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Lie Algebra Homology and the Macdonald-Kac Formulas 

Howard Garland* (New Haven) and James Lepowsky** (Princeton) 

Introduction 

I. G. Macdonald's noted identities concerning Dedekind's q-function were orig- 
inally obtained in [14] by means of "affine root systems". These formulas have 
subsequently been interpreted by V.G.Kac Ill(b)] and R.V.Moody [15(c)] 
as the precise analogues of Weyl's denominator formula for the "Euclidean Lie 
algebras" (Moody's term) - certain infinite-dimensional analogues of complex 
semisimple Lie algebras introduced by Kac Ill(a)] and Moody [15(a), (b)]. In 
[ll(b)], Kac also sketches a new proof of the Macdonald identities, and in fact 
of a much wider class of identities- the analogues of both Weyl's character and 
denominator formulas, for a family of Lie algebras considerably more general 
than the Euclidean Lie algebras. These more general algebras, also introduced 
by Kac [11 (a)] and Moody [15 (a)], are the Lie algebras defined by symmetrizable 
(generalized) Cartan matrices (see w 2 below). The main purpose of the present 
paper is to generalize B. Kostant's fundamental result [12, Theorem 5.14] on 
the homology (or cohomology) of nilradicals of parabolic subalgebras in certain 
modules, from (finite-dimensional) complex semisimple Lie algebras to the Kac- 
Moody Lie algebras defined by symmetrizable Cartan matrices (see Theorem 8.6). 
We thus obtain the results in [11 (b)], including the Macdonald identities, as imme- 
diate consequences of the Euler-Poincar6 principle (3 9), just as Kostant derives 
Weyl's character and denominator formulas in [12, w 7] from his homology 
theorem. 

Kac's method in [11 (b)] is to adapt to Lie algebras defined by symmetrizable 
Caftan matrices the simple proof, using Verma modules, of Weyl's character 
formula given by I.N.Bernstein, I.M.Gelfand and S.I.Gelfand in [l(a)]. (This 
proof is also presented in [6, w 7.5] and [9, w 24].) But Kac must make a certain 
modification: In place of the Harish-Chandra isomorphism theorem concerning 
the center of the universal enveloping algebra used in [1 (a)] (see [-6, w 7.4] or 
[9, w 23]), he uses a Casimir operator, which in effect plays the role of a single 
decisive element of the center of the universal enveloping algebra. When applied 
to complex semisimple Lie algebras, Kac's argument thus simplifies the proof 
in [l(a)] of Weyl's character formula. (Incidentally, the second named author 
of the present paper independently discovered this simplified proof of Weyl's 
character formula, but did not attempt to apply it to the infinite-dimensional 
Lie algebras.) 
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Now in [1 (b), w 9], Bernstein, Gelfand and Gelfand construct a resolution, in 
terms of Verma modules, of a finite-dimensional irreducible module for a complex 
semisimple Lie algebra g, and they use it to give a simple proof of Bott's theorem 
[2, w 15] on the dimensions of the cohomology spaces of a maximal nilpotent 
subalgebra of g in such a g-module. Their proof uses the Harish-Chandra isomor- 
phism theorem cited above. In the present paper, we further simplify their proof 
by using the Casimir element in place of the Harish-Chandra theorem, we refine 
and extend their method so as to obtain Kostant's homology theorem [12, Theorem 
5.14] in full generality (including the action of the reductive part of the parabolic 
subalgebra on the homology and cohomology), and we carry out the argument for 
Lie algebras defined by symmetrizable Cartan matrices. In particular, we con- 
siderably generalize one form of their resolution (see Theorem 8.7). Our use of 
the Casimir operator is somewhat similar to P. Cartier's argument in [4] (cf. also 
Kostant's use of the laplacian in [12]). 

The main difficulty in writing this paper has been to deal with the technicalities 
encountered in working with infinite-dimensional Lie algebras defined by Cartan 
matrices. We have to contend with infinite root systems, infinite Weyl groups, 
infinitely long filtrations of modules, infinitely long complexes, etc. The papers 
[11 (a)] and [15(a), (b)] provide excellent background, but we also need important 
ideas from [11 (b)], which omits many details. So in w167 2, 3, 4 and 6 we have in- 
cluded among other things a detailed exposition of some of the tools used in 
[11 (b)], with certain modifications designed to make these tools more flexible 
and natural. 

Specifically, we have defined "extended" Lie algebras ge (w 2) by adjoining 
certain derivations to the usual Kac-Moody Lie algebras. This construction 
provides us with a nice framework for the set of roots (w 2), the Weyl group (w 2), 
the invariant bilinear form a (w 2), "weight modules" (w167 3, 4), the generalizations 
of Verma modules (w 3) and the generalizations of finite-dimensional irreducible 
modules (w 6). Unlike Kac's setup in E 11 (b)], ours has enough built-in flexibility 
so that for example when one is dealing with ordinary finite-dimensional semi- 
simple Lie algebras, all the above concepts and related concepts reduce to the usual 
classical ones. This is achieved by choosing b =0 (i.e., ge = g) in w 2. In particular, 
the reader who is interested in seeing a simple new proof of Kostant's clasical 
theorem (and hence of the Borel-Weil-Bott theorem; cf. [12]), can start with a 
classical Cartan matrix A arising in the usual way from a complex semisimple 
Lie algebra and take b=0 in w and then this paper simplifies to a series of well- 
known facts and easy proofs. Likewise, the reader who wants to see a short 
proof of Macdonald's identities (in the form [15(c), Proposition 2]) can ignore 
much of this paper by taking S to be the null set (w 3) and X to be the trivial one- 
dimensional module (w 6), but of course he must work in the generality of Lie 
algebras defined by symmetrizable Cartan matrices. (Specializing to Euclidean 
Lie algebras does not really shorten our argument further.) 

As was indicated above, the proof of our main results was inspired by the proof 
of Bott's theorem in [1 (b)]. Our argument rests on the construction of a certain 
natural resolution of a Lie algebra module in a general setting (Proposition 1.9; 
see also Proposition 7.1). This is based in turn on the complex V(b, a) constructed 
in [1 (b)] (see Proposition 1.1) and a discussion relating it directly with homology 
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and cohomology in certain modules (w 1), together with a useful very general 
Hopf algebra principle on induced modules and tensor products (see Proposition 
1.7 and the subsequent Remark). The "parabolic subalgebras" of the extended 
Kac-Moody Lie algebras that enter into our work are the "F-parabolic subalge- 
bras" defined in w 3. The " F "  refers to the fact that the "reductive part" is finite- 
dimensional. F-parabolic subalgebras give rise to finite-dimensional homology 
in each degree (see Theorem 8.6). In place of the Verma modules used in [1 (b)], 
we use "generalized Verma modules" -modules  induced from finite-dimensional 
irreducible modules for F-parabolic subalgebras. Our resolution (generalizing 
[1 (b), Theorem 9.9]) of an arbitrary quasisimple module (see w 6) is in terms of 
modules each of which has a finite filtration whose successive quotients are general- 
ized Verma modules, and the highest weights of the inducing modules are related 
by the Weyl group in a natural way (see Theorem 8.7). This resolution will be used 
in subsequent work [13 (c)]. 

In the Appendix, we present a simplified proof of our generalization of Kostant's 
theorem, but this simplification does not yield the resolution (Theorem 8.7). 

In [13 (a), (b)], certain generalized Verma modules for finite-dimensional 
semisimple Lie algebras are discussed from a completely different viewpoint. 
Hopefully, the methods of the present paper can shed some new light on the issues 
encountered in that work. 

This paper was motivated by a desire to "understand" and generalize the 
first named author's explanation by means of an Euler-Poincar6 principle of 
the Macdonald formulas for the powers ~/dlm~ of Dedekind's q-function (a a 
complex semisimple Lie algebra) [7]. The explanation consisted of a version of 
Theorem 8.6 for a special class of Euclidean Lie a lgebras- those of the form 
a |  (x )  (a as above, 112 (x )  the algebra of finite Laurent series in one variable)- 
and the trivial one-dimensional quasisimple module X, in the notation of Theorem 
8.6. The method of proof, similar in spirit to Kostant's in [12], involved the ex- 
plicit, and complicated, computation of a laplacian using a hermitian structure. 

The reader is referred to the announcement [7] for a detailed discussion of 
what amounts to an important special case of the present paper, and to [19] for 
an interesting exposition of several matters concerning Macdonald's identities 
and Euclidean Lie algebras. 

The reader is also referred to the original article [14] of I. G. Macdonald, and 
the paper of F. Dyson (" Missed Opportunities," Bulletin of the American Math. 
Soc. 78 (1972), pp. 635-653). Finally, we mention [8], which also bears some 
relation with the present work (see the last paragraph of w in [8] and Corollary 
3.6 in [7]). 

We are very grateful to N. Conze-Berline for providing us with a preprint of [ l ( b ) ] )  

w 1. The Resolutions V(b, a, N) 

We first recall the complexes V(b, a) constructed in [1 (b), w 9]. 
Let b be a Lie algebra over a field k, and a a subalgebra of b. Let s~' and ~ be 

the universal enveloping algebras of a and b, respectively, and regard s~/ as a 

1 Also, see notes added in proof at the end of the paper 
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subalgebra of ~ .  We shall identify Lie algebra modules with the corresponding 
universal enveloping algebra modules. 

The natural action of a on b/a extends uniquely to an action of a on the ex- 
terior algebra A(b/a) by derivations. Let j e Z +  (the set of nonnegative integers). 
Then A~(b/a) is an a-submodule of A(b/a), and we can form the induced b-module 
Dj=~|  (el. [6, Chapitre 5]). Suppose j>0 .  We define a linear map 
dj: D j~Dj_  1 as follows: Let xl,  . . . ,x jeb/a,  and choose representatives y~ . . . .  , 
yf ib.  Then for all x e ~ ,  

d~(x | x~ ^ . . .  ^ x )  
J 

= ~ . ( - 1 ) i + l ( x y i ) |  A "" ~,~iA"" AXj 
i=1  

+ ~ (--1) '+~X| A ' " ^~C~A ' "AXj ,  
l _ -<r<s< j  

where n: b ~ b / a  denotes the canonical map, and ^ signifies the omission of a 
symbol. It is easy to see that dj is independent of the choice of representatives 
Yl, -.', Y j, and that dj is a b-module map. 

Define %: Do---,k by the condition that %(b | 1) (be~)  be the constant term 
of b. Then we have a sequence V(b, a) of b-modules and b-module maps 

... a2 ,DI_~_~D ~ ~o >k-~O. 

The following result is obtained in fl(b), Theoremg.1]; the proof follows 
standard lines and consists of a reduction to the acyclicity of the Koszul complex: 

Proposition 1.1. The sequence V(b, a) is exact. 

Remark. The complex V(b, 0) is the standard ~-free resolution of the trivial b- 
module k. 

Let c be a subalgebra of b such that b = a @ r as a vector space, and let ~ be 
the universal enveloping algebra of c. The Poincar6-Birkhoff-Witt theorem 
immediately gives (see [1 (b), Proposition 9.2]): 

Proposition 1.2. Regarded as a complex oft-modules, V(b, a) is naturally isomorphic 
to the standard cg-free resolution V(c, 0) of the trivial c-module k. 

Remark. The considerations of w 1 will be applied in this paper to a generalization 
of the situation in which b is a split semisimple Lie algebra of characteristic zero, 
a is a parabolic subalgebra of b, and c is the nilradical of the opposite parabolic 
subalgebra. 

Definition. Let N be an arbitrary b-module. Denote by V(b, a, N) the sequence of 
tensor product b-modules and b-module maps 

d2@l 
�9 .. , D I |  al|174 ~~174 

(See the definition of V(b, a) for the notation.) 

Remarks. (1) The complement c is not needed for the definition of V(b, a, N). 

(2) V(b, a, k)~-V(b, a), where k is regarded as the trivial b-module. 
(3) In view of Proposition 1.1, F(b, a, N) is an exact sequence. 



Lie Algebra Homology 41 

(4) We shall illuminate the structure of each D s | N below, showing in parti- 
cular that it is cg-free. Thus V(b, a, N) is a cd-free resolution of N. 

We shall now relate V(b, a, N) to the homology and cohomology of r in 
certain modules. 

Definition. Consider the b-module complex V'(b, a, N) obtained from V(b, a, N) 
by deleting the segment ~o| , N. Denote by V,(b, a, N, c) the complex 

�9 . .  - - ,  ~(b, a, N, c)--, Vo(b, a, N, c)-~O 

of vector spaces obtained by tensoring V'(b, a, N) on the left, over r with the 
trivial right c-module k. That is, V,(b, a, N, c) is the complex 

. . . j  |174 k | 1 | N) t|174 | 0 | N ) ~ 0 .  

(Each Ds | N is regarded as a c-module by restriction.) 

Remark. For each j e Z + ,  k | 1 7 4  is naturally isomorphic to the space 
(Dj@N)/c.(D~| N), and the maps in V,(b, a, N, c) may be identified with the 
natural quotient maps coming from the maps in V'(b, a, N). 

Notation. Let T: M-~ M denote the transpose map of M, i.e., the unique antiauto- 
morphism which is - 1  on b. Denote by N' the right b-module whose space is N 
and on which ~ acts by the rule n. b = T(b). n for all n~N and b e ~ .  

Proposition 1.3. 7he homology of the complex V,(b, a, N, c) is naturally isomorphic 
as graded vector space to the homology H,  (c, N t) of c in N t, regarded as a right c- 
module by restriction. (See [3, p. 282] for the definition of Lie algebra homology in a 
right module.) 

Proof By Proposition 1.2, we may replace the modules Dj and maps dj in the 
definition of V, (b, a, N, c) by the corresponding c-modules and c-module maps 
occurring in the standard resolution V(q 0). Denote these replacements by Dj and 
dj. For each j, we have a natural linear isomorphism co: k|174 N) ~ N t | 
given by the condition (o(1 | (d | n)) = n @ d (d ~ Dj, n ~ N). Hence V, (b, a, N, c) 
is naturally isomorphic to the complex 

... l| ,N , |  1 I| N t |  

But the homology of this complex is precisely H,  (q N~), by [3, p. 282]. Q.E.D. 

