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§ 0. Introduction 

In my survey article [17, §6] I described the general problem of the existence of 
indecomposable vector bundles on IW, with emphasis on the theme that bundles of 
small rank on IP" for n large seem to be very rare. Since then, a number of other 
results have been obtained supporting this point of view [12], [25], [39], [40], 
[41], [44], [45]. 

Working in another direction, several authors [43], [10], [28] have introduced 
a notion of stability for vector bundles on projective varieties, generalizing the 
concept of stability suggested by Mumford and used by Narasimhan and Seshadri 
[35] and others in their study of vector bundles on curves. For  stable vector 
bundles they have proved the existence of a variety of moduli. Thus one can ask 
for the structure of the variety of moduli of stable bundles on IP" whenever they 
exist. For  rank 2 bundles, this work was begun by Barth [6], [7]. 

My own philosophy for the last couple of years has been to concentrate on the 
study of rank 2 vector bundles on 1P 3, with the hope that a good understanding of 
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230 R. H a r t s h o r n e  

them will help in tackling the problem on IP" with n > 3. In this case there is a close 
connection with the old problem of classifying space curves, which I reported on in 
my Kyoto lectures [18]. Also the recent work of Peskine and Szpiro [36] and 
others [37], [14] on liaison is very relevant here. 

A striking recent development was the discovery [2] that the theory of stable 
rank 2 bundles on IP~ is intimately related to the solution of the Yang-Mills 
equation which comes up in modern elementary particle physics. I have discussed 
this relationship and the resulting problem in real algebraic geometry in my paper 
[20], and will say no more about it here except to point out that it provides further 
motivation, from a completely unexpected direction, for the study of stable vector 
bundles on IP 3. 

This paper, then, is devoted to the study of stable rank 2 vector bundles on ~3 
over an arbitrary algebraically closed ground field k. There are several methods in 
current use to study such vector bundles. One is the technique, so successfully used 
by Barth and Van de Ven [4], [5], [6], [7], of restricting the bundle to a line and 
studying the decomposition of the restricted bundle as the line moves. Another 
method uses the notion of a monad, first introduced by Horrocks [22], and more 
recently refined by Horrocks and Barth, and used by Atiyah et al. [3] in their 
study of the bundles coming from instantons. 

In this paper however, we will stick to the older method of associating to a 
rank 2 vector bundle on p3 a curve in ~3, and relating properties of the bundle to 
properties of the curve. If s is a sufficiently general global section of a rank 2 
bundle 8 on IP 3, then the zero set Yof s is a curve. Serre, when studying projective 
modules over polynomial rings [42], was the first to notice that the bundle g could 
be recovered from Y This fact was used implicitly by Horrocks [23], and appears 
to have been rediscovered independently by Barth and Van de Ven [4] and by 
Grauert and Miilich [11]. 

In order to apply this method to an arbitrary vector bundle 8, one must first 
twist 8 by a sufficiently high multiple (9(0 of the hyperplane bundle, so that the 
twisted bundle 8(t) will have global sections. Then one can in principle classify the 
bundles by classifying the possible curves associated to a section of g(t). An 
important problem is to find a good bound for the least integer t (as a function of 
the Chern classes c 1 and c 2 of ~) so that H°(g(t))#~0. In case c 1 =0,  we conjecture 

that t >  3 1 / ~ 2 + I - 2  will do. However, we are only able to prove a somewhat 
weaker result (8.2) with t ~~_3,.z~1/3 This is one of the main results of this paper. \ 2 ~ 2 !  • 

The idea of the proof is to restrict 8 to a suitable plane H___ ~3, and associate 8In 
with a finite set of points Z in IP 2. Then we obtain estimates on dimH~(Jz(/)) for all 
t~7/in §5. In §7 these estimates are used to get estimates for dimHl(gtn(t)). These 
estimates, together with the Riemann-Roch theorem for g on p3 and some exact 
sequences, give the result. As a byproduct of this method, in §6 we get a new proof 
of a theorem of Harris giving an upper bound on the genus of a curve of degree d 
in 1P 3 not contained in a surface of given degree. (In fact, the methods of §5 first 
arose in connection with Harris's theorem, and were only later applied to vector 
bundles.) 

In § 1-4 we set up basic techniques and establish some preliminary results. The 
connection between vector bundles and curves is explained in §i. In §2 we relate 
the numerical invariants cl, c 2 of g, and the ~-invariant of Atiyah and Rees [1], 
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here defined over fields of arbitrary characteristic, to invariants of the curve Y. 
Using a theorem of Ferrand about bundles associated to multiplicity 2 structures 
on curves, we establish the existence, for each c~, c 2, ~ such that clc 2 is even, of  
families of arbitrarily large dimension of nonisomorphic bundles with given 
invariants. In §§3, 4 we give basic properties of stable bundles and some results 
about the variety of moduli. Here we also give many examples of stable bundles. 
For c~ = 0, the Riemann-Roch theorem shows that the variety of moduli will have 
dimension 8c 2 -  3 if H z of the sheaf of endomorphisms of the bundles is 0. 
However, we give an example (4.3.6) of a family of stable bundles of dimension 
> 8c 2 - 3 ,  showing that the H 2 does not always vanish. 

In §9, we give a complete analysis of stable bundles with c I = 0 and c 2 = 2. In 
this case we can describe the structure of these bundles quite explicitly. We find 
that the variety of moduli is irreducible and nonsingular of dimension 13, and we 
get an explicit description of the divisor of jumping lines. In particular, we show 
that such a bundle is uniquely determined by its divisor of jumping lines (except in 
characteristic 3). 

I would like to thank M. Atiyah, J. Harris, M. Maruyama, D. Mumford, and A. 
Ogus for many stimulating conversations during the preparation of this work. In 
particular, (3.3) is due to Maruyama;  (5.2) and (5.3) were communicated to me by 
Mumford;  and (6.1) is due to Harris. I would also like to thank W. Barth for 
generously sharing his published and unpublished ideas about vector bundles. 
They were very valuable to me. Finally, I would like to thank Pete Wever who over 
a period of two years worked through many of these ideas with me. In particular, 
(1.3), (3.0.2), (8.4.1), and the calculations in (4.3.1) and (4.3.3) are due to him. 

§ 1. The Correspondence Between Vector Bundles and Curves 

In this section we discuss our main tool for studying vector bundles, which is the 
correspondence between a vector bundle of rank 2 on IP 3 and a curve in ~3, 
obtained by taking the zeros of a global section of the bundle. This correspondence 
allows us to reduce many questions about vector bundles to questions about 
curves ; it also provides a method for constructing families of vector bundles. 

We work over a fixed algebraically closed field k. A vector bundle on a scheme 
X of finite type over k will mean a locally free coherent sheaf on X. If 8 is a vector 
bundle on X, and if s~H°(X, 8) is a global section of 8, then s determines a map 

S 

(9 x ~ 8. Taking duals (i.e., applying the functor Wom(., (gx)), we get a map 

8" ~" ~ (~x, whose image will be a sheaf of ideals ~ in (Px. The corresponding closed 

subscheme Y of X is called the scheme of zeros of s, and is denoted by (S)o. 

_ _  n Remark 1.0.1. Now let o ~ be a vector bundle of rank 2 on P - ~ k ,  n>__2, let 
s~H°(P, 8) be a nonzero global section, and let Y be its scheme of zeros. It  may 
happen that Y is empty. In that case the map 8"-0(9 v is surjective, so o ~ is an 
extension of line bundles, which implies that 8 is actually a direct sum of two line 
bundles, since on ~n for n > 2 there are no nontrivial extensions of line bundles. It  
may also happen that Y has a component D of codimension 1. In that case D is a 
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divisor, and the section s lies in the subspace H°(P, ~ ( - D ) )  of H°(P,  8'). Then 
considering s as a section of  8 ( - D ) ,  its scheme of  zeros will have codimension > 2. 
Therefore  we will usually exclude these two cases by assuming that  Y is nonempty  
and has codimension > 2. Finally, note that  since ¢ is locally free of  rank 2, the 
ideal sheaf J r  is locally generated by two elements. This implies that  Y has 
codimension exactly 2, and that  it is a locally complete  intersection subscheme of 
IP". In  case n = 3, Yis a curve, by which we mean a 1-dimensional closed subscheme 
of  p3. It may  be reducible, disconnected, and m a y  have nilpotent elements. 

Thus  given a vector  bundle E of rank 2 on P = I P  3, and given a section 
sEH°(P, C), whose scheme of zeros has codimension 2, we obtain a curve Y= (s)0. 
In this case we say the bundle 8 corresponds to the curve Y Our  first ma in  result is 
to characterize the curves Ywhich occur  in this way, and to show how to recover  
the bundle ~ f rom the curve. 

Fo r  any curve y c  p, let co r =~xtZ((Or, c0v) denote  its dualizing sheaJ l A G ,  III ,  
7.5]. 1 

Theorem 1.1. Let p=~,3.  A curve Y in P occurs as the scheme oJ zeros o] a section 
oj a vector bundle ~ oJ rank 2 on P iJ and onty ij  Y is a local complete intersection 
and (o r is isomorphic to the restriction to Y oj some invertible sheaJ on P. More 
precisely, Jot any f ixed invertible sheaj ~ on P, there is a bijective correspondence 
between (i) and (ii): 

(i) the set 03: triples (d~, s, q~) modulo the equivalence relation ~ ,  where E is a 
vector bundle of rank 2 on P; se H°(P, ~) is a global section whose scheme oJ zeros Y 

has codimension 2 ; tp : A28--7+5 '~ is an isomorphism ; and ( ~, s, tp ) ..~ (~ ' ,  s', ~p') // 

there is an isomorphism ~ :8-7-+ ~ ' and an element 2ak,  2=t=0, such that s '= 2~p(s) and 

(.~' = .~2 fp o( A 21p)- 1 

(ii) the set oJ pairs (Y, ~), where Y is a locally complete intersection curve in P, 
and ~ :~®~oe®(.0r--+co r is an isomorphism. 

ProoJ. 2 The first s ta tement  follows f rom the bijection between (i) and (ii), so it is 
sufficient to prove  that. Given ( g , s ,  q~), we take Y to be the scheme of zeros of  s 
as above.  Since Y has codimension 2, locally the two generators  of  J r  form a 
regular  sequence in (.0e, so the local Koszut  complexes  glue together  (see EAG, III ,  
7.11] and its proof)  to give a resolution of  J r :  

o--, A 2(g~')-+~e-, : r - , 0 .  (1) 

Now q~ gives an i somorphism of A2(8 v) with £ %  so we obtain  an exact sequence 

0-+ £e ' -+ 8~--+..¢r --+ 0. (2) 

1 lAG] refers to item 19 of the references 
2 This theorem is due to Serre [42] in the affine case and Horrocks [23] implicitly in the projective 
case. All the ideas of the proof are present in Serre's paper. Other independent proofs have been given 
by Barth and Van de Ven [4], and Grauert and Miilich [11]. See also Ferrand [9] and Hartshorne 
[17,6.1] 
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This extension determines an element ~ e Ext , (J r ,  £o~). Using the exact sequence of 
Ext applied to the short exact sequence of sheaves 0~Jy~(ge--+(-gr--+0, and the 
fact that HI(P,C~f'~)=Hz(p,c~t?~)=O, we see that 

Ext , (J r ,  £a~) ~ ExtZ(Or, 5f,~). 

Now, as in the proof of lAG, I|l, 7.4], or using the spectral sequence of local and 
global Ext, we see that 

Using the definition of mr, this can be expressed as H°(Y,,O)r®O)~®Lf) 
= Hom(ooe®5('®C r, cot). Thus, finally, the element ~ above can be interpreted as 
giving a morphism 

:~0eNSNOr-or.  (3) 

Next, we observe that this construction makes sense also if we restrict the 
sequence (1) to any open affine subset of P. If U is an open affine subset on which 
is free, then Yn U is a complete intersection, and (1) is an actual Koszul complex. 
In this case one sees easily that ~ is a generator of the corresponding Ext module 
[42, Prop. 1, p. 24)8], which implies that the morphism (3) is an isomorphism. 

Note also that replacing s by 2s gives a resolution (1') isomorphic to (1) if we 
map g'-+eg ~ by 2 and A2(g~)-+ A2(~ ") by 22. So replacing q~ by ~.2q9 gives an 
extension (2') equivalent to the extension (2), which therefore produces the same (. 
So we have constructed a map of sets (i)--+(ii). 

For the reverse direction, suppose given Y and 4. Then via the identifications 
above, ~6 Ext~(Jy, £a~), so it determines an extension 

0 - ~ - - , ~ - - , : r ~ 0 ,  (4) 

where o j  is a coherent sheaf. Now the fact that ~ is an isomorphism implies that 
locally, ~ is a generator of the corresponding Ext module, and this in turn implies 
that if" is locally free of rank 2 [42, loc. cit.]. So we define g = f f ~  and take s to be 
the section obtained by dualizing the map J~-- ' . /r  c (9 e and taking the image of 
1 ~ H°(P, Cp). Comparing (1) and (4) gives an isomorphism of A z(g~) with £e~ and 

hence an isomorphism q~: A 2d~-7-, ~ .  Note that ~ determines the extension (4) only 

up to equivalence of extensions. Thus g is determined up to isomorphism, but s is 
determined only up to a scalar 2, and q~ up to the square of that L 

Since we now have maps both ways between the sets (i) and (ii), and they are 
clearly inverse to each other, the theorem is proved. 

Remark 1.1.1. The same proof applies to rank 2 vector bundles on ~'" for any n > 3, 
or more generally on any nonsingular projective variety X with respect to an 
invertible sheaf 5(' for which Ha(X, Le~)=H2(X,~)=O.  In that case Y is a 
codimension 2 locally complete intersection closed subscheme. In particular, it 
applies to Grassmann varieties. Note however that it does not apply to IP 2 without 
modification. 

Corollary 1.2. I f  a bundle o ~ corresponds to a curve Y, then Y is a complete 
intersection i~ and only if ~ is a direct sum oj line bundles. 
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Proof Indeed, if ¢---~-cal~)ZP2, then a section s is given by sections s~eH°(P, ~%ai), 
i=  1, 2, and Y is the intersection of the divisors D1, D 2 corresponding to s 1 and s 2. 
Conversely, if Y is a complete intersection of two divisors D 1 and D2, then one 
possibility for o ~ is the direct sum of the invertible sheaves Ae(DJG~(D2).  On the 
other hand, for a complete intersection Y we have H°((gy)= k lAG, III, Ex. 5.5], so 

is unique up to a scalar 2, and hence 8 is uniquely determined. 

As a first application, we give a criterion for distinct sections of a bundle to 
have distinct schemes of zeros. 

Proposition 1.3 (Wever). Let 8 be a rank 2 bundle on P = IP 3, and assume that ]or 
every nonzero s~ H°(P, o~), the scheme of zeros (S)o has codimension 2. (This will be 
the case, for example, if H°(P, ~ ( -  1))=0.) Then two nonzero sections s, s' E H°(P, ~) 
have the same scheme of zeros if and only if s' =2s for some 2sk*. 

Proof. Clearly s and 2s have the same scheme of zeros. Therefore the map s ~(s)0 
defines a morphism of the projective space (H°(P,g) - {0})/k* to the Hilbert 
scheme of closed subschemes of P. Now any morphism of a projective space either 
has finite fibres or has image a single point I-AG, II, Ex. 7.3]. In the former case, 
since each fibre is a linear space, it must be a single point, so we are done. In the 
latter case, let Y be the common scheme of zeros of all s e H°(P, 8). Then by (1.1) we 
obtain a morphism of the same projective space (H°(P, o ~ ) -  {0})/k* to the space of 
isomorphisms of ~®c~v®(9 r with m r, modulo k*. If ~ is one such isomorphism, 
then any other is of the form ~' =a~ for some aeH°(Y,, (9~). Thus this latter space is 
(noncanonically) isomorphic to H°(Y,(~*)/k *. If Y has connected components 
Y~ .. . . .  Y, let ~ be the sheaf of nilpotent elements on Y/, and let 

N ,=  ker(H ° ( O * ) ~ n  °((6r,/~i)*)). 

Since the global sections of a connected reduced scheme in P are just k, the 
sequence splits, and we see that H°((P~,)-k*x N i. Now in characteristic 0, the 
exponential map shows that N~-H°(Y~, Jt~i) ; in characteristic p, N i is a successive 
extension of the vector spaces H°(Yi, W~[/JI~[+I). In any case, 

tf°(Y, (9~)/k* = f i  (k* x N,)/k*, 
i = l  

which is a product of affine varieties. The only way a projective space can be 
isomorphic to a product of affine varieties is if each is reduced to a point. We 
conclude that dimH°(P, d*)= 1, in which case the result is trivial. 

Next we give a criterion, analogous to Bertini's theorem for divisors, for the 
scheme of zeros of a section to be nonsingular. 

Proposition 1.4. Let ~ be a rank 2 vector bundle on P = IP n, 
(a) I f  ~ ( - 1 )  is generated by global sections, then for all sufficiently general 

seH°(P,d~), the scheme of zeros (s)o will be nonsingular (but not necessarily 
connected,). 

(b) I f  char. k =0,  the same is true under the weaker hypothesis that ~' is generated 
by global sections. 

(c) I f  H I ( P , ~ ) = 0 ,  and n>__3, then (S)o is connected for any s. 
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Proof (a) This is a result of Kleiman [26, 3.6], since if 8 ( - 1 )  is generated by 
global sections, then 8 gives a "twisted embedding" of P into the appropriate 
Grassmann variety. 

(b) Horrocks and Mumford [24, proof of 5.1] obtain this result over C as a 
consequence of Sard's theorem. The same proof works over any field of character- 
istic 0 using the theorem of generic smoothness fAG, III, 10.7]. Let Q be the affine 
space H°(P, 8), and let Z c__ Q x P be the set of pairs (s, x )  such that x~(S)o. The 
scheme structure on Z is obtained by considering it as the scheme of zeros of the 
"diagonal" section of Q x ~ on Q x P. Now since 8 is generated by global sections, 
the projection Z ~ P  is a fibre bundle, hence Z is nonsingular. Then by generic 
smoothness [loc. cit.], there is a nonempty open subset U~Q such that for every 
se U, the fibre Zs, which is just the scheme of zeros (s) o, is nonsingular. 

