Characters of the Nullcone

Wim H. Hesselink

Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, NL-9700 AV Groningen, Netherlands

1. Introduction

Let G be a semi-simple algebraic group over $\mathbb C$ with Lie algebra g. The nullcone N of g consists of the nilpotent elements of g . Its co-ordinate ring $A(N)$ is a graded ring $\sum_{n\geq 0} A_n(N)$. We fix a maximal torus T of G and a dominant chamber C in the character group P of T. If $\lambda \in C$ let E_{λ} denote the irreducible G-module with highest

weight λ . Let $d_n(\lambda)$ be the multiplicity of E_λ in the G-module $A_n(N)$.

Let R be the root system. Let R_+ be the set of the positive roots. Put $\rho:=\frac{1}{2}\sum_{n=0}^{\infty} \alpha$. If $\chi \in P$ let $p_n(\chi)$ be the number of maps $f:R_+ \to \{0\} \cup \mathbb{N}$ such that $n=\sum f(x)$ and $\gamma=\sum f(x)x$. Let W be the Weyl group. If $w \in W$ put $R(w) := R \supset -wR$ and $n(w) := \pm R(w)$ and $e(w) := (-1)^{n(w)}$. We prove the following theorem.

Theorem. If
$$
\lambda \in C
$$
 then $d_n(\lambda) = \sum_{w \in W} \varepsilon(w) p_n(w(\lambda + \varrho) - \varrho)$.

Remarks. The sequence $d_{\mu}(\lambda)$ is equivalent to the sequence of generalized exponents $m_{\mu}(\lambda)$ introduced by B. Kostant in [5]. In fact we have

$$
d_n(\lambda) = \#\{i | m_i(\lambda) = n\}
$$
 and $m_i(\lambda) = \min \left\{ m | i \leq \sum_{n=0}^m d_n(\lambda) \right\}.$

March 1976 I obtained the Theorem using the cohomological methods of [4]. After a conversation with T. A. Springer it became clear that the cohomology could be eliminated from the proof, see below. September 1978 I learned that D. Peterson had obtained the same Theorem, independently and by different methods.

2. We may assume that G is simply connected. The Grothendieck group $R(T)$ of the (finite dimensional) T-modules is identified with the group ring $\mathbb{Z}[P]$. If E is a T-module its class in $R(T)$ is denoted by ch(E). Let V be an affine T-variety. Assume that the co-ordinate ring $A(V)$ is graded in such a way that the

© by Springer-Verlag 1980

homogeneous parts $A_n(V)$ are T-modules. Then we define the character of V to be the formal power series

$$
\mathrm{CH}(V,z):=\sum_{n=0}^{\infty}\mathrm{ch}(A_n(V))z^n.
$$

Let E be a T-module with $\text{ch}(E) = \sum m(i)e^{\chi(i)}$, so $m(i) \in \mathbb{Z}$ and $\chi(i) \in P$. Since the coordinate ring of E is the symmetric algebra $S(E^*)$ on the dual E^* we obtain

$$
CH(E, z) = \prod (1 - e^{-\chi(i)}z)^{-m(i)}.
$$

3. Lemma. If we put $W(z) := \sum_{w \in W} z^{w(w)}$ the nullcone N satisfies

CH(N, z) = W(z)
$$
\prod_{\alpha \in R} (1 - e^{\alpha} z)^{-1}
$$
.

Proof. Put $r = \text{rank}(q)$. By Sect. 2 we have

CH(g, z)=(1-z)^{-r}
$$
\prod_{\alpha\in R} (1-e^{\alpha}z)^{-1}
$$
.

B. Kostant has shown that $A(g) = H \otimes A(g)^G$ where $H = \sum H_n$ and the G-module H_n is isomorphic to $A_n(N)$ for every n, cf. [5] Theorem 11. Let m_1, \ldots, m_r be the exponents of the root system R. Put $d(i) = m_i + 1$. The ring of invariants $A(q)^G$ is generated by algebraically independent homogeneous polynomials $f_1, ..., f_r$ of degrees $d(1), \ldots, d(r)$. This implies

$$
\sum ch(A_n(g)^G)z^n = \prod (1 - z^{d(i)})^{-1}.
$$

It follows that

CH(N, z)=(1-z)^{-r}
$$
\prod_{i=1}^{r}
$$
 (1-z^{d(i)}) $\prod_{\alpha\in R}$ (1-e^z)⁻¹.

So the lemma follows from the identity

$$
W(z)=(1-z)^{-r}\prod_{i=1}^r(1-z^{d(i)}), \text{ cf. [6] } 2.6.
$$

4. The Weyl group action on P is extended to the ring $R(T)[[z]]$ in such a way that z is W-invariant. Let J be the endomorphism of $R(T)[[z]]$ given by $J=\sum \varepsilon(w)w$.

Lemma. Let V be a subset of R_+ . Put $W(V) = \{w \in W | R(w) \subset V\}$. Then we have

$$
J\left(e^{\varrho}\prod_{\alpha\in V}(1-e^{-\alpha}z)\right)=J(e^{\varrho})\sum_{w\in W(V)}z^{n(w)}.
$$

Proof. If $A \subset R_+$ we put $|A| = \sum_{\alpha \in A} \alpha$. We have

$$
J\left(e^e \prod_{\alpha \in V} (1-e^{-\alpha}z)\right)=\sum_{A \subset V} (-z)^{*A} J(e^{e-|A|}).
$$

In [6], p. 166, I.G. Macdonald proved that $J(e^{e^{-t}A|})+0$ if and only if $A = R(w)$ for some we W. Moreover the element w is necessarily unique. It satisfies $n(w) = #A$ and $J(e^{e-|A|}) = \varepsilon(w)J(e^q)$.

