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Lusternik-Schnirelman Theory 
and Non-Linear Eigenvalue Problems* 

Herbert Amann 

1. Introduction 

Let A and B be mappings from a real infinite-dimensional Banach 
space X into its dual X*.We consider an eigenvalue problem for the pair 

(A,B), namely the problem of finding an element u ~ X, i.e. an eigen- 
function, satisfying some normalization conditions and a real number 2, 
i.e. an eigenvalue, such that 

A(u) = 2B(u). (1.1) 

In this paper we employ the ideas of Lusternik and Schnirelman [14] 
to establish the existence of infinitely many distinct eigenfunctions for 
problem (1.1). 

This problem has already attracted considerable interest [3-7, 9-11, 
13, 14, 18, 19]. All these investigations have been based on variants of 
the so-called Lusternik-Schnirelman theory. 

In the early 1930's Lusternik and Schnirelman developed a theory 
of critical points for differentiable functions on finite-dimensional 
Riemannian manifolds. One of the principal tools for establishing the 
existence of "intermediate" critical points (i.e. of critical points not be- 
longing to absolute maxima or minima) is the same as in the Morse 
theory, namely the deformation of the manifold along gradient lines. 
The application of this theory to infinite-dimensional eigenvalue pro- 
blems of the form (1.1) which arise in connection with differential and 
integral equations require the generalization of the Lusternik-Schnirel- 
man theory to infinite-dimensional manifolds. This extension has been 
made by Schwartz [16, 17] for Riemannian manifolds modelled on 
Hilbert spaces and by R. S. Palais [15] for Finsler manifolds modelled 
on arbitrary Banach spaces. These generalizations are based on a 
fundamental compactness assumption, the so-called Palais-Smale Con- 
dition. 

In applying this general Lusternik-Schnirelman theory to the eigen- 
value problem (1.1) one is faced with two technical difficulties. First, one 
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has to impose restrictions upon the operators under consideration which 
guarantee the Palais-Smale Condition to be satisfied. Second, one has 
to impose regularity conditions upon the norm of the Banach space X 
(it has to have a locally Lipschitz continuous first derivative) in order to 
be able to construct a pseudo-gradient field defining a flow on the 
manifold. For a lucid discussion of these difficulties see [6]. 

To avoid these difficulties Browder [5-7] and Weiss [19] have 
employed a Galerkin approximation procedure for the eigenvalue 
problem (1.1) which makes no explicite use of the theory of infinite 
dimensional manifolds. However, in order to carry through the necessary 
limit arguments one has to impose definiteness restrictions upon the 
operator B. Assumptions of this type have been made, either explicitely 
or implicitely, in all of the papers which have been published on this 
subject. In fact, it has at least been assumed that, for all u ~ 0, 

I(B(u),u)l >0 .  

The main purpose of this paper is to remove this condition. To do 
this we use an infinite dimensional argument of Lusternik-Schnirelman 
type which is based on two observations. First, in applying the general 
Lusternik-Schnirelman theory in the form of Palais to the eigenvalue 
problem (1.1) only manifolds have been used which are homeomorphic 
to the unit sphere by means of the radial projection mapping. But on 
manifolds of this type one can easily construct trajectories which are 
approximations to gradient lines of a function without integrating a 
differential equation. Hence, there is no need for a Finsler structure on 
these manifolds. 

Second, the difficulty in establishing the Palais-Smale condition 
under reasonable assumptions upon B and its functional b stems from 
the fact that a weakly convergent sequence {u,} of normalized elements 
may converge to zero. This can easily be excluded if the sequence {b(u,)} 
is bounded away from zero. But the consideration of sequences of this 
type suffices for establishing the existence of infinitely many eigenfunc- 
tions. This means that we do not have to verify the Palais-Smale Condi- 
tion "globally" but only for sequences of the above type which is a much 
easier task. By this way we can solve our problem under rather weak 
assumptions upon B which in fact are necessary too. 

Applications of our general results to quasi-linear differential 
equations can be given very much in the same way as in Browder's 
work [4-7] and are omitted here. Instead, we apply our results to the 
Hammerstein equation u = 2KF(u) in order to prove a general theorem 
on eigenfunctions which generalizes in particular recent results of 
Coffman [10]. 
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2. Definitions and Statement of the Main Results 

Let X be a real Banach space with dual X* and with duality pairing 
(-,-> between X* and X. We denote weak convergence in either X or 
X* by ~ and strong convergence by - , .  