(c) From the exact sequence 0 ~ ' ~ S v - - * J r - - * 0  of (1.1) we have 
Hi(P, 83 ~- Hi(P, Jr), provided P = IP n with n > 3. If this is zero, then the natural 
map H°(P, (~e)~HO(y, (gr) is surjective. Therefore H°(Y, 0v)= k, which implies that 
Y is connected. 

Remark 1.4.1. If 8 is any vector bundle on P, then by Serre's theorems, for m>>0, 
g(m) will be generated by global sections and Hl((8(m))~)=0. So after a suitable 
twist, any bundle of rank 2 corresponds to an irreducible nonsingular curve in P. 
On the other hand, it is sometimes preferable to consider the least integer m for 
which H°(8(m)) ~ O, and study curves corresponding to sections of that twist. This 
is a more canonical procedure, but the curves we get may have more complicated 
scheme structure. 

To conclude this section, we state a remarkable theorem of Ferrand, which 
implies in particular that every nonsingular curve in P = IP 3 admits a multiplicity 2 
scheme structure which corresponds to a rank 2 vector bundle. This theorem will 
be used in the next section to construct large families of vector bundles. 

Theorem 1.5 (Ferrand). Let X be a locally complete intersection curve in P = ]p3 with 
H°(X, Cx)=k. Let ~ be an invertible sheaf on X, let u : J x ~ c f - - * 0  be a surjective 
map, and let Y be the scheme defined by J r = k e r u .  Let m be an integer. Then the 
following conditions are equivalent: 

(i) (or~(_gy(--m) 
(ii) ~o ~ a)x(m) and the map 

g~ : H*(P, i x (  - m))--+ H*(X, ~Ox) 

induced by u is the zero map. 
Furthermore, if m > 0 and e) x ®(Jx/J2)~(m) is generated by global sections, then 

there is a map u : Jx--*COx(m)--*O satisfying the condition of (ii). In particular, the 
corresponding Y satisfies (i). 

Proof See Ferrand 1,8]. We put the additional hypothesis H°(X, (gx) = k to make (i) 
and (ii) equivalent - Ferrand proves only the nontrivial direction (ii)=~(i). Also 
note that if m > 0, then H I(P, J x ( -  m))= 0 because of the hypothesis H°(X, (gx)= k. 
Therefore ~ = 0  automatically. 
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Corollary l.6. For any localty complete intersection curve X in IP 3 with 
H°(X, 6Ox)= k, there is a scheme Y with support equal to X,  which corresponds to a 
vector bundle of rank 2 on IP 3. 

Proof. Combine with (1.1). 

Remark 1.6.1. Unlike the other results of this section, there is definitely not an 
analogue of this result on IP ~ for n__>4. Indeed, we will see later that the bundles 
constructed by this method for m>>0 are always unstable, whereas a result of 
Grauert  and Schneider [12] states that on IP~., for n > 4, any indecomposable rank 
2 bundle must be stable. (Grauert has informed me that the proof  in [12] is 
incomplete, but that he is preparing a new proof, valid for n => 5.) 

§ 2. Numerical Invariants 

Throughout  this section ~' will denote a rank 2 vector bundle on P =  IP~. We will 
discuss the Chern classes c~ and c 2 of d °, and the rood 2 invariant e of Atiyah and 
Rees. If~f corresponds to a curve yc_p, we show how to compute c 1, c 2, and ~ in 
terms of Y. We show that clc;=-O (rood 2), and that conversely, for any given 
values of c 1, c 2, ~ satisfying clc ~ - 0  (rood 2), there are families of arbitrarily large 
dimensions of nonisomorphic bundles with the given invariants. 

For  any g we have Chern classes c 1 and c 2 in the Chow ring of P. But since 
that Chow ring is isomorphic to •[h]/h 4, we will consider c 1 and c 2 as integers. 
From the general theory of Chern classes (see lAG, App. A] it follows that 
A 2 ~ ( 9 ( c l ) .  Also, for any integer m, 

C 1 ( g ( m ) )  ~--- c 1 (Ox'~) -~- 2 m  

c2(o~(m)) = c2(N ) + reel(N) + m 2. 

Also note that since 8 has rank 2, the natural map g ® 8 ~  A2N is a perfect 
pairing, w hence 8v ~ do( _ c l). 

Proposition 2.1. Let  8 correspond to a curve Y, and let Y have degree d and 
arithmetic genus Pa. Then d = e 2 and 2 p a -  2 = e:(e 1 - 4). 

Proof. The fact that d = c 2 is a general property of Chern classes : the scheme of 
zeros of a section of a bundle represents the highest Chern class lAG,  App. A, § 3, 
C6]. For  the second statement we use the isomorphism A°®~oe®¢r = mr. Since 

~- A 2 ~ ~_ (ge( c ~) and m e ~ Ce( - 4), we have m r ~ (.0r(C 1 - 4). If Y is an irreducible 
nonsingutar curve of genus g, then m r is the canonical sheaf, which has degree 
2 g - 2 .  Therefore 2 g - 2 = d ( q  - 4 )  and g = p ,  so we have our result. 

To obtain the same result in the general case, we use the Hilbert polynomial of 
Y lAG, III,  Ex 5.2]. For any integer m, it expresses the Euler characteristic of the 
sheaf (gr(m) in terms of d and p,:  

dim H°(d)y(m))- dim HX(6Or(m)) = m d  + 1 - p,,. 

Applying this once with m = 0  and using the duality Hl((gr)±H°(cOr) [AG, III,  
7.7], and again with m = c I - 4  and using the duality H l(cOr)-l-H°((9 r), and adding 
the two, we find that d ( c ~ - 4 ) = 2 p a - 2  as required. 
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Corollary 2.2. I f  ~ has Chern classes c 1 and c 2, then clc z =-0 (mod2), 

Proof For  suitable m, the twisted bundle d°(m) will have global sections, so will 
correspond to a curve Y. Then from the equation 2p~-2=c2(c a - 4 )  of (2.1) it is 
clear that e lc2 -O (rood2) for the Chern classes of g(m). But a glance at the 
formulas for ei(g(m)) in terms of ei(g) shows the same is true for & 

Remark2.2.t, Over C, this result is known from homotopy theory for any 
continuous ~Z-bundte over IP~,. For algebraic bundles it was proved by 
Schwarzenberger [21, p. 166] as a consequence of the Riemann-Roch theorem for 

on P. Indeed, if ct is odd, we may assume c a = - 1. In this case the Riemann- 
Roch theorem (8.1) says that X(d)= 1 -  ~c 2. Since the Euler characteristic Z is an 
integer, c 2 must be even. In contrast to that, our proof of (2.2) is essentially the 
Riemann-Roch theorem on g 

Next we come to the c~-invariant of Atiyah and Rees [1]. They show that for 
any c~ odd and c 2 even, there is a unique continuous ~2-bundle on IP~ with Chern 
classes c a, c 2. However, for c~ even and any c2, they show that there are exactly 
two continuous IE2-bundles on IP~, distinguished by a certain mod 2 homotopy  
invariant. If  ~ is an algebraic rank 2 bundle on IP 3 with c a even, they show that c~ 
can be computed as the Euler semi-characteristic 

c~=h° (P ,g ( -½ca-2 ) )+ha(P ,g ( -½c l -2 ) )  (mod 2), 

where h i = d i m H  i. Then they show that for each choice ofc~ even, c 2, and ge2U2g, 
there is an algebraic rank 2 bundle on IP~ with the given invariant. 

Over an arbitrary (algebraically closed) ground field k, we take this latter 
expression as the definition of ~. 

Definition. Let g be a rank 2 vector bundle on P =  IP 3, with even first Chern class 
cl. Let c~eTZ/22~ be defined by 

e = h ° ( P , g ( - ½ q  -2))+ha(P,?Y(-½c1-2))  (mod 2). 

Note from this definition that a(g(m))= a(eg) for any m. 

Proposition 2.3. Suppose that g has even c 1 and corresponds to a curve Y. Then 

,,~, (h°(Cr(½ci-2))+1 (rood2) if c l - 4  (rood8) 

~t~)= ~h°(Cr(½cl-2)) (mod2) otherwise. 

Proof We use the exact sequence (I) of (1.1), which can be written 

o-~¢'(-c0--,~(-cl)--,::-,o. 
Twisting by ½c 1 - 2  and taking cohomology, we get 

0~Ho( (gp ( -  ½c t - 2 ) ) - . H ° ( g ( -  ½c 1 - 2)-,H°(Jr(½C t - 2))~0 

and 

H1 (6~( - ½c I - 2))---3 Hl(Jy(½Cl - 2)). 
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Combining with the cohomology of the sequence 

twisted by ½c~ - 2 ,  we find that 

-- h°( 0 r(½ c, - 2)) + h°(fgp(½cl - 2)) + h°((ge( - ½c, - 2)) (mod 2). 

If c 1 > 0, then h°((ge( - ½c 1 - 2)) = 0 and 

hO((ge(lel 1 x 1 t -2))= ~(~c I + 1)~ct(~ c 1 - 1). 

A congruence for this (mod 2) is given by a congruence for ct (mod 8). Substituting 
c a =0, 2, 4, 6, we get 0, 0, I, 4 respectively. This gives the statement of the 
proposition for c t >0. A similar calculation gives the result for c~ <0. 

Corollary 2.4. Provided char. k 4= 2, ~z(8) is invariant under deformations o j  ~. 

Proof  Over ¢,  this is a consequence of the topological definition of c~ by Atiyah 
and Rees [1]. We give an independent proof, valid over any field k of 
characteristic4:2. If {o~t} is a flat family of bundles, by (1.4) we can twist by a 
suitable m so that the bundles ~(m) correspond to a flat family of irreducible 
nonsingular curves Yr. Then c~(~f~) is determined by h°(C~°t) (mod2) where 
~e t = (-gr,( ½ c t -2 ) .  But £~'t is an invertible sheaf with the property that £,et~2 ~ 

= ( D y t  , 
and a theorem of Mumford [34], generalizing classical results of Riemann and 
Atiyah, asserts that for such sheaves, the quantity h°(Yt, ~t) (mod 2) is a 
deformation invariant. 

Now we come to the main result of this section. Horrocks [23] first showed 
that for any integers c~ and c 2 satisfying c : 2 = 0  (rood2), there is an algebraic 
rank 2 bundle ~ on IP 3 with Chern classes c 1 and c 2. Then Atiyah and Rees [1], 
using the bundles constructed by Horrocks, verified that for c t even, both values of 
c¢ occur. We strengthen these results by showing that for each cl, c2, ~, the family of 
rank 2 bundles 8 on IP 3 with the given invariants is unbounded. This comple- 
ments a theorem of Maruyama [27] which shows the existence of large families of 
indecomposable bundles of any rank r > d i m X  for any nonsingular projective 
variety X of dimension > 2. 

Theorem 2.5. For each choice o f  integers cl, c 2 satisfying c I c z = 0 (rood 2), and, if c 1 
is even, for  each choice of  ~;E/2Z,  and for  each N > 0  (independent of  c 1, c 2, ~) 
there exists a family {d~t},~r of  mutually nonisomorphic rank 2 bundles ~t on P = IP 3, 
with the given invariants cl, c2, ~, parametrized by a variety T of  dimension > N. 

Proof  We use the theorem of Ferrand (1.5). Let X be an irreducible nonsingular 
curve of degree d and genus g in P. Since X is nonsingular, there is an exact 
sequence of locally free sheaves on X [AG, II, 8.17] 

o--, 

In particular, taking duals, there is a surjective map 

:p®O 
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where J--p is the tangent sheaf on P. Now ~-p, being a quotient of (ge(1) 4, is 
generated by global sections. Therefore ( J x / J 2 )  v is generated by global sections on 
X. 

On the other hand, if g > 1, the sheaf of differentials co x is generated by global 
sections, and if g - 0 ,  it has degree - 2  on X. Thus if g >  1 and m>0,  or if g=0 ,  
d__>2, and m> 1, the sheaf cox®(Jx/J2)V(m) is generated by global sections. So 
for these values of d, g, m, we can apply Ferrand's theorem, and we obtain the 
existence of a curve Y with support equal to X, and COrm (gr(-m). Its degree is 2d. 
Furthermore, by construction, there is an exact sequence 

O ~ c o x ( m ) ~ C  r ~(g  x ~ O  . (5) 

From this we can compute the arithmetic genus p, of Y If Z(~-) denotes the Euler 
characteristic ~ ( - 1 ) i d i m H i ( ~ )  of a sheaf ~ ,  then Pa is determined by Z((gr) 
= 1-Pa.  But from the exact sequence we have X((gr)= X((gx)+ Z(cox(m)). Applying 
the Riemann-Roch theorem on X, this gives 

Z((gr) = 1 - g + 2 g -  2 + m d +  1 - g .  

Therefore pa = 1 - md. Surprisingly, it is independent of g. 
Now by (1.t), Y corresponds to a vector bundle ~ with Chern classes c1(~- ) 

= 4 - m  and c z ( ~ ) = 2 d .  For any integer k, let ~ = ~ ( k ) .  Then 

c x ( 8 ) = 4 - m + 2 k  

C2(~ x~) = 2d + (4 - m)k + k 2 . 

The next step is to show that we can obtain any given c 1, c 2 satisfying clc  2 - 0  
(mod 2) as the Chern classes of ~, for suitable choice of d, m, and k. First pick m ~ 0 
such that m - c  1 -}-2C 2 (mod4). Then let 

k=½(c  I + m - 4 )  

and 

d =  ½(c2-c~k  + k2). 

These values of m, k, d give the required cl and c 2. Note that the congruences 
clc  2 = 0 (mod 2) and m = c 1 + 2c 2 (mod 4) guarantee that k and d are integers. Note 
also that m ~ 0  implies k>>0 and d>>0. 

Now we construct the required families. Given N >0, and given cl, c 2, pick d o 
sufficiently large so that for any d > d  o there are families {Xt} and {X~} of 
dimension > N of curves in P of degree d and genus 0 and 1, respectively. To see 
that this is possible, let Z be a fixed abstract curve of genus 0 or 1, and let P o e Z  be 
a fixed point. Then any sufficiently general 4-dimensional subspace V of 
H°(Z,._qT(dPo) ) gives an embedding of Z in IP 3, and different subspaces give 
different embeddings. Since dim H°(Z,  .~e(dPo))= d + 1 (respectively, d), the choice 
of V is a choice of a point in the Grassmann variety G(4 ,d+l )  (respectively, 
G(4, d)), which had dimension 4 (d-3)  (respectively, 4(d-4)).  In either case, this 
dimension grows with d, so we can get families of arbitrarily large dimension of 
these curves. To get the dimension of the family of image curves in IP 3 one should 
subtract 3 (respectively, 1) for the automorphisms of Z. Still, the dimension grows 
with d. 
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Then pick m > 0  such that m - c  I +2c z (mod4) and m is sufficiently large that 
the corresponding d is > d  o. Use the families {X,} and {X't} to construct families of 
curves {Y,} and {Y/} as above, and hence families of bundles {gt} and {tq[}. These 
families then have dimension > N ,  and have the given Chern classes c 1 and c 2. 

Wecompute  the a invariant in case cl is even using (2.3) applied to Y, since a(g) 
=~(o~). Since Y corresponds to f f  and q ( f f ) = 4 - m ,  we must compute 
h°((gv( - ½m)). From the exact sequence (5) we get 

O~cox(½m)~(.gr(- l m)-',(P x ( -  ½m)~0 . 

For m>O this gives 

h°((gr(- ½m)) = h°(cOx(½m)). 

Furthermore, for m >0,  COx(½m ) is nonspecial on X, so by Riemann-Roch on X, 

h°(tOx(½ m)) = 2 0 - 2 + ~ma + 1 - 9 

= 9 -  1 +½rod. 

This shows that keeping m and d fixed, the two values g -- 0, 1 give both values of ~. 
So one of the families {8,}, {d~t} will have c~=0, the other ~ = 1. 

Finally, we need to show that the bundles gt, g[ in the families we have 
constructed are all mutually nonisomorphic. Indeed, we claim that for m>>0, 
dimH°(.~-) = t. It  follows then from (1.t) that Yis uniquely determined by ~ .  Thus 
nonisomorphic curves X t give nonisomorphic bundles ~t. 

To prove the claim, we use the exact sequence of (1.1), twisted by c t (Y)  = 4 -  m: 

0 ~ ( _ P p ~ o ~ - . J v ( 4 -  m ) ~ 0 .  

For m > 5 ,  H°(Ar(4-mi)C=H°((gp(4-m))=O, so H°(~)-~H°((gp) which has 
dimension 1. q.e.d. 

Remark 2.5. I. One might think from this result that the problem of classification 
of rank 2 bundles on IP 3 was hopeless. But in fact, for most of the bundles we have 
constructed here, we have seen that dimH°(o ~ )  = 1. Thus ~ uniquely determines a 
curve Y and an isomorphism co r ~ Oy(c~ - 4 )  up to a scalar. Therefore the space of 
all such bundles is fibred over a certain subset of the Hilbert scheme by the spaces 
H°((~o*)/k *. On the other hand, in the next section we will discuss stable and 
semistabte bundles, for which there are good varieties of moduti, and we will see 
(3.4) that i f g  is a rank 2 bundle which is not semistable, and ifm is the least integer 
for which H°(d~(m))4:0, then dimH°(~'(m))= 1. So the classification problem for all 
rank 2 vector bundles on IP 3 reduces to the classificatio~ of stable and semistable 
bundles on the one hand, and the study of the Hilbert scheme and the spaces 
H°((9*)/k * on the other hand. 

