that its n-th q-coefficients 
are zero for n ~  2(mod4), hence 

(*) 9 ( ( :  i ) , l ) + g ( ( ;  - - i ) , l )=4-k /Z-1 /4"29 'U4  ((~ ~),4-1/4) - 

The right hand side and both terms on the left hand side are in Sk+ U2(16), the 
space of cusp forms of weight k+  1/2 on Fo(16 ). Let Tr:Sk+ 1/2(16)~Sg+ 1/2(4) be 
the trace operator defined by h[Tr = ~ h]A*, where {A j} is a set of representatives 

for Fo(16)\Fo(4 ). Applying Tr on both sides of (*) and noting ,1 oTr 

= 4  -k/2+a/4e+-2~i(2k+l)/8U 4W 4 and ((~ ~),4-~/4)oTr=4-k/a+3/4(U4W4)Z (cf. 

[ t0],  p. 200f., proof of lemma) we obtain 2 ~  2 gt U4W4=oI(U4W4) 2, hence 

because U4W 4 is injective, 9[ U4W4= ~ 2k9, i.e. 9 is in Skis 1/2(4). Since U 4 

and Tk+ 1/2(p 2) (p odd) commute, f and g have the same eigenvalues for all 
T+ 2 d k+ t/2(P )(P od  ), hence f and g differ only by a constant factor. Moreover, since 
f [  U,----2-kf] W, and W~= 1 we conclude g-- + 2 - k f .  An easy computation [cf. 
Sect. 2.2iv)] then shows that (f[Lo+)] T2k(2 ) = +(2k+ 2 k- 1)(fl~+), which according 
to Deligne's theorem, previously the Ramanujan conjecture, is impossible unless 
f l ~  + =0, i.e. f - - 0 ,  a contradiction. 

Now let fl  . . . . .  f ,  be an orthogonal basis of common eigenfunctions of the 
T +  / 2x k+l/2tP ), and write f j =  ~ aj(n)q". For every f j  determine a fundamental 

discriminant D i -  0 (mod4) such that a j(( - 1)kD) + 0. The complex polynomial 

P(X 1 .... ,X~)= 1] (ai(tDtt)X1 +...  +a~(ID, I)X,) 
l ~ j ~ r  

is non-zero, hence there exists (c~ ..... c,)e(r" with P(q . . . . .  c,)+0. Define 
5gk + = ca S°~,k + . . .  + c ~5~. k. Then for every je{1 . . . . .  r}, f~l 5~k + is in SZk(1) and is a 
non-zero eigenform of all Tzk(p ). If f~lSPk+ = f t l ~  +, then because 5Pk + commutes 

T +  ~ 2- with Hecke operators, f j  and f~ have the same eigenvalues for all k+ 1/2tP ~, and 
hence j = I. From this we see that ~ +  is injective, hence bijective. It is clear that the 
c~ can be determined such that Hk+ ~/2lSPk + #0.  

Now suppose D = 1 (rood4). We may assume k > 6  if k is even and k=>9 
if k is odd. Let e be a normalized eigenform in S2k(1) with #lT2k(p)=c%9 for all 
primes p. Then we have 9 =  ~ ~o,p", where the co, are determined by ~ c0.n - '  

n ~ l  n ~ l  

=l-I(t--eopp-S+pek-l-2~) -1. Write q~+ for the inverse of 5ek + and put 
P 
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G =gl  4~+5~.+,k" The function G is a power series in q which converges on ~ and 
satisfies G I T2k(P) = c%G for all primes p. Hence it follows that the coefficient of G at 
q" equals co., where c is the first q-coefficient of gig+Seek, i.e. (gI~+)tSP~k=cg. 
Since (b + is bijective, we see that ~t;+k maps Sk++ ~i2(4) to S2k(1). 

