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0. Introduction 

In Ell], Kodaira and Spencer developed the theory of deformations of compact 
manifolds. After that, Kuranishi proved the existence of a semi-universal family of 
deformations for any compact complex manifold El2] or [3]. Generally speaking, 
one presumes strongly that the theory for compact complex manifolds can be 
extended to a rather wide class of non-compact complex manifolds, namely, 
complex manifolds having a compactification. For example of such extensions see 
[2] or [-7]. In this paper, we shall define the notion of compactifiable complex 
manifolds and develop the theory of their deformations. 

In Section 1, we shall make some definitions for compactifiable complex 
manifolds. In Section 2 we shall prove a theorem of Kuranishi type for logarithmic 
deformations (see Definition 3), that is, deformations for a fixed compactification 
of given compactifiable complex manifold. We shall prove the existence of a semi- 
universal family of deformations for any fixed compactification of given com- 
pactifiable complex manifold (Theorem 1). As corollaries we shall prove theorems 
of Kodaira-Spencer type concerning the cohomology groups Hi(X, T~(log/5)), 
where T~(logD) is the sheaf of holomorphic tangent vectors with logarithmic 
zeroes along/5 (see Definition 4), which will play an essential role in our theory. 
We shall replace the T X of the compact case by T~(log/5). 

In Section 3, we shall study the effect of changing the compactification of a 
given compactifiable complex manifold. We shall prove a "going down" theorem 
for logarithmic deformations (Theorem 3) and other related propositions. 

In Section 4, we shall give some examples, which will illustrate deformations of 
compactifiable complex manifolds a concrete form. Though the theory of deforma- 
tions of compactifiable complex manifolds is very similar to that of compact 
complex manifolds, some new phenomena will occur: 1) The parameter space of 
deformations may be infinite-dimensional. This is due to the absence of the 
minimal compactification. The latter is the main difficulty when we consider 
compactifiable complex manifolds of dimension greater than two. 2)The tech- 
nique developed to extend the theory for compact complex manifolds to that for 
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compactifiable ones can also be applied to the study of a singular variety S 
embedded in a non-singular variety A when we consider the complement A -  S of 
S in A. This observation provides a new standpoint for the study of equi- 
singularity. We shall develop the theory of equi-singular deformations of isolated 
singularity in a subsequent paper. 

We note also that HI(J(, T~(log b)) may be non-zero, even if Hi(X, Tx) vanishes. 
For  example, in case X is an affine manifold, we obtain a non-trivial deformation 
theory. 

In the Appendix, we shall extend the theory of Albanese maps for compact 
complex manifolds to the theory of quasi Albanese maps for compactifiable ones, 
where the notion of meromorphic structures defined in Section 1 (Definition 2) is 
indispensable. 

The author would like to express his heartly thanks to Professor S. Iitaka for his valuable advise 
and encouragement and to Professor M, Reid who kindly read and corrected the manuscript, 

1. Definitions 

Definition I. LetX be a complex manifold and D a closed analytic subset ofX. D is 
called an analytic subset of simple normal crossing if the following conditions are 
satisfied : 

h 
1) D =  U Di, where the Di(1 <i<h) are complex submanifolds of X. 

i=1 
2) For  each p6X, there exist a neighborhood U of p and a system of local 

coordinates {z 1 . . . . .  z,} on U such that D i = {z,,_l = . . . .  z,, =0} for 1 <_i<.h, where 
the r~ are integers such that - 1 __< r i < n and r i <__ rj if i___<j, and we understand that 
z o = t. Such a pair (U ; {z 1 . . . . .  z,}) will be called a logarithmic coordinate system. 

Definition 2. Let X be a complex manifold. A non-singular compactification X of X 
is a compact complex manifold such that D = X - X  is a closed analytic subset of 
simple normal crossing in X. 

A meromorphic structure m on a complex manifold X is a bimeromorphic 
equivalence class of non-singular compactifications of X. (Note that a complex 
manifold admits in general several meromorphic structures, see Appendix.) A 
compactifiable complex manifold (X, m) is a pair of a complex manifold X and a 

_.~ t ! meromorphic structure m on X. A morphism f:(X, m) (X, m)  of compactifiable 
complex manifolds is a morphism of the underlying complex manifolds which is 
compatible with the meromorphic structures, i.e., for a non-singular compactifica- 
tion ) ( ( r e sp . )~ ' )  of X (resp. X') which belongs to m (resp. m'), f induces a 
meromorphic map from ..Y to X'. We sometimes write simply X instead of (X, m) if 
there is no danger of confusion. 

A non-singular triple (X,X, D) is a triple consisting of a complex manifold X, a 
non-singular compactification X of X and a closed analytic subset D = X - X  of 
simple normal crossing. For  a non-singular triple (X,X, D) X is considered as a 
compactifiable complex manifold with the meromorphic structure m defined by J(. 
We say that the non-singular triple belongs to (X, m). 

By Hironaka [6] and Nagata [13], for a non-singular algebraic variety V 
defined over the complex number field C, the corresponding complex manifold 
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Va,=X becomes a compactifiable complex manifold with the meromorphic 
structure induced by the algebraic structure of V. We always assume that such an 
X is endowed with this meromorphic structure. 

Definition 3. A family of logarithmic deformations of a non-singular triple (X, X, D) 
is a 7-tuple ~-= (Y', X, ~,  if, S, s 0, up) satisfying the following conditions : 

1) ff : ~ ' ~ S  is a proper smooth morphism of complex spaces Y' and S. 
2) ~ is a closed analytic subset of X and ~ = ~ - ~ .  
3) UP :Jf-~-1(So) is an isomorphism such that ~p(X)=~-l(So)C~Y{'. 
4) ~ is locally a projection of a product space as well as the restriction of it to 

~,  that is, for each p e X  there exist an open neighborhood U of p and an 
isomorphism q ) : U~Vx  W, where V=ff(U) and W= Uc~ff-1(if(p)), such that the 
following diagram 

U ~o , V x W  

V 

is commutative and ~o(Uc~))= V x (Wc~)). 