§ 3. Stable Bundles 

In this section we give the definition and elementary properties and examples of 
stable rank 2 bundles on F 3. 
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Definition. A vector bundle d ~ of rank 2 on IW is stable (respectively, semistable) if 
for every invertible subsheaf 5 ° of g, 

c~(Y)<½cl(do) 

(respectively, <). 

This definition is easily seen to be equivalent to the definition of Mumford and 
Takemoto [43] which requires that for every rank 1 torsion-free quotient sheaf o~ 
of d °, c1(~) > ½cl(do) (respectively, >). 

Remark 3.0.1. Let us make some elementary observations about this definition. 
First of all, a bundle do is stable if and only if do(m) is stable, for any m. Secondly, if 
c~(do) is odd, then equality cannot occur, so g is stable if and only if it is semistable. 

Since twisting a rank 2 bundle by m changes its first Chern class by 2m, we can 
twist any bundle so that its first Chern class becomes 0 or - 1. In this case we will 
say that g is normalized. If do is normalized, then do is stable if and only if H°(g) = 0. 
lndeed, if seH°(g) is a nonzero section, it determines an injective map of (9 to do, 
whence g is not stable ; conversely, if g is not stable, it contains a subsheaf (9(m) for 
some m > 0, whence H°(g)+  0. Similarly, in case ca = 0, g is semistable if and only if 
H°(g( - I)) =0. 

Finally, a bundle g on IP" is stable if and only if it is simple, i.e. the only 
homomorphisms of 8 to itself are scalar multiplications. For a proof of this, and 
more generalities about stable bundles, see Barth [6, § 3]. 

Remark 3.0.2. Recently Gieseker [10] and Maruyama [29], [30] have introduced 
a new definition of stability, using the Hilbert polynomial instead of the first Chern 
class in the inequality of the definition. While the old and new definitions are not 
equivalent in general, they are equivalent for rank 2 bundles on IP 3. The proof 
simply involves computing the Hilbert polynomials, and using the fact (8.4) that if 
8 is stable (old definition) on ~,3, then c~ - 4 c  z <0. On the other hand, the old and 
new definitions of semistable are not equivalent on IF' 3 : the only (new) semistable 
bundle is (9®(9 and its twists, while there are many (old) semistable bundles. In this 
paper we always use the old definition. 

Next we give a criterion for a bundle to be stable, in terms of a curve associated 
to the bundle. 

Proposition 3.1. Let do be a rank 2 bundle on IP 3 corresponding to a curve Y in IP 3. 
Then ~ is stable (respectively, semistable) if and only if 

(1) cl(do)>O (respectively, c1(~)>0), and 
(2) Y is not contained in any surface of degree < ½cl(S ) (respectively < ~.cl(S)). 

Proof. From (1.1) we have the exact sequence 

0-+(9( - el)-~g(- cl)--~r-,O. 

For simplicity we suppose cx is even, the proof for c~ odd being entirely analogous. 
In this case, the normalized bundle 8'corresponding to do is do(-½cO, so we have 

an exact sequence 

0-+(9(- ½c 0-,~'--,J~(½c&~0. 
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N o w  d is stable if and only if H ° ( g  ') = 0.This is equivalent to (1) H ° ( O ( - ½ c  t ) )= 0, 
which says tha t  c~ >0 ,  and (2) H°(Jr(½c~))=0,  which says that Yis not  contained 
in any surface o f  degree ½c r Similarly, g is semistable if and only if H°(~'( - 1))= 0, 
and this is equivalent to saying c 1 > 0  and Y n o t  contained in any surface of  degree 
½c 1 - 1. 

Example 3.1.t. Let Ybe  the disjoint union of  r lines in IP 3. Then e9 r = Or( - 2), so Y 
corresponds to a bundle 8 with c 1 = 2 ,  e2=r. For  r ~ 2 ,  the curve Y is not  
contained in any plane, so the corresponding bundle o ~ is stable. F r o m  (2.3) we see 
that  the ~-invariant of  these bundles is 0. The corresponding normalized bundle g '  
has c I = 0, c 2 = r -  1, so this shows the existence of  stable bundles with c 1 = 0, c¢ = 0, 
and any c 2 >0.  

Example 3.1.2. Let Y be the disjoint union of  r conics in IP 3. Then o r -  Or{ - 1), so 
Y corresponds to a bundle 6 ~ with c1=3 ,  c2=2r. For  r=>2, the curve Y is not  
contained in any plane, so 6 ~ is stable. The corresponding normalized bundle ~ has 
c 1 = - 1, c 2 = 2 r -  2, so this shows the existence of  stable bundles with c~ = - 1, and 
any even c 2 >0 .  

Example 3.1.3. Let Ybe  a disjoint union of  a nonsingular  plane cubic curve and a 
nonsingular  elliptic space curve of  degree r => 4. Then co r ~ 6)r, so Y corresponds to 
a bundle 8 with c 1 = 4, c 2 = r + 3. For  r > 4, the second curve does not  lie in a plane, 
so Yis not  contained in any surface o f  degree 2, hence 8 is stable. F r o m  (2.3) we see 
that  the ~-invariant of  8 is 1. The corresponding normalized bundle ~ '  has c I =0 ,  
c 2 = r -  1. This shows the existence of  stable bundles with c~ =0 ,  a =  1, and any 
C2>3. 

Remark 3.1.4. We will see later (8.4) that  the values of  c 1, c 2, ~ in the above 
examples are the only possible values of  cl, c 2, ~ for normalized stable bundles on 
F 3. The p roof  involves showing that  c ~ -  4c 2 __< 0 for any semistable bundle, which 
we do in this section, and then eliminating a few special cases, which we do later. 

The remainder of  this section is devoted to proving the inequality c 2 - 4 c  2 =<0 
for a semistable rank 2 bundle on F 3. First we prove the analogous result on  lP 2, 
using the Riemann-Roch  theorem. Then we reduce the case of  IP 3 to IP 2 using a 
result of  Maruyama.  Barth [6]  has given a slightly different p roof  over ~ ,  and also 
a p r o o f  of  the stronger result that  c~ - 4 c  2 < 0  for a stable bundle, which we prove 
later (8.4) by a different method. 

Lemma 3.2 (Schwarzenberger). IJ 8 is a stable (respectively, semistable) rank 2 
bundle on IP 2, then c ~ - 4 c  z < 0  (respectively, < ). Furthermore, if ~ is stable, then 
c ~ - 4 c  2 * - 4 .  

Proof The Riemann-Roch  theorem for ~ on IP 2 says that 

X ( # ) -  l 2 - ~ ( c  1 - 2c 2 + 3c 1 + 4). 

To discover this formula, it is not  necessary to interpret the generalized Riemann- 
Roch theorem, comput ing  Todd  classes etc. It  is enough to know that  there exists 
some polynomial  in t~[cl,  c2] which gives Z(6 ~) for any rank 2 bundle on 1P 2, and 
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then compute  it in enough easy special cases. For  example, let g = (9(r)GO(s), with 
r, s >0.  Then H i ( g ) =  H2(g )=0 ,  so 

;{(g) = h°(8) = ½(r + 2) (r + 1) + ½ (s + 2) (s + 1). 

Expanding, we get a symmetric function in r and s, which can be written uniquely 
in terms of  c 1 = r + s and c 2 = rs, which are the elementary symmetric functions in r 
and s. A short calculation gives the formula above. 

N o w  let g be stable. Since c~ z - 4 c  2 is invariant under twisting, we may  assume 
that 8 is normalized. Then H ° ( g ) =  0. By duality, H2(8) is dual to H ° ( 8 ( - c  1 -3 ) ) ,  
and since c t = 0  or  - 1 ,  this is also 0. So X ( g ) = - h l ( g ) < 0 .  In case c1=0, 
substituting in the Riemann-Roch  formula gives c 2 >2.  In case cl = -  1, we get 
c 2 > 1. In each case, c 2 - 4 c  2 < 0  and c 2 - 4 c 2  4= - 4 .  

If  ~ is semistable with cl =0 ,  a similar argument,  using Z (g ( - i ) ) ,  shows that  
c2 ~0.  In this case c ~ - 4 c  2 ___<0. 

No te  the curious fact that  c, =0 ,  c 2 = 1 is not possible for a stable bundle on tP 2, 
but it is possible on F 3. Otherwise the possible values of  cl and c 2 of stable bundles 
are the same on IP 2 and IP 3 provided clcz==-O (mod 2). 

Theorem 3.3 (Maruyama) 3. I f  g is a semistable rank 2 bundle on IP a, then for almost 
all planes H c__ Ip 3, the restrktion glH is semistable on H. 

Proof. We may  assume that 8 is normalized. If  gin is semistable for a single H, 
then from the criterion H ° ( g ( -  l)ln) = 0 and the semicontinuity of  cohomology,  we 
see that d~ln is semistable for almost all H. Thus if the theorem were false, gin 
would be not  semistable for every plane H c lp 3. Before continuing, we need a 

lemma. 

Lemma 3.4. Let g be a normalized rank 2 bundle on IP n, n> 1, which is not 
semistable. Let m < 0  be the least integer such that H°(8(m))*O. Then 
dimH°(g(m)) = 1. Furthermore, if m" < 0  and s~H°(g(m')) is a nonzero section whose 
zero set has codimension 2, then m'=m. 

Proof. First note that  if seH°(¢(m)) is any nonzero section, then the zero set of  s 
must  have codimension 2, because of  the minimality of m (1.0.1). N o w  let m' < 0  
and s'eH°(g(m')) be any nonzero section whose zero scheme Yhas  codimension 2. 

Then we have an exact sequence 

0 ~ (~ ~ g ( m ' ) - ~ j r ( c t ( g )  + 2m ' )~0 .  

Since c l ( g ) = 0  or  - t, and m' <0,  the sheaf on the right has no global sections. 
Therefore H°(C(m'))-~ H°((9), which has dimension 1. 

Applying this result to the case m ' =  m shows that  dim H°(g(m))= 1. Applying it 
to any other  m' shows that m ' =  m. For  if m ' >  m, then the injective map 

H°( e(m))® n°(  (9(m ' -  m))~ H°( e(m')) 

implies that  dimH°(g(m'))  > 1. 

3 This result and its proof were communicated to me by Maruyama. Barth [6] has proved the 
stronger result over Ir that if8 is stable on IP 3, then ~[H is stable for almost all H, unless ~ is a twist of a 
bundle with cl = c: = 2 corresponding to two lines (3.1.1). In this paper we use only the more elementary 
result of Maruyama, thus keeping our work independent of Barth's theorem 
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Proof of (3.3), continued, Let g be a normalized rank 2 bundle o n  lP 3, and assume 
that d~[, is not semistable for each plane H_~ 173. For each H, let m(H) be the least 
integer m such that H°(g(m)l~t) #: 0, Then because of the semicontJnuity of 
cohomology, re(H) is a lower semicontinuous function of H. Let m o < 0 be the 
maximum value of m(H). Then re(H)= m o for almost all planes H. 

Now take a plane H with re(H)= mo. Let s~ H°(67(mo)l,) be a nonzero section, 
and let YC=H be its zero set, which is a finite set of points. Choose a line LC=H 
which does not meet Y. Then the section s induces a section ~H°(g(mo)tL) whose 
zero set is empty (hence of codimension 2 in L). Therefore by the lemma, re(L), the 
least integer m such that H°(g'(m)lz):~ 0, is just m 0. 

Next, consider any other plane H' containing L. By choice ofm o, we have m(H') 
< mo. But since L = H', we have also re(L)< m(H'). But re(L)= m o, so m(H'l = m o for 
all H' containing L. 

The remainder of the proof is devoted to showing that H°(g(m0))+0 on I? 3. 
The idea is to paste together the sections of H°(¢(mo)lH.) as H' varies in the pencil 
of planes containing L. We carry this out formally by blowing up L in F 3. This is 
similar to the "standard construction" of Barth [6, §4], but simpler in that we blow 
up a sing.le line instead of using the entire incidence correspondence. 

Let X be ~,3 with the line L blown up, let n :_~IP  3 be the projection, and let 
p :X~IP ~ be the morphism given by the pencil of planes containing L. 

rt- I(L) ____ )~ ~ ~1 

L c lp 3 
m 

For any te ~1, let H~ be the corresponding plane in IP 3. Then H~ is the fibre of X 
over t, and for any m, 

H°(p- ~(t) , rc*8(m)) = H°(~(m)l,) .  

Taking m = m  o, all these cohomology groups have dimension 1, so by semicon- 
tinuity [AG, III, 12.9], p,n*(o~(m0)) is locally free of rank 1 on IP 1. 

Furthermore, for each t, the natural map 

n°(e(m0)ln) ~ H°(o~(rno)lL) 

is an isomorphism. This implies that the natural map 

P , ~Z*( g(mo))~ P ,(Zc*(~(mo))l~- ~z)) 

is also an isomorphism. But the latter is simply the structure sheaf (fF~, because 
H°(8(mo)lt.) is independent of t. Thus we see that p,rt*(g(mo))~ (~.~. 

In particular, this shows that H°(n*(g(mo)))#0, and therefore also 
H°(8(mo)) :1:0 on IP 3. Thus g is not semistable. 

Corollary 3.5. I f  ~ is a semistable rank 2 bundle on IP 3, then c 2 - 4 c  2 <0. 

Proof By (3.3), gl~ is semistable for some plane H c_IP 3. Therefore c~--4C 2 ~0  by 
(3.2). 
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§4. Variety of Moduli 

In this section we discuss the existence of the variety of moduli of stable rank 2 
vector bundles on tP 3. We show how to compute its dimension in certain cases. 
Also we will give some examples of families of stable bundles constructed from 
curves. The question whether these families represent all stable bundles with the 
given Chern classes will be deferred to Sections 8 and 9. 

The general problem of moduli is this: having identified a certain class of 
objects, find a variety which parametrizes them in a suitable way. For stable 
torsion-free sheaves, Maruyama [30] has found a solution to this problem. Let X 
be a nonsingular projective variety over k, and let S be the set of isomorphism 
classes of stable torsion-free sheaves 8 of rank r, with a given Hilbert polynomial 
H. Then 27 has a coarse moduli scheme M, which is a separated scheme, locally of 
finite type over k. This means 

(1) The closed points of M are in 1-1 correspondence with the elements of the 
set Z; 

(2) Whenever #- is a flat family of sheaves 8 of 2;, parametrized by a scheme T 
(i.e., ~ is a coherent sheaf on X x T, fiat over T, whose fibres are in 2;), then there is 
a morphism ~0 : T-~M such that for each closed point t~ T, ~o(t) is the point of M 
corresponding to the class of the sheaf ~ which is the fibre of ~ over t; 

(3) The morphisms ~o of (2) can be assigned functorially; and 
(4) M is universal with properties (2) and (3). 

An important question, left'unanswered in general, is whether M is necessarily 
of finite type over k. This is equivalent to the question whether the family S is 
bounded. Maruyama has shown this is so if dimX < 2, and has announced that it is 
also so for the case of rank 2 on any X. 

In our case, we take X = IP 3, and consider stable vector bundles of rank 2. The 
vector bundles form a subset of the set of all torsion-free sheaves, and our 
definition of stable agrees with his in this case (3.0.2). To specify the Hilbert 
polynomial of 8 is equivalent to giving its Chern classes. So we conclude from 
Maruyama's theorem that the set of stable rank 2 bundles 8 on IP 3 with given 
Chern classes c 1 and c z has a coarse moduli scheme M(q,  c2) which is separated 
and locally of finite type over k. We will give an independent proof of boundedness 
in this case (8.3), so in fact M is of finite type over k. 

The main goal of this paper is to describe the moduli schemes M(cl, c2) explicitly. 
We begin with the infinitesimal study of M. For any vector bundle 8, let 8nd8 

be the sheaf of local endomorphisms of g, defined as ~om(8, 8) or 8~®& 

Proposition 4.1. Let 8 be a stable bundle on a nonsingular projective variety X, 
Then H 1 (X, 8nd 8) is naturally isomorphic to the Zariski tangent space of the moduli 
scheme M at the point corresponding to 8. I f  H2(X, 8ndS) =0, then M is nonsigular 
at that point and its dimension is equal to dimHl(X, 8ndS). 

Proof This follows from Grothendieck's infinitesimal study of the scheme Quot 
[13] and the way the moduli scheme M is constructed [31, 6.7 and proof of 6.9]. 
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Proposi t ion 4.2. Let ~ be a normalized stable rank 2 bundle on IP 3. Then 

~8c2-3 if c1=0 
hl(gndc:)-hZ(~nd~)= [ 8 c z - 5  /f c I = - 1 .  

Proof To compute these cohomology groups, we use the Riemann-Roch theorem 
for ~ndg on p3. As in the proof of (3.2), we can discover the Riemann-Roch 
formula by computing the same easy cases. Since the Chern classes of ~nd~' are 
determined by the Chern classes cl, c z of o v, the Riemann-Roch theorem implies 
that z(gnd E) is given by some polynomial in ~[c l ,  c2]. So let $ = Cg(a)@(9(b). Then 
gnd g = (9(a - b) ~ C,o G 6 ~ G 6(b - a). Assuming a > b, 

z(gnd 8) = h°((9(a- b)) + 1 + 1 - h3((9(b - a)). 

Using duality for h 3, and the known cohomology of 1P 3, 

x ( ~ n d ~ ) = ( a - ~  +3) + l + l - ( a - b 3 - 1  ). 

Now a short calculation gives 

z( gnd ~v) = 2cZ, _ 8c 2 + 4. 

This is the Riemann-Roch formula. 
To prove the proposition, note that since g is stable, it is simple (3.0.1), so 

h°(gndg) = 1. On the other hand, H3(gndo v) is dual to H°((gndo v) ( -  4)), which must 
be 0 since h°(oVndg)=l. Thus only hl(Sndo :) and h2(Sndg) are unknown. 
Substituting cl =0  and cx = - 1 gives the result. 

Remark 4.2.I. We can expect that in good cases, h2(oVndg) will be 0, in which case 
by (4.1) the moduli scheme will be nonsingular of dimension 8c z - 3  (respectively, 
8c 2 - 5). However, we will show by example (4.3.6) that there may be components 
of bigger dimension. 