2.4. Proof of Theorem 2 and Corollary 

If L f ' e  Ma(N) (where N e { 1, 4} and Ke 2~ for N = 1, ~ce ½ + ~ for N = 4), and at least 
one of them is a cusp form, their Petersson scalar product 

ro(m)\Y3 

will be denoted by (J~f'>, We will suppose that k>6.  
Let S°k(1) be the C-linear space spanned by normalized eigenforms g of weight 

2k for SL2(~) satisfying Lg(k) #0.  We have to show that SOR(1)-- - S]+ 1/2(4)15P1+ k. As 
already mentioned the key for the proof is a result of Zagier's ([16], Sect. 5, 
Proposition 5) based on Rankin's convolution idea, which we will state now only 
for the special case where we need it: 

Lemma. Let Ne { 1, 4}. Let k 2 e 2~. Let k 1 e 2~, if N = 1, and k 1 e ½ + 2~, ~f N = 4, and 
suppose k2_>kl+2>2.  L e t  E k z ( Z ) :  E(cz+d) -k2 be the normalized Eisenstein 

r 
series of weight k 2 jor Fo(N ) isummat,on over a system of representatives for the 

n] 
action of [ ± \ 0  1] neZ Let g= ~, b(n)q"EMkl(N ) and 

n>O 

f =  ~ a(n)q"eSk, +k2(N). Then the Petersson product of f and gEk~ is given by 
n>l 

F(kl + k2 - 1) a(n) b(n) 

n>=l 

We first show that S0k(1)is contained in Sk+ll2(4)lS~,k . Let Gk=½¢(1-k ) 
+ ~ ~k_l(n)q" be the Eisenstein series of weight k for SL2(2~ ) and let 

9= ~ b(n)q" be a normalized Hecke eigenfunction in Szk(1). Then using the 
n>=l 

identity 

n_-> 1 kn=l n 

(Res>r+k+ ½) 

we easily see from the above lemma that 

(#, G,G2k_,> = ( -  1)"/22 ~2k+ iL0(2k- 1) L0(r ) (1) 

for any even integer r with k + 2 < r < 2 k - 4 ,  a formula due to Rankin (cf. [16], 
p. 117 and p. 146). 
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We now show that  (1) is also valid for r = k  (this is claimed in [16], p. 146). 
Indeed, the recurrence relation 

( 2 k -  6) (2k + 1) 1 t t 
t2 (2k -2 ) !  G2k-- 2 ! ( 2 k -  6)! G4Gzk-4+ 4 ! ( 2 k - ~ ) !  G6Gzk-6-I-"'" 

1 
+ ( 2 k -  6) ! 2 !- G2k- 4G4' 

valid for k>4 ,  is well-known (cf. e.g. [13], p. 19). Using Q,I, G2k)=O we obtain 
from (1) / 1 

(9 'G~7=2  2k+~Lg(2k-1)2(k-2)!21 2 ! ( 2 k - 6 ) !  Lo(4) 

1 1 
+ 4 ! ( 2 k -  8)! Lg(6)-T " + ( -  1)k/z- ~ ( k - 4 ) !  k! Lg(k -  2)). 

Tha t  this is equal to (-1)k/Z2-2k+lLo(2k-1)Lo(k)  can be deduced from the 
"period relations" (cf. [8], Chap. V, Sect. 2, p. 73) by a simple computat ion.  We 
omit the details. 

Since Lo(2k-  1)4:0 and the Hecke algebra acts on Mzk (1) with multiplicity 1, it 
follows that G 2 generates (FG2kOSOzk(1) as a module over the Hecke algebra. But 
we have Gk(4Z) O(z) lS~l+k = GZ(z) (this is easily checked;  cf. the computat ions  in [4], 
2.4). Since 5e+t,k commutes  with Hecke operators,  it follows that S~+1/2(4)15~1+ k 
contains S0k(1). 

To prove the converse we shall again use the above lemma. Let 
f =  ~ a(n)q"eS~+l/~(4) be a common  eigenfunction of the T~+l/z(p2), with 

n=>l 
f [  Tk++ ~/2(p 2) = 2pf. We want to compute  ( f(z) ,  Gk(4Z ) O(z)). Let 

ioo G k (z) = - 2-  kGk(2Z) + Gk(4Z) 

be an Eisenstein series of weight k on Fo(4) for the cusp ioo. We have 

Gk(2Z) O(z) I(U 4 W 4 -  ~2) = (Gk(Z) r U2) 0(z)[ ~1, 4 - e2Gk(2z) O(z) 

= ((1 + 2 k- 1) Gk(Z )_  2 k- 1 Gk(2z) ) 0(z)[ W 4 -  c~ 2 Gk(2Z) O(z) 

= ( _  1)k/22k(1 + 2 k- 1) Gk(4z) O(z) 
and 

Gk(4Z) 0(z) I(U 4 W 4 - e2) = ( - 1)k/2.3.2 k- 1Gk(4Z) O(Z). 

