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1. Introduction 

For a finite countably decomposable von Neumann algebra L we study the 
structures of the space consisting of all yon Neumann subalgebras of L. Especially 
we study the relation M ~ N  which was previously studied by Murray and von 
Neumann [1 l] and McDuff [9]. 

Much of the techniques used are taken from the articles [3] and [4], but also 
[6] and [71 are very fundamental. 

In Sect. 3 we obtain certain results about homomorphisms which are close to 
the identity in trace norm. 

Section 4 is devoted to the study of the relation M ~  N, and we prove that if 
both M and N are factors, and one of them is finitedimensional, then for 
sufficiently small there is a unitary u in L such that u*MuC=N, Corollary 4,3 
contains a result for finitedimensional algebras, which is not dependent upon the 
particular dimension. At the end of Sect. 4 we prove that if two factors M and N 
satisfy M ldSN, then M is isomorphic to a subalgebra of N ® M  2. 

In the last paragraph we introduce the Hausdorff-memc with respect to some 
trace norm on the set of yon Neumann subalgebras. We prove that various 
algebraically characterized sets have nice topological properties: The set of 
maximal abelian subalgebras is closed, the set of factors is a Baire space and the set 
of injective factors is an open and closed subset of the set of factors. 

In the paper we use the notation L2(N,r) and tllt[ for a semifinite yon 
Neumann algebra N with a faithful normal semifinite trace z. We do not explain 
this notation but refer the reader to the article [ t3]  and the book [8] especially 
III,7. 

A special warning with respect to the word yon Neumann algebra is perhaps 
necessary; in Sect. 4 the von Neumann algebras M and N always contain the 
identity I whereas in general yon Neumann algebras are not in this article assumed 
to contain the identity. 



18 E. Christensen 

2. Technical Lemmas 

In [7] Connes  proves that  the po la rdecompos i t ion  in a semifinite factor has 
certain continuity propert ies  with respect to the ul t ras t rong topology.  ([7], 
Theorem 1.2.2.) 

Results of  this type go back to the work  of Mur ray  and von N e u m a n n  [11], 
and can be found in Dixmiers b o o k  [8] in Chap.  I I I , §  7.3, pp. 273 276. Although 
the above ment ioned result of  Connes  could do for our purpose  we want  to use the 
following lemma, because it is sharper  in our context, and it is not too difficult to 
prove. 

2.1. Lemma.  Let N be a semifinite yon Neumann algebra with a faithful semifinite 
normal trace z. Suppose e is a projection in L2(N ,~) and h in L2(N,z) has the 
properties, O<_hNI and [Ih-ell2<=kljeH2 for some k ~ [ 0 , 1 [  then the spectral 
projection E 1 -k,/2 for h corresponding to the interval [ 1 -  k 1/2, 1] will satisfy 

I[ E1 -k, /2 - ell 2 ~ k l / 2 (  1 - -  kL~Z) - l l[eH 2" 

Proof 

HeliZk 2 > I]h-el]~ = ]l(I-h)eil  2 + Hh(l- e)[[ 2 

and 

(I - h )  2 ~ ( I - -  E 1 _ k , / z )  ( I  - h) 2 >= k(I - E 1 _ k'/2) 

s o  

o r  

r(k(I - E l - k,/R)e) <= r((I - h)2e) =< k 2 I[ e II 2 

jl(I - E l  _ k~/2)e[I 2 2 =< k]lel[ 2. 

IlEl-kl/2(1--e)ll~=r(El-k ~/2(1-e))< ~ r (h2(1-e))"  

Wherefore 

IIEI_k,/2(1--e)H~ < - ~ []eH~. 

Finally we obtain 

lIE1-k,/2--eli ~ = I j ( l - -E t_  k,/2)e[) 2 + lIE1 _k,,2(l--e)l]~ 

and 

( k J2 ?1 1 2 ]'E,_k~/2-eH2<-_k(l + , l ~ /  / ] ' e [ ] 2 < - _ k ( ~  ) ]leH 2 

ilEl-k,12--e[[z <=kl/2(1-kl/2) -1 Nell2. 

The  l emma follows. 
The next l emma has its sources within the works  ment ioned above,  and we 

want  just to state it for the convenience of the reader. 
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2.2. Lemma. Let N be a semifinite yon Neumann algebra with a faithful normal 
semifinite trace r, e ~ f  a pair of finite equivalent projections in N with 

[le-fll2<=cllellz. 

Then there is a partial isometry v in N such that 

v*v=e ; v v * = f  ; Hv-ell2 <611e-fll2<=6ellell2 

Proof See [7] Lemma 1.4, or use ([6], Lemma 1.1.4, p. 388) on the algebra N(,,~I ). 

3. Homomorphisms 

3.1. Theorem. Let L be a finite yon Neumann algebra, z a faithful normal tracial 
state, M a sub yon Neumann algebra containing the identity I L of L and q~ a star 
homomorphism of M into L. 