Remark. If .N= (~r, ~r, ~ ,  5, S, s o, up) is a family of logarithmic deformations, then it 
is clear that ~ = (~i, ~i, ~i, ~i, S, s o, UPl) is again a family of logarithmic deforma- 
tions, where ~i=~..@i-~i, ~i=~it~(~-~i), ~i=~l~? and upi=uplfi, for all i. This 
remark enables us to use inductive arguments on the dimension n of X. 

A family of compactifiable deformations of a compactifiable complex manifold 
(X, m) is a 5-tuple ( f ,  ~, S, s o, tp) obtained from a family of logarithmic deforma- 
tions of a non-singular triple belonging to (X, m). 

Definition 4. Let X be a complex manifold and D a closed analytic subset of X. The 
logarithmic tangent sheaf Tx(logD ) is the subsheaf of the tangent sheaf T x of X 
consisting of derivations of C x which send J o  into itself, where J o  is the ideal 
sheaf of D in C x. (This definition is due to Saito [ 14].) To simplify the notation, we 
often write T(logD) etc. instead of Tx(logD ), if there is no danger of confusion. 

Let (X, X, D) be a non-singular triple. Then T~(log/)) is the sheaf of infinitesimal 
automorphisms of 37 which send/) into itself. By [5], we see that H10 ~, T(log/))) is 
the set of infinitesimal logarithmic deformations, that is, families of logarithmic 
deformations over the space SpecC[x]/(x 2) and that H2(J(, T(log/3)) is the set of 
obstructions. In a usual way we have a Kodaira-Spencer map 

e~o : Ts,sooHl( R, T(log/))). 

Proposition 1. The following sequences are exact 

(1) O-o Tx( -D) -o  Tx(logD)-* To~O , 
where T o is the sheaf of derivations of C o. 

(2) Oo Tx(logD)o Tx-~ No-~O, 
where N o = coker (To--* T x ® ~  Co). 
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Proof. (I) is clear from the definition. (2) follows from the following diagram 

0 0 

0 - ~  Tx( -  O) ~ Tx( -  O) ......... , 0  

0-~  Tx(log D) - -~  T x , N o --~ 0 

O ~  T o -  -~ Tx ®~,, e;o--~ No-~O 

0 0 0 

with the aid of the "9-1emma". Q.E.D. 

In this paper we are mainly concerned with the case where D is of simple 
h 

normal crossing. In this case, we easily see that N o = ~ No,, where the No, are the 
i = 1  

normal sheaves of the D~ in X. We also see that the sequence (1) corresponds to the 
Remark above. 

2. A Theorem of Kuranishi Type 

Definition 5. A family ~ = (~, ~r, ~ ,  ~, S, s o, 9) of logarithmic deformations 
of a non-singular triple (X,)~,/3) is semi-universal if for any family 
~-' = (X', X', ~ ' ,  if', S', s~, 9') of logarithmic deformations of (X, X, D) there exist 

t tt . _ ~  an open neighborhood S" of s o in S' and a morphism ~:S S such that the 
following conditions are satisfied" 

1) The restriction if'Is,, of i f '  over S" is isomorphic to the induced family a*ff. 
2) For any S~ and ao satisfying the same condition as in 1), the induced 

tangential maps T~ and T~o from Ts.s ~ to Ts.so coincide. 

Theorem 1. For any non-singular triple (X,)(,/3) there exists a semi-universal family 
of logarithmic deformations of it. 

Proof. We need the following proposition ([4], § 3 or [7], III, Theorem 9.1). 

Proposition 2. Let X 2 be a compact complex manifold and C a closed submanifold of 
it. Let X1 be the monoidal transform of X2 with center C and let D be the total 
transform of C. Put X I = X 1 - D  and X 2 = ) ~ 2 - C .  Then for any family 
ffl  =(~1, ~1, 9 ,  ~1, S, So, 91) of logarithmic deformations of(X1,X1,  D), there 
exist an open neighborhood S' of s o in S and a family .~2 = (~r2, ~2, ~, ~z, S', So, 92) 
of logarithmic deformations of (X 2, X2, C) such that ~i  Is, is a monoidal transform 
of ~'2 with center cg and ~[s" is the total transform of c£. 

By this proposition, we may assume that/3 is a divisor on )f. Then T~(log 15) is a 
locally free sheaf on a compact complex manifold and the harmonic integral 
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theory is available. Let M and N be the (union of) the underlying real analytic 
manifolds of J~ and/) ,  respectively. Let S be a complex space having a base point s o 
and let ~p be a (small) family of complex structures on M parametrized by S near 
the one defined by J(. We represent ~p by a T~-valued real analytic (0, 1)-differential 
form e) on )( parametrized by S (see [3]). Then, 

Lemma 1. N x S becomes a closed analytic subset of M x S with respect to the 
complex structure given by ~o if and only if to is logarithmic along [), that is, o) is a 
Ty~(logD)-valued real analytic (0, 1)-form on X. 

Proof. (only if); Let p be an arbitrary point of M and let R be a minimal equation 
o f / )  around p. If N x S is analytic, then there exists a real analytic function e 
around p parametrized by S such that e(p)~O and (L-oJ(L))(Re)=O for any 
L e TLp" Since L(R)=0,  this is equivalent to c9(L)(R)=e-l(L(e)-o)(L)(e))R, which 
proves the "only if '  part. 

(if); If to is logarithmic along/),  the pull back q of e) t o / )  is a T~5-valued (0, 1)- 
form on/) ,  by Proposition 1 (1). Clearly d"t 1 - [q, t/] =0. Hence t/defines a family of 
complex structures on N parametrized by S. Now, we have only to prove that the 
injection N x S--,M x S is holomorphic with respect to the above defined complex 
structures. Let f be a holomorphic function on M x S around a point p. Then for 
any L~rFLp, (L-og(L))( f )=O, and for any T~T s, T(f)=0.  qherefore, for L~ 7"~.p, 
(L- t l (L) ) ( f )=O,  that is, the pull back of f is holomorphic on N x S. Q.E.D. 