Concretely, H,  (c, N t) may be realized as the homology of the standard homology 
complex 

... ,~ )Nt| ez ,Nt |  ~, ,Nt| 

where for all j>O, n ~ N  ~ and c, . . . . .  c f ic ,  

~j(n | c~ ^ . . .  ^ cs) = 
J 

= ~ ( ~  1)i+X(n �9 ci)| q A .. ./x~i/x.. .  Acj 
i=1 

+ Y~ ( - 1 ) ' + ~ n |  
1 <=r< s<_j 
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(see [3, p. 282]). Now suppose that s is a subalgebra of b such that [~, c] c c. 
The action of ~ on c extends uniquely to an action of s on A(c) by derivations, 
giving each AJ(c) s-module structure. Identify the right ~-module N t with the (left) 
s-module N, and let s act on N ' | AJ(c) by the tensor product action on N @ A~(c). 
Then it is easy to check that the action of ~ commutes with the maps t~;. We thus 
have the standard action of s on the standard homology complex. The resulting 
actions of ~ on the homology spaces Hi(c, N t) constitute the standard action 
of s on H,(c, Nt). 

Proposition 1.4. Let ~ be a subalgebra of a such that [~, c] c c. Then ~ acts in a natural 
way on the complex V,(b, a, N, c), and this action is naturally equivalent to the stan- 
dard action of ~ on the standard homology complex for computing H,(c, Nt). In 
particular, the natural action of s on the homology of V, (b, a, N, c) is naturally equiv- 
alent to the standard action of s on H,(c, Nt). 

Proof. In the notation of the definition of V,(b, a, N, c), the natural action of ~ is 
given as follows: 

Let je7t+,  deDj, n~N and sE~. Then s . ( l | 1 7 4 1 7 4 1 7 4  (See 
the Remark following the definition of V,(b, a, N, c).) Now Dj =-:~ | We 
may take d of the form c |  where c~C~ and x~AJ(b/a). Then s . d = s c |  
[s, c] | x + c | s. x, because ~ ~ a. In the notation of the proof of Proposition 1.3, 
Dj -- cg | AJ(C) �9 Identifying k | (Dj | N) with k | (~ @k A;(C) | N) as in the first 
step of that proof, we see that se~ acts by the rule 

s . ( I Q ( c | 1 7 4 1 7 4  c ] | 1 7 4  l | 1 7 4 1 7 4  1 @ ( c | 1 7 4  n), 

where ceCg, y~AJ(c), neN and s. y denotes the natural action. Applying the iso- 
morphism m in the above proof, we see that s acts on N t | by the condition 

s . (n |  |  - n . s |  | 1 7 4  |  

(same notation), where on the right-hand side, s acts on the right on n. Finally, 
identifying Nt| Dj with N ~)RAJ(c)' we recover the standard action of s on the 
standard complex. Thus V,(b, a, N, c) is naturally s-module isomorphic to the 
standard complex, regarded as an ~-module complex. Passing to homology gives 
the last assertion. Q.E.D. 

Here is the corresponding picture for cohomology: 

Definition. Denote by V*(b, a, N, c) the complex of vector spaces 

�9 ..*---Vl(b, a, N, c) *-- V~ a, N, c) ~---0 

obtained by dualizing V.(b, a, N, c). That is, V;(b, a, N, c) is the dual space of 
Vj(b, a, N, c) for each j, and the maps in V*(b, a, N, c) are the contragredients of 
the maps in V. (b, a, N, c). 

Remark. For each j c Z + ,  V;(b, a, N, c) is naturally isomorphic to the space 
Hom,(D~| k), where k is regarded as the trivial c-module. V*(b, a, N, c) is 
obtained by taking the complex of c-invariants in the dual complex to V'(b, a, N) 
(using the notation of the definition of V. (b, a, N, c)). 
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Proposition 1.5. The homology of the complex V*(b, a, N, c) is naturally isomorphic 
as graded vector space to the cohomology H*(c, N*) of c in the contragredient b- 
module N*, regarded as a c-module by restriction. (See [3, p. 282] for the definition 
of this cohomology.) This in turn is naturally isomorphic to the graded vector space 
of dual spaces Hi(c, NZ) *. 

Proof. By definition of V*(b, a, N, c), its j-th homology is naturally isomorphic to 
the dual space of thej-th homology of V.(b, a, N, r for each j. By Proposition 1.3, 
this is naturally isomorphic to the dual space of Hi(c, Nt). But this dual is naturally 
isomorphic to Hi(c, N*). In fact, Hi(c, N t) is thej-th homology of the complex 

... I| Nt | 1. l| Nt @~cD'o--~O, 

in the notation of the proof of Proposition 1.3, and Hi(c, N*) is the j-th homology 
of the dual complex, namely, 

t ! ... Homtd~, 1) Home(D1, N*) Hom(dl. 1) Home(Do, N*) ~-0 

(see [3, p. 282]). Q.E.D. 
H*(c, N*) may be realized as the homology of the standard cohomology complex 

�9 --, ~ Homk(AE(c),N*), ~ Homk(Al(c),N*),  ~' Homk(A~ N*) ,--0, 

where for all j e Z + ,  fEHomk(AJ(c), N*) and c 1 . . . .  , cj+ 1 ec,  

(6j+lf)(cj. A ' "  A C)+l) 
j+l  

= ~ , ( -  1)i+lci. f(q/x ... A~iA ... ACj+l) 
i=1 

r +s  + ~, ( - )  f([C,,C~]/XClA'"/~C~A"'/XC~/X'"ACj+I) 
i<=r<s<j+l  

(see [3, p. 282]). Identifying HOmk(A~(c), N*) with (N | At(c)) * in the natural way 
for each j, we see easily that the standard cohomotogy complex is the dual complex 
to the standard homology complex (see above). If ~ is a subalgehra of b such that 
[~, c] ~ c, then ~ acts in the obvious way on Hom(A~(r N*) for each j, and the maps 
6j commute with this action, as is easily seen. In fact, the resulting standard action 
of ~ on the standard cohomology complex is the contragredient of the standard 
action of s on the standard homology complex. The induced action of s on homo- 
logy is called the standard action of s on H*(c, N*), and it is clear that for each j, 
the standard action of ~ on Hi(c, N*) is the contragredient of the standard action 
of ~ on Hi(c, Nt). 

From Proposition 1.4 and the above, we now have: 

Proposition 1.6. Let ~ be a subalgebra of o such that Is, c] c c. Then ~ acts in a natural 
way on the complex V*(b, a, N, c), and this action is naturally equivalent to the stan- 
dard action of ~ on the standard cohomology complex for computing H*(c, N*). 
In particular, the natural action of ~ on the homology of V*(b, a, N, c) is naturally 
equivalent to the standard action of ~ on H*(r N*). For each j~7z+, Hi(c, N*) is 
naturally isomorphic to the ~-module contragredient to Hi(c, Nt), provided with the 
standard action of ~. 



44 H. Garland and J. Lepowsky 

We shall now illuminate the structure of V(b, a, N), and in particular, its 
terms D r | N (see Remark (4) following the definition of V(b, a, N)), by deriving 
the following useful general principle, not requiring the existence of c, concerning 
inducing and tensor products: 

Proposition 1.7. Let M be an a-module and N a b-module. Then there is a natural 
isomorphism orb-modules (indicated in the proof below) 

(~ @~r174 | | 

(The left-hand side is the tensor product of b-modules. M (~ N on the right is the tensor 
product of a-modules, with N regarded as an a-module by restriction.) 

Proof. Let A : ~ --~ ~ | ~ be the diagonal map, that is, the unique algebra homo- 
morphism such that A(b)= b @ 1 + 1 | b for all b~b. We shall first construct a 
map from ~ |162 (M | N) to (~  |162 M) | N. Fix b ~ ~ ,  let d(b) = ~ bl i| b2 i (bi i~) ,  
and define i 

qgb: M | N - ~ ( ~  |174 N 

by q~b(m | n) = ~ (b 1 i @ m) | b 2 i" n. Now define 
i 

q~: ~ | Q N)--~(M | @ N 

by q~(b @ x)= q~b(X) ( b ~ ,  x~ M | N). This map is well defined because if a ~ r  
and A(a) = ~  alj @ a2i (a l f id) ,  then 

J 

A(ba)-- A(b) A(a)= ~ bl ial j |  b2ia2 ;, 
l ,  .I 

and so 

q~ba(m | n) = ~ (b l jal j  | m) | b 2ia2~. n-- ~ (b 11 | a lj. m) | b 21a 2~. n 
I , J  l , J  

= (pb(a �9 (m | n)). 

It is clear that cp is a b-module map. 
Recall that T: ~ - , ~  is the transpose antiautomorphism. To define a map 

from (~|162 to ~|162 first fix n~N and let 

~bn: ~ |162 |  @ N) 

be the map ~,n(b | m) = ~ b I i | (m @ T(b 2 i)" n) (with b and b n as above). This map 

is well defined. In fact, let a ~ d  w i t h / l ( a ) = ~  a l j |  a2j as above. Then 
J 

@,(b a | m)= ~, bx lal,i | (m | T(b 21a2,i) . n) 
i , j  

= ~ bl i | aLi. (m@ T(a2 j) T(b2 i ) �9 n). 

Let A (a2j) = ~ a2j 1 s | a2j 2s, where the a's are in ~r Since 
$ 

(z| | =(1 | ~ - ~ | 1 7 4  
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we have 

@,(ba|  ~ bli@(a U. m@a2jlsT(a2j2s)T(b21 ). n). 
i , j , S  

But 

a2j is T(a2j 2s)= e (a2j) 1, 
s 

where e: d ~ k  is the augmentation map, and 1 is the identity element of ~r (see 
[18, p. 73]). Hence 

~b , (b a | m) = ~ b 1 i | (al j" m | e(a2 j) T(b2 i) " n) 
i , j  

= ~, bli | (a. m | r(b2i ) �9 n) = ~b,(b | a. m). 
i 

Thus ~b, is well defined. Now define 

tp: ( ~  | 1 7 4  N--~ ~ |  | N) 

by ~b(x| = d/n(x ) ( x e ~ |  heN).  Computations similar to the above show that 
0 is a b-module map, and that ~, is a left and right inverse of ~p. Q.E.D. 

Remark. Proposition 1.7 generalizes [6, Proposition 5.1.15], the case dim N =  1. 
Proposition 1.7 also holds more generally for an arbitrary Hopf algebra N and 
Hopf subalgebra d in place of the universal enveloping algebras of b and a. 2 
In fact, our proof uses only the definition of Hopf algebra (see [18, Chapter IV]) 
and formulas 1 on p. 74 and (iii), (iv) on p. 79 of [18]. Applied to group algebras 
of finite groups, Proposition 1.7 becomes an important result of Frobenius 
(see for example [5, p. 268, Theorem (38.5)]). 

As a sample of the usefulness of Proposition 1.7, we quickly show the following: 

Corollary 1.8. The tensor product of a free M-module with an arbitrary M-module 
is free. 

Proof The most general free M-module is of the form ~ | M, where M is a vector 
space-  that is, the module is a b-module induced from some module for the zero 
subalgebra of b. Applying Proposition 1.7 to the case a =0  shows that the tensor 
product of the M-module ~ Qk M with a M-module N is naturally isomorphic to 
the free M-module ~ @k(M @k N) (where M acts by left multiplication on the first 
factor). Q.E.D. 

Applied to cg in place of ~ ,  this corollary implies what we claimed a b o v e -  
that each Dj | N is free as a ~-module. But Proposition 1.7 immediately implies 
the following more precise result (see also Propositions 1.4 and 1.6): 

Proposition 1.9. For each j e  7Z+ , let D~Y be the b-module induced by the tensor product 
A~(b /a ) | N of a-modules (where N is regarded as an a-module by restriction). That is, 

= |  | N).  

2 J. Humphreys has informed us that he and M. Sweedler are also aware of this fact, at least in the 
case when d = k 
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Then there are b-module maps dJV(j>O) and ~o such that the b-module complex 
V(b, a, N) is naturally isomorphic to the exact sequence of b-modules 

... df,OZ [ ai~,D ~ ~ON,N___~O" 

For each j e Z  + , Dy is free as a OK-module; and in fact as a Cg-module, 

with ~ acting by left multiplication on the first factor. Moreover, let ~ be a subalgebra 
of a such that [~, c] ~ c. Then the complex 

'|174 [ '|174 (.) 

where k is regarded as the trivial right c-module, has a natural ~-module structure, 
and it is naturally isomorphic, as a complex of ~-modules, to V.(b, a, N, c), and hence 
to the standard homology complex for computing H.(c, Nt), provided with the stan- 
dard ~-module action. The resulting action of ~ on the homology of the complex (*) is 
naturally ~-module equivalent to the standard action of ~ on H,(c, Nt). Finally, for 
each j e Z + ,  the ~-module contragredient to Hi(c , N t) is naturally isomorphic to 
HJ(c, N*), provided with the standard action of ~. 

Remarks. (1) It is of course possible to describe the maps d~Y and eo N precisely, using 
the proof of Proposition 1.7 together with the above description of the maps 
dj: Dj ~ Dj_~, but we shall not have to do this. The information stated in Propo- 
sition 1.9 is all that we shall need to know about V(b, a, N). 

(2) For each jeT~+, the term k | ~ in the complex (,) may be identified with 
the tensor product ~-module At(c)| N. 

The next result, which follows easily from the standard elementary properties 
of induced modules (cf. [6, Chapitre 5, pp. 163-164]), will be helpful in studying 
the modules D~ occurring in Proposition 1.9. 

Propositon 1.10. Any a-module filtration 0 = M o c M 1 c M 2 c . . .  of an a-module 
M such that M = Q) M i naturally defines a b-module filtration 

O=.~ | ~ |  ~ | ~ . . .  

of the induced b-module ~ | M such that ~ | M = ~ (~  | Mi). Moreover, we 
have a natural b-module isomorphism 

| (M, + 1/M,) ~- (~  | M, +,)/(~ | M,) 

for each i~2g § 

w 2. The Setting 

In this section, we shall mostly review, with some modification, some basic 
definitions and results from the papers of Kac and Moody-espec ia l ly  1-11 (a), (b)] 
and [15(a)]. We shall also introduce notation to be used thoughout this paper. 