Therefore 

G~ ~(z) 0(z)] (U 4 W 4 - ~ 2) = ( - 1)k/2(2k _ 1) Gk(4Z ) O(Z), 

and we conclude 

( - 1)k/2(2k -- t ) ( f(z) ,  Gk(4Z ) O(Z)) = (f(z) ,  G~°~(z) O(z) t( U 4 I4~ - c~2) ) 

=(f (z ) l (U4W,  s__ot2) ' ioo Ok (z)O(z)) 
=(_1)k /2 .3  2k - t ( f ( z ) ,  io~ • Gk(z)O(z)) 

which by the above lemma is equal to 

F ( k -  1/2) 2a(n 2) 
(-- 1) k/2. 3.2  k- 1(1 - 2 -k) ~(1 - k) (4tO k_ 1/2 n E>=I n2k- 1 ' 
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In Sect. 2.3 we proved 

a(n2)n-S=a(1){(s-k+ 1) -1 1-[( t_2vp-*+pZt-  1- as)- 1. 
n > l  p 

Therefore 
a(1)3 {(1-- k) F ( k -  1/2) 

(f(z), Gk(4Z) O(z)) ((k) (4~z) k-l/z 1--I(1--2pp-Zk+I+P-Zk+I)-I 
2 P 

and hence one has (f(z), Gk(4z)O(z))4:0 if and only if the first q-coefficient of the 
Hecke eigenform f does not vanish. 

Now let f l  . . . . .  f~E Sk++ 1/2(4) be an orthogonal basis of Hecke eigenforms. Write 
j~ = ~ a,,(n)qn. Since the Hecke algebra acts on M~+ ~/2(4) with multiplicity 1, the 

n > l  

function Gk(4Z)O(z) generates gHk+ 1/2@ ( ( ~  gf~] as a module over the Hecke 
\ a~(1}*O / 

algebra. Furthermore, from the definition of ~ l + k  and the Euler product for 
a~(n2)n -~ we see that + - f~lSel,k--0 if and only if a~(1)=0. Therefore, from the 

n > l  

equality Gk(4Z)O(z)[ + 2 SI.k=Gk(Z) we conclude that S~+~/2(4)5e~+k is contained in 
S°k(1). Thus Theorem 2 is proved. 

Let us now prove the corollary. Put q~k+I/2=Ek(4Z) O(z)--Hk+~/2(Z). Then 
Wk+ 1/2~Sk++ 1/2(4) • We claim that ~k~ ~/2 has order 1 at infinity. Indeed, this means 

~(1 - k )  
that 2 4=0 or equivalently Bk4:Bzk, where Bk is the k-th Bernoulli ~(1 - 2k) 
number, and it is well-known that B k=B2k can only happen for k=4.  From 
this and from the dimension formulae for M~+~/z(4 ) and S~+~/2(4 ) we see 
inductively that M + ¢~Hk+a/2G~k+l/2@A(4z) + mk_a2+l/Z(4), where k+ 1/2(4) = 
A(z)=q l~ (1-qn)246St2(1) is Ramanujan's function. In particular we conclude 

n > l  

that S~+ 1/2(4) has a basis h~ = ~ b~(n)q", h,, = ~, b4(n)q".., such that the matrix 
n ~ l  n > l  

1 2 r -  1 if r is odd ] is the unit matrix. bi(j ) where i , j -0 ,1(mod4)  and l < i , J < 2  r 
if r is evenj 

The functions h~, h~,..., h,~, where ~t = [ ]fl2r-], generate a subspace of dimension #, 
on which 5~ + is clearly injective. This proves the corollary. 1,k 

2.5. Proof of Theorem 3 

The proof of Theorem 3 is rather technical and computational, and we will prove 
here only the case k = 6. The cases k = 8 and k = 10 can be treated along the same 
lines. 