As in [3], the family ~ is obtained from the subspace of 
Frealanalyti c (X, T(log/))® T*) defined by the equations d'f'to =0  and d"to 

- [ to ,  e)] =0, where d=d '+d"  is the decomposition of the exterior differential 

operator into the operators d' and d" of type (1, 0) and (0, 1), respectively, and 6' is 
the adjoint operator of d" with respect to some hermitian metrics on T(log/)) and 
J(. The rest of the proof of the theorem is exactly the same as [3], and we omit 
it. Q.E.D. 

3. Changing Compactifications 

Definition 6. Let X be a complex manifold and D a closed analytic subset of simple 
normal crossing. An admissible center C on X with respect to D is a closed 
submanifold of X of codimension at least two contained in D satisfying the 
following conditions: For each pc C, there is an open neighborhood U of p in X 
and a closed analytic subset D' of simple normal crossing in U such that, if 

k h 
D'= i=~1 D'i is the irreducible decomposition of D', then Dn U = i=lU D'i and Cc~ U 

k 
= ('] D'i, for some h and m (1 <h, m<=k), Moreover, if in addition that h=k,  C is 

i = m  

called a canonical center. 

Theorem 2. Let X be a complex manifold, D a closed analytic subset of simple 
normal crossing and C an admissible center on X with respect to D. Let X *  be the 
monoidal transform of  X with center C and f :X* ~ X  the natural morphism. Let 
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D* = red ( f  - l(Dw C)). Then, D ~ is a closed analytic subset of simple normal crossing 
in X ~ and 

R f ,  Tx, (log D #) = Tx(log D)(log C), 

where the right hand side of the equality is the intersection of Tx(logD) and Tx(tog C) 
in Tx. 

Proof. The first statement is trivial. Since the required equality is local, we may 
assume that X =  U = D "  (polydisc) with the coordinate system {zl, ..., z,}. Put 

h 

H , = { z , = O } C X .  T h e n w e m a y a s s u m e t h a t D =  U Di, Di= (~ H, a n d C =  ~ H, 
i = 1 ~ e M x  i = 1 

where the Mi(1 <i<h)  are disjoint subsets of {1 .. . . .  n}. Denote by H', the strict 

transform of H a, by E the total transform of C, and set H e = 0 H'~wE. Then the 

strict transform D'~ of D i is equals to (~ H'~ for any 1 -< i < h. (We may assume that 
e ~ M i  

D i 4: C.) 
First, we see that T x , ( l o g H * ) = f * T x ( l o g H )  and hence Rf ,  Tx,(logH ~) 

= Tx(logH ) ®¢xRf,(gx,  = Tx(logH ). 
On the other hand, f .  Tx~ (log D ~) = Tx(log D) (log C) is obvious. We shall show 

that the higher direct images vanish. We have an exact sequence 

0---~ Tx,(logH~)---~ Tx,(logD #) 
h 

N . ;  ....... O. 
i =  1 o:~M~ ~ ¢ M ~  

p t _ _  Since R 'f, NH;(--D,)--RPf,  NH;=O for p>O, we have RX'f, Tx,(logO*~)=O for 
p>O. Q.E.D. 

In particular, if C is a canonical center with respect to D, we have 

Rf .  T x, (log O ~ ) = Tx(log D). 

From this and Theorem 1 (and the proof of it), we deduce the following Corollaries 
in a usual way: We fix our non-singular triple (X,X, D). Then 

Corollary 1. Let ~ = ( ~ ,  ~r, ~ ,  ~, S, So, ~) be a family of  logarithmic deformations 
of (X,_~,/)). I f  the Kodaira-Spencer map 0 : Ts,~o~H 10(, T(log/))) is surjective and S 
is regular, then ~ is a versaI family. 

Corollary2. I f  H~0(,T(log/)))=0,  then (X,,Y,/)) is rigid, i.e., every family of 
logarithmic deformations of (X,X, D) is' isomorphic to the product family near s o. 

Corollary 3. Let ~ = (~, ~ ,  ~ ,  if, S, s 0, ~) be a family of logarithmic deformations 
of (X,)~,/)). Assume that dim H 1 ()(,, Tt(log/)t) ) is constant and tile Kodaira-Spencer 
map _ot:T~,t--*H%~t, Tt(logDt)) is zero for each t6S, where X t = ~ - l ( t )  and 
Dt = ~ ~Xt.  Then, ~ is isomorphic to the product family near s o. 

Corollary_ 4 .  I f  H20 ~, T(log/))) = 0, then for an), semi-universal family 
~=(sLr  ~r ~ ,  ~, S, So, t~) of logarithmic deformations of (X,X, D), S is regular at s o. 

Proposition 3. Let X be a complex manifold and let (X,X1,Dx) and (X, X2,D2) be 
two non-singular compactifications of X. Assume that there is a morphism f :-~ l --~X 2 
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such that the following diagram 

£2 
is commutative. (Note  that f(/01)=/02.) Then, there exists a functorial linear map 

f ,  :Hi(Xl,  rl(lOg/01))~ HI(X2, r2(logO2)) 

for  each i > 0. 

Proof. By Theorem 2, we may assume that 101 and/02 are divisors on X1 and J~2, 
respectively. Then, by Serre duality, Hi(J~, T~(log/0~)) is the dual module of 

H"-iO( f2~ (log/5~) ®~x f2~) ) 

where e=  1 or 2, n - -d imX and ~(log/0~) is the dual sheaf of T~(logb~), i.e., the 
sheaf of holomorphic 1-forms with logarithmic poles along/0~. By the pull-back 
morphisms 

O21(log/02)-of.Ol(log/)l) and ~21-orf21 2 J *  1 '  

we have a functorial map 

f , : H . - i ( 2 2 ,  1 - . . - i -  1 - . . f22(logD2) ® f22))--*H (X,, f21(logD1) ® ~2,)) 

The desired f .  is obtained as the adjoint of f*.  Q.E.D. 