Let 1EZ+, and let A=(Au)i, j~l ..... z~ be an I x I Cartan matrix. That is, Au~2g 
(the set of integers) for all i and j, A u = 2  for all i, A u < 0  whenever i ~ j  and A~i=0 
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whenever Ai~=0. (Later in this section we shall also impose a symmetrizability 
condition on A.) Assume that k is a field of characteristic zero. Consider the 
(possibly infinite-dimensional) Lie algebra gl = gl (A) over k defined by 3 l generators 
hl, e i , f  i ( i=1 . . . .  ,/) with the relations [h i ,h j]=O,  [ei , f j]=61jhi ,  [hi, e j ] = A i j e i ,  
[hi,fj] = - a i J  j for all i , j =  1 . . . .  , l, and (ade , ) -A ' j+ae j=O=(ad f i ) -A 'J+I f j  when- 
ever i+ j .  Let b be the abelian aubalgebra of gl spanned by h i , . . . ,  h~. For each 
/-tuple (na, ..., hi) of nonnegative (resp., nonpositive) integers not all zero, define 
91(n~, ..., nt) to be the subspace of gl spanned by the elements 

[ei,, [el2, . . . ,  [%_,,  % ] . . .  ]] 

(resp., 

I f , , ,  ~ ,  ..., ~ _ , , f j  ... ] ] ) ,  

where e~ (resp.,fj) occurs hnih times. Also define gl(0, ..., 0 )=b  and gl(nl, ..., nl)=0 
for any other l-tuple of integers. Then 

g~=  1_[ gl(nl . . . . .  n3, 
(n~ . . . . .  nz )e~t  

this is a Lie algebra gradiation ofga, and the elements ht, . . . ,  h~, e~ . . . .  , e~,fl . . . .  ,fz 
are linearly independent in gl (see I l l (a)] ,  [15(a)]). In particular, dim b=/ .  
The space 9~(0, . . . ,  0, 1, 0 . . . . .  0) (resp., .q~ (0 . . . . .  0, - 1 ,0 , . . . ,  0)) is nonzero and 
is spanned by ei (resp., f~); here ___ 1 is in the i-th position. Also, each space 
gx(n~ . . . . .  nt) is finite-dimensional. There is clearly a Lie algebra involution q 
of g~ interchanging e~ andf~ and taking h i to - h i for all i = I, ..., l, and q takes each 
space gl(nl . . . .  , nl) onto gl ( -  nl . . . .  , - nz). 

The 7/~-graded Lie algebra ga contains a unique graded ideal r~ maximal among 
those graded ideals not intersecting the span of hi, e i and fi (1 < i<  l) (el. [11 (a)], 
[15(a)]). Let g=g(A) be the Z/-graded Lie algebra g~(A)/r~. The images in g 
of h i, el ,fl ,b and 91(nl, ..., nt) shall be denoted hi, ei ,fl ,b and g(n 1 . . . . .  n~), re- 
spectively. The involution tt of g~ clearly induces an involution of g. 

Remark.  If A is a classical Cartan matrix of finite type (i.e., one arising in the usual 
way from a finite-dimensional split semisimple Lie algebra), then r 1 = 0 and g(A) 
is the split semisimple Lie algebra whose Cartan matrix is A, by Serre's theorem 
on generators and relations for such a Lie algebra [17, Chapitre VI, p. 19]. If A 
is a Euclidean matrix, in the sense of [15(a)], then r~ =0,  and g(A) is a Euclidean 
Lie algebra (see [11 (a)] and [15(b)]). More generally, r 1 = 0  whenever A is sym- 
metrizable, in the sense defined below; this assertion is the second part of the 
Corollary in [ 11 (b)]. We do not know whether r~ = 0 in general; this is conjectured 
in [11 (a), Chapter II, w 7]. 

Under the adjoint action, b acts as scalars on the spaces g(n~ . . . . .  nz), giving rise 
to linear functionals on b- However, if the matrix A is singular, the resulting func- 
tionals span only a proper subspace of I)* (* denotes dual). In order to remedy 
this defect, we shall enlarge g by adjoining some derivations. 

Let D~ (1 _< i =</) be the i-th degree derivation of g, that is, the derivation which 
acts on g(nl, ..., n~) as scalar multiplication by n i. Then D~ . . . .  , D l span an l- 
dimensional space b o of commuting derivations of g. 

Let b be a subspace of 1~ 0. Since 1~ may be regarded as an abelian Lie algebra 
acting on the l~-module g by derivations, we may form the semidirect product 
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Lie algebra ge = b X g (e for "ex tended" )  with respect  to this action. Then I3 e = b @ 13 
is an abel ian Lie subalgebra  of ge which acts via scalar mult ipl icat ion on each 
space g(nl,  . . . ,hi). Define ~x . . . . .  ~le(be) * by the condit ions [h, ei]=o~i(h)e i for 
all heI9 e and all i =  1, . . . ,  I. No te  that  o~flhi)=A o for all i , j = l  . . . .  , I. 

We now make  the basic a s sumpt ion  that  b is chosen so that  ~1, . . . ,  ~ are linearly 
independent .  This is always possible, because this condi t ion holds for b = b  o. 
(In this case, we have ot i (Dj)=bi j  for all i , j =  1, . . . ,  l.) But we i-nay wish to choose 
b smaller  than b o, and in fact if A is nonsingular,  then b = 0 is a natural  choice. 

For  all q~e(be) *, define 

g o =  {xegl [h ,  x] =cp(h)x for all heI3e}. 

No te  that  [g~', go] cgO++ for all (p, Oe(be) *. It is clear that  e~eg ~' and f~eg - ' '  for 
each i =  1, . . . ,  l, and that  for all (nl, . . . ,  nt)e2~ ~, 

g(nl . . . . .  n3 c 6" ~' + "'" + "' ~'. 

Since e~, . . . ,  c~ are linearly independent ,  this inclusion is an equality, and the 
decompos i t ion  

g= H g(nl,...,nl) 
(n l  . . . . .  n l ) e •  I 

coincides with the decompos i t ion  

6= l l g  ~'. 

Define the roots  of g (with respect  to b e) to be the nonzero elements ~o of (De) * 
such that  g~ # O. Let  A be the set of roots, A + (the set of  posi t ive  roots) the set of  
roots  which are nonnegat ive  integral linear combina t ions  of  e~, . . . ,  et, and 
A _ = - A + (the set of  negat ive  roots). Then  A = A + w A _,  go = b, 

LI LI g+, 

and d im g - + = d i m  g+ for all ~0eA. 
Let  R be the linear subspace of  (be) * with basis el ,  . . . ,  ~ ,  so that  R is also the 

span of A. Then  the restriction m a p  R ~ b* is an i somorph i sm if and only if the 
Ca r t a n  matr ix  A is nonsingular .  

For  each i =  1, . . . ,  l, define the linear t rans format ion  r~: R - ~ R  by the con- 
dit ions r i ct i = ocj -- A~j o h for all j = 1, . . . ,  I. Equivalently,  r i tp ----- ( p  - -  (p(h~) c h for all 
(peR. We have r ~ e ~ = - e ~ ,  and r i acts as the identity on the ( l - D - d i m e n s i o n a l  
space of ~0eR such that  tp(hi)=0. Let W (the W e f t  group)  be the g roup  of linear 
a u t o m o r p h i s m s  of R genera ted by the reflections r~. 

For  each i = 1, . . . ,  l, let u~ be the Lie algebra spanned by h~, e~ and f/, so that  
n~---~I(2, k). The  defining relat ions for g imply that  for each j =  1, . . . ,  l, ej is con- 
ta ined in a f ini te-dimensional  irreducible ui-module,  and so is fi" Since g is 
generated by the e i and f i ,  g and in fact every u i -submodule  of  g is a sum, and 
hence a direct sum, of  f ini te-dimensional  irreducible ui-submodules.  Applying  
this to the hi-module  LI 6 ++"~' (co e A w {0}) shows easily tha t  r~ A = A and d im g~= 

tlEZ 
d im gr162 for all q~eA. Hence  also WA = A  and d im g ~ = d i m  g ' +  for all w e  W and 
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r Moreover, for each i=1  . . . .  , l, na~A(ne2g )  implies n =  _1.  Furthermore, 
for each cq and r ~ A w {0}, the "e~-root string" {q~ + n e~e A w {0} I n ~ 2g} is finite 
and is an unbroken string of the form ~o-pe~, ~ o - ( p - 1 ) ~  . . . . .  ~o+qa~, where 
p, q~ 2g +. 

The following elementary fact is basic: 

Proposition 2.1. For all i = 1 . . . . .  l, r i permutes the elements o f  A + - {oh}. 

1 

Proof. Let ~oeA+-{c~i}. Then q~= ~ n j e j  with each njEZ+ and some n~o>0 
with jo 4= i. Then ~=~ 

r i q) = q) - q)(hi) ct, = ( ~ nj ~ )  + (n i -  q)(hi) ) a,, 
j * i  

where q)(hl)eTZ. Since riqo~A and its jo-coefficient is positive, ritPeA +. Q.E.D. 
Define the set A R of real roots to be the set of Weyl group transforms of 

cq . . . .  , ctt, and define the set A, of imaginary roots to be A - A  R. Then dim g'P= 1 
for all q)edR, since dim 9~'=1 for each i. If qoed~, then dim g* need not be 1 (see 
[11(a)], [15(b)]). Clearly, W A R = d R ,  WA~=A~, A n = - d  R and A ~ = - A  I. We 
also have W(A ~ c~ A +) = A t ~ A +, by Proposition 2.1. 

For  all weW, define ~ w = A + c ~ w d _ = { q o ~ A + l w - ~ t p e d  }. Clearly, ~ w c  
A R ~ A + ,  ~1 is empty and ~r, = {el} for all i=  1 . . . . .  I. Let n(w) be the number of 
elements in q~w. (We shall see presently that n(w)< oe.) Let l(w) be the length 
of w, that is, the smallest nonnegative integer j such that w can be writtens as 
ri, ri~ ... ri~(1 N i,~ < I). The following is established in [16, w 2] (see also [10]): 

Proposition 2.2. Let  w e  W a n d  ie  {1, . . . ,  l}. Then 

(1) n(w)=l(w). 
(2) If a~ r ~w, then ~b,, w = r~ q'w ~ {ai} (disjoint union), and l(r~ w) = l(w) + 1. 
(3) If ~i~q~, then q~,,w = ri(q~,~- {al}), and l(ri w)= l ( w ) - 1 .  

For every finite subset q~ of A, define ( ~ ) =  ~ ~oeR. Note that by Pro- 

position 2.2(1), q~w is finite for all w~W, so that (~w) is defined. Proposition 
2.2(2), (3) immediately imply: 

Corollary 2.3. For all w e W a n d  i~{1, ..., 1}, <q~,,w> = r i < ~ >  + <~r.>. 

Proposition 2.4. Let  w e  W,, q) a finite subset o f  A +, and 7 e R  a finite sum of  not 
necessarily distinct positive imaginary roots. I f  ( q ~ w ) = ( ~ ) + y ,  then 7=0  and 

= qb . In particular, ~ consists o f  real roots. 

Proo f (A .  Feingold). Define a partial ordering on R as follows: If ~o, 0 e R ,  we say 
that ~o <__ ~, if ~ - (p is a nonnegative integral linear combination of el ,  .--, cq. Let 
fll . . . .  , fl,, be the distinct elements of 4~, and 71 . . . . .  7, the distinct elements of 
~w. If n=0 ,  the result is clear, so assume that n>0 .  Then w - l ( ~ w ) < 0 ,  and 
w - 1 7 > 0  because w -~ preserves AlcoA +. Thus w - ~ ( ~ ) < 0 ,  so that w-lfli~0 
for some i=  1, . . . ,  m. Hence flie~w, and so /3i=7i for some j =  1 . . . . .  n. Then 
( ~ w - { T  j } ) = ( 4 ~ - { f l i } ) + 7 .  If n =  1, we are clearly done, so assume that n>  1. 
As above, w - l ( q ~ - { f l i } ) < 0 .  Hence r e > l ,  and" there exists i ' , i  such that 
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w - l f l i , < O ,  i.e., fli,~-~w. Since ~i,=~=fli, w e  have fli,=Tj, for some j ' . j .  A con- 
tinuation of this process proves the result. Q.E.D. 

We want to extend the action of the Weyl group W from R to all of (be) *. To 
do this, define the linear automorphism r'i(1 < i <  l) of (1)e) * by the condition 
r' i ~o=tp-~0(h~)ct~ for all ~pe(be) *. Then r ' i lR=r~,  and the restriction map to R 
gives a homomorphism from the group W' generated by r' 1 . . . . .  r' l onto W. 

It is known that W is a Coxeter group (cf. [15(a), p. 216, Proposition 5] and 
[16, w Specifically, for all i , j =  1 . . . . .  I with i ~ j ,  define m~j to be 2, 3, 4, 6 or 
according as A~j Aj~ is 0, 1, 2, 3 or > 4, respectively. Then W is the group generated 
by rl,  ..., r I subject to the relations r 2 = 1 for all i = 1 . . . . .  l and (r i rj) m'j = 1 for all 
i, j =  1 . . . . .  l with i4:j. (Here (r i rj)~ 1 is interpreted to be the vacuous relation.) 

Now for each i=  1, ..., l, (r'i)~=l. Also, the argument used in [15(a), Pro- 
position 5] to show that (r lr j)m'J=l whenever i . j  also proves that (r' i rj) . . . .  1 
whenever i#:j. Thus there exists a group homomorphism from W to W' taking r~ 
to r'i for each i. Clearly, this is a left and right inverse of the restriction homo- 
morphism W ' - - .  W indicated above, and so this restriction map is an isomor- 
phism. Hence we may now write r~ for r'~, and we may identify W with the group 
of linear automorphisms of (De) * generated by the automorphisms r i o  < i < l )  
defined by r i ~p = ~p - ~o(hi) ct i for all ~o E(be) *. 

Define pe(be) * to be any fixed element satisfying the conditions p(hi)= 1 for 
all i =  1, . . . ,  I. (If the Cartan matrix A is nonsingular and b=0,  then/9 is deter- 
mined uniquely and p ~ R = (De) *.) 

Proposition 2.5. For all i~ { 1 . . . .  ,1}, ri P = P -  ~i. For  all w ~ W, ( ~ ) = p -  w p. 