Suppose that for any m in M 1 I] @(m)-rail 2 <-_t, then there exist projections q, r 
and a partial isometry v in (MuqO(M))" such that v*v=q6Cb(M)'; vv*=r6M';  
]ll--v]12 <2t; jll--rtl2 <t;  tlI--q{12 <=t ; Vm~M; qqg(m)=v*mv. 

Proof Let K be the ultraweakly closed convex hull of the set {u*~b(u)iu unitary in 
M}, then K is also a closed convex subset of L2(L, r) and there will be a point k in 
K of minimal Hilbert-Schmidt norm. For u unitary in M the map K~h--+u*hcb(u) is 
a normdecreasing map (with respect to the Hilbert-Schmidt norm) of K into K so 
by definition of k and the strict convexity of the unitball in Hilbert spaces we find, 
that for any unitary u in M u*kcb(u)= k or 

rue  M u : kqg(u) = uk. (1) 

It follows easily that IIk - I II 2 < t since for any unitary u in M 

II 'P(u)u* - l II z = II ~ ( u )  - u fl 2 < t .  

Let k=vh be the polar decomposition of k, then Lemma 2.2 implies that 
]tI-vl[z<=2t; Hl-v*vl[z <=t; I[I-vv*l{2 <t. 

The relation (1) shows that h~@(M)' and vhv*~M', so the theorem follows. 

3.2. Corollary. I f  M is a type I k .factor (k < ~ )  and cb(I)= I, then there is a unitary u 
in L such that, I[I-u[]z <3t  and qg(m)=u*Mu. 

Proof Find v as in 3.1, q = v * v ~ ( M ) ' ;  q@(m)=v*mv and choose a set of matrix 
units (ei;) for M, then the set {q'(eii ) ( 1 -  q), ei~(I- r)} consists of pairwise equivalent 
projections. This result follows from the Comparison Theorem ([8] Ill, 1.2, 
Theorem2,  p. 218), because for any central projection z in L, for which 
r(q~(el 1 ) ( I -  q)z) < r(e 11(1- r)z) we get (4(1) = I) r ( ( I -  q)z) < r ( ( I -  r)z) which con- 
tradicts ( I - q ) ~ ( I - r ) ,  because q ~ r and the algebra is finite. Let w be a partial 
isometry such that w*w=(I-q)@(elO,  w w * = ( I - r ) e l x  and define the partial 

k 

isometry vx by v 1 = ~ (1-r)eilwrb(eli)(1-q),  then u = v + v  I is unitary and 
i = l  

/lI-ul12 < I I I -  Vile + Iiv1112 < 2 t +  I l I -q l l z<3 t .  

For any enm in M u*e,mu=v*e,mv+v*e,,,v:=qq~(e,m)+(1--q)eb(e, Orb(elm) 
= q)(e,,,). The corollary follows. ([2] proof of Theorem 4.1). 



20 E. Christensen 

3.3. Corollary. I f  M = L ,  M is a factor and te l0 ,  1[, then • is an inner automor- 
phism implemented by a unitary v in M for which II I -  vii 2 ~-~ 2t. 

Proof  Find v, partial isometry, as in 3.1 then v v * e M ' n M ,  so vv*=0  or vv*= l ,  
but t l I - v v * H 2 < t <  1, and v must be a unitary. 

4. Subalgebras 

In this section we will let L denote a finite yon Neumann algebra of type II l, with a 
faithful tracial state z. 

We want to study the relation ~ between sub von Neumann algebras of L, but 
before we want to go into the technical details, we will fix our notation and give 
some explanatory remarks, which leed up to the first lemmas. 

We will deal with two von Neumann subalgebras M and N of L, which do 
always contain the identity I in L, whereas a homomorphism ~b of one sub von 
Neumann algebra into another, not necessarily needs to satisfy q~(I) = I, but always 
q~(m*) = 4~(m)*. 

Further we suppose that L acts on LZ(L,r), in the canonical way as 
leftmultiplers, we will let ~ denote the vector I in L2(L, r), since it is then easier to 
distinguish between the element x in L and the element x~ in LZ(L, ~), when this is 
necessary. ([8], 1.5, 1.6, [13]). Let N be a sub von Neumann algebra of L, then there 
exists a faithful normal projection ~ of norm one from L onto N. The map rr is 
defined as a conditional expectation by 

V x ~ L  :rc(x)~N and Vn~N'r(xn)=z(~z(x)n) ,  (2) 

([12], Proposition 4.4.23, p. 211, [15-17]). 
Speaking in commutative terms the expression (2) depends upon the fact that 

in finite measure spaces the L ~ space is dense in the L 1 space, but the finiteness of 
the measure also implies that L ~ is a dense subset of the L 2 space. 