Remark. f .  is not necessarily either injective or surjective. 

Theorem3. Let  X be a complex manifold, (X ,Xx ,D1)  and (X,X2,D2) two non- 
singular compactifications o f  X ,  and ( f , f l, ~1 ,  n l, S, So, ~1) a family  o f  logarithmic 
deformations of  (X ,X  a, D1). We assume that there is a morphism f:)(x -°-Y2 such that 
the following diagram 

R: 
is commutative. Then, there exist  a neighborhood S' o f  s o in S and a family o f  
logarithmic deformations (X[s, , :~2, ~2 ,  £c2, S', s o, ~2) of  (X ,X  2, D2) satisfying the 
following conditions: There is a morphism / ' : 2 ~ 1 [ S ' ~ f  2 such that the following 
diagram 

~rlS' / ,2r~ 

S' 

is commutative a n d / [ X  1 = f . 
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Proof. We first prove that we may assume that /3  t (resp./32) is a divisor on R 1 
(resp.)~z). By successive monoidal transformations with canonical centers, we 
obtain (X, X4,D4) from (X,X2,D2) such that b 4 is a divisor on -~4. Then by 
successive monoidal transformations with canonical centers, we can construct 
(X,X3, D3) from (X,X 1, Dx) satisfying the following conditions:/33 is a divisor on 
X3 and there exists a morphism g :X 3-+j~4 such that the following diagram 

g l '  = X3 

\ 
"22~ P g~ 

is commutative, where • and fl are natural morphisms. Blowing up 
(~,~21,@1,~1, S, s0,~1) corresponding to the blowing ups of (X, X1, DI), 
we obtain a family of logarithmic deformations (~f,~3, N3, ff3, S, so,~3) of 
(X,X~,D_a). By assumption, we get a family of logarithmic deformations 
(f,~r4,~4, S',so, ~)4)(X, X4, D4). Finally by Proposition 2, we obtain a family 
of logarithmic deformations (~r, X2 ' 92 , n2, S", s o, ~2) of (X,X 2, DE). 

Second, we shall prove the theorem under the assumption that/31 (resp./32) is 
h 

a divisor on Jr1 (resp. J~2)- Let I32 = i~l/32.i be the irreducible decomposition of/32, 

and/31,1 the irreducible component of/~_1 such that the restriction of f to/3t . i  
induces a bimeromorphic morphism to DE, v By Theorem 8.1 of [7], we obtain a 
family of deformations_ _ X2 S (resp. @2,i-~S ) ofX 2 (resp./32,i) and a holomorphic 
m a p / :  ~1 -~ f 2  (resp. / :  ~1.~--,~2,~) over S' extending f, for a small neighborhood 
S' of s o in S. Moreover, by applying Proposition 7.3 of [7] to the following 
diagram 

, ' , t  . ! . ,  < . 

using Lemma 7.5 of [7], we find a holomorphic map ( ~ i ' ~ 2 , i - ' ~ " 2  o v e r  S' 
extending the inclusion map/32.i C)(2 and making the above diagram commuta- 
tive. It is easy to check that the q~ are in fact inclusion maps for divisors of simple 
normal crossings and that the restriction of t  / to the preimage of the complement of 

~2 = t.J ~2,i in 5Y 2 is an isomorphism. Q.E.D. 
i e l  

Remark. The morph i smf  corresponds to the homomorphism f .  in Proposition 3. 
That is, the following diagram 

Ts,~o Q' >HI()~I, Tl (log /31)) 

I1 J, s .  
Q2 1 -- Ts,~o----+H (X 2, T2(log/32)) 

is commutative, where Q1 (resp. q2) is the Kodaira-Spencer map of f l  (resp. ~2) 
at s o . 
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Let (X,X, D) be a non-singular triple, where/)  is a divisor on Jr. We regard the 
inclusion map i:X CX as a special case of a toroidal embedding (cf. [10]). There 
corresponds a complex of simplicial cones denoted by A(X,X, D) or simply by 
A(Jf), if there is no confusion. Let (X, Xi, Di) ( i=1,2)  be two non-singular 
compactifications of X such that the /) i are divisors on Xi, respectively, and 
f:Jfl-+X2 a morphism such that the following diagram 

is commutative, f is called allowable if it is a morphism in the category of toroidal 
embeddings ([10], p. 87). In this case, A(Jfl) is a simplicial sub-division of A(Jf2). 
For example, a monoidal transformation with a canonical center is allowable and 
corresponds to a barycentric subdivision. As remarked by Iitaka, if f is allowable, 
then the logarithmic ramification divisor/~I vanishes. 

Proposition 4. In the situation described above, if f is allowable, then we have 

R f ,  T 1 (log 6 1) ~ T2(log O2). 
Proof. Since A(lfl) is a simplicial subdivision of A(X2), successive barycentric 
subdivisions of A(X2) yields a simplicial complex A o which is a simplicial 
subdivision of A(J(,). Corresponding to the subdivision A o of 3(X2), we have a 
non-singular triple (X, Xo, Do) which is obtained by successive monoidal trans- 
formations with canonical centers from (X,X2,D2). We have a commutative 
diagram 

x c ~  g°  " 

On the other hand, we have a morphism f*(T2(logOa))-*(Tl(lOgD1)). Indeed, for 
veC(U, T2(log/)2) ) we have h*veF(h  l(U), To(log/)o)), and hence 
f*veF( f - ' (U) ,  Tl(log/5,)). Therefore, we have a natural homomorphism 

~ot2 : rz(logff)2))~Rf, Tl(logD1)). 

By Theorem 2, we have Rh, To(logDo)~Tz(logD2), that is, Rf,(q~ol)o~olz is an 
isomorphism. Hence, ~o12 is injective and Rf,(q~ol ) is surjective. Then Rf,(~0Ol ) is 
injective, and finally, q~, 2 is an isomorphism. Q.E.D. 