A mapping A : X ---, X* is said to be a potential operator with potential 
a if there exists a Gateaux-differentiable functional a: X - ,  R such that, 
for all u, v ~ X, 

lim z -  i (a(u + zv) - a(u)) = <A(u),v>. 
~-'~ 0 

The potential a is uniquely determined by the requirement a(0)= 0 
which always will be made in this paper. 

A mapping A : X -o X* is called hemicontinuous if it is continuous 
from line segments in X to the weak topology of X*. It is easily seen 
(e.g. [3]) that a hemicontinuous mapping A : X - o X *  is a potential 
operator if and only if, for all u, v e X 

1 1 

j ((A(zu),u> - (A(zv),v>)d, = j <A(v + z(u - v)),u- v>d,. 
0 0 

Moreover, its potential can be represented in the form 

1 

a(u) = ~ (A(~u),u>dz. (2.1) 
0 

A mapping A : X ~ X* is said to be stronoly monotone if there exists 
a continuous function ~:[0,  oo)-o [0, oo) which is positive on (0, oo) and 
satisfies ~(Q)--* oo as Q-o oo such that, for all u,v ~ X,  

< A ( u ) -  A(v),u - v> ~ ~(l[u- vll)llu- vii. 

A mapping A : X ~ X *  is said to satisfy condition (S) 1 if for every 
sequence {u j} in X with u i ~ u and A(ui) ~ v we have u j ~  u. Obviously, 
every strongly monotone operator satisfies condition (S)1. 

Condition (S)l generalizes conditions (S) and (S)o introduced by 
Browder [5-7]. Indeed, A is said to satisfy condition (S) if u i ~ u  and 
( A ( u ~ ) - A ( u ) , u i -  u> ~ 0  imply u ~ u ,  and A is said to satisfy condition 
(S)o if u ~ u , A ( u j ) ~ v  and (A(uj),uj>--.(v,u> imply u j~u .  It has been 
shown [5, Lemma 1] that (S) implies (S)o and it is trivial that (S)o implies 
(S)~. Hence (cir. [6]), condition (S)1 is satisfied for quasi-linear elliptic 
differential operators in generalized divergence form under weak 
hypotheses upon the coefficients. 

A mapping A : X ~ X *  is said to be odd if, for all u ~ X, we have 
A ( u ) - - - A ( - u ) .  If A is an odd hemicontinuous potential operator 
then by (2.1) its potential is an even functional, i.e. for all u ~ X, we have 
a(u) = a ( -  u). 



58 H. Amann: 

In this paper we consider mappings satisfying the following 

Assumption (A). A : X ~ X *  is an odd potential operator which is 
uniformly continuous on bounded sets and satisfies condition(S)a. For a 
given constant ~ > 0  the level set M, = {u ~ Xla(u)=~} is bounded and 
each ray through the origin intersects M~. Moreover, for every u # O, 
(A(u),u) > 0  and there exists a constant ~ > 0  such that (A(u) ,u)> Q~ 
on M~. 

It is easily seen that every strongly monotone odd potential operator 
which is uniformly continuous on bounded sets satisfies Assumption (A). 

A mapping B : X ~ X *  is said to be strongly sequentially continuous 
if it maps every weakly convergent sequence into a strongly convergent 
sequence. 

A subset of X is said to be symmetric if it is invariant under the in- 
volution which sends u into - u. 

Let rg be the class of all closed symmetric subsets of X not containing 
the origin. For  every C ~ cg we define the genus of C, gen (C), to be zero 
if C is empty and otherwise to be the supremum of the set of integers n 
such that every odd continuous map f :  C--,IR"- 1 has a zero. 

For  an arbitrary symmetric subset S of X\{0} we define the genus 
over compact sets 7(S) by 

v(S) = sup{gen(C)lC C S,C ~ cg, C compact}. 

It is an immediate consequence of Borsuk's theorem (e.g. [17, Corollary 
3.29]) that v(S)____ n if there exists an odd homeomorphism of the unit 
sphere in 1R" onto a subset of S. 

We are now in position to state our main result. 