If we take this point of view ~z becomes a densely defined linear projection from 
L2(L,r)  onto a dense subset of L2(N,z),  and moreover we find from (2) that the 
orthogonal projection p from L2(L, r) onto N~ is related to ~ in the following way. 

V x e L V n l , n 2 e N  :(xnl~}nz~)=(rc(x)nl~]n2~) 

Vxe  L : pxp = prc(x)p = rc(x)p . 

One should remark that since p~ = ~ (4) implies 

Vx~ L : px~ = rr(x) ~. 

(3) 

(4) 

(5) 

Much of the later computations will take place in the algebra (Lup)",  so we want 
here to find out some elementary facts about  this algebra. First of all we remark 
that ( L u p ) ' = L ' n p '  is isomorphic to the algebra R N of rightmultipliers with 
elements from N. This result is contained in ([1], Theorem 1.3.1, p. 154), but it 
follows also directly from the following simple argument. 

Let R be the commutant  of L then by ([8], 1.5.2, Theorem 1, 1.6.2, Theorem 2) 
R consists of all right-multipliers so it is obvious that R N is contained in R L n  p' 
(Vn 1, n 2 ~ N :pR,2n 1 ~ = nln2~ = R,2pn a 4). 
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Suppose RxERLc~p'  then from (5) 

x~ = Rxp~ = pRx~ = px~  = ~z(x)~ , 

and we find x e N  since ~ is separating. The relation (4) shows that  ( L u p ) ~ = N p ,  
wherefore p is a finite projection in (Lt3p) ' ,  a fact upon  which most  of  the following 
arguments  depend. 

It is clear that ( L ~ p ) "  is semifinite and that ( L u p ) "  is a factor if N is a factor. 
The relations between certain projections in B(L2(L,  r)) and the subalgebras of  

L are studied in [14]. In that article C. Skau gives a characterisation of  such 
projections which are cyclic for subalgebras of L. 

Definition. Let both  M and N be yon Neum ann  subalgebras of L, 8~IR+ • {0}. M 
is said to be contained 6 in N if for any in in the unitball M 1 of M, there is an n in N 
such that r im-n i l2=0 .  If both M C N  and N ~ M  we write J IM-NI l2  < &  

We will from now on assume that M and N are given subalgebras of L for 
which M C N, if we then look at (5) once more we find that for any m in M, ~z(rn) is 
the point  in N which is closest to m in the Hilbert-Schmidt norm. Therefore 

M C N ~ V m e  M IJ m -  =(m)ll 2 < 8. (6) 

Let u be any unitary ill M then since ~ is a conditional expectation 

rc(l - rc(u*)u - u're(u) + rE(u*) re(u)) = I - rc(u*)Tr(u). 

The relations (6) and (2) then yield 

M C N ~ V u e  M ,  : 6 2 > II u -  ~(u)II 2 = z(I  - z(u*)~(u)}. (7) 

In the articles [3] and [4] we did develop a technique, which from statements of  
the type obtained in (7) shows that  if 8 is small, the algebras are semifinite and the 
II I/2 is replaced with ]1 [J ~, then within some small distance from ~ there will be a 
homomorph i sm of M into N. It is our  aim to transfer this method to the case 
under consideration here, and in some sence the arguments  become simpler here, 
because the unitball in a Hilbert space has no faces other than the extreme points. 

The first step in this direction was taken in the p roof  of  Proposi t ion 1.1 in [4], 
where just as here we have an algebra L and a projection p outside L such that 
(Lup)" is a semifinite algebra in which p is finite projection. 

Let us return to the concrete case, and in the rest of this section assume that N 
is a factor, then there is exactly one faithful normal  semifinite trace ~0 on ( L u p ) "  for 
which q0(p)= 1. This trace is related to r by the following relation 

g x e  L : q0(xp) = z(~z(x)) = z(x). (8) 

The first equality follows from the uniqueness of  the normalised trace on N and (4), 
the second is a consequence of (2). 

Let u be any unitary in M then by (7) 

qo((p- u*pu) 2) = qo(p + u*pu - u ' p u p -  pu*pu) 

= 2(p(p - pu*pup) = 2z(I  - 7r(u*) 7r(u)) < 282 . 

The norm II 11~ is ultrastrongly lower semicontinuous on (Lup)" ,  hence for any h i n  
~M(P) we obtain l jh-p l] '~<21/2& 
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Just  as in the p roof  of Theorem 3.1 we find that  there is a k in c-'-6M(p)nM', and k 
satisfies 

O < k < I ,  IIk-pl]~<21/26,  hence if ~ < 2  -1 /2 ,  

L e m m a  2.1 yields 

3 projection qem 'c~ (Mup)" :  ]lq-pll'~<211461/2(1-21/4~iI/2) -1 (9) 

Let 7 denote 21/46x/2(1-21/4c5t2) -~ and remember  that  

[Iq-PN~ = I[q(l-p)ll~ + }](I-q)p][~, 

then the inequalities below are easy. 