Proposition 5. We assume the same conditions as in Proposition 4. Then, the set of 
all germs of families of eompactifiabte deformations of X induced by the families of 
logarithmic deformations of (X,X 1, Dx) coincides with that of (X,X 2, D2), where a 
germ means an equivalence class with respect to the restrictions of the base space S. 

Proof. We make use of the arguments and the notation of the proof of Proposition 
4. By Theorem 3, to each family of logarithmic deformations of (X,X,, DO, there 
corresponds a family of logarithmic deformations of (X,X 2, D2). On the other 
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hand, for a family of logarithmic deformations of (X,X2, D2), successive monoidal 
transformations yields a family of logarithmic deformations of (X,X o, D o) and 
then, by Theorem 3, we have a family of logarithmic deformations of 
(X,XI,Da). Q.E.D. 

4. Examples 

In this section, we shall handle some examples and determine the semi-universal 
family of compactifiable deformations of it. The main tools are the following exact 
sequence 

O---}H°()~, T(log/5))~H°(X, T)~ ~ n°(Di, N) 
iEl 

~H~()~, T(log/5))~Hl(Jf, T)--. ~ HI(D,, N,) 

-+H20 ~, T(log/5))~H2(.~, T)--+ ~ H2(/5,, Ni) 
i~l 

deduced from Proposition 1. 
In this section, X is a compactifiable complex manifold which we deform, and 

(X,X, D) is a non-singular compactification of X. 

n ° 1. dimX = 1. 
In this case, there is only one compactification X. Set X =.~ - {Pl . . . . .  Pt}, and let 
g = 9(X) be the genus of 3f. We have the following table: 

g t d i m H  ° d i m H  1 ~:(X) d i m H  2 

1 

g~2 

0 3 0 - ~  
1 2 0 - m  
2 1 0 0 
t > 3  0 t - 3  1 

0 1 1 0 
t>=l 0 t 1 

t 0 3 g - 3 + t  1 

where H i denotes Hi()~, T(log/))) and ff:(X) is the logarithmic Kodaira dimension of 
X (cf. I-8]). 

n ° 2. d imX=2.  
Let (X, X1,DI) be a non-singular triple belonging to (X,m). We consider the 
following two types of transformations of it : 

i) Blowing up an ordinary double _point p of/31, and 
ii) blowing up a simple point p of D 1. 
Denote by (X, X o, Do) the transform of (X, X1, D1) and by f the natural 

morphism from )(o to 1(1. It is known that any two non-singular triples belonging 
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to (X, m) are joined by a chain of such transformations. In Case i), f is canonical 
and by Theorem 2 

H'(Xo, To(log 13o)) ~ Hi(-Y,, 7"1 (log 13,)). 

In Case ii), we have the following exact sequence of sheaves 

0 ~ R f ,  To(log 50 )-* 7"1 (log/51)~ Nv/~, ~ O. 

Therefore, we have the following exact sequence of cohomology groups 

0~H°()¢0, To(logbo))~H°(X1, T~(logbl))~C 
--, H~(,go, To(logbo))-~ U~(_~ ~, T~(logba))~0, 

and H20(0, To(logbo))=,H2(ff,,, T~(lOgbl) ). 

We note that X(To(log13o))=z(Tl(log130)-l, which also follows from the 
following equality 

z(T~(log b) ) = c~ + c 2 + 3c ,~  + 3~  - 652 
6 

where c i and ci are the chern classes ci(T~) and ci(T~(log13)), respectively. 
We can show easily that (X, m) has no minimal compactifications modulo 

canonical morphisms [i.e., transformations of Type i)], if and only if there exists a 
non-singular triple (X,X,D) belonging to (X, m) such that for some irreducible 
component E of 13, 

i) E = P  1, 
ii) E 2 =0, and 

iii) E. 13' =< 1, where i3' = 13 - E. 
In this case, (X,X,D) admits an infinite chain of blowing downs of Type ii) 

modulo that of Type i), and hence, l~d imH°(J f ,  T(log13))= o c, where (X,X,D) 
varies all non-singular triples belonging to (X, m). In particular, i f (X)=-  ~ (cf. 
[8]). 

Definition 7. A quasi-projective plane is an algebraic variety V which is an open 
subvariety of the projective plane p2. We identify V with the underlying 
compactifiable complex manifold (X, m) (cfi Definition 2). 

Proposition 6. A compactifiable deformation of a quasi-projective plane is again a 
quasi-projective plane. 

Proof. Let V= p2 _ C. By an embedded resolution of C, we obtain a non-singular 
triple (X,X,D). Now assume that (X,X,D) is deformed to (X',X',D'). Since the 
intersection numbers are topological invariants, 13' is contracted to a curve C' on a 
compact complex surface Q, where X ' =  Q - C ' .  Also we have c2(Q)= c12(p 2)--9. 
Hence Q~p2.  Q.E.D. 

We fix our notation: X = p 2 - c  and (X,X,D) is the non-singular triple 
obtained from the minimal embedded resolution of C. (Note that this is not the 
minimal non-singular compactification of X in Example 1 below.) 

Example 1. C= {yz s-1 =xS}, s>2.  
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In this case, 

d i m H i ( X , r ( l o g D ) ) -  - 3  for i = 2  
otherwise. 

The semi-universal family of ( X , X ,  D) is obtained from 

Ct = {yz  ~- 1 _ t l  x2z  s-  2 _  ... _ t~_ 3 x~-  2Z2 = xS} , 

where t = ( t  1 . . . . .  t~_3) is the parameter. Note that this family is not necessarily 
semi-universal as a family of compactifiable deformations, since X has no minimal 
compactification. But we can see that 

(i ,:0 dim Hi(J~t, Tt(log/3t) ) = - 4 i = 1 
otherwise. 

Hence, X ~¢X t if t 4= 0. This shows that the family is semi-universal as a family of 
compactifiable deformations. 

E xa mp l e  2. C = {yz  ~-1 =x~}w{x=0},  s>2.  
In this case, 

i if i = 0 ,  
d imHi(x , r ( logD))=  - 2  if i = 1 ,  

otherwise. 