Theorem A. Suppose the following hypotheses are satisfied: 
H 1) X is a real infinite dimensional uniformly convex Banach space. 
H2)  The operator A : X ~ X* satisfies Assumption (A). 
H3)  The mapping B: X - ~ X *  is a strongly sequentially continuous 

odd potential operator (with potential b) such that b(u) ~e 0 implies B(u) ~ O. 
Then: 
a) The eigenvalue problem 

A (u) = 2 B(u) (2.2) 

has infinitely many distinct eigenfunctions satisfying the normalization 
condition a(u) = ~ provided 

7{u e M~lb(u) :~ 0} = ~ .  (2.3) 

b) For every k ~ N set cg k = { C C M,I C symmetric, compact, gen(C) > k} 
and define flk by 

flk = sup inf Ib(u)l. 
Cc~k u e C  
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Then, if flk > O, there exists an eigenfunction u k ~ M= of (2.2) with 

jb(u~)I = ilk. 
c) Suppose, for some j, m ~ N, we have 

. . . . .  

and denote by Ej the set of all eigenfunctions on M~ of (2.2) satisfying 
]b(u)l = f12" Then 

gen(E} >= m + 1. 

d) Condition (2.3) is necessary for the existence of infinitely many 
distinct normalized eigenfunctions of (2.2), i,e. there exist Banach spaces 
X and operators A and B satisfying H 1 - H 3  but not (2.3) such that (2.2) 
has' only finitely many distinct normalized eigenfunctions. 

Hypothesis H3 is obviously satisfied if B is a strongly sequentially 
continuous odd potential operator satisfying ](B(u),u)] > 0  for u4=0. 
Hence, except for regularity assumptions, Theorem A generalizes all the 
known existence theorems for the eigenvalue problem (2.2). 

A mapping B : X  ~ X* is called homogenous of degree fl > 0 if, for 
every u s X and every z > 0, 

B(~u) = ~ B(u).  

Let B : X - ~ X *  be a homogenous potential operator. Then by (2.1), 
1 

b(u) = ~ ( B(u),u). Hence, every homogenous potential operator has 
fl+t 

the property that b(u) 4= 0 implies B(u) 4= O. 
Let X be an arbitrary real Banach space. A linear operator K : X - } X *  

is said to be non-negative if, for all u,v ~ X, 

(Ku,  v ) = ( K v ,  u)  and (Ku,  u)>O.  

It is easily seen (e.g. [1, Lemma 2.1]) that a non-negative linear operator 
is continuous. 

Let K : X ~ X *  be an arbitrary bounded linear operator with null- 
space N(K) and range R(K). Then K induces an injective bounded linear 
operator K on the factor space X/N(K)  with R(/() = R(K). Hence / (  has 
an (in general unbounded) inverse L:R(K) -oX /N(K)  which will be 
called the generalized inverse of K, 

Let K : X - o X *  be a linear operator and let F : X * - o X  be a non- 
linear mapping. The non-linear operator equation 

u = K F(u) 

in X* is called the Hammerstein equation since it is the abstract analogue 
of a non-linear integral equation of Hammerstein type. 
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The following theorem on the existence of eigenfunctions for the 
Hammerstein equation generalizes results of Vainberg [ 18] and Coffman 
[10]. Vainberg considers the case where X is a Hilbert space and K has 
infinitely many eigenvalues and in [10] it is supposed that for all u 4= 0, 
(Ku ,  u) > 0 and that F is monotone. 

Theorem B. Let X be an arbitrary real Banach space. Suppose 
K : X ~ X* is a non-negative compact linear operator. Suppose F: R(K) ~ X 
is an odd continuous potential operator (with potential f ) .  Finally suppose 
that, for all non-zero u e R(K), f (u) 4:0 and K F(u) 4= O. 

Then, for every o~ > O, the eigenvalue problem for the Hammerstein 
equation 

u = 2K F(u) (2.4) 

has at least dim R(K) many distinct pairs of eigenfunctions (u,-u) satisfying 
the normalization condition 

(u, L u )  = 

where L denotes the generalized inverse of K. 

Remark. By the definition of a potential operator, F is a mapping 
from Z =- R(K) into Z*. The canonical imbedding of X into X** and the 
fact that Z C X* imply that X C Z*. Hence the assumption F :R(K)-*X,  
i.e. R(F)C X,  is meaningful. 

3. Some Auxiliary Results 

Let X be an arbitrary real Banach space. It is easily seen that a 
mapping A : X ~ X *  which is uniformly continuous on bounded sets 
is bounded, i.e. maps bounded sets into bounded sets (e.g. [18, p. 18-1). 

Let A : X---, X* be an operator satisfying Assumption (A). We define 
a mapping p: X\{0} ~(0,oo) by 

a(p u)u) = 

This mapping has the following properties. 

Lemma 3.1. p is a well-defined even functional which is bounded on 
sets bounded away from zero. It  has a Frkchet derivative p' : X ~ X* which 
is odd and uniformly continuous on bounded sets which are bounded away 

from zero. Moreover, for all u e M~ and all v e X  with (A(u) ,v)  = 0, we 
have (p'(u),v) = O. 