_ 7 2 <  _ ilq_pll2z < _ l l q ( i _ p ) l l 2 = o ( q p _ q ) < ~ o ( p _ q ) .  

(p(p-  q) < q~(p- qp) = 1}(I - q)pll 22 < ]tq - pl] 22 <7 2 
(lO) 

ko(p) -  q~(q)l = I1 - ~p(q)l _-< 7 2. 

In the uniform case ([3, 4]) q would be equivalent  to p via a partial  i sometry  close 
to p and q, and the desired h o m o m o r p h i s m  is simply obta ined by M ~ m ~ v m v *  and 
the identification of (Lup)~ with N. In the case of square integrable per turbat ions,  
close projections need not be equivalent, but  if q-<p in the sense of Mur r ay  and 
von N e u m a n n  ([8], I l iA. l )  the following l emma can help. 

4.1. Lemma.  Let L, r, N, p, q~ be as above, M a yon Neumann sub-algebra of  L, r a 
projection in M'  n (Lup ) " .  Suppose r < p  then there is a homomorphism 49 of  M into 
N such that for any m in M 1 

l] 49(m)- n(m) t] 2 < 26 l iP-  rll3. 

Proof. The remarks  in front of (10) yield, that  if we let c~ denote Hp-rl]~ then 
0 < ( 1  -- (p(r)) < ~ 2. 

Let e be a projection in (Lup)"  such that  r ~ e < p ,  then I]r-el]~<l[r-pll '~ 
+Hp-e[ l '~=~+(p(p -e ) l / z=~+(1-~o( r ) ) l / 2<2~ .  The L e m m a 2 . 3  implies, that  
there exists a part ial  isometry v in (Lup)"  such that  v*v=e,  vv*=r,  and 
l i e -  vll~< 12c~. 

The algebra N is a factor (or p has central suppor t  I) so we get by (4) a well 
defined h o m o m o r p h i s m  49 of M into N by 

gme M : 49(m)e N and 49(m)p= v*mv . 

The relations (4) and (8) show that  for me M~ 

[1 49(s) - re(s)11 ~ = I1 v*sv - psp [1 ~ _<- }1 (v* - p)sv + ps(v - p)[I '~ 

< ]Iv*-PtI~ + Ilv-pll'~<=2({lv-e[('~+ l i e -  pl]~) < 2 6 ~ .  

The  l emma follows. 
The real p rob lem left for the case M ~ N is to find condit ions under which q is 

not  a minimal  projection in M ' n ( L u p ) " .  To this end one should remark  that  in the 
case where M = N ,  then (N'n(Lup)") j ,  is trivial, because N is a factor, and p is 
minimal  in N'n (Lwp)" .  In the opposi te  direction it seems likely that  if M ' n N  is 
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"big" then a q which is close to p ought  not to be minimal  in M'~(Lwp)". We want  
to show a result of  this type in the following theorem. 

~N 4.2. Theorem. Suppose M C , N is a continuous factor, M is finite dimensional and 
6e [0, 2 - l /2 [ ,  then there is an isomorphism cI) of M onto a yon Neumann subalgebra 
of N (q)(I)= I, here) such that 

gm~Mll[q~(m)-mll2 <_ 1057 [see line following (9)]. 

i)cc~<2 1/4 then 7<1061/2. 

Proof Find a projection q in M'c~(Lwp)" as above  such that  [Iq-pll2<7 and 
dl ~o(q)- l lr < 7  ~. 

If q ~ p  then L e m m a  4.1 shows that  there is a h o m o m o r p h i s m  T of M into N 
such that  

vmGml "ll t//(m)-- rail 2 5 ][ln-- ~z(m)r I 2 + II T ( m ) -  7z(m)l] 2 5 5  +267 .  

The algebra (M'c~(Lup)")q is a finite cont inuous algebra,  since qeM'c~(Lup)" 
and the c o m m u t a n t  of  this algebra is generated by the two commut ing  algebras M 
and R u. The former  is finite dimensional  and the latter is a factor  so the yon 
N e u m a n n  algebra they generate is i somorphic  to the tensorproduct  and hence 
cont inuous ([83, 1.2, Example@ p. 29). Therefore  if q~(q)>l there will be a 
projection r in M'c~(Lwp)" such that  r<q and (p(r)= 1, fur thermore  we get r~p,  
since (Lwp)" is a factor. The distance between p and r is measured  by ]lp-r]12 
<=[Ip-qllz+[Iq-rll2<= 7+(qg(q)-l)l/2<2 7, and L e m m a  4.1 shows that  there 
exists a h o m o m o r p h i s m  7 ~ of M into N such that  

Vme m 11 ~u(m) - ml[ 2 < II m - 7z(m)l[ 2 + 527 < 6 + 527 . 