Proposi t ion 4.3. Let g be a stable rank 2 bundle on IP 3 with Chern classes ct,cz, 
corresponding to a curve Y. Assume 

(1) H i ( J r ( - 4 ) ) = 0 ,  
(2) n%,Cr(c 1 -4) )=0 ,  and 
(3) n~(A:r)=0, where .A: r =(j/oCz)- is the normal sheaf of Y 
Then HZ(oVndg)=O. Furthermore, if Y is nonsingutar, then (1) is automatically 

verified, and (3) can be replaced by 
(3') Hl((gr(1)) =0. 

Proof Since ~f corresponds to Y we have the exact sequence 

0-o0( - c l ) - o g  ( - c , ) ~  J r - - , 0 .  

Now gnd8~-8"®$,  and ~'---8(-c~),  so tensoring with ~ gives an exact sequence 

... ~ n~(ov( - c l ) )~  nZ(~nd g)--, HZ(g @Jr)-o ... .  

To show HZ(SndS)=0 it is sufficient to show that the two groups on either side are 
0. Now H~(g(-c l ) )  is dual to Hi(g(-4)) ,  which from the first sequence is 
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isomorphic to Hl(J r (c i -4) ) .  This is condition (2). On the other hand, from the 
sequence 

tensoring with 8, we get an exact sequence 

... ~ H I ( g ® ( ~ r ) - ~ H 2 ( 8 ® J r ) ~ H 2 ( ~ ) ~  .... 

Again, it is sufficient to show the two outside groups are 0. Now d ~ ® ( g r ~ r ,  
because tensoring the first sequence with ~r  gives an isomorphism 

~(-  cl)® ~r--~ Jr®Or = Jr~Jr  2 

So HI(~®(gr)=HI(JVr), which is condition (3). Finally, HZ($) is dual to 
H1($( -c  1 -4))  which is isomorphic to H~(Jr(-4)),  which is condition (1). 

Now if Y is nonsingular, then H°((~ r ( -4 ) )=  0, so (1) is automatic. On the other 
hand, Art is a quotient of the tangent bundle of IP 3 restricted to Y, which in turn is 
a quotient of (~r(t) 4. So it is sufficient to require that Hl((~r(1))=0, which is 
condition (3'). 

The rest of this section will be devoted to examples. 

Example 4.3.1. Let Y be a union of r disjoint lines in IP z, and let d ~ be the 
corresponding bundle (3.1.1). Then ¢ has Chern classes cl =2  and c2=r. The 
corresponding normalized bundle d ~' has c 1 = 0  and c 2 = r - 1 .  The conditions of 
(4.3) are immediately satisfied for Y, so the moduli space is nonsingular of 
dimension 8c1(8')- 3 = 8 r -  11 at the point corresponding to ¢. 

Now let us compute the actual dimension of the family of bundles g obtained 
by this construction. To give r lines in F 3 requires 4r parameters, and to specify an 
isomorphism ~:~r  ~ 0 r ( -  2) requires r additional parameters, since H°((~ *) ~ (k*) ~. 
Therefore the set of pairs ( K ~> forms an irreducible family of dimension 5r. By 
(1.1) this is the same as the family of triples (d~,s,~p> modulo the equivalence 
relation ~. For the purpose of counting dimensions, we can ignore ~0, because it is 
determined in any case up to a scalar 2, and this ambiguity is eliminated by the 
equivalence relation ~.  We conclude that the family of isomorphism classes of 
vector bundles g obtained in this way is irreducible, and its dimension is equal to 
5r minus the dimension of H°(8) for a general ~ in the family. This is because the 
section s can be any sufficiently general element of H°(¢), and the difference in 
dimension of a surjective morphism of varieties is equal to the dimension of the 
general fibre. 

To compute H°(g) we use the exact sequence 

0~(9 ~ g ~ J r ( 2 ) ~ O ,  

which tells us that 

h°(g) = 1 + h°(Jr(2)). 

Now H°(Jr(2)) is the space of quadratic polynomials corresponding to quadric 
surfaces containing Y If r = 2 its dimension is 4; if r =  3 it is 1 ; if  r >4  and the lines 
are in general position, it is 0. Thus h°(g)= 5, 2, 1 respectively, and the dimension 
of the family of bundles ¢ is 5 if r = 2 ;  13 if r = 3 ;  and 5 r - 1  if r>4 .  
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Expressing our results in terms of the normalized bundles ~', the family of 
normalized bundles obtained from skew lines with c 1 = 0  and c 2 > 0  has dimension 

5 if c 2 = 1 

13 if C2=2 
5c 2 + 4  if c 2 > 3 .  

For  c z = 1 and 2, the dimension of this family is equal to the dimension of the 
moduli space, which is 8c z - 3. So in this case these families form an open subset of 
the moduli space. In fact, we will see later (8.4.1) and (9.6) that in these two cases, 
every stable bundle with these Chern classes is among the ones we have just 
constructed (except for the case c 2 = 2 over a field of characteristic 3). However, for 
c 2 > 3, this family has dimension tess than 8C 2 - -3 ,  so it does not include all stable 
bundles with the given Chern classes. 

E x a m p l e  4.3.2, Let Y be a union of r disjoint conics, r>2 ,  and let d o be the 
corresponding bundle (3.1.2). Then o ~ has Chern classes c~ = 3 and c 2 =2r ,  and the 
corresponding normalized bundle g '  has Chern classes c 1 = -  1 and c 2 = 2 r - 2 .  
Again the conditions of (4.3) are immediately satisfied, so the moduli space is 
nonsingular of dimension 8 c z ( g ' ) - 5  = 16 r -21  at the corresponding point. 

To compute the dimension of the family of bundles obtained, note that 
choosing r conics requires 8r parameters, and fixing the isomorphism ~ requires r 
more parameters. By an argument similar to the previous example, one can show 
that h° (g)=7  if r = 2 ;  2 if r = 3 ,  and 1 if r > 4 .  Therefore the family of normalized 
bundles g '  with c~ = - 1 and e z > 0  obtained from conics has dimension 

11 if c2=2  

25 if e2=4  

9 c  z + 8  if c 2 > 6 .  

For  c z = 2 this is the same as the dimension of the variety of moduli, so in this 
case we have an open subset of the moduli space. For c z > 4  it is less, so it cannot 
be the whole moduli space. 

E x a m p l e  4.3.3. Let Y be a nonsingular elliptic curve of degree d in 1P 3. Then 
t~y ~ (gy, so Ycorresponds to a bundle ~ with c 1 = 4  and c 2 =d.  ~ will be stable if Y 
is not contained in any quadric surface. For  d = 3 ,  Yis a plane curve; for d = 4  it is 
a complete intersection of two quadrics. But for d > 5, Y cannot be contained in 
any quadric (it suffices to check the degree and genus of all curves on a quadric 
surface lAG, III, Ex. 5.6c; V, Ex. 2.9]). Therefore g is stable if d>5 .  By (2.3) the 
~-invariant of 8 is 0 since Y is irreducible so h°((~r)= 1. The criterion of (4.3) is 
immediately satisfied, so the moduli variety at a corresponding point is non- 
singular of dimension 8c 2 - 3 ,  where c z is the second Chern class of the normalized 
bundle g' ,  which has c 1 =0,  c z = d - 4 .  So this gives another method, besides skew 
lines, of constructing stable bundles with c 1 =0,  ~=0 ,  and any c 2 >0. 

Now let us compute the dimension of the family of bundles obtained in this 
way. The choice of an abstract elliptic curve Y is 1 parameter  (thej-invariant). The 
choice of an invertible sheaf 56' of degree d on Y is 1 parameter (a point in the 
Picard variety of Z which is Yitself). The choice of a 4-dimensional linear subspace 
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of H°(Y,, ~'), which is d-dimensional, is 4 (d -4 )  parameters. Then add automor-  
phisms of IP 3 (15 parameters), subtract automorphisms of Y(1 parameter) and add 
the choice of ~ (1 parameter). This gives 4d+  1, from which we must subtract h°(d °) 
to get the dimension of the family of bundles. 

F rom the exact sequence 

we see that h°(g)=h°(J r (4) )+  1. On the other hand, from the exact sequence 

0--*H°(Jy(4))-~H°(Ce3(4))--,H°((gr(4)) 

we see that h°(A~(4)) > h°((9~3(4)) - h°(Cr(4)) = 35 - 4d. 
Therefore h°(d ~) > max(36-4d ,  1). From this, we find that the dimension of the 

family of bundles constructed in this way is 

<5  if c 2= 1 

<13 if c2=2  

<21 if C2=3 
<29  if C2=4 
< 4 c 2 + 1 6  if c 2 ~ 5 .  

Since these numbers are equal to 8c 2 - 3 for c 2 = 1, 2, 3, 4, it is reasonable to expect 
that most bundles with those Chern classes are obtained by this construction. But 
for c 2 > 5 this number is less than 8c 2 - 5 ,  so we cannot get all bundles this way. 
Next, note that for c 2 = 1, 2 we get the same dimensions as in example (4.3.1), so we 
can expect that we get the same bundles this way: see (9.4.1). For c 2 =3 ,4  it 
appears that we get more bundles than in (4.3.1), but for c2,>0, the family has 
smaller dimension than in (4.3.1). 

Remark and Conjecture 4.3.4. At the point in (4.3.3) where we derived the 
inequality h°(J~(4))>max(35-4d,0) ,  it seems reasonable to expect that for a 
sufficiently general elliptic curve Y of degree d in F 3, we should have equality. For  
any d > 5, any such Y is the projection of an elliptic curve Y' of degree d in IW- 1, 
defined by the complete linear system on Y corresponding to H°((gr(1)). A theorem 
of Mumford [33] states that for any d > 2 9 + 1 ,  any complete linear system of 
degree d on a curve of genus 9 gives a projectively normal embedding into 
projective space. Therefore Y' is projectively normal in tW-1, and so the map  
H°(~P~,-~ (t))--*H°((gr(l)) is surjective for all l. So in our case, the equality h°(Jy(4)) 
= m a x ( 3 5 - 4 d , 0 )  would follow if we could prove the following conjecture: let 
Y'c__IP" be a projectively normal curve, for some n > 3. Then for any sufficiently 
general projection Y of Y' into 1P 3, the natural maps H°(62~3(l))-~H°((gy(l)) should 
have maximal rank, for all I. 

Example 4.3.5. Let Y be a projection into 1P 3 of a canonical curve Y of genus 9 in 
IP °-1. Then Yhas degree 2 g - 2 ,  and cor~(gy(1), so Y corresponds to a bundle g 
with e 1 = 5 and c 2 = 2 g - 2 .  The corresponding normalized bundle ~f' has c~ = - 1 
and c 2 = 2 g - 8 .  The bundle ~ will be stable provided Y is not contained in any 
quadric surface. For  9 =  3, Yis a plane curve; for 9 = 4  it is a complete intersection 
of a quadric with a cubic surface; but for 9 > 5 it is not contained in any quadric 
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surface, so g is stable. The criterion of (4.3) fails, so we cannot tell if the variety of 
moduli is nonsingular. 

To compute the dimension of the family of bundles obtained, we proceed as 
follows. The choice of an abstract curve of genus g is 3 g - 3  parameters. The 
canonical embedding is then uniquely determined. The projection to IP 3 is given by 
a 4-dimensional subspace of H°(cor), which has dimension g, so this requires 
4 (9 -4 )  parameters. Then we add the automorphisms of IP 3 (15 parameters), 
subtract the automorphisms of Y (0) and add the choice of ~ (1). This gives 79 - 3, 
from which we must subtract h°(8). 

A calculation similar to that in (4.3.3) gives h°(g)> max(66-9g ,  1), from which 
we find that the dimension of the family of bundles obtained is 

< 11 if c z = 2  

< 27 if c z = 4  

<43 if c z = 6  

<~c2+ 2 4  if c z > 8 .  

Furthermore, these inequalities could be replaced by equalities if we could prove 
the conjecture of (4.3.4), because by a theorem of Petri (see [38]), the canonical 
curve is projectively normal. 

For  c 2 = 2, 4, 6 these dimensions agree with the number 8c 2 - 5  suggested by 
(4.2). So we might expect to get all bundles with c I = -  1 and c 2 =2,4,  6 by this 
construction, whereas for c 2 > 8 it will not give all. Note also that for c2 = 2 we get 
the same size family as in (4.3.2); for c~ = 4, 6, we get a larger family, but for c 2 >> 0 
we get a smaller family. 

Example 4.3.6. Here we give an example of a family of stable bundles with cl =0,  
c2=7  and dimension 55, which is greater than the dimension 8 c 2 - 3 = 5 3  
suggested by (4.2). If follows in this case that h2(¢nd~)~O. 

Let Z be the disjoint union of two curves Y1, Y2, each of which is a complete 
intersection F 2 .F 4 of a quadric and a quartic surface. Then Z has degree 16 and 
Ogz~Cz(2), so Z corresponds to a bundle ~' with c~=6 and c2=16. The 
corresponding normalized bundle 8 ' =  ~ ( -  3) has c t = 0 and c 2 = 7. o ~ will be stable 
provided H ° ( # ( - 3 ) ) = 0 ,  which we will verify below. 

Now we compute the dimension of the family. Let Y be a complete intersection 
of a quadric and a quartic surface. The quadric Q containing Y is uniquely 
determined, and its choice depends on 9 parameters. To determine Y, we must give 
a section of H°(f~Q(4)), up to scalar multiple. It is easy to compute h°((ga(4)) = 25, so 
Y depends on 9 + 25 - 1 = 33 parameters. Therefore the choice of Z requires 66 
parameters, and then ~ requires 2, since Z has two connected components. This 
makes 68, from which we must subtract h°(8). From the exact sequence 

0 ~ 0  ~ g ~ J z ( 6 ) - - , 0  

we have h°(g)=h°(Jz(6))+ 1, so we must compute h°(Jz(6)). The same exact 
sequence shows that h°(~( - 3))=h°(Jz(3)), so to show 8 stable we must verify 
h°(Jz(3)) =0.  

Let 11 =( f l ,  gt) and I2=(f2,g2) be the homogeneous ideals of Y1 and Y2 in 
S = k [x  o, xt,  x 2, x3], where f l , f 2  have degree 2 and gt, g2 have degree 4. Then the 
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homogeneous ideal J of Z is 11 c~ 12. Since I:1 c~ 1:2=0, 11 +12 is primary for the 
irrelevant ideal (x0, x 1, x2, x3), from which it follows that f~, gl,Jz, 02 form a regular 
sequence in S. From this it is easy to see that J=(f l]2,  ]102, fzgl, 0192) (see for 
example [16]). 

Since H°(ocz(/))is simply the set of elements of degree I in J, we see immediately 
that h°(Jz(3))=0, which proves that ~ is stable. In degree 6, J contains all 
expressions of the form ]if2"q + ~J'192 + flf29~, where q is a quadratic form and 
a, fl are scalars. Assuming for example that Jl,]2,91,92 are irreducible and 
relatively prime, which is true in general, one sees easily that these expressions 
form a vector space of dimension 10+ 1 + 1 = 12. Therefore h°(~Cz(6))- - 12 and 
h°(E)= 13. Thus the dimension of the family is 6 8 - 1 3 =  55. 

Note: I have learned from Barth that he has also constructed families of stable 
bundles with cl = 0  and dimension > 8c 2 - 3, for every odd value o fc  2 ~ 5, using an 
analogous method. 

§ 5. Set of Points in F 2 

Our goal in the next few sections is to find a good bound for the least integer t such 
that H°(8(t))~ 0, where ~ is a stable bundle on IP 3 with given Chern classes. Our 
technique is to restrict d ° to a plane IP z, and use various estimates of cohomology 
groups which we develop there. 

In this section we will consider a finite set of points Z in P = IP 2. Given an 
integer l, we ask whether the points Z impose independent conditions on the 
curves of degree 1 passing through them. This means that 

h°((¢ e(l))- h°(Jz(l)) 

is equal to the number of points in the set Z. Equivalently, we ask whether the map 

H°((g v(l))~ H°((g z(l)) 

is surjective. This in turn is equivalent to H~(Jz(1)) being zero. So in this section we 
will be deriving estimates for hl(Jz(1)). 

We consider the following hypotheses on a set Z:  

(,) Z is a set of d distinct points in 1P 2, contained in an irreducible 
curve C of degree k, but not contained in any curve of lower degree 
(irreducible or not). 

Proposition 5.1. Let Z c= lp 2 satisfy (*). Let s > k be the least degree of a curve D 
containino Z, where D does not contain C as a component. (D may be reducible.) For 
each I~Z, let 

c~ = h l ( J z ( l -  1))-  hl(Jz(l)). 

Then 

0 for l < 0  

c1= I + l  for O<l<k  
k for k < l < s  
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and 

k=c~_l>c~>. . .>cq=O for some q; c t = 0  for t>q .  

Proof By hypothesis,  Cc~D is a finite set of  points  containing Z. We take L____ IP z a 
line which does not meet  Cc~D. Then consider the exact sequence 

O~oCz(l- 1)~ Jz(1)~(g L(1)-~O. 

This gives a cohomology  sequence, for l ~ 0  

0---,H°(Jz(l - 1))~H°(Jz(1))-.H°((gL(l))--.H'(Jz(l - 1))~Hl(oCz(l))~0.  

Note  for l < 0, f rom the sequence 0 ~ Jz(l) ~ Oe 2(l)-~ 0 z(I) ~ 0 we get h 1 (jz(l)) = 0, so 
c t = 0  also. 

Now for l<k,  H°(Jz(l))=O, so Q=h°((gL(1))=I+l. For  k<__l<s, every curve 
containing Z consists of  C plus something  else, so 

h°(Jz(l)) = h°((9~2(1- k)) = ½(1- k + 2) ( l -  k + 1). 

Thus 

Q = l +  1 - ½(l-k+2)(1-  k+ 1 ) +  ½(l-k+ 1)( l -k)=k.  