Proof. By the assumptions upon M~, for every u 4:0 there exists at least 
one p(u)> 0 such that a(p(u)u)= , .  Suppose there is a ray through the 
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origin intersecting M, twice. Then, for some u 4:0 and some T > t, we 
have a(u) = a(zu) = a and hence, by Assumption (A), 

r d t r  
0 = a ( ~ u ) -  a(u) = ~ ( a ( ~ u ) , a u )  : -  > o 

1 O; 

which is impossible. Hence p is well-defined. By Assumption (A), M, is 
symmetric, bounded, and bounded away from zero. This implies that p 
is even and bounded on sets which are bounded away from zero. 

Since A is a continuous potential operator its potential a is Fr~chet 
differentiable. Moreover, for every u ~ X\{0} and every z > 0, 

d 
d--z a(z u) = ( A(zu),u) = "c- 1 ( A (zu), zu ) > O. 

Hence, by the implicit function theorem, p is continuously differentiable 
and from 

0 = (a(p(u)u))' = (A(p(u)u),u) p'(u) + p(u) A(p(u)u) 

we obtain the explicit representation 

p2(u) 
p ' ( u ) = -  ( A(p(u)u),p(u)u) A(p(u)u). (3.1) 

Therefore, since A is bounded and since p is bounded on sets which are 
bounded away from zero, p' is bounded on bounded sets which are 
bounded away from zero. Hence, by means of the relation 

1 

p ( u ) -  p(v) = ~ <p'(v + ~(u - v)),u - v>d~ 
0 

which is true for all u, v e X  with 0 4 { v + z ( u - v ) l O N r <  1}, it follows 
easily that p is uniformly continuous on bounded sets which are bounded 
away from zero. Hence, by (3.1), p' has the stated continuity property. 
The last statement follows from (3.1) since p(u)= 1 if u~M, .  Hence, 
since p' is obviously odd, the lemma has been proved. 

For  completeness we include a proof of the following result (com- 
pare 1-18]). 

Lemma 3.2. Let X be reflexive and let B : X ~  X* be a strongly con- 
tinuous potential operator (with potential b). Then B is un~ormly continuous 
on bounded sets and b is weakly sequentially continuous. 

Proof. Suppose there is some bounded set M C X such that B is 
not uniformly continuous on M. Then, there exists an e > 0 and se- 
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quences {uj}, {vj} C M such that, for all j e IN, 

1 
ltuj-v~ll ~ = and IIB(u)-B(vj)ll>= ~. (3.2) 

.l 

Since M is weakly sequentially compact, by taking suitable subsequences, 
we may assume that u ~ u  and v j~  v. Hence, by the first relation of 
(3.2), u =  v, and since B is strongly continuous, B ( u ) - B ( v ) ~ O  which 
contradicts the second inequality of (3.2). Hence B is uniformly con- 
tinuous on bounded sets. 

Suppose u , ~  u. Then 

1 

b(u.)= ~ <B(cru.).u.>d,r 
0 

and, for every a e [0, 1], <B(au,),u,)~<B(au),u>. Since B is uniformly 
continuous it is bounded. Hence, by the Theorem on Dominated Con- 
vergence, b(u , )~  b(u), i.e. b is weakly sequentially continuous, q.e.d. 

Let X be a uniformly convex (hence reflexive) Banach space. Then, 
for every u ~ X*, there is exactly one J(u) e X such that, 

<u,J(u)> = llul[ 2 and  IlJ(u)[I = Ilull. 

Hence, the duality mapping J : X * ~ X  is well-defined and it is easily 
seen [12, Lemma 1.2] that J is uniformly continuous on bounded sets. 

Let X be a uniformly convex Banach space. Let A : X  ~ X* satisfy 
Assumption (A) and let B : X ~ X* be an odd mapping which is uniformly 
continuous on bounded sets. For  every u e M, we define 

and 

<B(u),u> 
D(u) =- B(u) - A(u) 

<A(u).u> 

T(u) =- J(D(u)) <A(u),J(D(u))> 
<A(u),u> u. 

Then T is an odd mapping from M~ into X which is uniformly continuous, 
hence bounded. Therefore there exist constants ~o, )'o > 0 such that, for 
all z E [ -  %,%]  and all u e M,, 

Ilu + • T(u)II ~ t o  

Hence, by Lemma 3.1, the mapping H : M, × [ - z 0, %] ~ M, given by 

H(u,z) - p(u + z T(u))(u + z T(u)) 
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is well-defined, odd and uniformly continuous. Moreover, for every 
u~ M~, 

H ( u , O )  = u. 