If 71(1)=1 then let us choose a project ion r in (7~(M))'~N such that  z(r)<6 and let 
7~ 1 be an i somorph ism of M onto a sub-algebra  of Nr such that  7~1(I)= r. Now 4) 
defined by 4 ~ ( m ) = ( I - r ) T ( m ) +  7Jl(m ) will give the result. If  T(I)=t= I then choose as 
above an i somorphism ~u I of  M onto a subalgebra  of  ( I -  T ( I ) )N( I -  T(1)) and 
again 4~= 7~+ 7J~ will do. 

Instead of 7 we want  to in t roduce the rough est imates 7<3/26 ~/z and 
1058<1506 l/z when 5 < 1 0  6. 

4.3. Corollary. Suppose M is a type I k factor (keN), 6 < 1 0  -6,  then there is a 
unitary u in L such that III-u]12_<45061/2 and u*MuC=N. 

Proof Follows f rom 3.2 and 4.2. 

The remarkable  thing in 4.2 and 4.3 is of course that  the results are not 
dependent  of  the dimension of M, but  only upon the finiteness of  the dimension of 
M and the continuity of  N. 

Corol lary  4.3 can be generalised to arbi t rary  finite dimensional  algebras M if L 
is a factor. 

Let us now turn to the case where N is a finite dimensional  factor of  type I k, 
t! and let e be a minimal  projection in N then ep is minimal  in Np =(Lwp)p, so we will 

have qo(ep)=l/k and for any projection r in (Lup)" either ~p(r)=oQ or 
qo(r)e {n/klne N}. 
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Suppose  M is a yon N e u m a n n  subalgebra,  ~ < 2-1/2 and M ~ N, then there is a 
projection q in M'~(L~op)" such that  I]p-qtt~=<21~461;2(1-21/4c~l/2) - 1. (9) and 
it - q~(q)t < 21/26(1 - 2 I/4c] 1/2)- 2, (t0). 

These remarks  yield very easy the following. 

4.4. Theorem. Suppose N is a type I k jdctor 6 < 10-  2k- 1 and M ~ N then there is an 
identity preserving homomorphism 4) of M into N, such that Vm~ M 1 :El 4)(m)-mll 2 
_< 3961/2. 

Proof For  6 < 1 0 - Z k  -1, 21/2c~(1-2u461/2)-2<k-1 so q0(q)=l and q~p .  Since 
~ < 1 0  -2 we get t[p-qtl~<21/461J2(1-21/461/2)-l<3/261"2-6/26 so by 
L e m m a  4.1, we find that  there is a h o m o m o r p h i s m  4) of M into N such that  
VmeMl:H4)(m)-mll  1 <396  l/z. Moreove r  the p roof  of 4.1 yields that  when q is 
equivalent  to p, then 4)(1)= I, 

4.5. Corollary. I f  M is a type I k factor, N is an arbitrary factor, and IIM-N]] z 
< 10-Zk-1 ,  then N is a type I k factor. 

Proof 4.4 gives that  there is a h o m o m o r p h i s m  4) of N into M, but N is a finite 
factor, wherefore ([8], III ,  5.2, Proposi t ion  2 or 3, p. 257) either q~ vanish or 4) is 
faithful, 4)(I) = 1 however  and N must  be a type I ,  algebra, where n is a divisor in k. 

6 
T h e o r e m 4 . 4  can then be used once more  upon  M e N  because 6 < 1 0 - Z k  -1 
< 1 0 - 2 n - 1 .  The corol lary follows. 

Let us turn to the situation where M ~ N and M is continuous.  
Again i f q < p  we get by 4.1 a h o m o m o r p h i s m  4) of  M into N such that  for any 

m in M 1 

114)(m)-mllz<=b+2@<40~ 1/2 when 6 < 1 0  -6  . 

We will then assume that  q>~p. The continui ty assumpt ions  on M implies, that  
there is a projection e in M such that  z(e)=~p(p)/q~(q) and p~qe.  If the ratio 
(p(p)/q~(q) is rat ional  the result is clear, if not  choose projections e, in M, e, < e, + 1 
such that  z(e,) is rat ional  q~(qe,)=(o(q)z(e,) (q~m') and supz(e,)=rp(p)/~p(q), then 
e = s u p e ,  will do. N o w  eq~ p and Ileq- plt~ < Ilp-qlt'~ + lIq-eqt]~ = Ilp-qIl'~ 
+ (~o(q) - ~o(p)U ~. 

By (9) and (t0) we obtain  II e q -  PIt ~ < 27 and L e m m a  4.1 applied to the algebra 
eMe + ~ ( I - e )  yields a h o m o m o r p h i s m  4) f rom eMe into N such that  for any  m in 
M I  

I[ 4 ) (m)  - -  m I[ 2 "(  6 "t- 52;, < 8061/2. 