In particular,  c~_ 1 = k. 

Now,  for l_> s, let 

V= im(H°(Jz(1))-~ H°((gL(l))). 

Then V determines a linear system on L wi thout  base points, since L ~ C ~ D = O .  
And we can recover 

c I = codim(V, H°((gL(1)). 

N o w  the last s ta tement  is a consequence of  the following lemma. 

L e m m a  5.2 (Mumford) .  Let L =  IP 1, let V c= H°((gL(/)) be a linear system with- 
out base points, and let V'C-_H°((_gL(I+ t)) be the image of  V®H°((PL(I)). Assume 
V#  H°(CL(1)). Then 

codim(V',  n°(CL(1 + 1)) < codim(V, H°((PL(t))). 

Proof Let d i m V = q .  Then we have a surjective m a p  V®(gL~(gL(I ). Let ~ be the 
kernel : 

0 ~ o ~  V® (9 L ~ 6'L(I)--*0. 

Then  d is locally free of  rank  q - I  on L. Fur thermore ,  since V is a subspace of 
H°((~L(l)), we have H°(#)=O. It follows f rom the classification of locally free 

sheaves on lP 1 [AG,  V, Ex. 2.1] that  ~f ~ (9(v~), with v~ < 0  for each i. 
1=1  

N o w  tensor  with (9(1) and take cohomology.  We get 

0--,H°(~°(1))  --, v ® n°( (g L(1))~ n°((g L(l + 1)). 
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Since each v~<0, h°(g(1))< q - 1. Also, dim(V®H°((PL(1)))=2q; dimH°((gL(l+l)) 
= l + 2 .  So 

a = codim(V', H°(CL(1 + 1)) = (l + 2) -- 2q + h°(g(1)) __< l - q + 1. 

On the other hand 

b = codim(V, H°(CL(I))) = l+  1 - q,  

so we get a<b. If  a=b, then h°(d°(1)) = q -  1, which implies v i= - 1 for each i. In 
that  case, taking degrees, we see d e g g = - ( q - 1 ) ,  so l = q - 1 ,  because 
d e g g  + deg(gL(t ) = deg V®(9 L = 0. But then q = l + 1, so V =  H°((gL(I)), contrary to 
hypothesis. We conclude a < b as required. 

Next we include a key technical lemma. 

Lemma 5.3 (Gieseker), Let bo, bl .... .  b,, be a sequence of nonnegative integers. 
Assume 

(1) for each i, bi<b~+ 1 unless both of them are 0 or both are >m. 

(2) ~, b~<½m(m+l). 
i=O  

Then 
(a) b o = 0  

/ 

(b) for each O<.l<_m, ~ b,<½t(l+ 1). 
i = 0  

l 

(c) for each O<_l<m, let et=½1(l+ 1 ) -  ~ b  i. Then 
0 

e t > min(/, %). 

Proof 

CaseL b,,<m. Then we have strict inequalities, which imply bt<l for all 1>0. 
/ ! 

Thus b o = 0  , and for each l, Z b i <  Y,i=kt(t+ 1). 
0 0 

Case2. b,,>m. We use induction on m, the case m = 0  being trivial. Note  
m -  1 

~, bi= bi-bm~½m(m+ 1 ) - m = ½ ( m -  1)(m), so the sequence b o . . . .  ,b,,_ 1 satis- 
0 0 

ties the hypotheses for m -  1. So (a) and (b) follow by induction. 

Proof of (c). If  % = 0, there is nothing to prove. If % > 0, because of  hypothesis (2), 
there must  be some i with bi<i. So we can pick integers 0<~__<flNm such that 

bi<i for 0 < i N e  

bi=i for o~<i<-_fl 

bi>i for f l<iNm.  
1 

Then for l__< ct we have ~ b i <= ½ l(l- 1), so e I ~ 1. For  c~ < l_<_ fl, we have e~ . . . . .  ea 
0 
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Then for l > fl we have eo > ea + 1 > . . .  > era" Thus it is clear that e t ~ rain(l, era) for all 
I. 

We apply (5.3) to the c i to get estimates for h~(Jz(1)). 

Prolmsition5.4. Let Z~_IP 2 satisfy (,). Assume d > k  2, and choose r such that 
rkNd<(r  + 1)k. Let e = ( r +  1 ) k - d > 0 .  Then 

[d for l < 0  
h~(Jz(l))=ld--½(l+l)( l+2 ) for O<l<k  

[ d + ½ k ( k - 3 ) - k l  for k < l < r - 1  

and 

h ~ ( j z ( / ) ) < ~ ½ ( r + k - l ) ( r + k - l - 1 ) - e  for r - l < l < r + k - e - 1  
= [ ½ ( r + k - l - 1 ) ( r . + k - l - 2 )  for r + k - e - l < l < r + k - 1  

and 

h~(Jz(/))=0 for l > r + k - 2 .  

Proof Since rk<d and clearly d<sk  since Z C C n D  (with the s of (5.1)), we have 
r<s .  We will apply (5.3) to the sequence bi=Cr+k_ i, with m=k. To check the 
hypotheses, note first that we have 

k = c  r _  1 : " "  ~ C s -  1 ~ > C s ~ > " "  

k 

so hypothesis (1) is satisfied. For hypothesis (2), note that ~ b i = ~ c i. On the other 
0 r 

hand, ~ ci=hl(Jz(a))-hl(Jz(b)) for a<~0 and b>>0, which is d. So 
--09 

i r - i  

~ b , = d -  ~ c i. 
0 --cO 

This last sum we can compute explicitly from (5.1)" 

r - - I  

c,=½k(k + 1 ) + ( r - k ) k = r k - ½ k ( k -  1). 
-- OD 

So 

k 

~, b, = d -  rk + ½k(k- 1) = ½k(k + 1)-  e. 
0 

So hypothesis (2) is satisfied, and we see furthermore that e = e  m of (5.3). Our 
conclusion is that for each 0 < q <-_ k, 

Z bi = ½q(q + 1)-  eq, 
0 

with 

e~ > min(q, e). 
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More precisely, for 0 N q < e we have 

q 

~ bi < ½q(q + l ) - q  
0 

and for e < q < k we have 

q 

~ bi < ½q(q + l ) - e .  
o 

Now for any q, 

k b ,  = ~ c ,=ha( j z ( r+k-q-1) ) .  
0 r + k - q  

Making a change of variables l=  r +  k - q - 1 ,  we obtain the inequalities in the 
second half of the proposition. 

The equalities in the first half are obtained using the formula 

q 

c, = d -  h l(Jz(q)) 
- o o  

and the values of c i given in (5.1) for i < r - 1 .  

PropositionS.5. Let Zc=IP 2 satisfy (,), and suppose d<k 2. Then we must have 
d>½k(k+ 1). Choose l<_a<k-  1 so that 

k(k-a)+½a(a+ t ) ~ d < k ( k - a +  1)+ ½a(a- l),  

and let e = k ( k - a +  1)+ ~ a ( a - 1 ) - d ,  so that e>0.  Then 

td for / < 0  
h~(Jz(l))= d-½(l+l)(l+2) for O<l<k 

hX(jz(l))< J ½ ( 2 k - a - l ) ( 2 k - a - l - 1 ) - e  for 
= [ ½ ( 2 k - a - l - 1 ) ( 2 k - a - l - 2 )  for 

ha(~Cz(l))=O for l > 2 k - a - 2 .  

k - l  <_l<_2k-a-e-1  
2 k - a - e -  l < l < 2 k - a -  1 

Proof First note that curves of degree k - 1  in IP 2 depend on ½(k - 1 )  (k + 2) 
= ½k(k + 1) -  1 parameters, so any set of d < ½k(k + 1) points is contained in a curve 
of degree k -  1. Since Z is not contained in any curve of degree k -  1 by hypothesis, 
we have d>½k(k+l). Then d determines a unique a in the range l < a < k - 1  
satisfying the inequality above. 

The first two equalities follow directly from the values of c I given in (5.1), as in 
the proof  of (5.4). 

oo 

For the inequalities, we will apply (5.3) to ~c i ,  taking m = k - a .  Thus b i 
k 

=CZk_a_ i, for i = 0  .. . . .  m. To check the hypotheses of (5.3), first note by (5.1) that 

k = C k - 1  = ""  = C s -  1 > C s >  " '"  
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so (1) is satisfied. For (2), we have 

m co k - 1  

Eb,= Ec,=d- E e,. 
0 k - o o  

But by (5.1) 

k - I  

E ci=½k(k+l), 
- o o  

S O  

~b,=d-½k(k+l). 
0 

Substituting for e, we find 

m 

bi=k(k- a+ 1)+ ½a(a+ 1 ) -  ½k(k + 1) 
0 

=½(k-a)(k-a+ 1 ) - e  

=½m(m+ l)-e.  

So the hypothesis (2) is satisfied for m = k - a ,  and e = %. 
Now the conclusion of (5.3) tells us that 
q 

~'b~<iq{q+l)-q=½q(q-1) for O<q<__e 
0 

and 

q 

~b~<½q(q+l)-e for e<q<m. 
0 

On the other hand 

~,,b~= ~ q=hl(Jz(2k-a-q - 1)). 
0 2 k - - a - q  

So we make a change of variables l=  2 k - a - q - 1 ,  which gives the statement of 
the proposition. In particular, for l>=2k-a-2 we find that hl(Jz(1))=O. 

Remark 5.5.1. In fact, the proof of (5.4) works also for r=k-  1, hence d>k(k- 1), 
and gives the same answer as (5.5) in that range. Also, the proof of (5.5) works for 
a=0 ,  i.e. k2<d<k(k+ 1), and gives the same answer as (5.4) in that range. 

Remark 5.5.2. I believe the inequalities of (5.4) and (5.5) are best possible, but I 
haven't set about checking that systematically. 

§ 6. Application to Curves in •3 

In the classification of curves in IP 3, a n  important question is to determine, for each 
degree d, the possible values of the genus 9 of an irreducible nonsingular curve of 



Stable Vector Bundles 257 

that degree. If the curve lies in a plane, then 9 = ½(d- 1 ) (d-  2). If the curve does not 
lie in a plane, then a classical result of Castelnuovo [AG, IV, 6.4] gives an upper 
bound for the genus, namely 

-4- - d + 1 if d is even 

g 1 d + l  if d i s o d d .  

Furthermore, equality is attained for every d > 3, and any curve for which equality 
holds must lie on a quadric surface. 

This suggests that a better bound should hold if the curve does not lie in a 
quadric surface, or more generally if it is assumed not to lie in any surface of degree 
<k  for some integer k. I made some conjectures, and Joe Harris proved the 
conjectured bound in the range d > k 2. (The best bound in the case d < k 2 is still not 
known.) Harris's original proof [15] involved a subtle study of curves and their 
intersections with planes. The present proof, based on the techniques of §5, 
resulted from Mumford's observation of parallels between Harris's proof and 
recent work of Gieseker on the moduli of surfaces. Recently Gruson and Peskine 
[14] have found another proof of this result, using the technique of liaison. 

Theorem 6.1 (Harris). Let Y be a reduced curve of degree d in IP 3, contained in an 
irreducible surface F of degree k, but not contained in any surface of lower degree, 
and assume d> k ( k -  1). Then 

p°(g)<= ~ + ~d(k - 4 ) +  1 +½f  l - - k -  

where d =-f (mod k) and 0 <=f < k. 

Proof. First we choose a plane H _c Ip 3 such that Z = Yc~H consists of d distinct 
points (possible since Y is reduced) and the curve C = Fc~H is irreducible. Then Z 
is contained in the irreducible curve C of degree k, and because of the hypothesis 
d > k ( k -  1), Z cannot be contained in any curve of degree < k. (This simple point is 
the one which fails for d <= k ( k -  1). Thus Z satisfies the hypotheses (,) of § 5. 

Lemma 6.2. g4th the above hypotheses, for each l 

h°((gr(l))- h°((gy(1 - 1)) > d -  h'(Jz(1)). 

Proof Consider the diagram 

H°((9,,(t)) ~ H°(e)n(l)) .... , Hl(~p(I - 1))=0 

1 1' 1 
0__,H0(ey(l_ 1))_,H0((~(l)) ~ HO(Oz(1)) 8 ,  H,((~(l_ 1))~... 

Hl(~z(l)) 

0 
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Now ]/~? = 0 because this map factors through Hl((ge(l - 1)) which is zero. Therefore 
imv c ker]? = ima. Since h°((gz(l)) = d, this implies that 

h°((gr(l)) - h°((gy(1- 1)) > d -  hl(jz(1)) 

as required. 

Proof of theorem, continued. Take q >> O. Then the Hilbert polynomial of Y gives 

h°((gr(q)) = dq + 1 - Pa. 

Choose r ~ k - 1  so that rk<d<(r+  1)k. Then we can write h°(Cr(q)) as 

q 
h°(@r(q)) = h°(Or(r- 1)) + ~ (h°((gr(/)) - h°(@r(I- 1)). 

l = r  

Since d > rk and Y is contained in the irreducible surface F of degree k, any surface 
of degree < r  containing Y must contain F as as component. Therefore 

h°((fir(r- 1)) > h°(Cp(r- 1)) -  h°(gOe(r- k -  1)) 

or 

,),=>(r32) (r ) 
On the other hand, by the lemma, 
q q 

(h°(@r(1))-h°(Cy(l - 1)))=<_d(q-r+ 1) -  ~ hl(Jz(/)). 
l = r  l = r  

Now we are in a position to apply (5.4) - cf. (5.5.1). Let d=rk+f ,  so that e = k - f ,  
and substitute. We find that 

d q + l - p , = ~  3 ) + d ( q - r + l )  

r + f - 1  

- ~ ( ½ ( r + k - l ) ( r + k - l - 1 ) - k + f )  

r+k--1 
- ~ ½ ( r + k - l - 1 ) ( r + k - l - 2 ) .  

l = r +  f 

Using the formula 

f (~) : Ibm-l/ - ( ~ ) a  , 3 ]  

to evaluate the sums, we find 

' ) 
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Then expanding and substituting r =  we obtain 

pa__ < ~ + ½ d ( k - 4 ) + l  + 

as required. 

Remark  6.2.1. Harr is  actually proved more,  namely that  this m a x i m u m  is attained, 
for every k, d > k  z, by an irreducible nonsingular  curve, and that  the theorem 
remains true if instead of assuming Y is contained in a surface of degree k, we 
assume merely that  Yis not contained in any surface of degree < k. For  d = rk, with 
r > k, a complete  intersection Y of a surface of degree k with a surface of degree r 
gives equali ty in the theorem. 

Remark6 .2 .2 .  For  k = 2  we recover Castelnuovo's  theorem. For  k = 3 ,  if Y is 
contained in a nonsingular  cubic surface, then one can derive this bound  by an 
explicit s tudy of all curves on the surface lAG,  V, Ex. 4.7]. 

§ 7. Stable Bundles on ~2 

In this section we will apply  the results of § 5 to stable rank  2 bundles on IP 2. Our  
purpose is to get bounds  on ha(g(/)) for all I, which we will then use in studying 
stable bundles on IP 3 

Proposition 7.1. Let  g be a rank 2 bundle o n  IP 2 with e 1 = 0  (respectively,  c a = - 1). 
Le t  t >= - 1 be an integer such that (t + 1) (t + 2) > c 2 (respectively,  (t + 1) 2 ~> C2)" 
Then H°(tY(t)) 4:0. 

P r o o f  The  R iemann-Roch  theorem for o~(t) says that  

Z(g(t)) = ½ca(c a + 2t + 3) + (t + 1) (t + 2 ) -  c 2 . 

This can be obtained f rom the Riemann-Roch  theorem for g (see p roof  of  3.2) by 
substi tuting c t ( g ( t ) ) = c  a + 2t and c2(g( t ) )=c  2 + tc~ + t 2. 

N o w  suppose that  H°(8( t ) )=0 .  Then by Serre duality, HZ(g(t)) is also zero, 
because it is dual to H ° ( g ( -  c a - t -  3)) and t >__ - 1 implies - c 1 - t -  3 __< t. Thus  
the R iemann-Roch  theorem reduces to 

- h a ( g ( t ) ) = ½ c ~ ( c l  + 2 t  +3)  + ( t  + 1)(t ~ 2 ) -  c 2 , 

which is ~0 .  Substituting c 1 = 0  (respectively, c 1 = -  1) we get ( t +  1 ) ( t + 2 ) < c  2 
(respectively, (t + 1) 2 < c2). Therefore if the opposite inequality is satisfied, H°(g( t ) )  
:~0. 

O u r  next objective is to get some good bounds  on hi(g(/)) for all I~7 .  The  
technique is to twist ~ by a large integer n, take a section seH°(8 (n ) ) ,  and  let Z be 
the zero set of  s. First we show that  for n sufficiently large and s sufficiently general, 
Z will satisfy the hypotheses (*) of  §5. Then we can apply  the results of  §5 to get 
bounds  on hl(~(l)). 
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Proposition 7.2. Let  ~ be a rank 2 vector bundle on IP 2 with Chern classes cl, c 2. 
Then for n >> 0 and s E H°(g(n)) sufficiently general, the zero set Z = (s)o satisfies (,) of  
§ 5: namely Z consists of distinct points, and there exists a curve of least degree 
containing Z which is irreducible. 

Proof  For  n sufficiently large, d°(n- 1) will be generated by global sections, so by 
(1.4), for sEH°(g(n)) sufficiently general, Z will be nonsingular, i.e. consist of 
distinct points with multiplicity one. 

Consider such a Z. Then there is an exact sequence 

0~(9  -L, ~(n)~.fz(c  1 + 2n)--,0. 

For any integer k > 0, curves of degree k containing Z correspond to elements of 
H°(jz(k)) .  These can be lifted to elements of H ° ( g ( k -  e 1 - n)), and conversely, any 
element of this space which is not a multiple of s gives a curve containing Z. In 
particular, let t be the least integer for which H°(g(t ) )#0,  and assume that n was 
taken >t .  Then the least degree of a curve containing Z is k = t + c ~ + n ,  and 
H°(~(t))_~H°(Az(k)). Let uEH°(~(t)) determine the curve C of least degree 
containing Z. We may have very little freedom in the choice of u, so we will show 
that if s is sufficiently general, then C is necessarily irreducible. 