The semi-universal family of logarithmic deformations of ( X , X ,  D) is obtained 
from 

Ct = {yz  ~- 1 _ t l X 2 2 S  - 2 - - . . .  __  t s  - 2 X S  - 1 z = X s }  k d  {X ---= 0} .  

From this we obtain a semi-universal family of compactifiable deformations of X, 
since ( X , X ,  D) is the minimal compactification of X. We have also 

i if i = 0 ,  
dimHi0~t, Tt(log/)t) ) = - 3 if i = 1, 

otherwise. 

E xa mp l e  3. C = {yqz p-q =xP},  (p, q )=  1, p ?> 2q, and q+  1. 
In this case, 

dimHi()~,r(log/)))= - 1  if i = l ,  
otherwise. 

The semi-universal family of logarithmic deformations of ( X , X ,  D) is obtained 
from 

C t  ~_ { ( y z  s -  1 _ t l X 2 Z  s -  2 _ . . .  _ t s  - 1 x S ) q z  r = x p }  , 
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where p = qs + r, 0 < r < q, and this is also semi-universal in a compactifiable sence. 
Furthermore, 

l~ if i=0, 
dimH'(X,,Tt(log/),))= - 2  if i = 1 ,  

t0 otherwise. 
Example 4. x2y 2 + y2z2 + Z2X 2 -[- 2(xZyz + yZ2x + z2xy)  = O. 

In this case, Hi(X, T(logD))=0 for all i. 
Thus, X is rigid. 

Example 5. C = {x~y z + 9 z  z + z3x z = 0}. 
In this case, 

ii if H~(3~, r(logt3))= if i=  t ,  

otherwise. 

C t = {x3(y -~- t 1 z) 2 -b- y3(z -]- t2x)  2 + z3(x + t3Y) 2 = 0} 

defines a subfamily of logarithmic deformations of (X,X,  D). 
Let us compute the logarithmic pluri-genera/5 o and the logarithmic Kodaira 

dimensions ~ of X (cf, [8]): 
Example 1. tim(X)---0 for all m, 

~(X) = - ~. 

Example 2. fro(X): 1 for all m, 
~(X):0 .  

Example 3. fig(X) ( : p I (X) )=0 ,  f2(X) = 1, fi4(X)=2, etc., 
~(x) = 1. 

Example 4. fg(X) --- 0, f2(X) = 3, 
~(X)=2. 

Example 5, /5~(X) = 3, 
K*(X) = 2. 

If we compute the ~,, and K* of small deformations of X obtained in Examples, 
we find that they are invariant under small deformations. Therefore, we raise the 
following conjecture : 

Conjecture. The logarithmic pluri-genera /5,. and the logarithmic Kodaira dimen- 
sions ~ of  algebraic surfaces are invariant under global deformations 1. 

Here, we understand that the delbrmation means the compactifiable one, and 
we note that we have only to prove the invariance under small deformations. 

n°3. d i m X = 3  X = C × Z , ~ .  
We shall give here only one example for the case that dimX = 3. In this case, J .  in 
Proposition 7 need not be injective nor surjective and the parameter space of the 
family of compactifiable deformations may be infinite dimensional. 

Let Z,, be the Hirzebruch surface of degree m (m > 0) and X = C x Z m. X admits 
a non-singular compactification Z .... = S ,  x c ~ X,,, where n e Z ,  and Z, is considered 

The invariance of ff under deformation is proved recently by the author 
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as a fiber bundle with the structure group C ×. By a chain of elementary 
transformations for X. : 

• . .  Y .  Y . + I  . . .  

\ / \ /  \ / 
X._  1 2;. 2;. + 1 

we obtain a chain of non-singular compactifications of X : 

. . .  t ~ x c x Z ~  Y . + l x c ~ Z m  . . .  
\ / \ / \ / 

X._ 1,m X.,m X.+ 1,m 

for which f . ' s  in Proposition 7 are not injective nor surjective and 

dimlimHl()~, T(logD))=oo, where the direct limit is taken for that chain with 
) 

respect to f . .  In fact, X has too many deformations: X_~, m (n>0)  is covered by 
coordinate neighborhoods 

{Uij;(Zi, tj,(ij) } for i , j = l ,  2. 

The relations are 

- -  m __ m n z Z 2 1  ~ ( 1 1 - - Z 2 ( 2 1 = t n 2 ( 1 2 - - z 2 t 2 ( 2 2  , Z 1 a n d  tl = t 2  1 

For polynomials Ph(t)= ~ ahf, h= 1 ..... m--1, of degree n in t, we set 
t = 0  

m - 1  
l __ Z m h -n  

( 1 1 -  2 ( 2 1  + h_~l Ph(tl)Z2=t2 ( 1 2  

m - 1  
-- -n m t - m  n h , 
- - t 2  Z 2 ( 2 2 - [ -  2 hE1= t2Ph(tl)Z2 

[ Z I = Z 2  1 , t l = t 2 1  . 

Then this defines a family of logarithmic deformations of (X, 2;-n,,., D_.) which is 
effective as a family of compactifiable deformations of X. Note that the dimension 
of the parameter space is n(m-1), which is equals to that of the image of 

H1(2 n,m, T z ...... (logD_.)) in li_mmHl(X, T(log/))), though 

dimHl(X .,m, T x ..... (logD_.)) = 2ran- 2. 

n ° 4. Semi-complex tori (see Appendix). 

Proposi t ion 8. A small compact~iable deformation of a semi-complex torus is again 
a semi-complex torus. 

Proof. Let (X,X 1, D1) be the logarithmic deformation inducing the compactifiable 
deformation in question. Since the deformation is small, dim Hq(x 1, g2~(log/31)) is 
equals to that of the fiber at the origin by [15] and [2]. (Note that a semi-complex 
torus admits a K/ihlerian manifold as a non-singular compactification and hence 
"th6orie de Hodge mixed" is available.) Let ct :X-~,~¢ be the quasi-Albanese map of 
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X. We have dimX : d i m J  by Proposition B of the Appendix. Replacing )( 1 by a 
non-singular compactification )7 of X dominating X 1, we have a morphism 

X n ~ : X ~ d = o ~ '  g P ,  which is an extension ofa .  Note that 

H"(X, OP(log D)) ~ Hq(Y,, OP(log/31)). 