The following lemma will play an important role in the proof of the 
main result. 

Lemma 3.3. Let X be a uniformly convex real Banach space. Let 
A : X  ~ X* satisfy Assumption (A) and let B : X  ~ X* be an odd potential 
operator (with potential b) which is uniformly continuous on bounded sets. 
7-hen, there exists a mapping r : M , ×  [ -Zo,  Zo]~R with r(u,z)~0 as 
z ~ O, uniformly in u ~ M~, such that,for every u ~ M~ and every z ~ [-Zo,Zo], 

b(H(u,z)) = b(u) + S [llD(u)ll ~ + r(u,a)]da. 
0 

Proof. For every (u, z) e M~ x [ - Zo, To] we have 

(3.3) 

b(H(u,z))=b(u)+ i @(H(u'a))'-ff---aH(u'a)l da.  

By Lemma 3.1, and since obviously (A(u), T(u)) = 0, we find 

da H(u,a) = (p'(u + a T(u)), T(u)) (u + a T(u)) + p(u + a T(U)) T(u) 

= T(u) + R(u,a) 

with 

R(u, a) - (p(u + a T(u)) - p(u)) T(u) 

+ (p'(u + a T(u))-  p'(u), T(u)) (u + a T(u)). 

Hence R(u,a)~O as a-*O, uniformly in ue M~. Using these results we 
find 

with 

t 

b(H (u, z)) = b(u) + ~ [(B(u), T(u) ) + r(u, a)] da 
0 

r(u,a)=(B(u),R(u,a))  + (B(H(u,o) ) -  B(u), ~-~ H(u,a) I 

which shows that 
lim r(u, a) = O, 
a---~ 0 
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uniformly in u e M~. Finally, 

(B(u), T(u))  = (D(u),J(O(u))) = IID(u)I[ 2 

which proves the lemma. 
In the following, for every fl > O, we denote by N~ the set 

Np =- {u c M~llb(u)l >= fl}. 

Lemma 3.4. Let the assumptions of Lemma 3.3 be satisfied. Let 
fl > 0 be fixed and suppose there exist an open set U C M~, and positive 
constants' 6,Q with Q < fl such that 

HO(u)lt ~ 6 if u E 1,~ ~ {u ~ M,]u (i U, llb(u)l - fl[ ~ e}. 

Then, there exists an ~ > 0 and an odd continuous operator H~ mappin9 
Np_~\U into Na+~. 

Proof. Choose ~ c (0,%] such that, for all u c M, and cr ~ [ -  z~,r~], 
we have lr(u,a)i<fz/2. Set t (u,~)=z sgn b(u). Then, according to 
Lemma 3.3, for all u e VQ and all z c [0,z~], 

1 
]b(H(u,t(u,z)))l > lb(u)[ + - f  6 2 r .  

Set e = min(Q, 1 62 zl). Then, for every u ~ V e c~ Na_~, 

1 2 
[b(H(u,t(u, zl)))] > [b(u)] + ~- 6 Zl > [b(u)[ + 2e > fl + e. 

By (3.3), for every u e Ve, ]b(H(u,t(u, .)))[ is strictly increasing in some 
interval [0,rr) containing [0,zl]. Hence, for every u e V~, the functional 

tdu) =- rain {~ > Ollb(H(u,t(u,~)))] = fl + 5} sgn b(u) 

is uniquely defined, continuous in u~ V~ and satisfies 0<[ tdu) ]<~ l .  
Therefore the mapping H~ :Nt~_~\U ~N~+~ defined by 

f H(u, tdu)) if u c  V,, 
He(u) = 

"u if u c Np_~\(U tj V~) 

has the desired properties, q.e.d. 
Finally we need the following lemma which establishes a "local 

Palais-Smale Condition" (compare e.g. [6]). 

Lemma 3.5. Let the hypotheses of  Lemma 3.3 be satisfied and suppose 
b(u) 4= 0 implies B(u)4 = O. Let fl > 0 be fixed and suppose there exists a 
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sequence {uj} C M~ with tb(u~)l > 8  and D(u)~O.  Then {u~} has a strongly 
conver#ent subsequence eonvergin# to an eigenfunction u E M~ of (2.2). 

Proof Since M~ is bounded and X is reflexive, by passing to a suitable 
subsequence if necessary, we may assume that u~ ~ u  and 

(B(u~) ,u j )  
stJ =- ( A ( u j ) , u j )  --" St. 