Proof.  The first assertion is immediate, and establishes the second for all Weyl 
group elements of length 1. Use induction on the length of w, and assume the second 
assertion is true for w'E W with l (w ' )< l(w). Let w = ril ri2 ... rij be a minimal ex- 
pression for w, and set w ' =  ri2.., rij. This is a minimal expression for w', so that 
l(w') = l ( w ) -  1. Then 

p - - w p = p - - r i l  w ' p = p - - r i l  P + r i ~ ( P - - w ' P ) = ( ~ r i , ) + r i ~  (~w'), 

by the first assertion and the induction hypothesis. But this equals ( ~ ) ,  by 
Corollary 2.3. Q.E.D. 

Corollary 2.6. The only Weyl  group element  which f i x e s  p is the identity. Equi- 
valently, i f  w 1 p = w 2 p (w  l , w E ~ W), then w 1 = w E . 

Proof.  If w p = p ( w e W ) ,  then ( ~ w ) = 0  by Proposition 2.5, and so w = l  by Pro- 
position 2.2(1). Q.E.D. 

Corollary 2.7. I f  w 1 , w 2 ~ W and ~wl = ~w2' or even /f  (~wl) = (4~w2), then w 1 = w 2 . 

Proof.  Simply apply Proposition 2.5 and Corollary 2.6. Q.E.D. 

Proposition 2.8. Le t  T be the subset o f  (De) * consisting o f  the elements  o f  the form 
- ( ~ ) - %  where �9 is a f in i te  subset o l d +  and ~ is a f ini te  sum o f  not necessarily 
distinct positive imaginary roots. Then p + T is W-invariant. 



Lie  A l g e b r a  H o m o l o g y  51 

P r o o f  It is sufficient to show that r ~ ( p - < 4 ~ ) - ? ) - p ~ T f o r  all i =  1 . . . . .  l. If ~ / ~ ,  
then ~b = 4~' ~ {~i}, where (/i' = ~ _ {~i}. We have 

ri( p -- <~> -- ~) -- p ---_ -- ~x i -- r i <qb'> + ~x i -- r i y = -- rl <~'> -- ri To= T 

by Proposi t ion 2.1 and the fact that  rl preserves A, c~ A+. If a~r ~, then 

r i ( p  - -  < ~ >  - -  7 )  - -  P = - -  o~i - -  ri (q~> - r i  7 z T 

for the same reasons. Q.E.D. 

Definitions. Let 2e(be) *. Call 2 integral if )~(h~)e2~ for all i=1 ,  . . . ,  l, and call 2 
dominant  integral if2(hi)6 77+ for all i=  1, . . . ,  I. Let P=(be)  * be the set of dominant  
integral elements. 

Remarks .  (1) Every root  is integral. 
(2) Wpreserves the set of  integral elements. 
(3) p is dominant  integral. 

Proposition 2.9. Le t  2s([?e) * be integral, and let U be a W-invariant subset o f  (lle) * 
l 

all o f  whose elements  are o f  the form 2 -  ~, n i ei where each nie7Z + . Then every 
i = l  

element  o f  U is W-conjugate to a dominant  integral e lement  o f  U. 

I 

P r o o f  Let # e  U. Choose  we Wso  that in the expression w # = 2 -  ~ niai(nie7l+),  
i=1  

l 

the sum ~ n/ is minimal. Then  w# is dominant  integral. Indeed, w # e U ,  and 
ir 

hence is integral. If m = ( w # ) ( h l ) < O  for some i, then ri w l ~ = w p - m a i e  U has an 
l l l 

expression 2 -  ~ m i a i in which }-" mi< ~ hi, a contradict ion.  Thus  w # E P .  
i=1 i=x i=1 Q.E.D. 

Assume that the Car tan matrix A is symmetrizable,  i.e., that there are positive 
rational numbers  ql . . . . .  q~ such that  diag (ql . . . .  , q~)A is a symmetric matrix. 
Define a symmetric bilinear form a on R by the condi t ion a(e~, %)= ql A~j for all 
i, j = 1 . . . .  , I. Note  that qi = a(~i, ~i)/2 for each i. Set x~, = qi hi = a(~i, ~i) h.]2 in b 

l l 

for all i = l , . . . ,  l, and for all q~sR, with q~= ~ a i a i ( a i e k ) ,  define x~=  ~ , a i x , ,  
i=1  i=1  

in [. Transfer a to the symmetric bilinear form z o on [) determined by the con- 
dition Zo(X~, , x~)--a(~i ,  aj) for all i, j - -1 ,  . . . ,  I. Then  Zo(X~, x~)=a(~p, ~,) for all 
~0, ~ R .  Now a(oq, ~fl=aj(x~.) for all i, j =  1 . . . . .  l, so that  Zo(X ~, x~,)=a(~o, ~ ) =  
~(xr for all ~0, ~ 6 R .  The form z o extends to a symmetric g-invariant 
bilinear form z on g such that  [ a , b ] = z ( a , b ) x ~  for all ~o~A, a6g  * and b~g -*  
(see I l l ( a ) ] ,  [15(a)]). In particular,  z (e i , f i )=2/a(oq ,  ai) for all i =  1, . . . ,  l. For  all 
~p~A and ~ A w { 0 } ,  z(g ~, g~~ unless q / = - q ~ ,  and z induces a nonsingular  
pairing between g~ and g-~  (see [ l l (a ) ,  15(a)]). 

It is clearly possible to extend the symmetric  form a on R to a symmetric  
form a on (De) * satisfying the following condit ion:  For  all ~p~R and 2~(I)e) *, 
a(2, ~o)=~(x~). Fix such a form a on ([9~) *. 
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Proposition 2.10. The form ~r on (be) * is W-invariant. 

Proof  Let 2, #~(be) *, and let iE{1, ..., l}. Then 

tT(r i 2, r i #) = tr(2 -- 2(hi) gl, # -/x(hl) gl) 

= tr(2, #) - 2(hi) #(x~,)- #(hi) 2(x,,) + tT(~i, ~i) 2(hl) #(hi) 

= or(2, # ) -  �89 ~r(~i, al) 2(hl) # (h i ) -  �89 ~(~i, ~ti) #(hl) )~(hi) 

+a(0ci, ~) 2(h 3 #(hi) = ~r(2, #). Q.E.D. 

The following result is immediate from the definitions: 

Proposition 2.11. I f  #e(be) * is dominant integral and i~ {1, ..., l}, then or(#, cti) is a 
nonnegative rational number, and tr(# + p, ~i) is a positive rational number. 

l 
Proposition 2.12. Let  #e(be) * be dominant integral, let v = # -  ~ n i ctl, where each 

i = 1  

nie 7/+, and suppose that v + p is dominant integral. Then 

tT(p+ p , p +  p ) - ~ ( v  + p, v +  p)>=O 

(i.e., this is a nonnegative rational number),  and we have equality if and only i f  

Proo f  We have 

tT(# + p, p + p ) -  tr(v + p, v + p) = tr(p + p, # + p ) -  tr(p + p - ~ ni o~i, # + p - ~ ni ~i) 

= v + p )  

>=a(p+ p, Z nlai)>O, 

by Proposition 2.11. That result also implies that equality holds only if each 
ni=O. Q.E.D. 

Proposition 2.13. Let  Tc(be) * be as in Proposition 2.8, let #~(be) * be dominant 
integral, and let T' be a W-invariant subset of(be) * all o f  whose elements are o f  the 

l 
form # - -  ~, n i o~ i where each ni~,7] + . Suppose 2= z+  z', with ze  T and z' ~ T'. Then 

i = 1  

cr(#+ p , # +  p ) - f f ( 2  + p, 2 + p)>O 

(i.e., this is a nonnegative rational number),  and equality holds if and only if  there 
exists w ~ Wsuch that 2 + p = w(# + p), or equivalently, such that z = w p - p = - ( q~w) 
(see Proposition 2.5) and z' = w #. In case o f  equality, 2 determines w and hence also 
z and z'. 

Proof  By Proposition 2.8, p +  T+ T' is W-invariant. Also, every element of 
! 

p + T+  T' is of the form # +  p - ~  n~ ct~ with n~7/+.  Thus by Proposition 2.9, 

there exists w ~ Wsuch that w- a (2 + p) is a dominant integral element of p + T+ T', 
I 

Then we may write w- 1(2 + p ) -  p = # -  ~ n~ ~ with ni~ 7Z +. Applying Pro- 
i = 1  

position 2.12 to v = w- 1 (2 + p ) -  p, and using the W-invariance of e (Proposition 
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2.10), we have 

a(#+ p ,#+ p) -a(A + p, 2 + p)>O, 

and equality holds if and only if w - l ( 2 + p ) = # + p .  This last condition is equi- 
valent to w - ~ ( z + p ) - p + w  -~ r'=#. By the definitions and the W-invariance of 
p + T and of T', this condition is in turn equivalent to the pair of conditions 
w - ~ ( z + p ) - p = O  and w -~ ~'=/~. This proves all but the uniqueness of w. To 
prove this uniqueness, suppose 2+p=w' (#+p)  for some w'sW, and let Wo= 
w -~ w'. Then Wo(#+p)=#+p, and so w o p-p+Wo#=l~ .  But/~=w -~ z ' s T '  since 
T' is W-invariant, and w o p - p c  T, so that again by the definitions of T and T', 
we must have w o p -  p = 0 and w o p =/~. By Corollary 2.6, w o = 1. Q.E.D. 

w 3. Modules Induced from an F-Parabolic Subalgebra 

Every subset S of {1, ..., 1} defines in the obvious way a square submatrix B 
of the Caftan matrix A which is also a Cartan matrix. We shall say that S is of 
finite type if B is a classical Cartan matrix of finite type. S =lJ is an example. 

Assume that S is of finite type. It is clear that there is a natural injection 
g(B)~-~g(A) (using the notation of w 2). We may identify the finite-dimensional 
split semisimple Lie algebra 9(B) with the subalgebra 9s of g = g(A) generated by 
{hi, ei,Jl}i~s. Let bs be the span of {hi}i~ s, A S = A n L I Z ~ ,  A S = A + n A  s and 
A s =A _ c~A s. Then i~s 

~o~AS+ t o g a  s _ 

Define the following subalgebras of g: 

n =  LIg ; n - =  "s= LIg ; 
~o~A + q ~ A  - ~o~A+ s ~0~A s - 

I _ I  ~ "  -- u =  g , u = LIa_sg~; 
q~eA - -A+  s r - 

r = gs + b and p = r G n. This last is a subalgebra because It, u] c u. (It is also clear 
that It, u - ] o n - . )  We have the following relations: g = u - G b G u ;  g s = U s O  
bsOUs; n = U s G U ;  u - = U s  G n - ;  r = U s  @ b @ u  s and g = n -  @p. 

We call p the F-parabolic subalgebra of g defined by B. (The " F "  refers to the 
finite-dimensionality of gs.) Note that if S = ~, the associated F-parabolic sub- 
algebra is b �9 n. If A is classical of finite type, the F-parabolic subalgebras are the 
parabolic subalgebras of g containing the Borel subalgebra b �9 ft. 

Since B is nonsingular, the restrictions to bs of the c~/with i t S  form a linearly 
independent family of elements of [~'. Let bS= (~ Ker(~ilb)c b. Then b = bs0)b s, 

iES 

r = gsG b s, and r is a (finite-dimensional) reductive Lie algebra with commutator  
subalgebra gs and center I) s. 

For every b-invariant subalgebra t of 3, denote by t e the subalgebra b �9 t of ge. 
(This notation is consistent with the notation ge and b e (w 2).) 

Call pe = r e ~) u the F-parabolic subalgebra of ge defined by B. The ge-modules 
induced by finite-dimensional irreducible modules for an F-parabolic subalgebra 
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will be of central importance to us. We now proceed to discuss these induced 
modules. 

Definition. Let 

Ps = {2E(be)*12(hi)e;~+ for all i tS}.  

Proposition 3.1. ?'here is a natural bijection, denoted 2~-~ M(~.), between Ps and the 
set of (isomorphism classes of)finite-dimensional irreducible re-modules which are 
irreducible as gs-modules. 7he correspondence is described as follows: The highest 
weight space (relative to Ds and its) of the gs-module M(2) is be-stable, and 2 is the 
resulting weight for the action of D e. 

The proof is straightforward and may be omitted. Note that b s acts via multi- 
plication by scalars on M(2). Also, M(2) is the direct sum of its weight spaces for 
b e (in the obvious sense), and the weights for D e in M(2) are all of the form 
2 --  2 ni~ with n i ~  + . 

ieS 
We define the ge-module V Mt~ (2~Ps) to be the ge-module induced by the 

irreducible pe-module which is M(2) as an re-module and which is annihilated by u. 
That is, let (fe and 3 ~e (regarded as a subalgebra of (fe) denote the universal envelop- 
ing algebras of ge and pe, respectively. Then V M~) is the ge-module (fie (~e M(2). 

Remark. If the Cartan matrix A is classical of finite type, if b = 0 (see w 2), and if 
S = r  (so that pe is a classical Borel subalgebra), then the modules V M~) are just 
the Verma modules (cf. [6, Chapitre 7]). 

V Mt~ satisfies the universal property that any re-module map of M(2) into 
the u-invariant subspace of a ge-module X extends uniquely to a ge-module map 
of V Mt~ into X. Let ~ -  be the universal enveloping algebra of u- .  Then since 
9e = U - ~ p e ,  the multiplication map in ~e induces a linear isomorphism (fe,~ 

- | ~e, by the Poincar6-Birkhoff-Witt theorem. Thus we have a natural linear 
isomorphism V M~) - ~//- | M(2). 

We digress to clarify some general terminology, some of which we have already 
used. Let X be an De-module (for example, a g%module or a pC-module regarded 
as an be-module by restriction), and let V~(be) *. Define the weight space X ~ c X  
corresponding to v to be {x~XIh.  x=v(h)x for all h~be}. Call v a weight of X if 
X~+0, and call the nonzero elements of X~ weight vectors with weight v. Call 
X a weight module if it is a (direct) sum of its weight spaces. 

Clearly, ge is itself a weight module under the adjoint action, and for all 
q~(l~e) * -  {0} (in particular, for all ~o~A), the weight space (ge), is just 9". Also, 
(ge)o=be. Thus the set of weights of ge is just A u{0}, and lies in the subspace 
R of (be) *. If X is a ge-module, ~0 ~ R and v ~ (b~) *, then g ~'. X~ ~ X~ + ~o. 