We have now proved  the following theorem. 

4.6. Theorem, Suppose M is a continuous yon Neumann subat,qebra of L, N is a 
subfactor 0 < ~ < 1 0  -6  and M C N ,  then there exists a projection e in M and a 
homomorphism 4) of M~ into N such that 

I[I-e[}2 <261/2 

and 

]14)(eme)-ml{2 <8061/2 ,for any m in m 1 , 
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We close this section by a result which have no conditions of continuity or 
discreteness. 

4.7. Theorem. Suppose M is an arbitrary yon Neumann subaIgebra in L, N is a 
factor and MI~SN then there exists a nontrivial homomorphism 4) of M into N ® M  2. 

Proof Instead of L and z let us consider L o = L ® M  2 and % = r ® t r .  

It is not difficult to see, that if we let ~ / a n d  N denote M ® (  and N®~F in 
L ® M >  then /~/l~s~_ and we may proceed exactly as above and find projections 
p, q a n d  a trace (p on (LowP)" such that pK=N~,  qo(p)=l, I ]q -p l l~<l  and 
q~ M' ~(Loup)". 

Let e~s i,j = 1, 2 be matrix units for I F ® M  2 then the rangeprojections r o of e~s p 
are mutually orthogonal and equivalent to p. The orthogonality is seen by the 
following computation. Let n 1, n 2 be operators in N then 

(e12(nl®I)d[e11(n2®I)~)=~(n~nl)tr(e12)=O etc. 

The equivalence r ~ p  follows by a similar argument. Let nl,n 2 be in N then 

((el 1-e22)(n l®l)~[(n2®I):  _ l  . 1 , g) --~r(nznt) -- 5 r(n2 nl)  = 0 ,  

and we can conclude that p(e l l -e22)p=O so 

1 1 pel lp=~p+~P(el  1_e22) p 1 =~p. 

If we then define r as the projection onto N®M2~ then r = r ~  +r12+r21 +r22 so 
qo(r)=4 and re(LouP)". On the other hand p equals the rangeprojection of 
e 11r+e21r so (Lowr)"=(Lowp)". 

The relation (4) is now applicable again and we find that (Lowr) ~' is isomorphic 
to N ® M  a. The relation (10) becomes for 6 =  1/8 

I1 --q~(q)[<=°/2=(25/a-- l ) - 2 <  1 

and 0 < ~p(q) < 2. 
Therefore q is equivalent to a subprojection of r inside (Lowr)" and we get a 

non trivial homomorphism of M into N ® M  2. 

5. Topological Properties 

We want to maintain the notation from Section 4, L is a countably decomposable 
type II 1 von Neumann algebra with a faithful normal tracial state z..9 ~ will denote 
the set of all yon Neumann subalgebras of L (not necessarily containing I), and we 
equip this space with the topology generated by the metric d(M, N)=  IIM-NIL 2- 
We do start by showing that ,~ is a complete metric space with respect to d. This is 
followed by a result which shows that the relative commutant operation is 
continuous on ,9 ~. This in turn shows that certain subsets of J are closed. 

Section 4 has some topological consequences in the space ~ ,  in particular we 
mention that the set of injective subfactors is open and closed in the set of all 
factors in ~9 "~. 
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5.1. Theorem. (of, d) is a complete metric space. 

Proo]~ Let (M,),~ N be a Cauchy sequence in (,~, d) and (n , ) ,~  the corresponding 
set of  conditional expectations of L onto the algebras M,. 

Just as in Sect. 4 the n, 's are chosen such that  any of them is the restriction of 
the or thogonal  projection P,  onto  the closure of  M,  in L2(L, ~). Suppose x is an 
operator  in the unitball L 1 of L, then for any pair of  natural  numbers re, n, we get 
by (7) of Sect. 4 that 

]] n m ( X  ) - -  7~n(X ) 1[ 2 2 = (7"Cn(X) IT"f,n(X) - -  7r, m ( X ) )  -t- (~m(X)[7"Cm(X)  - -  n n ( X ) )  

= (r~°(x) I x - ~m(X)) + ( n A X )  I X - -  7~o(X)) 

~- ((TT, n (X  ) - -  ~ m ( 7 [ n ( X ) ) ) l X  - -  ~ m ( X ) )  -1- ((TT, m ( X  ) - -  7"Cn(~m(X)) )[X - -  Ten(X)) 

<= 4d(M., M.,).  (*) 

The computa t ion  shows that for any x in L the sequence (n.(x)).~ N is a L 2 
Cauchy sequence consisting of elements from the closed ball in L (operator norm) 
with radius [Ixll. This ball is complete with respect to the L 2 norm, therefore we 
may define a linear map n of norm one from L into L by 