Since b is weakly continuous, Ib(u)[ ~ Ib(u)l ~ ft. This implies u 4:0 and 
B(u)#O. Since D(u)~0 ,  we find 

stj A(u)  = B(uj) - D ( u ) ~  B(u) 4: O, 

hence, in particular, st # 0. This implies A(uj)-ost-~ B(u) and therefore, 
by Condition (S)t, u j~  u. Hence A(u)= 2B(u) with 
2 = I~- 1 = (A(u), u)/(B(u), u). q.e.d. 

4. Proof of Theorem I 

Let X be an arbitrary real Banach space and recall that ~ denotes the 
set of all closed symmetric subsets of X not containing the origin. In 
the following lemma we state the relevant properties of the genus. For 
short proofs of these properties see [9]. 

Lemma 4.1. Let C, C 1, C 2 ~  be arbitrary. 
i) I f  there exists an odd continuous mapping F : C1 -~ C2, in particular 

/f C1 C C2, then gen (Cl)<gen (C2); 
ii) #en (C 1 w C2) <gen(C1) + gen (C2); 

iii) I f  C is compact then gen (C)< oo and C has an open symmetric 
neighborhood U with U ~ ~ and gen (U)= gen (C); 

iv) I f  there exists an odd homeomorphism of the unit sphere in 1R n 
onto C then gen (C)= n. 

Let Assumption (A) be satisfied and recall that, for every k ~ N, 

c~ k = { C C M~t C symmetric, compact, gen( C) >= k }. 

Since the radial projection of M~ onto the unit sphere of X obviously is 
an odd homeomorphism, for every k e N, the set c~ k is non-void. 

We begin with the proof of part b of Theorem A. 

Proposition 1. Let the hypotheses of Theorem A be satisfied and 
suppose that, for some k ~ N, 

flk = sup min Ib(u)l > 0. (4.1) 
C ~ k  u¢C 

Then there exists an eigenfunction uke Ma of (2.2) satisfying Ib(uk)[ = ilk. 
5 Math. Ann. 199 



66 H. Amann: 

Proof. Our assumptions imply the existence of a sequence {u,} C M~ 
with ]b(u,)l--*ilk and D(u,)~0.  Indeed, otherwise we could find positive 
constants 6 and 0 such that, for all 

u~ V e -  {ue M~ ]]b(u)l-- flkl <Q}, 

we have HD(u)ll > 6. Without loss of generality we may assume that 
Q < ilk" Hence, by Lemma 3.4 (with U = tk), there exists an e > 0 and an 
odd continuous map H~ such that H~(Nak_~)C Nak+,. By definition of 
flk there exists a C~eCgk such that ]b(u)[~flk--eon G ,  i.e. GCNa~_ ,. 
Hence ]b(u)] > flk + e on H~(C~). But Lemma 4.1 implies H~(C~) e (£k which 
contradicts the definition of ilk- This establishes the existence of a se- 
quence {u,} with the properties stated above. 

By Lemma 3.5 we can find a convergent subsequence converging to 
an eigenfunction u e M,. Since, obviously, ]b(u)[ = ilk, the proposition is 
proved. 

In the following we denote by E the set of all eigenfunctions of (2.2) 
with b(u) 4: O, i.e. 

E =- {u ~ M~lb(u) 4: O,D(u) = 0}, 

and we recall that, for every k ~ N, E k denotes the set of all eigenfunctions 
"on the level fiR", i.e. 

Ek = {u ~ M,[D(u) = 0, Ib(u)l = ilk}. 

Now we prove part c of Theorem A. 

Proposition 2. Let the hypotheses of Theorem A be satisfied. Suppose, 
for some j ,m ~ N, we have 

. . . . .  

Then #en (Ei) > m + 1. 

Proof. By Lemma 3.5, Ej is compact and, by Proposition I, E i is not 
void. Hence there exists an open symmetric neighborhood U~ of Ej in 
M, such that 9en (O~)= 9en(E~) < ~ .  

Next we prove the existence of an open symmetric neighborhood 
U of Ej in M~ and of positive constants Q and 6 such that 

gen(U) = gen(Ej) (4.2) 
and 

ue{ueM~,\UllJb(u)l- f l i[~O} implies IlD(u)l]>__,~. (4.3) 

To do this we observe that there exists a positive Q such that 

F ~ E n  [u~ M~llb(u)- fljl ~O} C U2. 
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Indeed, otherwise we could find a sequence {u,} e M,\  Uj with [b(u,)l ~ fl~ 
and {u,} C E. Then, by Lemma 3.5, there exists a convergent subse- 
quence u , ~ u  such that u e E \U j  which is impossible. 