If X and Y are be-modules, and (o, ~k~ (be) *, then X~o | Y~, c (X | Y)~o +~ in the 
tensor product module. It follows that the tensor product of weight modules is 
a weight module, and the weights of the tensor product are the sums of the weights 
of the factors. In particular, if t is an be-invariant subalgebra of ge, then the tensor 
algebra of t, and any of its quotients, such as the universal enveloping algebra of t, 
are weight modules with weights in R = (be) *. For example, (fe is a weight module 
with weights in R. If X is a ge-module, q~ e R and v ~ (be) *, then (f~. X~ c X~ + ~o. 
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A g%module X is called a highest weight module if it is generated by an n- 
invariant weight vector x. The highest weight vector x is uniquely determined up 
to a nonzero scalar, and its weight is called the highest weight of X. The weight 
space of x is the highest weight space of X. The highest weight space of X is one- 
dimensional, X is a weight module with finite-dimensional weight spaces, and all 

l 

the weights of X are of the form v -  ~ n ~  (n~Z+),  where v~(b~) * is the highest 
i=1  

weight. These facts follow easily from the decomposition g~ = rt- | I3 e 0) n. 
Returning to the modules V ~ta), we note the following obvious fact: 

Proposition 3.2. For all 26Ps, the ge-module V M~a) is a highest weight module with 
highest weight 2. The highest weight space (relative to Ds and as) of the gs-module 
M().) is the highest weight space of V Mta~ (identifying M(2) with the pe-submodule 
1 | M(2) of VMt~)). 

w 4. The Casimir Operator; the Category 

f } For re(be) *, define D(v)= v -  ~. nictilni~Z + =(be) *. Let c~ be the category of 
i=1  

g%modules X such that X is a weight module whose weight spaces are finite- 
dimensional and whose set of weights lies in a finite union of sets of the form 
D(v) (v r (be)*). Every highest weight module lies in c6 (see w 3). Also, c~ is stable under 
the operations of submodules and quotient modules. Following [11 (b)], we shall 
define an operator Fx, to be called the Casimir operator, on XeC~. 

Recall that the Cartan matrix A is symmetrizable, and that this gives rise to a 
g-invariant symmetric bilinear form z on g such that [a,b]=z(a,b)x r for all 
tp~A, a~9 r and b ~ g - r ;  z(ei,fi)=2/a(~i,~i) for each i=  1, ..., l; z induces a non- 
singular pairing between 9 r and g - r ;  and z(g ~, g")=0 for all ~b,t/~R such that 
q/+ t/:~ 0 (see w 2). Let Sl, ..., s m be a basis of 9 r (q~ ~ A). Then there is a unique dual 

basis t 1 . . . .  , t m of g - r ,  relative to z. Set co r = ~ t i s i ~  e. Then o9 r is independent 
*=1 

of the basis Sl, . . . ,  sin. Indeed, let Ir~(gr)*| g r _  End 9 r be the unique element 
corresponding to 1 ~ End gr, let xr:  (9r)*~ g - r  be the linear isomorphism defined 
by z lg r •  g - r ,  and let f :  9 |  ~ f f e  be the map induced by multiplication. 
Then ~% = f o ( x  r | 1)(tr). 

Since X ~ ,  it is clear that the (possibly infinite) sum 2 ~ m r acts as a well- 
r eA + 

defined operator on X. Denote this operator by F 1. Note that 09, =�89 i, ~i)f~e~ 
for all i=  1 . . . .  , I. 

Define p~(be) * as in w 2, so that p(hi)= 1 for all i=  1 . . . . .  I. Note that p(x,,)= 
�89 ~i) for each i. 

Now define the operator F 2 on X as follows: Recall that a is a symmetric 
bilinear form on (De) * such that for all q ~ R  and 2~(be) *, we have a(2, q~)=2(xr) 
(see w 2). Let v~(be) *. Then F 2 acts on the weight space X~ as scalar multiplication 
by a(v+p, v+p). 
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Defini t ion.  For the ge-module XeC~, define the Casimir  operator  FxeEnd X to be 
F 1 + F 2 (see above). 

The following result, which is clear, says essentially that X~-~F X defines a 
functor from ~ to the category of morphisms of c~: 

Proposition 4.L L e t  X ,  y~c~ and f :  X - - ~ Y  a g%module map. Then f o F x = F y o f :  
X - . Y .  

Here is the crucial property of F x (cf. [1 l(b)]): 

Proposition 4.2. For  X e C, the Casimir  operator F x commutes  with the action o f  g e 
on X .  

Proof.  It is clear that F x commutes with the action of b e. It is sufficient to show that 
for each i=  1 . . . .  , l, e iFx=Fxe i  and f /Fx=Fxf  / as operators on X. 

Fix i =  1, . . . ,  l. Let �9 c A + be a finite union of ~i-root strings (see w 2). Then 
M----LI g~ and N =  LI gr are ul-modules (in the notation of w 2) which are 

contragredient under the (g-invariant) form z. Let ,u~M* |  M corre- 
spond to l~End  M, and let ~CM: M * - - ~ N  be the linear isomorphism defined by 
zlM • N, so that K M is a ui-module map. Let f :  g | g_.f ie  be the map induced by 
multiplication. Then it is clear that f o ( ~ C M |  e is ucinvariant (i.e., it 
commutes with ui) and that this element is precisely ~ ~%. 

Let ve(be) * and let x e X ~ .  Since g~. x=g~~ �9 x)=g~~ �9 x )=0  for all but 
finitely many t o e A+, we may choose a finite subset (~ = A+ which is a finite union 
of ~croot strings and such that 

F 1 �9 x = 2 o ) , ,  x + 2  ~ c%. x = a ( a l ,  cQfiei" x + 2  ~, c%.x ,  

FI " (el" x)= a(ai, cti)fie 2" x + 2  ~ mq, ei" x 
tper 

and 

El" (L" x) = a (el, a,)fi eiL" x + 2 ~ ~o~o L - x. 
q~Eq) 

Thus 

ei" (FI " x ) -  F 1 �9 (el" x)  = a(ai, ~i)(elfi e i - L  e~). x 

=a(O~i ,  a i )  h l e  i �9 x = o'(cq, o~i)(v(hi) + 2 ) e  i . x 

and 

fi" (FI " x ) -  F 1 �9 ~ ' x ) =  a(oq, o~,)~2 e , -  fieif~) . x 

= - * ( ~ i ,  ~ , )L  hi" x = - ~ (~ i ,  ~i) v (hM," x .  

On the other hand, 

el- (F2" x ) -  F2 " (ei " x ) = ( a ( v  + p, v + p ) - a ( v  + p + ~i, v + p + ~i))e i �9 x 

= ( - 2 a ( v + p ,  a i ) - a ( a i ,  ai))e i. x 

= ( -  2 v (x~) -  2 p ( x~ ) -  a(ai, ai))ei" x 

= - a(a i, ai)(v(hi) + 2)e i �9 x 
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and 

A" (1"2. x)-r~.  (f,. x )= (~ (v  + p, v+p)-~(v+p-~, ,  v + p - ~ , ) ) f , ,  x 

= (2 a (v + p, oq)-- a(ei, cq))f i �9 x = a (cq, ~i) v(hi)fi" x. 

Hence e i �9 (Fx.x)=Fx.(e l .x )  and f / . ( F x . x ) = F x . ~ . x  ) for all xeX~ and hence 
for all x e X .  Q.E.D. 

Corollary 4.3. Let X be a highest weight module for ge, with highest weight 2e(l)e) * - 
for example, the module V M~, in the notation of Proposition 3.2. Then X lies in eft, 
and the Casimir operator of X acts on X as scalar multiplication by a(2 + p, 2 + p). 

Proof. This follows immediately from Proposition 4.2 and the fact that F x multiplies 
the highest weight vector of X by a(2 + p, 2 + p). Q.E.D. 

Lemma 4.4. Let Xe~g. Then X has a (possibly finite) ge-module filtration 0 =  
X o c X 1 c X e c . . .  such that x = U x  i and each ge-module XI+I/X i (i>=O) is a 
highest weight module. In particular, if X +O, then X contains a highest weight 
vector. 

Proof. Let vl, ..., vre(b~) * be such that the set of weights of X lies in D(v 1)w... w D(v,). 
l 

Call 2, #e(1)e) * compatible if 2 - # e  ~ Z~ i. If 2 and # are compatible, then clearly 
i = l  

there exists re(be) * such that D(2)uD(#)cD(v). Hence we may assume that 
vl , ..., v r are mutually incompatible. 

l 

Every weight # of X lies in exactly one set D(vs) (1 <j<r).  Write v ~ - # =  ~ n l e  i 
l i = l  

( n i e Z + )  , and define N(#)= ~nle77 +. For each neTZ+, define X(n) to be the 
i = l  

direct sum of all the weight spaces X,  of X such that N(#)= n. Then dim X(n)< oo 
for each n e 7Z+, since the weight spaces of X are finite-dimensional. It is clear that 
if Y is a submodule or a quotient module of X, then the function nF--,dimY(n) 
may be defined exactly as for X, and that dim Y(n)<dim X(n) for every n e Z + .  

Let n x be the nonnegative integer which is minimal such that X(nx)~0,  let # 
be a weight of X such that N(#) = n x, and let x be a weight vector in X, .  Then x 
is clearly n-invariant, so that the ge-submodule X~ of X generated by x is a highest 
weight module. For  the quotient module X/Xa, we have nx/x~ > nx, and ifnx/x~ = n x, 
then dim (X/XO(nx)<dim X(nx). Applying the above procedure to X/X~, we 
find a submodule X 2 ~ X 1 of X such that X2/X  ~ is a highest weight module, 
nx/x~>nx/x~, and if these are equal, then dim (X/X2)(nx/x,)<dim (X/XO(nx/x,). 
Continuing inductively, we get a filtration of X with the desired properties. Q.E.D. 

Definitions. For all XeCg, let O ( X ) = { c e k l F x x = c x  for some x e X ,  x+0}.  For 
all c e k, let 

X ~ ) = { x e X I ( F x - c ) "  x = 0  for some n>0}. 

It is clear that O(X)= {cekl  Xt~)~0}. 

Remark. If X is a highest weight module with highest weight 2e(b~) *, then 
O(X) = {a(2 + p, 2 + p)} (see Corollary 4.3). 
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Proposition 4.5. For all X ~C~, 

x =  Hx, , 
ceO(X) 

Let 0 = X o c X 1 ~ X 2 c7..., be any filtration of X with the properties in Lemma 4.4, 
and let 2i~([)~) * be the highest weight of  Xi+l/Xi ,  for each i. Then 

O ( x )  = {cr(,~ i + p, '~i + p)) i .  

Proof. For a subspace Y of X, let [Y] denote the smallest Fx-invariant subspace 
of X containing Y. Let cl, c 2 . . . .  ~k be the distinct elements of the (possibly finite) 
set {a(2 i + p, 2i + P)}i. Since every finite-dimensional subspace Y of X is contained 
in some X~, Corollary 4.3 implies that [Y] is a finite-dimensional subspace of X~ 
and is annihilated by a product of powers of a finite number of operators of the 
form F x - c j .  By standard finite-dimensional linear algebra, [Y] = LI ([Y] c~x~cj)). 

J 
Taking for Y the members of a filtration 0 = Yo c Y1 ~ Y2 ~ . . .  of X such that 
each Yp is finite-dimensional and X = w Yp, we see that X = LI x~cj), and that if 

J 
c ~ k is such that Xtc ~ 4: O, then c =cj for some j. (We may construct such a filtration 
by taking Yp = LI X(n), where X(n) is the space defined in the proof of Lemma 4.4.) 

n<p 
For each c j, X~cj)4=0. Indeed, choose i so that Q =  a(2i+p, 2~+p), and choose 

a vector x~X~+~, such that x ~ X  i. Then no product of powers of operators of the 
form Fx-c ,  c~k, c . c j ,  can send x into X~, let alone to zero. Hence X~j) 4:0. 

Since O(X)={c~k}X~c~.O},  we have O(X)={c l ,  c 2 . . . .  }. Q.E.D. 
The following is clear from Propositions 4.1, 4.2 and 4.5: 

Proposition 4.6. Let c~k. Then X~--*X~) is a functor from c6 to ~ which transforms 
exact sequences to exact sequences. In particular, if YEc~ and X is a 9%submodule 
of  Y, then (Y/X)~e)= Y~)/X~). 

Proof. Proposition 4.2 implies that X~c ~ is a ge-submodule of X, and Proposition 
4.1 shows that if X, Y~r163 and f :  X --~ Y is a g%module map, then f :  X~o --~ Y~. 
The exactness of the resulting functor follows from the first assertion of Pro- 
position 4.5. Q.E.D. 

Proposition 4.7. Let X~Cs let 0 = X o ~ X  ~ c X  2 ~ . . .  be any filtration of X with 
the properties stated in Lemma 4.4, and let 2i~(I)~) * be the highest weight of Xi+~/Xi, 
for each i. Let c~k. Then X~o has a (possibly finite) ge-module filtration 0 =  Yo ~ 
Y1 ~ Y2 ~ . . .  such that X~)= ~ Yj, and the family of ge-modules Yj+~/Yj coincides 
(up to isomorphism) with the family of re-modules XI+~/X i for which 

a ( J . i + p , , ~ i + p ) = c .  

Proof. Just apply the functor Z~--,Ztc ~ to the given filtration, and use the above 
results. Q.E.D. 

w 5. The p%Modules AJ(g'/p ") 

Recall from w 3 that S c { 1, ..., l} is a subset of finite type; that p = r �9 tt = gs �9 b s @ u 
is the corresponding F-parabolic subalgebra of g; that p e = r e ~ u  is the cor- 
responding F-parabolic subalgebra of ge; and that gs is a finite-dimensional split 
semisimple Lie algebra. Also, gs = Us (~ bs ~) Us and ~e = 11- ~) pe. 
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Proposition 5.1. Every gs-invariant subspace of 9 e (under the adjoint action) is a 
direct sum of finite-dimensional irreducible gs-modules. 