Comparing q-coefficients we find 

G6(4z ) O(z) = 6-~ ( -  65~(- 11)H 13/2 + 3A 13/2), (1) 

where A13/2 = ( -  05 + 20F2) A4e $13/2(4) and A 4 = F2(O 4 - 16F2). Write 
A13/2 = ~ a(n)q". We have A13/215~6eS12(1)=¢A, where A= ~ "r(n)q" is 

n > l  n > l  

Ramanujan's function, hence because of z(1)= 1, A 13/216¢~k = a(D)A. Furthermore 

H 1 3 / 2 6 e ~ 6 = ( L ( - 5 , ( D I t / ( ( - l l , I G 1 2  (cf. proof of Theorem2), and 
\ \ \ H /  / 
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G6(4z)O(z)lS~6 =Gems°)12 (cf. [15], Sect. 3). Since A=(Q3-R2)/1728 and 
G~ a =(441Q 3+ 250R2)/65, 520, applying ,~+ to both sides of (1) we therefore see D, 6 
that 

~ . ~ )  = ~ o ~ Q ~  +/~o ~-~s~ R ~ 12 

~D- 2 a-3. 691 ' 

7o,o, 

flo = 23. 5- 691 ' 

and we have to show that c~ o, ~De;g for all positive fundamental discriminants 
D + t, 5, 8, 13. Thus, for the rest of the section, we will suppose D 4= t, 5, 8, 13. 

That 691 does not divide the denominator of c% and tip follows from the fact 
that c.e(v~) 1 ~ 2 - ~ ~e(~ D)(-5) has integral q-coefficients. Also, because of our assump- 

tion on D, L ( -  5, " ' "  is an even integer (el. e.g. [15], Sect. 5). Thus we need only 
\ \ I I  

prove that 23. 3.5[a(D). 
Let us first prove that 81a(D). Since 04=(1 + 2 2 q,~]4= 1 (mod8) we have 

\ n_>_l ! 
A 13/2 - - OF2 + 20F~ (mod 8). (2) 

But 
1 E o OF2- 26(1+i) 5/2, (3) 

and the D-th q-coefficient e°/2(D) of E~/z equals 

(cf. [2]). Since ~ ( -3 ) =  ~ ~d,  we have thus 

and since L ( - 1 ,  (D--})is an even integer (el. e.g. [15], Sect. 5), we see from (3)that 
/ 

\ / /  

the D-th q-coefficient of OF 2 is divisible by 8. 
On the other hand we have 

05F2+OF~ = 17 2_12EO 
9 / 2 ,  

and the D-th q-eoefficient e°/2(D) of E°/2 satisfies 

17 2_,2eO/z(D)=17.2_12.27( l_2_s)_ l ( l_(D)2_4)~(_7)_IL(_3 , (D))  
1+i  

with 
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7 1 (cf. [2]).  Since  ~ ( -  ) =  2-~6, we o b t a i n  

1 7 - - 2 - ~ 2 e ° / 2 ( D ) = 2 3 ( 2 4 - ( 2 ) ) L ( - 3 , ( D ~ ) )  
1 + i  

a n d  s ince L ( -  3, ( D ) )  is an  ( e v e n ) i n t e g e r  (el. e.g. [15] ,  Sect. 5), we c o n c l u d e  t h a t  
\ \ I I  

the D- th  q-coeff ic ient  of  OSF2 + OF 2 is d iv is ib le  by  8, too.  But  05F2 =--OF 2 ( rood 8), 
a n d  because  the  D- th  q-coeff icient  of  OF 2 is d iv is ib le  by  8, we see t ha t  the s ame  is 
t rue  for the D- th  q-coeff icient  of  OF 2. Thus  f inal ly  f rom (2) we get  8pa(D). 

N o w  obse rve  04 + F z -= 1 ( rood 3), hence  A 4 = F2(04 - F2)  ~ 08 - 1 ( m o d  3), hence  

A13/2 = -05A4. q- 20F2A4 = _ - O A , , = O - O  9 

L q9  ) mod3 , 
which  impl ies  3la(D). 

F u r t h e r m o r e ,  f rom (1) we get  

a ( D ) ~  2 ~ c% ( D ~ )  - 2 ~ a l  ( ~ )  ( m o d 5 )  • 

But  we have  

~1 - ~  =-5L 

(cf. [4] ,  P r o p o s i t i o n  4.3.1). Therefore ,  because  L ( - 1 , ( D - - ) ) d N ,  we o b t a i n  5In(D). 
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