Obviously, we may assume that 0 < fl~. Then, again by Lemma 3.5, 
F is compact. Hence, it has a positive distance a from the closed set 
M,\U~. Denote by U the a/2-neighborhood of F. Then, again by Lem- 
ma 3.5, it is easily seen that there exists a 6 > 0 such that U and 6 satisfy 
(4.3). Finally, since E~ C U C 0 C U s we have 

gen(Ej) < gen(U) <__ gen(O~) = gen(E~) 

which proves (4.2). 
Therefore, by Lemma 3.4, there exists an e > 0 and an odd continuous 

mapping H5 with Hs(Npj_~\U)C N~+~. 
By definition of flj+m there exists a C5 e rg~+,, with 

Ib(u)l  _>- f l j + m  - ~ = i l i -  

o n  Ce. 
It is easily seen that the genus over compact sets 7 has on ~ the same 

monotonicity and subadditivity properties as the genus itself. Hence, by 

gen(Ej) = 7(Ej) =< 7(0) =< gen(O) = gen(Ej), 

we find 

gen (Ei) = y(U). 

Suppose gen (E j)<= m. Then, by the above mentioned properties of Y, 

(N~j + 5) --- ? (H~ (N&_5 \ U)) _>- 7 (N~j_~ \ U) 

_-> 7(N~-5 u 0) - 7(0) _-__ 7(N~- 3 - gen(E~). 
Hence 

gen(C~) = 7(C5) < 7(Np~-5) < y (N  pj+5) + m. 

By definition of flj we find 

hence 7(Na~+5) < j '  
gen( C~) < j + m. 

On the other hand, C5 e cdj+,,, hence 

gen (C5) > j + m, 

which gives a contradiction. Hence gen(Ej) > m + 1. 
5* 

q.e.d. 
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The next proposition finally proves part a of Theorem A. 

Proposition 3. Let the hypotheses' of Theorem A be satisfied and 
suppose (2.3) holds. 77~en the eigenvalue problem (2.2) has infinitely many 
distinct eigenfunctions on M,. 

Proof. Condition (2.3) guaranties that, for every k e N ,  flk>O. 
Hence, by Proposition 1, the set E is not empty. Suppose E is a finite set. 
Then, since obviously fll ~ f12 ~ ' " ,  there exists a j ~ N such that flk = flj 
for all k >j .  By Proposition 2, this implies 9en(Ej)=~ which, by Lem- 
ma 4.1, gives a contradiction to the finiteness of E. Hence the statement 
follows, q.e.d. 

Proof of Part d of Theorem A. Let X be a real infinite dimensional 
Hilbert space and set X* = X. We identify A with the identity mapping 
on X and we denote by B a linear symmetric compact operator on X 
with only finitely many distinct positive eigenvalues /11 . . . . .  /t,, and 
corresponding normalized eigenfunctions v~ . . . . .  v,,. Hence 

Bu= ~ #i(vi, u)vi 
i = 1  

and 
1 " 

b(u) = -~ 3~=1 #i (v,, u) 2. 

Therefore, for every a > O,u ~ {u ~ M,[b(u) 4: O} if and only if 

IIull=~ and u¢[span(v, . . . . .  v.)] ±. 

We define an odd continuous mapping f : X ~ R" by 

f(u) = ((vl ,u)  . . . . .  (Vm,U)). 

Since this map has no zero if b(u) 4= 0 it follows that 

V {u ~ M~,lb(u) , O} =< m. 

Hence all the assumptions of part d of Theorem A are fulfilled but the 
"eigenvalue" problem 

u = 2B(u) 

has only the m normalized pairs of eigenfunctions _ ~v x . . . . .  _ ~v,,. 
Hence Theorem A is completely proved. 
In case of the general non-linear eigenvalue problem (1.1) there is no 
hope for a "completeness result" for the system of eigenfunctions. Hence, 
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since it was our aim to prove "only" the existence of infinitely many 
distinct eigenfunctions it was possible to consider the variational pro- 
blem (4.1). In the finite dimensional case however, this is not the appropri- 
ate problem to be studied since we do not obtain those eigenfunctions 
with b(u)= 0. In the finite dimensional case one has to investigate the 
variational principle 

sup min b(u) (4.4) 
C ~ k  u ~ C  

which can be done without difficulties. By this way we obtain the follow- 
ing 

Theorem 1. Let X be a finite dimensional real Banach space. Let 
A : X ~ X *  be an odd continuous potential operator with (A(u) ,u)  >O 
if u #-0 and choose ~ > O, such that every ray through the origin intersects 
M~. Let B: X ~ X *  be a continuous odd potential operator such that 
B(u) 4:0 on M~. 7hen, the non-linear eigenvalue problem 

A (u) = ,~ n(u)  

has at least dim X many distinct pairs (u, - u) of eigenfunctions on M~. 