First, we prove that [ is surjective. By definition, c~* :HI(s¢,C)--*HI(X, C) is an 
isomorphism. On the other hand, since the family of logarithmic deformations is 
topologically trivial, we have H*(X, C)=A*HI(X, C). Hence, if [ degenerates, we 

h 
have a contradiction. Set D = X - X  and L = d - ~ 4 =  ~) L~. By the topological 

i = 0  

triviality of the family of logarithmic deformations, we have K ~ + D - D  o in 
H2(j(, C) for some effective divisor/3o C/3. (The left hand side of the equality is 
equals to R = R~, the logarithmic ramification divisor of ~, by definition.) Hence, 
/ 3 0 - / ~ c ~ * M  for some M in H1(,~,(9)=HI(A,(9), where ~ denotes rational 
equivalence and A is the base space of the .Y--bundle d .  Then ~,/3o-~:,R~dM, 
where d is the degree of ~. It is easy to see that [./3o C/Z. Taking the intersection 
with the zero section s, we have ~,/3o.S=0 in H~"+2(,~,C). Hence, ~ , /~ . s=0  in 
H2n+2(,~,C). Both /3o and /~ are effective, this shows that [ , . b o . S = ~ , / { . s : 0 .  
Therefore, M. s = 0, and M :  0. Thus, if/3o 4=/{, then we have H°07, Ky +/3) > 2, 
which is a contradiction. Q.E.D. 

By the above proposition, we can construct a local universal family of 
compactifiable deformations of a semi-complex torus X. That is, ng-dimensional 
family of deformations of the fiber space structures over gZ-dimensional family of 
deformations of the base complex tori. Actually, this family is obtained by the 
logarithmic deformations of the standard compactification X CX=X z jP" .  In 
fact, 

dim Hi(X, T(log /3)) = (gi ) (g + n) , 

and the space S in Theorem 1 is the whole H~0 ~, T(log/3)). 

Appendix 

Quasi-Albanese Maps for Compactifiable Complex Manifolds 

Iitaka defined the quasi-Albanese maps for algebraic varieties over the complex 
number field C which are not necessarily complete (cf. [9]). We shall extend it for 
compactifiable complex manifolds. 

Proposition A. Let (X,X, D) be a non-singular triple where/3 is a divisor on X and 
~2~(log/3) the sheaf of p-forms on X with logarithmic poles along/3 (cf. [1] or [2]). 
Then we have a spectral sequence 

E~ q :  nq0 7, Y2~(log/3)) ~ H'(X, C). 

Proof. Let j :X "~X be the inclusion map. Consider the following diagram 

j*~( log/3)  Z~ ~2 x ~ Cx ' 
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where a is an identity and fl is a quasi-isomorphism obtained from the Poincar6 
lemma. By adjunction, we get a morphism 

f21(log/3)-~ Rj ,C  x 

in the derived category. We can easily check that  it is an isomorphism and the 
proposition is proved. Q.E.D. 

From this proposition and the Rieman-Roch theorem we can easily show that 
G(TjT(Iog 15)) = e(X) = the Euler number of X. 

Proposition B. Let (X, m) be a compactifiable complex manifold, (X,Xi, Di) (i = 1, 2) 
two non-singular compactifications belonging to (X, m) where the ff)i are divisors on 
Xi, and f :X1--*f~2 a morphism such that the following diagram 

c / / "  x l 

is commutative. Then we have 

RJ.  f2~ (log 15,) = f2P(tog 152), 

where the ~2~'(1og15i) are the sheaves of  p-forms with logarithmic poles along the 15i. 

Proof. First, we assume that f is a monoidal  transformation with a canonical 
center. Since (2~(log/)l)=f*O~(log152), the assertion holds. 

Next, we assume that f is a monoidal  transformation with an admissible center 

C. Fix a point pc)(  2 and pick a divisor 152 = ~ 152o around p such that C is 
jed 

canonical with respect to 152 + D2. We prove the assertion by induction on Card J 
-" -' D' Let LS' 1 (resp. -" and dimX. Pick joEJ and put J '=J-{Jo}"  Set D 2 = D  2 -  2do" D1, 

and/5'1,)  be the strict transform of 152 (resp. -" D2, and - '  D2, ), Then we have an exact 
sequence of sheaves on J~ 1 

0___~ f2~(log 151)_.÷ f~(log (/51 -, + DlOo)) 
res  ) ~ g _  1 - - ,  

ao (log(D~ ~D~.jo))--~0, (4) 

where res denotes the residue map along 15'1do" By the induction hypothesis, we 
have 

R' f ,  g2~(log (15 ~ + 15'~,to) = O, 

and 

Rif,,c2;..f'(log(151c~b'l.jo))=O, for i > 0 .  

On the other hand, 

f,~2~(log(15 t + 15'1 oo)) = f2~(log (152 + 152,jo)), 

J,  ~2;. ° 1(log(b1 ~b'~,~o))= O~f '(log( b2~152.so)) , 
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and the map 

res : ~2~(log(/) 2 +/5~ jo)--, (2~o- l(log(/Sz ~/5~0o) ) 

is clearly surjective. In view of the exact sequence of sheaves on )(2 induced by the 
exact sequence (4), we get the desired result. 

Finally, we consider the general case. There exists a pull-back homomorphism 
f*f~(logbz)~f2~(logff)l). The rest of the proof is analogous to the arguments 
given in the proof of Proposition 4. Q.E.D. 

Definition A. A semi-complex torus of type (9, n) is a compactifiable complex 
manifold (X, m) of the following type : 

1) The underlying complex manifold X is isomorphic to a quotient space V/A, 
where V-~C g, ~ = g + n  and A = Z  20+" is a subgroup of V generating a (2g+n)- 
dimensional R-subspace (resp. the whole V) over R (resp. over C). 