Proof. For each ie{1, .. . ,  l}, e i and f / a re  each contained in a finite-dimensional 
gs-module. Indeed, if ieS, then e~,f~eg s. Suppose that ir Then by the defining 
relations for g (w f~ is an ns-invariant weight vector for Ds, and for each jeS,  
some power of adfj  annihilates f/. A well-known principle [6, Lemme 7.2.4] now 
implies that the gs-module generated by f~ is finite-dimensional (and irreducible). 
Similarly, e~ is contained in a finite-dimensional gs-module. 

Also, b e is contained in the finite-dimensional gs-module r e. 
Since b e and {e i, fi}~=l ..... l generate ge, every element of ge is thus contained 

in a finite-dimensional gs-module. Hence by the complete reducibility theorem 
for the finite-dimensional semisimple Lie algebra gs, ge is a sum of finite-dimen- 
sional irreducible gs-modules. The proposition follows. Q.E.D. 

Lemma 5.2. Let X be an re-module which is a weight module with weights all of 
the form v+ ~ ci~i(ci~k) for some fixed Ve(I)e) *. Then the weight spaces of X (for 

ieS 

b e) are precisely the weight spaces for the action of Ds (the Caftan subalgebra of 
9s) on X. In particular, every finite-dimensional irreducible gs-submodule of X is 
re-stable and is of the form M(2) for some 2~P s (see Proposition 3.1). 

Proof. This result follows immediately from the fact that the restrictions to Is of 
the a~ with i~S form a linearly independent family of elements of b~ (see w 3). 

Q.E.D. 

Lemma 5.3. Let X be an re-module which is a weight module with weights all of the 
form v-Enio~i(niEZ+)for some fixed Ve(Ike) *. Assume that X is a (direct) sum 

ieS 

of finite-dimensional irreducible gs-modules. Then X has only finitely many weights. 
In particular, if each weight space of X is finite-dimensional, then X is finite- 
dimensional. 

Proof. In view of the first assertion of Lemma 5.2, it is sufficient to show that X 
has only finitely many weights for 1) s. We shall in fact show that only finitely 
many inequivalent irreducible gs-modules can occur in X. The restrictions ~i to 
bs of the cq with i~S form a system of simple roots in b~, and the bs-weights of X 
are all of the form ~ -  ~ n ~ i ( n ~ Z + )  for a certain ~1 )* .  It is sufficient to show 

i~S 

that only finitely many linear forms of this type in [~ can be dominant integral 
with respect to {~}. But this follows easily from the standard fact that any domi- 
nant integral linear form in I)~ is a nonnegative rational linear combination of 
the ~i, iES (cf. for example [9, p. 72, Exercises 7 and 8]). Q.E.D. 

Definition. Let X be an De-module and let v~(be) *. Define X{v} to be the (direct) 
sum of all the weight spaces in X with weights of the form v - ~ n i ~i where each 
n i ~ T Z  + . i~s 

For each jeT~+, the j-th exterior power AJ(u -) is an re-module by natural 
extension by derivations of the adjoint action of r e on u- .  
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Proposition 5.4. Let S' = { 1 . . . . .  l} - S. For each j e Z +, 

AJ(u- )=LI  A J ( u - ) { -  • mi~,}, 
i ~ S '  

where the direct sum is over all sequences (ml)i~ s, of nonnegative integers. Each 
direct summand is finite-dimensional, and is a direct sum of finitely many irreducible 
re-modules of the form M(2) (see Proposition 3.1), where 2eRc(l)e)  * is a weight 
for the action of D e on AJ(u-), and ,~ePs. 

l 

Proof. Clearly, u -  is a weight module with weights all of the form - ~ n i cq(nie71+) , 
i = 1  

and the same is true of each AJ(u -). This proves the first assertion. Also, each 
space AJ(u-){ - ~ m i ~i} is the sum of all the weight spaces in AJ(u-) with weights 

i~S"  

of the form - ~ mi aq + ~ n i ~i with n~e 2~, and so each such space is an re-module. 
i e S '  i e S  

By Proposition 5.1, every gs-invariant subspace of AJ(u -) is a direct sum of 
finite-dimensional irreducible gs-modules. Also, since each root space in u-  is 
finite-dimensional, it is clear that each weight space in AJ(u -)  is finite-dimen- 
sional. Thus all the hypotheses of Lemmas 5.2 and 5.3 hold for each space 
A~(u- ){ -  ~mic~i}, and the proposition follows. Q.E.D. 

i~S"  

Proposition 5.5. For each j e Z + ,  AJ(ge/p e) has a filtration 0 = M  o c M 1 c M E ~ . . .  
of pe-modules such that AJ(ge/pe)= w Mi, each nonzero quotient Mi+l/Mi(ie7Z+) 
is a trivial u-module and is isomorphic as an re-module to a module M(2) with 2 as 
in Proposition 5.4, and El Mi§ 1/Mi is isomorphic as an re-module to AJ(u-). 

i e Z  + 

Proof. As re-modules, ge/pe-~u- and AJ(~e/pe)~-AJ(u-). For each ne7Z+, let AT, 
be the direct sum of all the re-submodules of AJ(ge/p e) of the form AJ(ge/p e) 
{ -  ~ mi ~i}, where (mi)i~ s, is a sequence of nonnegative integers whose sum is 

i ~ S '  

less than n. By Proposition 5.4, we have 0 = N  O c N 1 ~ N 2 ~ ... ; hJ(ge/p e) = L)Nn; 
u.  N,+ 1 ~ N~ for each neT/+ ; N~+I/N . is a finite-dimensional re-module which is a 
direct sum of finitely many re-modules M(2) with 2 as in Proposition 5.4; and 
LI N,+I/N, is isomorphic as an re-module to AJ(u-). An obvious refinement of 

n ~ Z  + 

the sequence of N,'s gives the desired sequence of M~'s. Q.E.D. 

w 6. Quasisimple 9%Modules 

Definition. Let X be a 9e-module. X is quasisimple (cf. [ l l (b)])  if X is a highest 
weight module with a highest weight vector x such that there exists ne2g+ with 
f~". x = 0  for all i=  1, . . . ,  I. 

Proposition 6.1. The set of weights of a quasisimple ge-module X is stable under the 
Weyl group W acting on (be) * (see w For every weight p of X and every we W, 
dim X~,=dim Xw,.  In particular, i f#  is the highest weight of X, then dim Xw~,= 1 
for all we W. 
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Proof As in w let u i be the three-dimensional simple Lie algebra spanned by 
hi, ei,fi(1 < i<  l). Since X is generated by a highest weight vector contained in a 
finite-dimensional irreducible ul-module, and since g is a sum of such ui-modules 
(see w so is X. Let # be a weight of X. The fact that [_Ixu§ is nl-stable shows 

n ~ Z  

easily that dim Xu = dim X,. u, and the rest is easy. Q.E.D. 

Proposition 6.2. Let Pc(De) * be the set of dominant integral elements, as in w 
The highest weight of a quasisimple g%module lies in P. Conversely, let peP. Then 

u there exist quasisimple ge-modules Xma x and XUmin with highest weight #, universal 
in the sense that if X is any quasisimple ge-module with highest weight #, then there 
are ge-module surjections u ~X---~XUmi,. XUmi, is also characterized as the X r n a x  

unique irreducible highest weight module with highest weight I~. 

Proof The first assertion follows easily from the standard representation theory 
of the three-dimensional simple Lie algebras ui(1 < i <  l) spanned by h i, el and ft. 

Apply the theory of w 3 to the set S =~[. Then the F-parabolic subalgebra is 
b •n, gs =0, r e= b e, and for al l /~(be) *, the be-module M(#) is a one-dimensional 
weight space with weight /~. The induced g%module V M~u) is a highest weight 
module with highest weight/~. Let v o ~ V Mtu) be a highest weight vector. Then if X 
is any highest weight module with highest weight # and highest weight vector x, 
there is a unique surjection V Mtu) ~ X taking v o to x. 

Let #~P,  and let ni=#(hl) for i= l , . . . , l ,  so that each nieZ +. For each 
i=  1 . . . .  , l, the representation theory of u i implies that e~. (f~"'+~ �9 Vo)=0, and the 
fact that [ e j , f i ] = 0  for j+ i  implies that f~"'+~ .v o is n-invariant. Let Y be the 
ge-module quotient of V Mtu) by the submodule generated by {fi"'§ Vo}i= ~ ..... i. 
Then Y is quasisimple with highest weight/~. Y clearly has a largest submodule 
not intersecting the highest weight space of Y, and the corresponding quotient 
~%module Z is irreducible and quasisimple with highest weight /~. Let X be 
quasisimple with highest weight #, and let x~ X be a highest weight vector. The 
representation theory of u/shows that f~"'+~, x = 0  for each i=  1 . . . .  ,1. Thus we 

# - -  /~ _ _  have surjections Y ~  X ~ Z .  Hence we may take Xma x -  Y and Xm~,--Z. TO 
prove the last assertion, let X be an irreducible highest weight module with 
highest weight #, and let x ~ X  be a highest weight vector. Arguing as above, we 
see that for each i=  1, ..., l, fi"' § �9 x is u-invariant. Thus this vector generates a 
proper ge-submodule of X, and so must be zero. Hence X is quasisimple and 
must be isomorphic to X~i . .  Q.E.D. 

# - -  # Remark. We shall see in w that in fact X~a x -  Xmi . ,  SO that every quasisimple 
ge-module is irreducible (cf. I l l (b) ,  Corollary]), and P indexes the quasisimple 
ge-modules. 

Return again to the situation in which S c  {1, ..., l} is an arbitrary subset of 
finite type (w 3). 

Proposition 6.3. Let X be a quasisimple ge-module with highest weight I ~ P  (see 
Proposition 6.2), let j eZ+,  and consider the re-module Y=A~(u-) |  (cf w 
Then 

Y=LI Y { # -  E mi~162 
ieS '  
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where the notations Y{.} and S' are as in Proposition 5.4, and the direct sum is over 
all sequences (ml)i~ s, of nonnegative integers. Each direct summand is itself a direct 
sum of finitely many irreducible re-modules of  the form M (,~) (see Proposition 3.1), 
where 2 is a weight of  Y and 2~P s. 

Proof. Both X and AJ(u -) are weight modules with finite-dimensional weight 
l 

spaces. Since the weights of X are of the form ~ -  ~ n i ~i (ni e Z+) and the weights 
l i=1  

of AJ(u -) are of the form - ~n~i(n~71. ) ,  we see that Y is a weight module 
i=1 

with finite-dimensional weight spaces, the first assertion of the proposition holds, 
and each direct summand Y{#-  ~ m i ~ } is re-stable. 

i ~ S '  

Let x be a highest weight vector of X. By [6, Lemme 7.2.4], the gs-module 
generated by x is a finite-dimensional irreducible gs-module (cf. the proof of Pro- 
position 5.1). Since X- - f t .  x ( f  the universal enveloping algebra of g), Pro- 
position 5.1 implies that X, and hence every gs-invariant subspace of X, is a 
direct sum of finite-dimensional irreducible gs-modules. This is also true of 
AJ(u-), by Proposition 5.1, and so it is true of Y. Our result now follows from 
Lemmas 5.2 and 5.3, just as in the proof of Proposition 5.4. Q.E.D. 

Imitating the proof of Proposition 5.5, we have: 

Proposition 6.4. Let X be a quasisimple g%module, let j~7Z+, and let Z be the 
pe-module AJ(~e/pe)| Then Z has a filtration O = M o ~ M I ~ M 2 ~ . . .  of pe_ 
modules such that Z = w M i ,  each nonzero quotient Mi+l/Mi(iE7Z+) is a trivial 
u-module and is if-isomorphic to a module M()O with 2 as in Proposition 6.3, and 
El M i . l / M i  is re-isomorphic to dJ(u-) |  

i e Z  + 

Remark. Since the trivial one-dimensional ge-module is quasisimple, Propositions 
6.3 and 6.4 include Propositions 5.4 and 5.5 as special cases. 

w 7. The r%Module Complex C.(X) 

Recall that fie, ~e and ql- are the universal enveloping algebras of fie, pe and u- ,  
respectively. Proposition 1.9 immediately gives us a qJ--free resolution of a quasi- 
simple g%module X: 

Proposition 7.1. Let X be a quasisimple g%module. For each j ~ Z + ,  let D x be the 
g%module fie |174 X), where X is regarded as a p%module by restriction. 
Then there is an exact sequence of g%modules and g%module maps 

... d~ Dx dr, DX ~o ~, X--~O, 

with this complex naturally isomorphic to V(g e, pC, X) (see w Each D x is all--free. 
More precisely, D x is isomorphic as oil--module and as re-module to 

~z- | 1 7 4  
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with ~ -  acting by left multiplication on the first factor, and r e acting via tensor 
product action on the tensor product of the three re-modules. 

The above resolution of X gives rise to the following chain complex: 

l |  x l |  x 
�9 .. ~k| D1 x ~ k |  D~---*0, 

where k is regarded as the trivial right u--module.  Call this complex C,(X),  and 
its homology H,(X) .  

The following is clear from Proposition 1.9: 

Proposition 7,2. C , (X)  is in a natural way an re-module complex, and is naturally 
isomorphic to the standard complex for computing H , ( u - ,  Xt), provided with the 
standard action of r e. The complex C , (X)  is an re-module complex of the following 
form: 

�9 . . ~  AI(u-)|  A~174  X ---~0, 

where X is regarded as an re-module by restriction. H , ( X )  is naturally re-module 
isomorphic to H , ( u - ,  Xt), provided with the standard action of r e (see w 1). 

We shall compute H , ( X ) = H , ( u - ,  Xt). 

Definition. Let T = ()-1,)-2, ...) be a sequence, possibly finite, of elements of Ps 
(see Proposition 3.1). A ge-module V is said to be of type T if V has a strictly in- 
creasing (possibly finite) ge-module filtration 0 =  Voc I/1 = V2=... such that 
V= w V i and such that the sequence of g%modules ~/Vo,  V2/V 1 . . . .  coincides up 
to rearrangement with the sequence of induced modules V u(x.~, V utah), ... (in the 
notation of w 3). 