First we show that the curve C can be characterized as the support  of the sheaf 

g( t)/(s. (9( t -  n) + u. (9), 

Indeed, 

g(t)/s. (9(t- n) ~- Y~(k), 

and the section u defines the curve C, so 

g(t)/(s. (9( t - n) + u . (9) ~- Yz(  k )/ Jc(  k ) 

which has support  C 
Thus s and u play a symmetrical role in the definition of C. Reversing these 

roles, let W be the zero set of the section u6 H°(8(t)). Then W is a locally complete 
intersection zero-dimensional closed subscheme of IP 2, and there is an exact 
sequence 

O~ (9-~ g ( t ) ~ J w ( e  ~ + 2t)---~0. 

Then the section s~H°(g(n)  determines a curve of degree k =  t + c 1 + n containing 
W, which is none other than C. So to prove our result, it will be sufficient to show 
that for n sufficiently large and s sufficiently general, C is irreducible. Since we get 
all curves containing W in this way, it is enough to prove the following lemma. 

Lemma 7.3. Let  W be a zero-dimensional locally complete intersection subscheme of  
IP 2. Then for all m ~ 0, there exists an irreducible curve C o f  degree m containing Vv: 

Proof  At each point pc W, take local equations f ,g  for W. Then we can express the 
local intersection of the curves f g at P as P together with some infinitely near 
points. So let W be represented as Pt . . . . .  Pr where we include all these infinitely 
near points. Now blow up all the points Pi, and let )( be the blown-up surface. Let 
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E i denote the total transform on.~ of the exceptional curve introduced by blowing 
up Pr Then the linear system of curves of degree rn in ~2 containing W 
corresponds to the linear system [r~*(mZ)-SEll onX, where L denotes a line in IP 2, 
and ~ : ~ 2  is the projection map (see lAG, V, §4]). 

N o w X  is obtained from IP 2 by a succession of blowing up points. At each step, 
the relative Co(D-sheaf obtained from the Proj construction is just (9(- E~) rAG, II, 
§ 7]. Therefore, taking L as a very ample divisor on IP 2 and applying [AG, II, Ex. 
7.14b] successively, we see that for all m>>0 and for suitable r~>0, the divisor 
mL-Xr iE  i will be very ample on X .  Then by Bertini's theorem lAG, II, 8.18] we 
can find an irreducible nonsingutar curve C in the linear system tmL-Zr~E~I. Its 
image C = re(C) in IP 2 will be an irreducible curve of degree m containing ~E 

Theorem 7.4. Let E be a rank 2 bundle on IP 2 with Chern classes ca, c2, and let t be 
the least integer such that H°(g(t))~0 

(a) Assume c 1 = 0  and t>O. Then 

= 0  
<=c2--t2+1+2 

hl(£(l)) ~ = c 2 - (1 + 1) (l + 2) 

[<02- t2  - l - 1  

for  l <= - - c 2 + t 2 - - 2  

for --c2+t2--2<--l<_--t--3 
for --t--2<_l<t--1 
for t--l<--l<c2--t2--1 
for l>=c2-t2-1. 

I 
= 0  

<c2- t2  +t +l+ l 
h I (N(I)) i = c2 - (l + 1) 2 

l~Co 2 - t 2 + t - l - 1  

for l< - - C 2 + t 2 - - t - - 1  

for - c 2 + t z - t - l < l < - - t - 1  
for - t - l < l < - t - 1  
for t - l<_ l<_ca- t2+t -1  
for t>=c2--t2+t--1. 

Proof. We will write only the proof of (a), since the proof of (b) is almost 
identical. So assume c a =0  and t 20. In the first place, by Serre duality, ha(~(l)) 
= h i (g (  - l - 3 ) ) ,  SO it iS enough to treat the case l_>_ - 1 .  

In the range - 1  _<I-< t - 1  we have h°(g(1))=0 by definition of t, and h2(8(I)) 
= h°(~( - I - 3 ) ) - - 0  by duality, so the equality follows directly from the Riemann- 
Roch theorem, as in the proof of (7.1). 

It remains to treat the case I>__ t. Pick an integer n > 0 and a section s ~ H°(g(n)) 
by (7.2) so that the zero set Z = (s) o satisfies (.) of§ 5. The degree of Z is d = c 2 + n a, 
and the least degree of a curve containing Z is k = t + n. Note that since t__>0, for all 
n>>0, d<k(k+ 1)=nZ+n+2nt+t. Therefore we can apply (5.5) - cf. (5.5.1). 

First we must choose a such that 

k(k-a)+½a(a+ 1)<=d<k(k-a+ t) + ½ a ( a -  1). 

Substituting d = n 2 + c z and k = n + t this says 

(n+t)(n+t-a)+½a(a+ 1)_<-n2 +Cz <=(n+t)(n+t- a+ 1) + ½a(a-  1) 

or  

n(2 t -a )+t2-a t  + ½a(a+ 1)<c2 <n(2t -a+ 1)+t2-at  +t +½a(a - 1). 

(b) Assume c I = - 1 and t>0.  Then 
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So we take a = 2t in which case the inequalities become 

t2 +t<=c2 <n+t 2, 
The first inequality t 2 + t < c 2 must  be satisfied, because if t(t + i) > c2, then by (7.1), 
H°(¢(t- 1)) 4= 0, which contradicts  the choice of  t. The  second inequality is satisfied 
for n~>0. 

Thus we are in a posit ion to apply  (5.5), with 

d=n2+c2 

k=n+t 

a=2t 
C = H - ~  t 2 - - C 2  . 

Writing q as the variable instead of I, we will need the range q > k -  1. Expressing 
everything in terms of c 2, t, n, we get 

<=½(2n-q)(2n-q-1)-n-t2 +c2 for n + t -  l <=q<=n-t2 +c2-1 

hl(Jz(q)) l<~(2n-q-1)(2n-q-  forf°r q >=2n- +c2-1<q<=2n-1 

T o  compu te  hi(e(/)), we use the exact sequence 

0~(9(1- n)~o~(1)~ Jz(l + n)~O, 

which gives a cohomology  sequence 

o~ nl(e(t))~ n~(Jz(l + n))~ n2((~(/- n))~n2(¢( I ) ) .  

For  l > - 1, h:(¢(1)) = h°(¢(- l -  3)) = 0. On the other  hand, 

I- 3))= ~½(n- I- 1 ) ( n -  l-- 2) for I< n- 2 h2(O(l n)) h°((~(n 
for t>n--2 

Taking  q = l + n above,  and combining,  we get 

t < ½ ( n - t ) ( n - l - 1 ) - n - t Z  + c 2 - ½ ( n - t - 1 ) ( n - t - 2 )  
for t -  l <-l<_c2-t~- i 

for c2-t2-1<-l<--n-1 

for l ~ n - 2 .  

Simplifying the first expression, n drops  out, and we get 

h1(¢(/))__<c 2 - t 2 -  t -  1 

as required, q.e.d 

§ 8. Nonvanishing of  H°(8(t)) on F 3 

In this section we prove one of  the main results of  this paper, which gives a specific 
bound on t, as a function o f c  t and c 2, so that H ° ( 8 ( t ) ) , 0  for any rank 2 bundle on 
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F 3. This gives, in principle, a method of classifying all stable bundles with given c 1 
and c 2, by associating them to curves in 1P 3 of bounded degree. To prove this 
result, we use the Riemann-Roch theorem for ~ on ~,3, plus the estimates of 
cohomology of the restriction of g to a plane which were developed in the previous 
section. 

Lemma 8 . l  (Riemann-Roch). Let ~ be a rank 2 vector bundle on ~3 with Chern 
classes cl, c 2. 

(a) I f  c I =0  then 

Z(¢(1)) = ½ (l + 1) (l + 2) (l + 3) - c2(1 + 2) 

for any 1e7£. 
(b) I f  c t = - 1, then 

Z(e(l)) =-~(1 + 1) (1 + 2) (2l + 3 ) -  ½c2(2/+ 3) 

for  any I e ~  

Proof  This is another special case of the general Riemann-Roch theorem, and the 
particular formulas can be computed as in the proof of (3.2). 

Theorem 8.2. Let  ~ be a rank 2 bundle o n  IP 3 with Chern classes Cl, c 2. 
(a) Assume c 1 =0, and let t ~O be an integer such that either 
(1) t > c 2 - 2  and ( t + l ) ( t + 3 ) > 3 c  2, or 
(2) t ~ c 2 - 2  and ( t + 1 ) ( t + 2 ) ( 2 t + 3 ) > 3 c 2 ( c 2 +  1). 

Then H°(6(t)) 4= 0. 
(b) Assume c I = - 1, and let t >O be such that either 
(1) t > c 2 - 2  and ( t + l ) ( t + 2 ) > 3 c  2, or 
(2) t < c 2 - 2  and 2t( t+ l ) ( t+  2)> 3c 2. 

Then H°(~(t)) 4= O. 

Proof. We will only write the proof of (a), since the proof of (b) is almost identical. 
So assume c 1 =0. If £ is not stable, then H°(6~)40 (3.0.1) so there is nothing to 
prove. Sowe may assume that 6 ~ is stable. Then by (3.3) there is a plane He= ]p3 such 
that 6~ln is semistable (and in the case c 1 = - 1 it is even stable). Let r be the least 
integer for which H°(~[n(r))#:O. Then r__>0. 

Now suppose for some t > 0  that H°(~(t)) =0. Then also H3(~(t))=0 since it is 
dual to H°(£( - t-4)) .  Thus the Riemann-Roch theorem for g~(t) says 

- h~(~(t)) + h2(¢(t)) = ~(t + 1) (t + 2) (t + 3 ) -  c2(t + 2). 

By duality h2(¢(t))= h~(¢( - t-4)).  We estimate this latter dimension by compar- 
ing with gin. For any 1<0, H°(glH(l - 1))=0, so there is an exact sequence 

o--+ n~(¢( l  - 1) )~  n ' ( e ( l ) ) ~  H l ( e  [H(l))--*... 

If t > c 2 - 2  , then - t - 4 <  - c 2 - 2 ,  so by (7.4), for any l<  - t - 4 ,  hl(~r[n(/))=0. 
Since in any case HI(g°(/))=0 for l,~0, we conclude that HI(g~( - t - 4 ) ) = 0 .  Then 
since h~(¢(t))>0, the Riemann-Roch theorem above gives 

~(t+ 1)(t+2)(t+ 3)-c2(t+ 2)=<0. 
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Dividing out  t + 2 we find 

(t + l)( t  + 3)<3c 2. 

So if the opposite inequality is satisfied, we must  have H°(g(t)) 4: 0. This is Case 1. 
Now suppose on the other  hand that t<=c2-2. Then - t - 4__>  - c 2 - 2  , so by 

(7.4), not ing r > 0, we have 

h t (g  In( -- t -- 4)) ~ C z -- t-- 2. 

From the exact sequence above, we see that 
- t - - 4  

h~(g(-t-4)) < ~ h~(gf~(/)). 
l= --oo 

Since the estimate of (7.4) for hl(glu(1)) increases by 1 each time, we obtain 

h i ( g ( -  t -  4)) < ½(c2 - t -  2) (cz  - t -  1) .  

Using this estimate for h2(~(t)), and using hl(d#(t))> O, the Riemann-Roch theorem 
gives 

½(t + 1) (t + 2) (t + 3 ) -  c2(t + 2) ~ ½(c 2 - t -  2) (c 2 - t -  1). 

Simplifying gives 

(t + 1) (t + 2) (2t + 3) < 3c2(c 2 + 1). 

So if the opposite inequality is satisfied, we must  have H°(g(t))+ O. This is Case 2. 

Remark 8.2.1. Using Barth's theorem [-6] over ~ that  if 8 is stable on IP 3 with 
c~ =0,  c 2 >2,  then gIH is stable for almost  all H, we can improve the estimate of  
(a) (2) in (8.2). It is enough to assume 

(t + 2) (t + 3) ( 2 t -  1) > 3c2(c 2 - 1). 

Remark and Conjecture 8.2.2. In both (a) and (b), Case i applies for c z = 1, 2, 3, 4, 5, 
and Case 2 applies for c 2 > 5. Here is a table of the least t satisfying the hypotheses 
of the theorem for small c 2. 

C 2 

C1= 0: t 

C l = - - I :  t 

=<0 1 

1 0 

0 

2 3 

1 2 

2 

415 

3 

6 7 

3 3 

3 

8 9 

4 4 

4 

l° 1551,11j 126 
Note  that  in Case 1, t,-~ 3]/~2, whereas in Case 2 ~t~[3--"2"11/3~,2 ~2J . We conjecture that 
the quadrat ic  bound  of  Case 1 applies for all c 2, e.g. for q = 0 ,  that 

t > 3]//~-z + 1 - 2 implies H°(g(t)) +- O. 

Remark 8.2.3. Atiyah has observed that  this conjecture is true for instanton 
bundles, i.e., those stable bundles ~ with c I = 0  for which H 1 ( ~ ( - 2 ) ) = 0 .  In that 
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case, the bundle g can be recovered as the homology  kerfl/ im~ of  a monad 

(9( - 1) a _L, oza + z ~ (9(1)a , 

where d=c2(g ), a is injective, cokera  is locally free, and fl is surjective (see [3] or  
[7a]). Therefore, letting ~ =kerfl ,  there are exact sequences 

0__,~-__, (f:~ + z L (9(1)a~O 

and 

O- ,g0( -  1)<-}~--,~--}0. 

Twisting by an integer t and taking cohomology gives 

O~ H°(O(t-  l)U)--+ H°( f f  (t))~ HO(~(t))--,O 

and 

O--*H°(~(t))-+H°((9(t) 2a+ 2)-*H°((9(t + 1)d)~ .... 

F rom this it follows that  for t > 0 ,  

h°(~(t))>=(2d+2)(t33) - d ( t 3 4 )  - d ( t 3 2  ), 

which simplifies to 

h°(d~(t)) > ~(t + 2) (t 2 + 4t + 3 - 3d). 

The condit ion that t 2 + 4t + 3 - 3d > 0 is precisely t > 1/3~d+ 1 - 2. We conclude 

that if t > 3 ~ 2  + 1 - 2 ,  then H°(dY(t)) q: 0, as required. 
It seems reasonable to expect that  for a sufficiently general instanton bundle, 

this bound  on t is also the best possible, but we have no proof. 

Corollary 8.3. 4 The set of stable rank 2 bundles on IP 3 with given Chern classes 
c 1, c 2 forms a bounded family. 

Proof. We may assume c 1 = 0  or  c I = -  1. Then according to the theorem, 
H°(o~(t)):~0, t depending on c 2. Therefore for some O<l<_t, there is a section 
s~H°(~(l)) whose zero set is a curve in IP 3. According to (1.1) 8 is determined by 
this curve Y and an isomorphism ~ of m r with Or(m ) for a certain m. Since the 
degree and arithmetic genus of  Y are determined, these curves Y form a bounded  
family parametrized by part  of  the Hilbert scheme; the choice of  i somorphism ~ is 
again a finite-dimensional choice. Thus the family of  stable 6 ~ with given c 1 and c 2 
is bounded.  

Corollary 8.4. The possible values of c 1, c 2, a for a normalized stable rank 2 bundle 
on IP 3 are 

c 1 = 0 ,  ~ = 0 ,  c 2 > 1  ; 

c t = 0 ,  ~ = 1 ,  c 2 > 3  ; 

c l = - l ,  c 2 even >2.  

In particular, for any stable rank 2 bundle, c~ -4c  2 <0.  

4 Maruyama [30, p. 92] has announced this result for stable rank 2 bundles on any nonsingular 
variety. This is an independent proof in this case 
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Proof Indeed, we have seen that all these values are possible (3.1.1), (3.1.2), (3.1.3). 
Conversely, clc 2 =0 (mod2) by (2.2) and if g is semistable, then c ~ - 4 c  2 <0 by 
(3.5). Thus we have only to eliminate the cases c 1 = c  2 = 0  and c 1 =0,  c~ = 1, c 2 = 1, 2. 

If  c a = c 2 = 0 ,  then by (8.2), H°(8)#:0, so ~ is not stable. 
If  c 1 =0,  c 2 = I, then Wever (8.4.1) shows that g(1) corresponds to two skew 

lines as in (3.1.1), so ~=0 .  
If c a =0,  c2=2,  then H1(d~(-2))=0 by (9.4), so c~=0. 

Example 8.4.1. Let 8 be a stable rank 2 bundle on F 3 with c 1 = 0  and c 2 = 1. Then 
H°(g) = 0 because ~ is stable, and by (8.2), H°(g(1)) 4=0. Therefore if se H°(g(1)) is a 
nonzero section, its zero scheme Ymust be of codimension 2. The curve Ywill be of 
degree 2, and its dualizing sheaf coy will be isomorphic to (0y(-2), Thus Y must be 
a union of two skew lines, or a certain multiplicity 2 structure on a single line. It 
could not be a conic or two lines meeting because in those cases o r--- (.0r(- i). 

Knowing the structure of Y, one can analyze the structure of d ° and describe all 
such bundles up to isomorphism. This is done in the thesis of Pete Wever [46], and 
the main results are these: (1) Any such bundle has a section seH°(g(1)) whose 
zero scheme is two skew lines. (2) Any two such bundles differ by an automor-  
phism of IP 3. (3) The set of all such bundles has a fine moduli space isomorphic to 
IP 5 -  G(1, 3), where G(1, 3) is the Grassmann variety of  lines in IP 3. 

This classification of stable bundles with c~=0,  c2=1 has been obtained 
independently by Barth [6] (at least over tE), by another method. He calls them 
null-correlation bundles. 