2) There exists a submodule A 0 of z] of rankn generating an n-dimensional 
C-linear subspace H of V over C and the image A of A in V/H generates the whole 
V/H over R. By this, X becomes the total space of a J-bundle over a complex torus 
A= V/(H+A), where J = ( C × )  ". Then, m is the meromorphic structure on X 
determined by the non-singular compactification )( =X x ~-P". 

Note that a semi-complex torus has a Lie group structure induced by that of t/: 

Remark. Such a complex manifold X admits several meromorphic structures. For 
example, let J be a discrete subgroup of C z generated by el, e~ and ae 1+fie 2, 
where {e~, e2} is a C-basis of C 2, and ~, fl are general complex numbers. Then, two 
submodules A~=(el) ,  and A2=(e2) of zl determine distinct meromorphic 
structures on C2/A. 

Let X be a J--bundle over a complex torus A. Then X admits a natural non- 
singular compactification l ( =  Xx~IP". We always regard X as a compactifiable 
complex manifold with such a meromorphic structure, if not stated otherwise. 

Definition B. A quasi-Albanese map (c~,~¢(X,m)) of a compactifiable complex 
manifold (X,m) is a pair consisting of a semi-complex torus s¢(X, m) and a 
compactifiabte morphism a : X ~ ' ( X , m )  satisfying the following universality 
condition: If 9 : X - ~  is a compactifiable morphism into a semi-complex torus ~ ,  
then there exists a unique compactifiable morphism h:N'-~/(X,m), which is a 
composition of a Lie group homomorphism and a translation, such that g = h~,a. 

Proposition C. For a compactifiabte complex manifold (X, m), there exists a quasi- 
AIbanese map (~, o~'(X, m)) uniquely up to isomorphisms. 

Proof. Let X be a non-singular compactification of X belonging to m. The 
cohomology groups Hq(X, f2P(log/5)) are invariants of (X, m), by Proposition B. Let 
P (resp. F) be the subspace of H°0 ~, f21(log/5)) [resp. H°0 ~, ~1)] consisting of 
d-closed forms, and let F* = Homc(F, C) [resp. F* = Homc(F , C)] be the dual space 
of P (resp. F), let zl (resp. A) be the image of HI(X,Z) [resp. HI(J~,Z) ] in F* 
(resp. F*), with p:F*--* F* the projection, and let H = ker p, A 0 = A c~ H, A C (resp. A c) 
the smallest closed Lie subgroup of F* (resp. F*) containing j (resp. A) such that 
the connected component of ztc (resp. Ac) is a C-linear subspace of F* (resp. F*). By 



264 Y. Kawamata 

Proposition A, we have d i m H = d i m F - d i m F = d i m H l ( X , C ) - d i m H l ( X , C )  
> rank A o. On the other hand, J generates the whole of F* over C by the duality of 
Hi(X, C) and HI(X, C). Hence dim H = rank A o. We note that F*/A c is an Albanese 
torus A(J() of J( (cf. [16], p. 102). Therefore, we get a semi-complex torus s~c(X, m) 
=F*/A of type (g,n), where g=dimF*/Ac<dimHt(X,(gx) and n=dimHl(X,C)  
-H10 ~, C), by the submodule A 0 of z]. Fix an arbitrary point x o eX and define the 
morphism ~ : X ~ 4 ( X ,  m) by the following integral' 

~(x)(~)= i o~ 
xo 

for all x e X  and for all ~oeP. e is clearly compactifiable. The construction 
(X,m)--*(e,~(X,m)) is functorial, i.e., if f:(XI,IlII)-*(X2,11t2) is a morphism of 
compactifiable complex manifolds, then there exists a morphism d ( f ) : d ( X 1 ,  ml) 
- - ,~ (X  2, m2) of compactifiable complex manifolds which is a Lie group homo- 
morphism and satisfies the condition that d(fog)=~c(f)os~C(g). If (X,m) is a 
semi-complex torus, then ~¢(X,m) is isomorphic to (X,m), hence the 
universality. Q.E.D. 

Corollary. d(X,  m) is a J--bundle over the Albanese torus A(5~), where 3-=(C×) ", 
n = dim HI(x, C ) -  dim H 1 ()~, C). 

Pro@ See the proof of the proposition. 

Lemma A. Let D = U Di be the irreducible decomposition of D and cl :CI~H2(j(, C) 
ieI 

the linear map defined by the following formula : cl( .... ~i . . . .  ) = the cohomology class 

of ~ c~iD i in X. Then we have 
i e l  

dim H 1 (X, C) - dim H 10~ ' C) = dim ke r (cl). 

Proof. We have a local cohomology sequence: 

O--~ HI(X, C)---, HI(X, C) b--, H~(X, C)Z-~ HZ(R, C). 

Note that H20 ~, C ) -  ~ H2,(Jf, C)= ~ .  C, b is induced by the residue map, and 

that c is exactly cl. Q.E.D. 

Remark. Note that I3 need not be a divisor on )~ in the above lemma. 

1.emma B. Let rc : X ~ A  be a ~--bundte over a complex torus A of dimension g, 

=X x 9-P ~ the canonical compactification of X, L = X - X  = 0 L~ the irreducible 
i = 1  

decomposition of L. Then the following conditions are equivalent: 
1) X is a semi-complex torus, 
2) n is a topologically trivial bundle, 
3) cl(Lo) = ... =cl(L,) in H2(Jf, C), 
4) X is diffeomorphic to (S I x S l y  x (S 1 x C) ~. 

Proof. 1)=, 4) is clear. By Lemma A, 4)=, 3). To prove 3)=~ 2), we may assume that 
n=  1. Since ~*(r0= (9~(Lo- L0,  we have cl(rc)=(L o -  LI)ILo, which proves 3)=*-2). 
2)=,4) is clear and 3)=,1) is Lemma A. Q.E.D. 
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