By Propositions 1.10 (applied to pe and ~e in place of a and b), and 6.4, we 
have: 

Lemma 7.3. Let X be a quasisimple ge-module, let je7z+, and let TJ=().I, )-2, ...) 
be the (possibly finite) sequence of elements of Ps such that Ai(tt-) | X - I_[ M()-i) 
as an re-module (see Proposition 6.3). Then the ge-module D x (see Proposition 7.1) 
is of type T i. 

Remark. The sequence T j is uniquely determined up to order, and by Proposi- 
tion 6.3, each )-i occurs with only finite multiplicity in Ti. 

It is easy to see from the last assertion of Proposition 7.1 that the g%module 
lies in the category cd of w 4. Thus for each c ek, we may apply the functor 

Y~-'*Y~c) (see Proposition 4.6) to the resolution displayed in Proposition 7.1, and 
by Proposition 4.6, the result is an exact sequence. Let O = (  U O(D'~j))wO(X), 

jeZ + 

in the notation of Proposition 4.5, and let 6}'= O - O ( X ) .  Let # be the highest 
weight of X, so that O ( X ) = { a ( # + p , p + p ) }  (see the Remark preceding Pro- 
position 4.5). Then by Proposition 4.5, the complex in Proposition 7.1 is the direct 
sum of the exact g%module complex 

X ~ X �9 ..--, (D l)~r (D0)(~(,+p ,.+p)) ~ X ---, 0 
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and the exact ge-module complexes 

�9 . . - ~  (D~)~c~ ~ (Do%~ ~ 0, 

as c varies through O'. (We need not specify the maps.) Hence by Proposition 4.7 
and Lemma 7.3, we have: 

Lemma 7.4. Let X be a quasisimple ge-module with highest weight p e p  (see Pro- 
position 6.2). For each j~Z.+, let 7t] be the subsequence of tW (see Lemma 7.3) 
consisting of those 2 i in 7 '~ such that a(2i+p, 2i+p)=~(tz+p, lz+p). Then the 
resolution displayed in Proposition 7.1 is a direct sum of an exact ge-module complex 

�9 ..--~E 1 ~ E o ~ X ~ O  

and a denumerable family of exact g%module complexes 

~'(n) ~ ~'(n) ~ 0 

such that for each jE7l+ , E~ is of type ~PJ,. 

The following result is clear: 

Lemma 7.5. In the notation of Proposition 7.2 and Lemma 7.4, the re-module com- 
plex C ,(X) is the direct sum of the re-module complex B ,(X) 

�9 ..-*k| E1--,k| 

and the re-module complexes B(")tX~ 

�9 . .~k |  E~")---,k| Eto"~O, 

where k is regarded as the trivial right u--module. In particular, H ,(X) is naturally 
re-module isomorphic to the direct sum of the homologies of B,(X)  and of the 
B(. ") X , ( ) .  
Lemma 7.6. In the notation of the last lemma, the homology of B ("), (X) is zero for 
each n. In particular, H, (X)  is naturally re-module isomorphic to the homology of 
~,(x). 
Proof Fix n. For each j ~ Z + ,  D x is free as a d//--module (Proposition 7.1), and 
E~"' is a ~//--module direct summand of D x. Hence E~")is projective as a q/--  
module (see [3, p. 6]). Denote the ~ ' - -module  map from E~"+)I to Et. ") by 8~+~ - - j  

Since E~o ") is projective, there is a J//- -map f~ : ~'(n) ~ ~'(") such that 8~ of~ = identity. ~0  ~1 
Thus E~n)=(KerSO~(ImfO=(ImSz)@(ImfO,  and 8~:Imf~- ,Eto ") is a d//-_ 
isomorphism. Since E~ ") is projective, so is Im 82, and thus there is a q / - -map 
f2: Im 82 ---, E~2 ") such that 82 of  2 = identity on Im ~1. Hence Et2") = (Im 83) E3 (Im f:), 
and O/: I m f z - *  Im 82 is a ~-- isomorphism. Continuing in this way and then 
tensoring over q/-  with k, we see that the homology of B~,")(X) is zero. Q.E.D. 

Remark. This proof may be shortened by quoting the fact that Tor,-(k,  0 )=0  
and  that Tor , - (k ,  0) may be computed using any ~ resolution of the 
zero module 0 (see [3]). 

Lemma 7.7. Let 2~P s (see w 3). Then V u(a) is canonically isomorphic as an r~ O u--  
module to the module induced from the re-module M(2). Linearly, V M(~)~ - 
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d//- |  M(2), u -  acts by left multiplication on the first factor, and r e acts by the 
tensor product of the adjoint action on qi- with the natural action on M(,~). 

Proof. This is all straightforward, using the Poincar6-Birkhoff-Witt theorem. 
The first assertion is a special case of [6, Proposition 5.1.14]. Q.E.D. 

Lemma 7.8. Let ~=(21 ,  ~2 . . . .  ) be a sequence, possibly finite, of elements of Ps, 
and let V be a ge-module of type ~. Assume also that V is a (direct) sum of re-modules 
of the form M(2) with 2~P s. Then as an re@u--module, V is isomorphic to the 
module induced from the re-module LI M(2i). 

i 

Proof. By the last lemma, V has a strictly increasing r e ~ )u - -modu le  filtration 
0 = V 0 c V 1 c V 2 c . . .  such that V = U V/ and such that the sequence of r e ~) u - -  
modules VI/Vo, V2/V 1 .... coincides up to rearrangement with the sequence of 
r e @ n- -modules  induced from M(21), M(2z) . . . . .  We may assume for convenience 
that no rearrangement is necessary. Consider the exact sequence of re O u - -  
modules 

o - ,  v, ~ v2 ~ v 2 / v , - ~ o .  

The hypothesis that V, and hence 1/2, is a sum of M(2)'s, and the fact that V2/V x 
contains a copy Y of M(22), imply that V 2 contains a copy of M(22) disjoint from 
V 1 ~ V 2 . Thus there is an re-module map g: Y--) V 2 such that fog  is the identity on 
Y. By the universal property of the induced r e G u -module V2/V~, g extends to 
an r e G u - - m o d u l e  map  g: V2/V1--+ V2, and fog must be the identity on V2/V 1. 
Hence V 2 is isomorphic to the re O n - - m o d u l e  induced from the re-module 
M(21)OM(22).  Repeating this argument for the exact sequences of r e G u  - -  
modules 

o ~  v2 ~ v3 ~ v3/v2 ~ 0 ,  

o-,  v3-~ v4-~ v,/v3->o, . . . ,  

we see that V is r e �9 n - - i somorphic  to the direct sum of modules induced from 
the re-modules M(21) ,M(22) , . . . .  Q.E.D. 

Remark. Each of the ge-modules E~ appearing in Lemma 7.4 satisfies the hypo- 
theses of Lemma 7.8. Indeed, each module D x in Proposition 7.1 is a direct sum 
of re-modules of the form M(2), by the last assertion of Proposition 7.1, and the 
argument used to prove Proposition 6.3. 

Proposition 7.9. Let X be a quasisimple ge-module with highest weight I ~ P  (see 
Proposition 6.2). For each j eZ+,  define Cj(X) to be the re-module AJ(u-)@X, 
so that the standard re-module complex for computing the standard action of r e 
on H , (u-, X t) has the form 

�9 . . -~  c , ( x ) ~  C o ( X ) - ~ o .  

Then H , ( u - ,  X t) is naturally re-module isomorphic to the homology of a certain 
subcomplex B,(X) of C,(X), where for each je7Z+, B~(X) is the sum of all the 
re-submodules of C~(X)=AJ(u-) |  isomorphic to M(~.) (see Proposition 3.1) 
where )~ Ps and a ( 2 + p ,  ~ + p ) = a ( p + p ,  # + p ) .  
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Proof. In view of Proposition 7.2, the r%module complex C,(X) defined in Pro- 
position 7.9 may be identified with the one defined before Proposition 7.2. For 
each jeT1+, Ej is of type ~ (see Lemma 7.4). By Lemma 7.8 and the subsequent 
Remark, Ej is isomorphic as an r e ~) u--module to the module induced by LI M(21) 
where 2~ ranges through the sequence ~u~. Defining the subcomplex B , ( X ) o f  
C,(X)  as in Lemma 7.5, we see that Bj(X) is an r%submodule of Cj(X), r%iso- 
morphic to LI M(21) (2 i ranging through ~) .  But by the Remark following 
Lemma 7.3, and the definition of ~J the only re-submodule of Cj(X) r~-isomorphic 
to L[ M(2i) Q,i ranging through ~!i is the sum of all the r%submodules of Cj(X) 

�9 isomorphic to M(2), where 2E Ps and a(2 + p, 2 + p) = tr(/~ + p, # + p). By Lemma 
7.6, H , (u - ,  X t) is naturally r~-isomorphic to the homology of B,(X). Q.E.D. 

w 8. The Homology and the Resolution 

Using the results of w 2, we shall complete the computation of H , (n - ,  X t) (see w 7). 
Recall from w 3 that A s is the set of positive roots which are nonnegative 

integral linear combinations of the ~i with i ES. Let A +(S) be the complement 
of A s in A +. Then u -  = I_[ 9 ~~ (see w 3). 

~oE - -  A + ( S )  

Definition. Let Ws ~ be the subset of the Weyl group W consisting of those we W 
such that ~w c A§ (S) (see w 2 for the notation). 

Proposition 8.1. W~ = { w E W t w -  1 A s ~ A + }. 

Proof If we W, then 

wEW~ o A S n w A _ = O  ~ - A S : w A _  ~ A S : w A + .  Q.E.D. 

Remark. It is not hard to show, as in [10] (cf. also [12]) that if W s is defined to be 
the subgroup of W generated by {ri}~ s, then every element of W can be expressed 
uniquely in the form wlw 1, where w l E W  s and wlEWs j, l (wlwl)=l(wl)+l(w l) 
(see w 2 for the notation), and Ws ~ can be characterized as the set of elements of 
minimal length in the cosets Wsw (wE W); each such coset contains a unique 
element of minimal length. We shall not need these facts. 

Since u -  is a weight module (for be; recall the terminology of w 3), it is clear 
that A/(u -) is a weight module for all jEZ+.  

Proposition 8.2. For each jEZ+,  the weights of AJ(u -) lie in the subset T of(De) * 
defined in Proposition 2.8. Let wE Ws 1, and suppose that l(w)=j. Then - < ~ )  
(see w 2) is a weight of  AJ(u -), and the corresponding weight space is one-dimensional. 
I f  we Wand either we Ws 1 or l(w)~:j, then - <dPw) is not a weight of AJ(u-). 

Proof Recall from w 3 that n -  = LI 9 *. Choose a basis {bi}i~ I of n -  such that for 

each iEI, b i lies in the root space 9-*' (~o~EA +), and let I' be the subset o f / such  that 
{bi}i~ r is a basis of u -  c r t - .  Assume that the index set I is linearly ordered. Then 
{bil A ... ^ bii}i ~ < .... i~ (imel) is a basis of AJ(n-), and {bi~ ̂  ... ^ bij}i . . . . . .  i~ (imEI') 
is a basis of AJ(u-). I f jEZ+ varies in these expressions, we get bases of A(rt-) and 
A(u-). 
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For each sequence i l< . . .< i  j (imel), bgl/x... ^blj is a weight vector with 
J 

weigh t -  ~ qhm. The fact that d i m g - ~ = l  for each real root ~oeA+ (see w 
m=l 

yields the first assertion of the proposition. Let we W with l(w)=j. Then by Pro- 
position 2.2(1), cb w is of the form {~oi,, .... ~oij }, with i 1<. . .  <i j ,  and - (q~w) is 
the weight of b~l A ... ^ b~j. Proposition 2.4 and the one-dimensionality of the real 
root spaces imply that every other basis vector of A(n-)  has a weight different 
f r o m - ( ~ w ) ,  so that the weight space A(n-)_<#w> is one-dimensional and lies 
in AJ(n-). If weW~, then bi,, .... bl e u - ,  so that A(n-)_~,w>cAJ(u-). If wq~W~, 
then ~oi,.r ) for some m=  1, ...,j, and so bl,/x .../x bljCA(u- ). Hence - ( ~ , )  
is not a weight of A(u-} in this case. Q.E.D. 

Proposition 8.3. Let X be a quasisimple g%module with highest weight I~eP (see 
Proposition 6.2). For all j eZ+ ,  define ~WJc(b~) * to be the set of weights 2 of 
AJ(u-) | X such that a(2 + p, 2 + p) = a(# + p, # + p), and set ~ = U wJ, so that 

j~Z + 

is the set of weights 2 of A(u-)  | X such that a(2 + p, 2 + p) = a(/~ + p,/t + p). 
Then there is a natural bijection between ~W and W g, and for each je7Z+, ~ J  
corresponds bijectively to {we Wg [l(w)=j}. In particular, the sets W "j are disjoint. 
The correspondence is given as follows: l f w e W~ with l(w)=j, then 2 = - ( cb w) + w g 
=w(# + p ) - p  is the associated element of ~W j. The corresponding weight space 
(A~(u-) |  is one-dimensional, and is the tensor product AJ(u-)_<,w>| 
of one-dimensional weight spaces. 

Proof Let we Ws 1 with l(w)=j. Setting 2 = - ( ~ b w ) +  w p, we have 2 = w(# + p ) - p  
by Proposition 2.5. By Proposition 8.2, AJ(u-)_<~> is one-dimensional, and by 
Proposition 6.1, so is Xw,. Then A~(u-)_<~,~>|174 and it is 
clear that a(2 + p, 2 + p) = a(/t + p, # + p). Thus 2e ~W J, and we have a map from 
Ws ~ to ~ such that the elements of length j map into ~W j. 

Conversely, by Proposition 8.2, the weights of A (u-) lie in the set T of Proposi- 
tion 2.13, and by Propositions 6.1 and 6.2, the set of weights of X is a set of the 
type T' in Proposition 2.13. Let 2~Yr Clearly, the weight space (A(u-) |  
is a finite direct sum of tensor products A(u-)~ | X~,, where re  T is a weight of 
A(u-), z'eT', and 2 = ~ + z ' .  By Proposition 2.13, there exists a unique element 
we W such that 2= - (~,~) + wp= w(p+ p) -p ,  and we must have z=  - (q~)  and 
~'= w#. Since z is a weight of Au- ,  we Ws ~ by Proposition 8.2. This establishes the 
bijection Ws 1 ~ -Hr. 