Vx e L : n(x) = lim nn(x). 
n ~ o o  

The limit is taken in the ultrastrong topology since this topology coincides with 
the L 2 topology on bounded  sets. It is obvious that n is positive, and not  difficult 
to see that n is a projection. In fact let x e L  then for any ~ > 0  there exists n o such 
that ]ln(x)-n,(x)]]2 <~ for n > n  o. Therefore if n > n  o we obtain 

II n(x) - n.(n(x))tl2 =< II n(x) - n.(x) tl +/I nn(n. - n) (x)[I 2 < 2e 

s o  ~ ( x )  = r t ( x ) .  
Now let M denote the image n(L), then for any pair a, b in M 

n(ab)= lim n.(ab) 
n~o~  

ab = lira n,(a)n,(b)= lim n,(an,(b)) 
tl ~ oo tl ~ oc 

and 

ab - n(ab) = lim n,(a(b - n,(b)) = O. 
n ~ o ~  

In order to show that M belongs to ~ we just have to show that M is weakly 
closed. 

Let x belong to M, by Kaplansky 's  Density Theorem we can to e > 0 find m in 
M such that IIx-mll2_<=e hence 

]IX--n(X)l]2 = Hx-m+7~(m)-rc(x)H2 _-<2{Ix-roll2 < 2 e ,  

and x = n ( x )  so Me,5 P. 
The relation (*) shows that if n o is chosen in IN such that  d(Mm, M,)<~,2/4 for 

all m , n > n  o then for any x in M 1 ] lx-n,(x)[12<~ for n > %  and for any y in 
(M, ) l l l y -n (y ) l l 2<e  for n > n  o so d(M,,M)<~, for n > n  o and J is complete. 

5.2. Definition. For  any M in ~ ,  C(M) denotes the relative commutan t  of  M i.e. 
C(M) = M % L .  

We want  now to show that C is a cont inuous map of  ,~ into .5 ~. 
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5.3. Theorem. For any M, N in Y H C ( M ) -  C(N)II 2 < 2 IP M - Nil 2. 

Proof  Put  6 = I IM-NII2  and  let x~(C(M))  1, then we find exactly as in the p roo f  of  
Theorem 3.1 that  b-fiN(x) meets (C(N))1, hence 

d(x, C(N) l )<sup{r luxu* - x t l z [ u  uni ta ry  in N}.  

To any uni ta ry  u in N we find m in M 1 such that  Ilu-mll2 <6. Therefore  

I luxu*-xl[2 = Hux-xul l2  = ] l ( u - m ) x - x ( u - m ) J p  z <26 .  

5.4. Corol lary .  II C(M)c~ M - C(N)c~N ]l z < 5 II M - NII 2. 

Proof  Put  6 = IIM-NJ[ z to m in (C(M)r~M)I find k in C(N)I and n in N 1 such that  
Illn - n II 2 < 6, II m - kll 2 < 26. Choose  r in -b-6u(n)c~N' then re  C(N)r~N and  
I lm-r l [  2 < IIm-kl[2 + Ilk-ri le < 2 6 +  Nk-rl}2 <=26+ Hk-nl}z <=26 

+ b]k-mll 2 + [ I m -  nH 2 < 56. 

5.5. Proposi t ion.  The subset~///o~¢ o f  S consisting o f  maximal abelian yon Neumann 
subalgebras is closed, 

Proof  Suppose  Me~# ,z¢  and  let 3 > 0 ,  then for any  A in ,9" with I [M-AH <3 we 
get because A = C(A) 

I[ M - C(M)[I 2 < II M - A II 2 + II C(A) - C(M) II 2 < 36. 

Since 6 is a rb i t r a ry  M = C(M) and  M is maximal  abelian.  

5.6. Definition. A yon N e u m a n n  a lgebra  N in ,9 ° is said to be no rma l  if 
N : C(C(N)). 

5.7. Proposi t ion.  The set ,/V o f  normal elements in ,~ is closed. 

Proof  Let M~, J~  and  let 6 > 0 ,  choose  N in ~ such that  I I M - N [ 1 2 < 6  then 

II M - C(C(M))[] 2 < II M - N II 2 + II C ( C ( N ) ) -  C(C(M))II 2 < 53. 

Again 6 is a rb i t r a ry  and  the p ropos i t ion  follows. 

5.8. Proposi t ion.  The set .~  o f  abelian algebras in 5T is closed. 

Proof  Suppose  M E , ~  and m, n e M .  To any 6 find A in ~ s u c h  that  HM-AII2<=6. 
Find a,b in A 1 such that  I l m - a j l 2 - < 6  and  Hn-b[12~6 ,  then 

I] mn - nmjl z < U m(n - b)II 2 + 11 (m - a) b II 2 + II b ( a -  m)II 2 + II (n - b)m II 2 <= 43. 