5. Proposition. CH(N, z)
$$
J(e^e) = J\left(e^e \prod_{\alpha \in R_+} (1 - e^{\alpha} z)^{-1}\right)
$$
.

Proof. Put $x = \prod_{\alpha \in R} (1 - e^{\alpha}z)^{-1}$ and $y = e^{\alpha} \prod_{\alpha \in R_+} (1 - e^{-\alpha}z)$. Since x is *W*-invariant the righthand side of our formula is equal to *J(xy)=xJ(y)*. Now the equality follows from the Lemmas 3 and 4.

Remark. This proof is a simplification of an idea used in [4] p. 251.

6. Proof of the Theorem. The numbers $p_n(\chi)$ are determined by

$$
\prod_{\alpha\in R_+} (1-e^{\alpha}z)^{-1} = \sum_{\chi\in P, n\geq 0} p_n(\chi)e^{\chi}z^n.
$$

The proposition implies

$$
ch(A_n(N))J(e^e) = \sum_{\chi \in P} p_n(\chi)J(e^{e+\chi})
$$

=
$$
\sum_{\lambda \in C} \sum_{w \in W} \varepsilon(w) p_n(w(\lambda + \varrho) - \varrho)J(e^{\lambda + \varrho}).
$$

Since G-modules are characterized by their formal character, the Theorem follows by Weyl's character formula

$$
ch(E_1)J(e^{\varrho})=J(e^{\lambda+\varrho}),
$$

el. [1], Chap. 8, Sect. 9.

7. Remark. Let U be a maximal unipotent subgroup of G, normalized by T, whose weights are the positive roots. The ring of invariants $A(N)^U$ is a graded T-module with character

$$
f(z) = \sum ch(A_n(N)^U) z^n = \sum_{\lambda \in C, n \geq 0} d_n(\lambda) e^{\lambda} z^n.
$$

By the Theorem of Hadziev-Grosshans, cf. [3] and [2], the ring $A(N)^U$ is finitely generated. It follows that $f(z)$ is an element of the quotient field of the polynomial ring $R(T)[z]$.

Problem. Write $f(z)$ as a quotient $g(z)/h(z)$ with $g(z)$ and $h(z)$ in $R(T)[z]$ or rather in $\mathbb{Z}[C][z].$

Remark. Let us define $D_n(\lambda) := \sum_{\alpha} \epsilon(w) p_n(w(\lambda + \varrho) - \varrho)$ for all $\lambda \in P$, so that $D_n(\lambda)$ *w~W* $= d_n(\lambda)$ if $\lambda \in C$. The formal power series

$$
F(z) := \sum_{\lambda \in P, n \geq 0} D_n(\lambda) e^{\lambda} z^n
$$

satisfies

$$
F(z) = e^{-\mathbf{e}} J \left(e^{\mathbf{e}} \prod_{\alpha \in R_+} (1 - e^{\alpha} z)^{-1} \right).
$$

Example 1. Let G be of type A_2 , with simple roots α and β . A weight $\lambda = x\alpha + y\beta$ satisfies $d_n(\lambda) = 1$ if and only if $d_n(\lambda) \neq 0$ if and only if x and y are integers with

 $\max\{2x-y,2y-x\} \leq n \leq x+y$.

It follows that

$$
f(z) = \frac{1 + e^{\alpha + \beta} z^2 + e^{2\alpha + 2\beta} z^4}{(1 - e^{\alpha + \beta} z)(1 - e^{2\alpha + \beta} z^3)(1 - e^{\alpha + 2\beta} z^3)}.
$$

Generators and relations for $A(N)^U$ are easily obtained.

Example 2. Let G be of type B_2 , with simple roots α (short) and β (long). A rather tedious calculation shows that

$$
f(z) = \frac{1 + e^{3\alpha + 2\beta}z^4}{(1 - e^{\alpha + \beta}z^2)(1 - e^{2\alpha + 2\beta}z^2)(1 - e^{2\alpha + \beta}z)(1 - e^{2\alpha + \beta}z^3)}.
$$

References

- 1. Bourbaki, N.: Groupes et algèbres de Lie, chap. 7 et 8, Paris: Hermann 1975
- 2. Grosshans, F.: Observable groups and Hilbert's fourteenth problem. Amer. J. Math. 95, 229-253 (1973)
- 3. Hadziev, Dz. : Some questions in the theory of vector invariants. Math. USSR-Sbornik 1, 383-396 (1967) (=Mat. Sbornik 72, 114 No. 3 (1967)
- 4. Hesselink, W.H. : Cohomology and the resolution of the nilpotent variety. Math, Ann. 223, 249-252 (1976)
- 5. Kostant, B.: Lie group representations on polynomial rings. Amer. J. Math. 85, 327-404 (1963)
- 6. Macdonald, I.G.: The Poincar6 series of a Coxeter group. Math. Ann. 199, 161-174 (1972)

Received June 25, 1979