§9 .  Stable Rank 2 Bundles on F 3 with c I = 0  and C2-----2 

In this section we study the structure of stable rank 2 bundles on 1P 3 with c 1 = 0  
and c z = 2. Our first main result (9.7) is that such a bundle g determines a unique 
nonsingutar quadric surface Q= p3 and a certain linear system on Q, and that 
conversely this data determines ~. From this we can show that the variety of  
moduli M of these bundles is irreducible and nonsingular of dimension 13. From 
this we can also see that up to automorphisms of IP 3, there is a t -parameter  family 
of inequivalent bundles of this type. Then we study the restriction of d ° to planes 
and lines in 1P 3. One main result (9.13) is that d ~ is uniquely determined by its 
divisor of jumping lines (with one exception in characteristic 3). It is not known 
how generally the divisor of jumping lines determines a stable bundle on p3. 
Another result is an explicit construction of the divisor of jumping lines in terms of 
the quadric surface Q and the linear system mentioned above. We were not able to 
decide whether the variety of moduli M is a rational variety, although it appears 
likely that it is. 

Throughout  this section, 8 will denote a stable bundle on IP 3 with Chern 
classes e l = 0  and c2=2.  Since ~ is stable, H°(o~)=0, but according to (8.2), 
H°(~(1))+0. Let seH°(N(1)) be a nonzero section. Then the zero set Y=(s) 0 of s 
will be a curve (meaning a locally complete intersection closed subscheme of F 3) of 
degree 3 such that o r ~ 0 r ( - 2 ) .  Our  first task is to classify all such curves Y in •3. 
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Proposition 9.1. Let Y be a curve of degree 3 in IP 3 with cor---(Pr(-2). Then Y is 
either 

(a) the union of three nonintersecting lines; or 
(b) the union of a line with another line not meeting it, where the second has a 

multiplicity 2 scheme structure given by a homogeneous ideal of the form (x 2, xy, y2, 
f x  +gy), where f and g are linearly independent linear forms in the remaining 
t, ariables z, w, and where we have taken x = y = 0 as the equations of the reduced line; 
or 

(c) a single line with a multiplicity 3 scheme structure given by a homogeneous 
ideal of the form (x 3, x2y, xy 2, y3, f x  +gy+axZ +bxy+cy2), where f and g are 
linearly independent linear forms in the remaining variables z, w, and a, b, c are 
constants. 

Proof From the hypotheses, one sees immediately that the arithmetic genus Pa of 
Ymust be - 2 .  Thus Ycannot be an integral curve. If it is reduced, each connected 
component  Z must be of degree < 3 and have o z ~ (gz(- 2). The only connected 
reduced curve with this property is a line ~1. This gives case (a), which we have 
studied earlier (3.1.1). The curve Y cannot have a conic or two intersecting lines in 
its support, so the only remaining possibilities are two lines, one with a multiplicity 
2 structure, or one line with a multiplicity 3 structure. It  remains to see which 
multiplicity 2 or 3 structures Z on a line (say x = y = 0 )  have the property that 

o z --- (gz( - 2). 
First let Z be a multiplicity 2 structure on the line X given by x = y  = 0, such 

that e S z _ ~ z ( - 2  ). Then according to Ferrand's theorem (1.5), taking m = 2 ,  the 
ideal sheaf J z is obtained as the kernel ofa  surjective map u : i x  --' d~x. Hence there is 
an exact sequence 

Since Jx/J2x "~Cx(-1)OCx(-1) ,  with generators x and y, the map u is given by 
two linearly independent forms f, g in the homogeneous variables z, w along the 
line X. Therefore J z / J x  z is generated by f x  + gy, and the homogeneous ideal of Z is 
of the form (x 2, xy, y2, f x  + gy), as required. 

Now suppose Y is a multiplicity 3 structure on the line X, with o g r ~ C r ( - 2 ) .  
Since we do not have a general classification of multiplicity 3 scheme structures on 
a curve analogous to Ferrand's theorem, we will use an ad hoe argument. Take an 
affine 3-space &3 ~ 1p3 with affine coordinates x, y, t, and pass to the ring k(t) [x, y]. 
Then Z corresponds to a multiplicity 3 structure on the point x = y = 0  in K~, r 
Therefore its ideal can be written in the form (x 3, xZy, xy 2, y3, f x + g y + a x  z 
+ bxy + cy2), where f, g, a, b, c are polynomials in t, and f and g are not both zero. 
Going back to IP 3, this shows that the homogeneous ideal I r of Y contains a 
homogeneous polynomial of the form h = f x + g y + a x 2 + b x y + c y  2, where 
f, g, a, b, c are polynomials in z and w, with f, g of some degree r and a, b, c of degree 
r -  1. Since Y is locally complete intersection, we see that 

I F = (x 3, xZy, xy 2, y3,fx + gy + ax 2 + bxy + cy 2) 

and furthermore that f and g can have no common zeros along X. Now the 
arithmetic genus of such a curve is easily computed as a function of r = degf. 
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Indeed, there is an exact sequence 

0-+ (gF 3 ( -- r -- 1)/(x 2, xy, y2) h (gr 3/(x 3, x2y, xy 2, y3)-* (_gy-~0 

from which a short calculation gives p, = 1 - 3r. In order to have p~ = - 2 we must 
have r = 1. Thus f and 9 are linearly independent linear forms, and a, b, c, are 
constants, as required. 

Lenuna 9.2. With the same hypotheses as (9.1), the curve Y is contained in a unique 
quadric surface Q c= F 3, necessarily nonsinoular. 

Proof In case (a) this is classical. In case (b), it is clear from the ideal that the 
double line is contained in a 3-parameter family of quadrics. Thus we can find at 
least one quadric Q containing Y This quadric must be irreducible, for otherwise 
the double line would be contained in a plane, which is impossible as we see from 
its ideal. Furthermore Q must be nonsingular, because any two lines on a quadric 
cone meet. Then it is clear that Y is a divisor of type (3, 0) on Q (recall [AG, II, 
6.6.1] that the divisor class group of Q is ~@7z, generated by a line in each of the 
two rulings; by the type we mean the class in 7/®~7). Therefore Q is unique, 
because Y cannot be a subset of a divisor Qc~Q', which is of type (2,2). 

In case (c) it is ddear from the ideal that Y is contained in a unique quadric 
surface Q. It must be irreducible since Y is not contained in a plane. It must be 
nonsingular, because the triple line scheme on a quadric cone fails to be locally 
complete intersection at the vertex. 

Lemma 9.3. Given 8 as above, and a section sEH°(g(1)) with zero set Y, the 
nonsingular quadric surface Q of (9.2) containing Y depends only on ~, and not on the 
choice of  s. Furthermore, dJmH°(d(1))=2, and as s~H°(8(1)) varies, Y describes a 
linear system of  dimension 1 and type (3, 0) on Q. 

Proof First we show that dimH°(8(1))= 2. Indeed, we have an exact sequence 

0--, (9-~ ~(1)-- , : r (2)- ,0 ,  

and (9.2) implies that d imH°(Jr(2))= 1, from which it follows immediately. 
Now let teH°(g(1)) be a section linearly independent from s. Then the image of 

t in H°(Jr(2)) gives an equation for Q. Therefore 

~(1)/(s,  t) ~- :~,d2), 
where ~¢r,e denotes the ideal sheaf of Y on Q. Since s and t form a basis of H°(g(1)), 
the left-hand side of this isomorphism depends only on g. We can recover Q as the 
support of the coherent sheaf on the right-hand side, so Q depends only on g. 

It is easy to see that there is a linear map H°(N(1))~H°((ge(3,0)) whereby the 
section s goes to the section cutting out Y on Q. So as s varies, Y cuts out a linear 
system of type (3, 0) and of dimension 1. 

Lemma 9.4. The dimension of  the intermediate cohomolooy of  g is as follows : 

hl(~( / ) )=f~ /f I = 0 ' - 1  
otherwise 

h2(~(I))= {20 if 1 = - 3 ' - 4  
otherwise 
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t 'roof From the exact sequence 

0-+ ~o A+ g (1 )+J r (2 )~  0 

we have Hl(g(l))~ Hl(. /r(l+ 1)). From the exact sequence 

we h ave H l ( j r (  l + 1)) = H l (,/y, e( l + 1)). Now since J r ,  Q is an invertible sheaf on Q, 
its cohomology depends only on the linear equivalence class of Y. Since Y is 
linearly equivalent on Q to a union of three disjoint lines, we may assume, for the 
purposes of this calculation, that Y is a union of three disjoint lines. Then from the 
exact sequence 

0--+Jy--+~F 3-+ (gr-+0 

it is easy to compute that 

hl(Jr(m))={~ if m=0,1 
otherwise. 

This gives the result for h x, and the statement for h 2 follows by Serre duality. 

Remark 9.4.1. Since H°(g(l))=0 for l<0, by Serre duality H3(8(l))=0 for l > - 4 .  
So we can apply the theorem of Castelnuovo [-32, p. 99] to conclude that g~2) is 
generated by global sections. (Of course g(1) is not generated by global sections: 
its global sections generate the stalks only at points not on Q.) It follows from(t.4), 
at least in characteristic 0, that g(2) will have a section whose zero set is an 
irreducible nonsingular elliptic curve of degree 6. This shows that in characteristic 
0 the construction of (4.3.3) actually produces all stable bundles with c 1 =0 and 
c2=2. 

Lemma 9.5. With ~, Q as in (9.3), the linear system of curves Y on Q induced by 
varying s~H°(d~(1)) is a linear system without base points. 

Proof The support of Y is always a union of lines, so it will be sufficient to show 
that for any line L, there exists a section sEH°(g(1)) not vanishing alcng L. 
Considering JL®d~(1) as a subsheaf of ~(1), since dimH°(g(1))=2, it will be 
sufficient to show that dimH°(JL@d~(1))< 1. 

l e t  h~ and h 2 be linear forms defining the line L. Then the exact sequence 

0--,(9(-2) h~'-~,C(--l)@~0(--1) h~,~ ,jL__+O, 

tensored with #(1), gives an exact sequence 

O=H°(~)2 ~H°(°/L®~g(1))-+Hi(g(- 1)) h~,-< Hl(~)z" 

I claim in fact that the map 

h I :Hl($( - 1))-+Hi(g) 

has kernel of dimension < 1, which will prove our result. Let H be the plane 
defined by h v From the exact sequence 

0- ,# ( -  1) < -  ,¢-+glu--+0 



270 R. Hartshorne 

we get 

o = n ° ( ~ ) - - , n ° ( ~ l n ) ~ n l ( ~  ( -  1)) h, .~ Hl(~f) ' 

Since H1(8( - 2))=0, the same sequence shows that H°(¢( - 1)In)=0. Therefore if 
H°(81u)oe0, a section t eH° (¢ ln )  must have a zero-set Z of codimension 2 in 
H = IP 2, which will consist of two points, since c2(~ln) = 2. So we will have an exact 
sequence 

0--, (gu--*~[n ~ Jz ,n  ~ 0, 

from which it is clear that dimH°(¢lH)= 1. This completes the proof. 

Corollary 9.6. I f  char.k:t: 3, then there exists a section s~H°(¢(1)) whose zero set is 
three disjoint lines. Thus the construction o f  (3.1.1) gives all stable bundles with c 1 = 0 
ate1 c 2 = 2. 

Proof  The linear system of the curves Y is of type (3, 0) on Q. Regarding Q as 
IP~x IP ~, this linear system is induced by a linear system g~ of degree 3 and 
dimension 1 on one of the factors F 1. Since the g~ has no base points, it induces a 
morphism of degree 3 from U? 1 to F ~. If char.k:~3, this morphism will be 
separable, so the general member of the g~ will consist of three distinct points. The 
corresponding curve Y on Q will be three disjoint lines. 

Remark 9.6.1. On the other hand, if char.k = 3, the Frobenius morphism of 1P 1 to 
IP ~ corresponds to a g~ consisting of {3PIPE ~,1 }. From (9.7) below it follows that 
for any choice of Q and a choice of one factor in Q =~,t × ip1, there exists a bundle 
# giving rise to the given Q and g~. Thus in characteristic 3 there are stable bundles 
8 with c I =0 and c: =2  such that for every s~H°(t¢(1)), the zero set Y=(s)0 is a 
single line with a multiplicity 3 scheme structure. 

Theorem 9.7. Each stable bundle dJ on 1P 3 with c I =0 and c 2 =2  determines 
(a) a nonsingular quadric surface Q ~_ IP 3, 
(b) a choice o f  one o f  the two factors in the isomorphism Q ~-F 1 × lP 1, and 
(c) a linear system g~ of  degree 3 and dimension 1 on F 1, without base points. 
Conversely, any such data (a), (b), (c) arise f rom a unique such bundle o ~. 

Proof. We have seen in the previous lemmas that as seH°(¢(1)) varies, the 
corresponding curves Y sweep out a linear system of type (3, 0) without base points 
on a uniquely determined nonsingular quadric surface Q. This picks out one of the 
two families of rulings on Q and gives a g~ without base points on tP 1. 

To prove the converse we show, using a technique similar to the proof of (1.1), 
that #(i)can be recovered as an extension of coherent sheaves. As in (9.3) pick two 
linearly independent sections s, teH°(~(1)) and consider the exact sequence 

Now J r ,  Q -- d?Q( -- 3, 0), where we denote the two generators of Pic Q by (gQ(1, 0) and 
60~(0,1). With this notation, d~e®Op~(1)=Oe(1,1), so Jr ,Q(2)~Q(--1,2) .  The 
exact sequence above determines an element ~e Ext~,3((gQ(- 1, 2), d~@(9). This Ext ~ 
is the global sections of the corresponding sheaf 8x t  ~ ; using the isomorphism 
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O)Q_~¢xtl((_gQ, COF~), we can interpret ~ as an element of H°((9Q(3,0)) 2, or as two 
elements ~ 1, ~z ~ H°((gQ( 3, 0)). These of course are the generators of the g~. 

Conversely, given the data (a), (b), (c), let 41, ~2cH°((gQ(3,0)) correspond to 
divisors generating the g t  They determine an element ~ H~((gQ(3, 0)) z, which by 
the above reasoning is isomorphic to Ext~3((gQ(- 1, 2), (9@d)). This ~ determines an 
extension 

0-~(_9OC-~d~(1)~(90(- 1, 2)~0 

for some coherent sheaf g on IP. We must show that 8 is locally free, stable, and 
has Chern classes cl = 0  and c2=2. 

To show that g(1) is locally free, apply the functor Worn(., (9) to the above 
sequence. We obtain (in part) 

...--~o~fbm(d) 2, (9) ~-~ gxt  t((g o ( -  1, 2), (9)~gxt l (g(1), (9)--~xt l((~ 2, (9)=0. 

c0e(3,0) 

The two global sections (1,0) and (0,1) of ~om((92,(9) go by 6 to 
¢1, ¢2 e H°((ge(3, 0)) by construction. Since these generate a linear system without 
base points, 6 is a surjective map of sheaves. Therefore gxt~(g(1), (9) =0. On the 
other hand, clearly g(l)  has projective dimension 1 over each local ring, so by a 
lemma of Serre [42, lemme 9, p. 2-08], 8(1) is locally free. 

It is clear that o ~ has Chern classes c~ = 0  and c2=2. Twisting the above 
sequence by - 1 it is immediate that H°(g)= 0, so ~ is stable. 

Corollary 9.8. The variety of moduli M of these bundles is an irreducible 
nonsingular variety of dimension 13. 

Proof The nonsingular quadric surfaces Q c Ip 3 are parametrized by 1179 - A, where 
A is the dis,criminant locus of a quadratic form in 4 variables. The moduli variety 
M is fibred over IP 9 - A by two copies of a variety U, where U c__ G(I, 3) is the open 
subset of the Grassmann variety of 2-dimensional subvector spaces of the 
4-dimensional vector space H°((9~,~(3)) corresponding to linear systems without 
base points. Thus M is nonsingular of dimension 13. It is connected, because by 
varying Q one can connect data (a), (b), (c) corresponding to the two different 
choices in (b). 

Proposition 9.9. Up to automorphisms of IP 3, there is a I-parameter family of 
nonisomorphic bundles ~. More precisely, the quotient space M/PGL(3) of the 
variety of moduli M by the 9roup PGL(3) of automorphisms of IP 3 is isomorphic to 
the quotient space U/PGL(1) of the space of 913 without base points on IP 1 by the 
group PGL(1) of automorphisms of IP< 

Proof For any choice of Q and of one factor in the isomorphism Q~IP 1 x 1P l, 
there is a morphism ~0 :IP 1 x IP t __,p3 with image Q, sending the first factor onto the 
chosen factor. For any such ~0, the inverse image rp*((gtp~(1)) is isomorphic to 
p*On,~(1)®p*(PF,(1 ), Therefore according to the general theory of morphisms to IP" 
fAG, II, §7], any two such morphisms differ by an automorphism of IP 3. Thus 
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PGL(3) acts transitively on the data (a), (b) of (9.7). Next, note that if aePGL(3) 
leaves Q and the choice of factors fixed, then a induces an element of PGL(1) on 
each factor. Conversely, any pair of elements z 1, z2ePGL(1) induces an automor- 
phism of 1P 1 x F ~ which extends to an automorphism of p 3  Therefore the quotient 
space M/PGL(3) is isomorphic to the space U of g~ without base points on IP ~, 
modulo the action of PGL(1). Since U is an open subset of G(1, 3), this is clearly a 
1-parameter family. 

Remark 9.9.1. It seems an interesting problem in elementary invariant theory to 
describe the quotient space U/PGL(1) more completely. An equivalent problem is 
to classify degree 3 morphisms of IP ~ to itself up to automorphisms of IP 1. 

Next we will study the restriction of our bundle g to planes and lines in IP 3. 

Proposition 9.10. Let g be a bundle as above, and let Q be the quadric surface 
associated to ~. Let H be a plane in ~3. l f  H is transversal to Q, then ~ln is stable on 
H. I f  H is tangent to Q, then gin is semistable but not stable. 