5.9. Proposit ion.  Let  A be an abelian element in 5 P and ~9' A the algebras in 5 P with 
center A, then 5P A is closed. 

Proof  Let ME,9'~ and 6 > 0 ,  choose  N e ~  a such tha t  I I M - N [ I z < 6  then by 5.4 
II Mc~M ~ -  A Jl z < 56. The result follows. 

5.10. Corol lary.  The set o f  factors in 5 P containing I is a Baire space in the metric d. 

5.11. Theorem, The set ,~  o f  subfactors in cf (not necessarily containing the 
identity I)  is a Baire space in the metric d. 
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B 

Proof Let Me~¢- and n e N .  Choose N,  in ,~- such that [[M-N,II2<I/n then 
It Mc~M¢-IITIN,,I] 2 < 5/n so IITIN, ' converges to M c~M c. 

Let p, denote the or thogonal  projection onto  tFIN,f, then for any m in 
Mc~M'p,m~-~rn~ and it is possible to see that (Mc~MC)~ is one dimensional, and 
consequently M is a factor. 

We want now to investigate the topological consequences of  the results in 
Sect. 4. 

5.12. Definition. Let M and N be von N e u m a n n  algebras, then M is said to be 
quasicontained in N if there exists an n in N such that M is isomorphic to a 
subalgebra of  N ® M , .  

If M is quasicontained in N we write M < N .  If M < N  and N < M  we say that 
M and N are quasiequivalent and we write M ~ N. 

5.13. Theorem. Let M,N~,C.  I f  I I M - N I I 2 < ~  and I L belongs to both M and N, 
then M ~ N. 

Proof The result is an immediate consequence of  Theorem 4.7. 

5.14. Corollary. The set of all injective subfactors in ~9~¢. is open and closed in 5~¢. 

Proof It is obvious that any yon N e u m a n n  subalgebra of M Q M  2 is injective 
when M is injective and finite, and the corollary follows. 

5.15. Corollary. I f  L 2(L, r) is separable, then the set of hyperfinite subfactors in cf ¢ 
is open and closed in 5'~:. 

Proof Follows from 5.14 and the result in Sect. 5 of  [7]. 

5.16. Theorem. (a) The set of continuous factors in Y¢, is open and closed. 
(b) For each n¢ N the set of factors in S¢, of type I~ is an open and closed subset 

of see. 
Proof The part  (a) follows from Theorem 4.7, whereas (b) follows from 
Corol lary  4.5. 

5.17. Remark. The reason why we did introduce the relation ~ was the hope that 
the set of  equivalence-classes should perform a tractable invariant. 

If we take equivalence-classes of cont inuous factors only, 5.14 shows that the 
invariant for the hyperfinite factor consists of  only one point, but on the other 
hand by Connes result ment ioned in 5.15 it is clear that a factor with separable 
predual, and only one equivalence-class, must  be the hyperfinite (II 0 factor. Let us 
recall that  a finite II~ factor M has proper ty  F if and only if for any m~ ... . .  m k in M 
and any s > 0 there exists a projection e in M of trace 1 such that [I [e, m~] II 2 < c for 
all ie{1 ...k}. (See [7], Theorem 2.1 p roof  of  b ~ a ) .  

5,18. Proposition. The set ~ o f f  actors with property F is closed. 

Proof Let M ~ ,  suppose m~ . . . . .  m k in M and ~ > 0  are given. Choose 6 > 0  such 

that 3~ + ( max [I ni ]l/7 < ~, 7 = 26 l/z(1 - (2fi) 1/2) - 1, find N in .% n 1 . . . . .  n k in N and a 
~l <_i<k ) 

projection e in N with z(e)= ½ such that 

[IM-NI[2<6, H[ni, e]ll2<6, Ilmi-nillE<fi for i = l . . . k .  
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Let h be a selfadjoint operator in M of norm less than one such that []h-ell2 < 6  
then O<_h2<I and I[hZ-e[]2< I[h(h-e)l l2+ II(h-e)e[12 <23.  By Lemma 2.1 there 
exists a spectral projection g for h 2 such that Ila-el[2 ~ ( 2 ~ 5 ) t / 2 ( 1  - -  ( 2 ~ 5 ) 1 / z )  - 1"2- 1,,2. 
By 5.16 we know that M is continuous, hence we can find a projection f i n  M such 
that r ( f )=½ and , ( 1 lj2 The f is then close to e in fact ] l f - g l  2 =  2-T(a)[ _-<lie-all2. 

I l l - e l l 2  =< [ I f - a l l  2 + l ie -  all2 < 2  l ie -aN _-<7. 

Final ly we ob ta in  

II If ,  rail II 2 --< 2 II m i -  ni II 2 + 2 II f -  e II 2 II n~ll ,, + I[ Ee, nil II 2 < ~:, 

and  M has p rope r ty  F. 
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