Proof. Since X is finite dimensional we can assume that X is uni- 
formly convex. Using the variational problem (4.4) instead of (4.1) the 
proof follows in exactly the same way as the proof of Theorem 1. Since 
X is finite dimensional, every bounded sequence has a convergent 
subsequence and all the difficulties of the infinite dimensional case 
disappear, q.e.d. 

5. Eigenvalue Problems for Hammerstein Equations 

The essential tool for applying the general theory of the previous 
paragraphs to the Hammerstein equation is the following "splitting 
lemma". 

Lemma 5.1. Let X be an arbitrary real Banach space and let K : X ~ X* 
be a compact, non-negative, linear operator. 7hen, there exists a Hilbert 
space Y and a linear operator S : X ~ Y with the following properties: 

i) S is compact, R(S) is dense in Y, and the dual operator S*: Y--* X* 
is injective. 

ii) K = S* S. 
iii) R(K) C R(S*) C R(K). 

Proof. The existence of Y and S with the properties stated in i) and 
ii) (except the compactness) follows from a more general result of Browder 
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and Gupta [8, Theorem 4]. The compactness of S is proved in [2, Lem- 
ma 1]. R(K) C R(S*) follows from ii) whereas R(S*) C R(K) follows from 
the fact that R(S) is dense in Y. q.e.d. 

The fundamental idea in constructing the Hilbert space Y consists 
in introducing on the factor space X/N(K) the inner product 

(u,v)= (Ku, v) 

and taking the completion. Hence, by means of the generalized inverse 
L : R ( K ) ~  X/N(K), for every u ~ R(K), we obtain 

IILull~ = <u, Lu>. (5.1) 

Proof of Theorem B. By Lemma 5.1 the eigenvalue problem (2.4) 
takes the form 

u = 2S* SF(u). (5.2) 

Hence, every eigenfunction necessarily has the form u = S*v with some 
v e Y. Therefore, since S* is injective, (5.2) is equivalent to 

v = 2SF(S* v). 

It is easily seen that B=SoFoS* is an odd potential operator with 
potential b = foS*. Moreover, S being compact, S* is compact too and 
therefore B is strongly continuous. Finally, B(v)=0 if and only if 
KF(S*v)=O. Therefore, by our hypotheses, for all non-zero ve  Y, 
B(v) +- 0 and b(v) ~ O. 

Since S* is injective it follows from part iii) of Lemma 5.1 that dim 
Y=dimR(K) .  Therefore, by applying Theorem A or Theorem 1, re- 
spectively, to the problem 

v = ~B(v) (5.3) 

in the Hilbert space Y we find that on every sphere {re  YltlvtlZ=~} 
there exist at least dim R(K) many distinct pairs of eigenfunctions of 
(5.3). To every eigenfunction v ~ Y of (5.3) there corresponds an eigen- 
function u = S*v of (2.4) and vice versa. Since every eigenfunction 
u of (2.4) obviously belongs to R(K) there exists a w e X with v = Sw. 
Hence ~ = H vii 2r = (Sw, Sw) = (Kw, w) = (u, Zu)  and the theorem follows. 

q.e.d. 
In Theorem B the Hammerstein equation is considered as an equa- 

tion in the dual space of a Banach space. But, since it is only assumed 
that F is defined on the closed linear subspace R--~, we may identify X 
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wi th  the  d u a l  of a B a n a c h  space  Z ,  i.e. X = Z*  a n d  suppose  tha t  

K : X ~ Z C Z * * = X * .  

By this  way  we o b t a i n  the  fo l lowing  

Coro l la ry .  Let X be an arbitrary real Banach space and suppose 
K : X* ~ X is a nonnegative compact linear operator. Suppose F : X ~ X* 
is an odd continuous potential operator such that, for all non-zero u ~ X,  
f (u) ~e 0 and K F(u) # O. 

Then, for every a > O, the eigenvalue problem 

u = 2 K F ( u )  

in X has at least dim R(K) many distinct pairs ( u , - u )  of  eigenfunctions 
satisfying the normalization condition 

(Lu,  u) =~. 
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