Proof. If H is transversal to Q, let s~H°(d~(1)) be a section and let Ybe its zero set. 
From the exact sequence 

tensoring with ~ gives an exact sequence 

04-+6.--+ g(1)lu ~Yz(2) ~ 0  , 

where Z =  Y n H  is a 3-point scheme in H. Those three points Z (distinct or 
coincindent) lie on the irreducible conic C=Qc~H, so the scheme Z is not 
contained in any line. Therefore H°(Jz(1))= 0, and so H°(${n)= 0, which implies 
that ~lu is stable. 

On the other hand, if H is tangent to Q, then H contains one line in each of the 
two rulings on Q. Therefore there exists a section seH°(g(i)) vanishing along one 
of those lines. The image ~ of this section in H°(g(1)ln) vanishes on a set of 
codimension 1 in H, so H°(g[~)#0. This shows that gin is not stable. But we have 
already seen, in the proof of (9.5), that H°(g(-1) ln)=0.  Therefore 8In is 
semistable. 

Remark 9.10.1. In particular, gin is semistable for all planes HCIP 3. This 
strengthens (3.3) in this case. On the other hand, the fact that ~1~, is stable for 
almost all H illustrates a general theorem of Barth (see footnote to (3.3)). 

Proposition 9.11. Let g, Q be as above, and let L be a line in •3, We study the 
restriction of g to L. 

(a) I f  L is in the 2nd family of lines on Q (not those which form the curves Y) 
then d~lL -- d~L( -- 2)~6L(2 ). 

(b) I f  L is in the ist  family of lines on Q, and is a double or triple line of the curve 
Y of the g~ containing it, then ~]L_--6L(--1)06L(1 ). 

(C) I f  L~_Q, but L meets some divisor Y of the g~ in two points, then 
gIL-~6L(-- i )E)~L(1 )- 
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(d) I f  L is a line of the 1st family on Q, which is a simple line of the divisor Y 
containing it, then d~[L "~(9L0(9 L. 

(e) I f  L ~ Q, and L meets each divisor Y of  the g~ in at most one point, then 
¢1L'~ O L O (g L. 

Proof We know from the structure of vector bundles on ]pl and the fact that 
ca(~)=O that for any line L, ~lL~(9(-a)O(9(a) for some integer a. Pick a section 
s~H°(8(1)) and let 

0--* (9 2_. # ( 1 ) ~ r ( 2 ) ~  0 

be the corresponding exact sequence. If Y meets L in a finite number of points 
P1,-.-, P,, r=O, 1, 2, 3, then tensoring with L gives an exact sequence 

0~(gL--~e(1)IL--~(gL(2-- ~ P,)O ~ kp -~O, 

where ke, is the constant sheaf k at P~. If r=0 ,  then H°(oc(--2)IL)=0 so we must 
have $[L~- (90(9 or (Y(- 1)O(9(1). I f r  = 1 one sees easily the only possibility for d~lL 
is (900.  Similarly if r = 2, #IL -~ (gL(- 1)O(9L(1), and if r = 3, 5~IL_-__ (gL( -- 2)0(9L(2). 

If L is in the 2nd family of lines on Q, then L meets every Y in three points, 
which proves (a). Conversely, if L is not one of those lines, then there exists a Y in 
the 931 with LevY=O, so #lL must be either (90(9 or (Y(-1)O(9(t). 

Cases (c) and (e) follow similarly from this discussion. In case (d), since 
d~(1)]r~(Jy/J~) ~, it follows that #(1)IL is the normal bundle of L, which is 
(gL(1)O(gL(I). Hence d~]L=(-gLO(gL. 

The only remaining case is (b). Such a line is a limiting position of a family of 
lines of type (c), so by semicontinuity, d~{L ~ (9(--a)O(9(a) with a => 1. On the other 
hand we have seen that a < 2 except in case (a), so we must have a = 1. 

Remark 9.11.1. This result illustrates the theorem of Grauert and Miilich (see 
Barth [6]) that if ~ is stable with cl = 0  then #IL ~ (9LO(gL for almost all lines L. 
The lines for which this does not hold are called jumping lines for d ~, and they form 
a closed, codimension one subset of the Grassmann variety of lines on IP 3. We will 
call lines of type (a) double jumping lines. 

Our next objective is to show that # is determined by its divisor of jumping 
lines. First we need a preliminary result of plane projective geometry. 

Proposition 9.12. Let C be an irreducible conic in IP 2, and let a g~ without base 
points be given on C. For each divisor D = P  I +P2 + P3eg~, consider the lines Lij 
joining Pi and Pj, for 1 < i < j < 3 .  I f  Pi=P~, take Lij to be the tangent to C at Pi. 
Then 

(a) the totality of  the lines Lij, as D varies in the g~, forms an irreducible line 
conic F* in the dual projective plane IP 2 ; 

(b) the g~ is uniquely determined by F* ; and 
(c) keeping C fixed, let U denote the set of all 9~ without base points on C, 

considered as an open subset of the Grassmann variety G(1, 3) in a certain projective 
space 1P~ ; furthermore let F~ denote the parameter space of all line conics in IP 2.. 
Then there is a linear transformation of F~ to IP~ which for each g~e U gives the 
point corresponding to the line conic F*. Thus the set of F* which arise in this way is 
an open subset of a quadric hypersurface in IP~. 
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Proof  Any two conics in 1P 2 are projectively equivalent, so it is sufficient to prove 
these statements for any given conic C. We will use affine coordinates for 
simplicity. So let C be the conic y = x  2. To describe a 93 ~ on C, we use the projection 
of C onto the x-axis, and give a g~ on the x-axis by specifying two cubic 
polynomials 

f =ao x3 + a l x  2 +a2x + a  3 

0=bo  x3 q-b1 x2 +b2x +b3.  

Then a general member of the g~ is given by the three roots xl ,Xz ,  X 3 of the 
polynomial f +  tg depending on a parameter t. Since the question is symmetric in 
the three roots, we consider only the points P1 = ( x v  x2) and P z = ( x z ,  x~) on C 
corresponding to x~ and x z. The line L =  L12 joining P~ and P2 has equation 

y = ( x  1 + x 2 ) x - - x t x  z , 

and this equation also gives the tangent line at P~ if P~ =P2. If we write a general 
line in the form y = u x - v ,  then this line has (affine) line coordinates (u,v) 
=(x~ +x2,x lx2) .  We wish to find the locus of the point (u,v)elP 2. as t varies. 

For this purpose we express xx, x2, x 3 in terms of the given a~, b~ which define 
the g~' 

aa + tb 1 
x~ + x:  + x3 = ao + tbo 

a 2 q- lb 2 
x i x  2 - ~ x l X  3 q -x2x  3 -  _ _  

a o + tb o 

a 3 4- tb 3 
x~xzx  3= a o + t b  o. 

We combine these equations with 

~l~- Xl  -[- X 2 

I)~X1X2~ 

and then eliminate x 1, x 2, x 3, t so as to leave an expression involving only u, v, al, bl. 
The result of this computation depends only on u,v and the quantities 
pij=aibs-asbi ,  0<i<j=<3,  which are the Pliicker coordinates of the point of 
U~IP~ representing the given g~: the result is 

Po3U 2 + PozUV + PolV2 + p13u + ( p l z - -  Po3)v + p23 = 0 .  

This is manifestly a conic F* in IP 2.. Furthermore its coefficients are 6 linearly 
independent linear forms in the Pis, so F* is determined by a linear transformation 
oflP~ to F2 5, as claimed in (c). 

The fact that F* is irreducible follows easily from the construction: a reducible 
line conic would consist of two pencils of lines ; for a triangle of lines to belong to 
two pencils, one of the vertices of the triangle must be the axis of one of the pencils. 
Then this axis would lie on C, which is impossible since the g~ is supposed to be 
without base points. 
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Finally, it is clear that the g~ is determined by F*; to find the divisor Deg~ 
containing any given point P, merely take the lines of F* passing through P and 
intersect them with C. 

Remark 9.12.1. The line conic F* _z__ Ip z* consists of the set of tangent lines of a point 
conic Fc__F 2. Thus each divisor D of the g~ on C determines a triangle which is 
inscribed in C and circumscribed about F (Fig. 1). 

Fig. I 

( 
D 
2 

This is closely related to the classical "porism" of Poncelet which says in 
particular that if C and F are two conics in the plane, and if there exists one 
triangle inscribed in C and circumscribed about F, then in fact every point of C is a 
vertex of such a triangle. If that happens, then the triples of points on C forming 
the vertices of these triangles are parametrized by the points of C, three times over, 
so by Ltiroth's theorem those triples of points form a g~ without base points on C. 
Our result is a converse to this statement. Similarly, of course, the points of 
tangency of the sides of the triangles on F form a g~ on F. 

Remark 9.12.2. Dualizing the result of (9.12) and interpreting it as in (9.12.1), we 
see that if a g~ is given on a conic F, and if for each divisor D=Q1 +Q2 +Q3 of 
points in the 93 ~ we form the tangents to F at the points Qi, and let these tangents 
intersect at three points P1, P2, P3, then as D varies, the points Pi will move on 
another conic C. 

Theorem 9.13. Assume char. k :1: 3. Then the bundle g is uniquely determined by the 
set Z c= G(1, 3) of its jumping lines. 

Proof First consider a plane H_c Ip 3. If H is transversal to the quadric surface Q, 
then H contains only lines of types (c) and (e) in the classification of (9.11). In 
particular, the jumping lines of ~ in H are all of type (c). More precisely, the g~ of 
curves Y on Q cuts out a g~ on the irreducible conic C = Q h H  in H, and the 
jumping lines in H are precisely the lines of the line conic F* in H* associated to 
this g~ as in (9.12). 

On the other hand, suppose H is tangent to Q. Then H contains a line L of the 
first family on Q and a line M of the second family. Let Ybe the divisor of the g~ on 
Q which contains L, and let R,S~M be the two points where the two lines of Y 
besides L meet the plane H. Then any line in H passing through R or S will meet L, 
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hence will be a jumping line of type (c), except for M itself, which is a double 
jumping line of type (a). Thus the set of jumping lines in H consists of the two 
pencils of lines with axes R and S. 

Summing up, for any plane H__c Ip 3, the set of jumping lines of d ° contained in H 
is a line conic in H*, which is irreducible if H is transversal to Q, and reducible if H 
is tangent to Q. This characterizes the set of planes tangent to Q in terms of the set 
Z of jumping lines, and so Q itself is uniquely determined by Z. Furthermore the 
choice of the two families of lines on Q is determined, because the line M of the 
second family in a tangent plane H is characterized as the line joining the axes R 
and S of the two pencils of jumping lines. (At this point we need to know that at 
least for one such H, the points R and S will be distinct. Since char. k + 3, this 
follows from (9.6).) 

Now take any plane H transversal to Q. Since Q is already determined by Z, 
the conic C =  Q n H  is also determined. As we saw above, the jumping lines in H 
form the line conic F* of 0.12), and this in turn uniquely determines the g~ on C. 
Since we also have determined the choice of line family on Q, we recover the 93 ~ on 
Q. Therefore by (9.7), d ~ is uniquely determined. 

Remark 9.13.1. The same argument works also in the case char. k = 3, unless the O~ 
of (9.7) corresponds to the Frobenius isomorphism of F 1 to IP 1. In that case the Q 
and 93 ~ of (9.7) are uniquely determined by Z, but we cannot determine the choice 
of family of rulings on Q, unless we specify in addition which lines of Z are double 
jumping lines. Indeed, in this case Z is simply the set of all lines tangent to Q. 

We conclude this section with a geometric description of the divisor of jumping 
lines, which is useful in studying the existence of real jumping lines over ~ [20]. 

Theorem9.14. Assume char .k#3.  Given a bundle ~ as above, denote by 
G =  G(1, 3 )_F  5 the Grassmann variety of lines in IP 3. The set of lines in the first 
family on the quadric surface Q associated with E forms a conic 7 c= G. Let ~ be the 
unique plane in IP 5 containing 7. The g~ on Q induces a g~ on 7. For each divisor 
D = P I  +P2 + P 3 of the g~, let the tangent lines to 7 at the points P~ intersect in 3 
further points X1, X2, X 3. As D varies, by (9.12.2), the points X i lie on another conic 
F c=n. Let 7~* ~ IP s be the plane dual to x with respect to the quadric surface Q. Let W 
be the cone with vertex x* over the conic F c= n. Then W is a quadric hypersurface in 
~5, and Wc~G is the divisor Z of jumping lines of o ~. 

Proof A jumping line L__cF 3 can be characterized by the property H°(g( - 1)[L) 
4:0. From the exact sequence 

o--,j,-~(~ ~ - - , o ,  (1) 

tensoring with 8 ( - 1 ) ,  we get 

0 - - .H°(8 ( -  t)]L)~Ha(YL®d~(-- 1))2. H1(6~(_ 1)). 

Thus L is a jumping line if and only if ker~4=0. Let h 1 and hz be linear forms 
defining L Then from the exact sequence 

0....~(~(__2) h2,--h, e(__l)2 h!,h2 ~,~L__.¢,O ' (2) 
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tensoring with 8 ( -  1) and using (9.4), we get an isomorphism 

6 L : H I ( J L ® 8 ( -  i)) -L) HZ(~( - 3)). 

Being the coboundary map of the exact sequence (2), we might think of 6L as 
multiplication by 1/(h I A hE). In particular, the map 

~x' = (z ObL ~" H 2 ( ~ ( -  3))- -+H' ( , f ( -  1)) 

is linear in the PliJcker coordinates of the line L. The jumping lines are described 
by the equation detc(=0. Since these are both 2-dimensional vector spaces, by 
(9.4), we see that the variety W__c H )s defined by dete' =0  is a quadric hypersurface, 
and that Z = Gc~ W. 

To compute Wmore precisely, we now choose a section seH°(g(1)) whose zero 
set Yconsists of three distinct lines Yt, I:2, 1:3. Furthermore fix two linear equations 
defining each line Y, Use the exact sequences 

0--* (9.2_, ~(1)--+ Jy(2)--* 0 (3) 

and 

0-) Jy--) (9-> (gr--+0 

to form the rows of the following diagram: 

0 >/-/°(0~) H°(¢y) ~ , , H l ( J y )  , 0  

~ u ~ ( 8 ( -  1)) 

H~(Cr( -  2)) H~(JL®N(-  1)) 

0 , -  H3(e ( -4 ) )  ,-- t-/2(J~(- 2)), /4E(~(- 3)), 0 

(4) 

The right-hand column consists of the maps e and 6 L described above, plus the 
isomorphism Hi(g( - 1))--~ Ht(Jr)  coming from exact sequence (3). The map 6 r in 
the middle column comes from (4). The map fiz in the middle column is a 
coboundary map obtained from (2) by tensoring with (_gy, and assuming that 
Y n L  =0, so that JL®Or-----(gy. The diagram clearly commutes. 

We identify H°((9~,) with k and H°(Cr) with k 3, and the map between them 
sends 1 to (1, 1, 1). Using the linear forms defining each Y~ we can get a specific 
isomorphism of Hl((gr( - 2)) with k 3, and using the coordinates of IP 3 we have a 
specific isomorphism of H3((9(-4)) with k. Furthermore fix an isomorphism 
q): A28--%(9. Then according to (1.1) the exact sequence (3) determines elements 
~1, ~2, ~3 ffk such that with these identifications, the map 6~o6r:Hl( (gr( -2) )  
= k 3 - . H 3 ( ( 9 ( - 4 ) ) = k  is given by (~1, ¢2, ~3). 

Finally, we must identify the map 6L of the middle column. The key point is 
that if L, M are disjoint lines in F 3, with Pliicker coordinates l and m, and if we use 
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the coordinates  m to  get a natural  i somorphism HI(6oM(-2))=k, then the 
corresponding m a p  

5 L ' : HI((gM(-- 2)) = k ~ H°((gM) = k,  

where (5 L is obta ined f rom (2) as above,  is s imply mult ipl icat ion by (l,  m) ,  where 
( , ) is the bilinear form on the 6-dimensional  vector space of Pliicker coordinates  
Po corresponding to the quadrat ic  form 

Po lP23 -- Po2Pl 3 +PoaPla 

which defines G in IP 5. 
Applying this in our  case, let P1, P2, P3 be the Pliicker coordinates  of  Y~, I12, Y3, 

and let y, be the linear form ( , P~) on IP 5. Then the m a p  

6[ 1 : Hl((gr(_ 2))=k3 ~ HO(Or) =k 3 

is just mult ipl icat ion by Yi in the ith place. 
N o w  we can rewrite our big d iagram explicitly as follows : 

0---~k (1'1'1)~k3 ~ V - - ~ O  

T (,1,,2,,3) T ~' 
0 ~ k (¢1.¢z,¢3) k 3 ¢ - - - - - - -  W ~ 0 

F r o m  this d iagram it is easy to compute  det~',  which is uniquely determined up to 
a scalar multiple. It  is 

~3YlY2 + ~2YlY3 + ~lY2Y3 • 

This then is the equat ion of  W,, where the y~ are linear forms on IP 5, and the ~ are 
constants.  

Since y~ is the linear form ( , P~), the hyperplaney~ = 0  in F 5 is just the tangent  
hyperplane  to G at P,. Therefore  the linear space y~ =Yz ---Y3 = 0  is the intersection 
of  these hyperplanes,  which is just  the plane n* dual to the plane zc containing P~, 
P2, P3- On the other  hand,  the line y~=0  in n is the tangent  to 7 at  P~. It  is clear 
f rom the equat ion of  W that  Wr37r contains  the 3 points y~ =Y2 =0 ,  y~ =Y3 =0 ,  
Yz = Y3 = 0 where these tangents  meet.  Now,  since Wis independent  of  the choice of  
s e H°(dr(1)) and hence of the curve Y on Q, this holds for any choice of  $, so we see 
tha t  Wc~1r is the conic F determined by ~, and its g~ according to (9.12.2). N o w  
f rom the equat ion of W it is clear that  it is the cone with vertex re* over  F, as 
required. 
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