Repeating the argument in the last paragraph with AJ(u -)  in place of A(u-), 
and 2e~/r in place of 2e ~/U, and using the same notation otherwise, we see that 
since r = -(q~w) is a weight of AJ(u-), we must have l(w)=j by Proposition 8.2. 
This shows that the above bijection Wg ~ ~r restricts to bijections 

{we Will(w ) =j} ~ ~ J  

for each j e  7Z+. In particular, the sets ~r are disjoint. 
Finally, in the context of the last paragraph, we have 

(A'/(u - )  | X)z = AJ(u -)_ <0~> | Xwu, 
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and the two factors on the right are one-dimensional by Propositions 8.2 and 
6.1, respectively. Q.E.D. 

Proposition 8.4. In the notation of the last sentence of Proposition 8.3, (At(u -) | X)~ 
is annihilated by e i for all i e S (regarding At(u-) |  X as the tensor product of modules 
for the Lie algebra gs; see w 3). 

Proof It suffices to show that for all ieS, 2 + ~  i is not a weight of AJ(u-) |  
Suppose that it is a weight. Then 2 + ~ = z + z', where z is a weight of At(n -) and 
z' is a weight of X. Applying the inequality in Proposition 2.13 (with T' the set of 
weights of X) to z + ~', we get 

a(# + p, # + p) - a(2 + ct~ + p, 2 + ai + p) > O. 

But by the definition of 2 in Proposition 8.3, this becomes 

- 2 a(w(It + p), ~i) - a(~i, ~i) > 0, 

i.e., 

2a(/~ + p, w -10~i)~O(ai, O~i) ~ O. 

Since we Ws 1, Proposition 8.1 implies that w- 1 c~ie A +. By Proposition 2.11 and 
the fact that a(~i, al)> 0, the left-hand side of this inequality is positive, a contra- 
diction. Q.E.D. 

Since AJ (u - ) |  is a direct sum of finite-dimensional gs-modules by Pro- 
position 6.3, it is clear from Proposition 8.4 that the gs-submodule Y of At(u -)  | X 
generated by the one-dimensional space (At(u -)  | X)~ is finite-dimensional and 
irreducible. Since D e acts according to the weight 2 on the highest weight space 
of Y (with respect to gs), Y must be isomorphic to the re-module M(2), and 2eP  s 
(see Proposition 3.1). Hence by Proposition 8.3, we have: 

Theorem-8.5. Let X be a quasisimple ge-module with highest weight tz~P (see 
Proposition 6.2), assume that S c {1 . . . .  ,1} is a subset of finite type (see w 3), and let 
jeT]+. The correspondence w~-*W(l~+p)-p is a bijection from the (finite) set 
{w e Ws ~ [l(w) =j} onto the set of all weights 2 of AJ(u- ) | X such that a(2 + p, 2 + p) = 
a(l~ + p, # + p) (see w 2 for the notation). Each such weight w(# + p ) -  p occurs with 
multiplicity one in At(u -)  | X, with weight space At(u -)_ <ew> | Xwu; w(t~ + p ) -  
peps; and the weight space of w ( # + p ) - p  generates a copy of the irreducible 
re-module M(w(l~+p)-p) ,  which occurs with multiplicity one in the re-module 

AJ(u -)  | X (see w167 2, 3 for the notation). In particular, in any direct sum decomposi- 
tion of the re-module AJ (u - ) |  as [ I  M(21) where 2ieP s (see Lemma 7.3), those 
2 i for which a(2i + p, 2 i + p) = ~(# + p, I~ + P) must coincide (up to rearrangement) 
with the w(# + p) - p as w ranges through {we W~ [ l(w) =j}, each such M(2i) appearing 
exactly once in the decomposition L[M(2~). Finally, the correspondence w~-, 
W(l~+p)-p is a bijection from W~ onto the set of all weights 2 of A ( u - ) |  such 
that a(2 + p, 2 + p) = a(l~ + p, IZ + p), so that in particular, the irreducible re-modules 
M(w(p + p ) - p )  are all inequivalent as w ranges through W~. 

Proposition 7.9 now immediately gives (cf. also Lemmas 7.5 and 7.6): 
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Theorem 8.6. Let X, l~, S and j be as in Theorem 8.5. The j-th homology space 
Hi(u-, X t) is finite-dimensional, and when provided with the standard re-module 
action (see w 1), it is naturally re-module isomorphic to the direct sum 

11 M(w(~ + p ) -  p) 

of inequivalent irreducible re-modules, as w ranges through the finite set of elements 
W~ of length j (see Proposition 3.1). The j-th cohomology space HJ(u - , X*), with the 
standard re-module action, is finite-dimensional and is naturally isomorphic to the 
contragredient re-module Hj(u-,Xt) * (see Proposition 1.6). Let Cj(X) be the r e,  

module AJ(u -) | X, so that the standard re-module complex for computing the stan- 
dard action of t  e on H.(u - ,  X t) has the form 

--. - - ,  C1 ( x ) - - ,  Co(X)-,O. 

Then Hi(u-,  X t) may be naturally identified with the re-submodule Bj(X) of Cj(X) 
which is the sum of all the re-submodules of Cj(X) isomorphic to M(2), where 2~P s 
and a(). + p, ). + p) = ~(# + p, # + p). The Bj(X) form an re-module subcomplex 
B , (X)  of C , (X)  all of whose maps are zero, and C , (X)  is in a natural way the direct 
sum of B , (X)  and another subcomplex whose homology is zero. 

From Lemma 7.4 and the Remark after Lemma 7.8, we also have: 

Theorem 8.7. Let X, I~, S and j be as in Theorem 8.5. Let 7t~ be the (finite) family 
of elements of(De) *, {w(12+p)-p} , as w ranges through the set of elements of W~ 
of length j; the W(l~ + p ) - p  are distinct and each lies in Ps. Then there is an exact 
sequence of ge-modules 

�9 ..---~E 1 --~Eo---~X--~O 

where Ej is of type ~ for each j (see the Definition preceding Lemma 7.3). As an 
re-module, each Ej is a direct sum of irreducible re-modules of the form M(,~) with 
2e P s. 

w 9. The Macdonaid-Kac Identities 

In this section, we shall apply Theorem 8.6 (or Theorem 8.7) and an Euler-Poincar6 
principle, in order to derive the formal identities of Macdonald and Kac (see 
[1 l(b), 14]). 

Let (be)~ denote the set of integral linear forms (see w 2), i.e., the set of all 
2e(be) * such that 2(hi)sTZ for all i=  1 . . . . .  l, and let ~r be the abelian group of all 
(possibly infinite) formal integral combinations of elements of ([eft. Let e (2 )e~  
denote the element corresponding to 2e([e) *. Denote by ~r the integral group 
algebra of ([e)~, SO that d f c ~r and d I consists of the formal combinations of 
finitely many of the e(2). In ~r we have of course e(2)e(#)=e(2+#) for all 2, 
/~s([e)~. We shall allow ourselves to multiply elements of ~r when the product is 
well defined. 

Let ~ denote the category of all [e-modules X such that X has a direct sum 
decomposition LI xa  and each X~ is finite-dimensional (see w 3 for the definition 

~E(b~Ji 
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of the weight space X~). The morphisms of this category are the be-module maps. 
IfX is an object of S, then we can define its formal character Yf(X) as an element 

of ~', namely, 

~f(X)= ~ (dimXa)e(2). 
~-~(~)Z 

The following is clear: 

Lemma 9.1. Let 

0--"} X 1 --+X 2 --~ X 3 ---~0 

�9 be an exact sequence in tf. Then 

~e(X2) = ~"(X 1 ) --t- ~ ( X 3 ) .  

Let 
d i + 1 dj dl 

. . . - - . } C j + I - - : - - ~ C j  } . . .  }Co-..-> 0 

be a chain complex in g (so that dj o dj+ 1 =0 for all j =  1, 2 .... ), and let Hj be the 
j-th homology group of this complex. Then Hie g. We say that the chain complex 
C. is admissible if LI cj is in g. We have: 

J 

Lemma 9.2 (Euler-Poincar6). Let C. be an admissible chain complex in 8. Then 
LI Hj is in o ~ and 
J 

( -  1)J (cj)= y (-  1)J r(Hj). 
j6Z+ j~Z+ 

Now we apply the Euler-Poincar6 principle, in this form, to the chain complex 
displayed in Theorem 8.6, so that C j = C j ( X ) = A J ( u - ) |  and Hj=Hj(u-e,X'), 
in the notation of Theorem 8.6. We use the special case S=~, so that t = [  and 
u -  = rt- (see w 3). For the trivial one-dimensional ge-module X = k, Theorem 8.6 
yields: 

Theorem 9.3 (Kac [11 (b)]). We have 

H (1 --e(--q~))  dima~= ~ (det w ) e ( w p - p )  
r wEW 

= ~ (det w)e ( -  ( ~ ) ) .  
w~W 

For X an arbitrary quasisimple ge-module with highest weight/~EP (see w 6), 
we get from Theorems 8.6 and 9.3 and the Euler-Poincar6 principle: 

Theorem 9.4 (Kac [ll(b)]). We have 

~(X) = ~ (det w)e(w(~ + p))/ ~ (det w)e(w p). 
w~W w~W 

Remarks. (1) Macdonald's identities [14] comprise the special case of Theorem 9.3 
in which g is a Euclidean Lie algebra (see [15 (c), w 2]). 
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(2) When ge= 9 is a finite-dimensional split semisimple Lie algebra (see w 2), 
Theorem 9.4 is just Weyl's character formula and Theorem 9.3 is Weyrs denomina- 
tor formula (for the denominator in the character formula) (cf. [6, w 7.5] or [9, 
w 

(3) If we apply the Euler-Poincar6 principle to Theorem 8.6 for an arbitrary S 
of finite type and hence an arbitrary F-parabolic subalgebra (see w 3), we of course 
obtain analogues of Theorems 9.3 and 9.4 involving the formal characters of 
A~(u-) and of the re-modules M(w (l~ + p) - p) (w ~ W~). (See [12, Proposition 7.3] 
for the corresponding result when 9e=g is finite-dimensional complex semi- 
simple.) These identities for any one S of finite type easily imply the corresponding 
identities for any other such S, without the use of homology theory. 

(4) Macdonald's Identities in their original form [14] are most transparent when 
S is taken to be an appropriate subset of l -  1 elements in { 1, ..., l}, so that the 
corresponding F-parabolic subalgebra is a "maximal parabolic subalgebra" 
of the Euclidean Lie algebra. (But cf. Remark (3).) For example, if the Euclidean 
Lie algebra is the Laurent series Lie algebra mentioned in the Introduction and 
treated in [7], the Euler-Poincar6 identity for X = k  and an appropriate maximal 
parabolic subalgebra is formula [3.3] in [7], and it is this formula which after 
suitable specialization gives Macdonald's identities for powers of Dedekind's 
q-function. By contrast, formula [3.5] in [7] is the Euler-Poincar6 identity corre- 
sponding to S = ~, and when the same specialization is attempted in this case, we 
only get 0 = 0. 

(5) To write down one concrete example, we remark that Macdonald's 
specialized identity for the Laurent series Lie algebra corresponding to ~I(2) is 
Jacobi's identity 

I-I (1-xn)  3= ~ ( - -1)n(2n+l)x  n~"+l~/2 
n~l n~O 

(x an indeterminate). 
There is another important formulation of the Macdonald-Kac identities. 

To describe it, we define the natural generalization of Kostant's partition function, 
following [11 (b)] and [15 (c)] : 

Let A be a set with a surjection F: A ~ A + onto the set of positive roots, such 
that for all ~0 e A +, F -  l(t#) has exactly dim g* elements. 

Definition. Let the partition function ~ :  (be) * ~ Z +  be defined by the condition 
that for all q~ ~ (be) *, ~(q~) is the number of functions f: A ~ Z + such that 

q~ = ~ f(~) F('~). 
7fA 

Clearly ~ is independent of the choice of A and F, and reduces to Kostant's 
partition function (cf. [9, w when ge=g is finite-dimensional split semi- 
simple. Note that ~(q~)= 0 unless q~ is a nonnegative integral linear combination 
of positive roots. 

Lemma 9.5. We have 

( I"[ (1- -e( - -go))d imo ' ) (  E ,~(rp)e(-~p))=e(O). 
~,d + q,e (b")~[ 
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Proof. The second factor on the left-hand side is just the product over ~0 ~ A§ of 
the expressions ( ~ e(--n(o)) dima'p. The rest is clear. Q.E.D. 

n~Z+ 
In view of this lemma, Theorem 9.3 and hence Macdonald's identities may be 

reformulated as follows: 

Theorem 9.6 (Kac [ l l (b ) ] ;  cf. also [15(c)]). For all 2e(b~) *, 

(det w) ~ (w p - (2 + p)) = 0 
weW 

unless 2 =0, in which case the sum is 1. 

Similarly, using Theorem 9.3 and Lemma 9.5, we see that Theorem 9.4 is 
equivalent to: 

Theorem 9.7 (Kac [l l(b),  Theorem 1]). Let X be a quasisimple ge-module with 
highest weight #~P, and let 2~(De) *. Then 

dim Xa = ~ (det w) ~ ( w ~  + p) - (2 + p)). 
wEW 

Note that Theorem 9.6 is the special case X- -k  of Theorem 9.7. 
Since the right-hand side in Theorem 9.7 depends on X only through its 

highest weight bt, we have established what was promised in w 6 (see Proposition 
6.2 and the subsequent Remark): 

Corollary 9.8 (Kac [11 (b), Corollary]). Every quasisimple g%module is simple, and 
P bijectively indexes the set of equivalence classes ofquasisimple g~-modules. 

Remark. When ge : g is a finite-dimensional split semisimple Lie algebra, Theorem 
9.7 is Kostant's formula for the multiplicity of a weight in a finite-dimensional 
irreducible g-module (cf. [-6, w 7.5] or [9, w 24.2]). 

Finally, we indicate how our resolution, Theorem 8.7, can easily be used instead 
of the homology result, Theorem 8.6, to prove the Macdonald-Kac formulas. 
Let X be a quasisimple g%module with highest weight peP .  

Take S=~.  Let 2~(I)~)~, and consider the g%module V u(~) induced from the 
appropriate one-dimensional [9~G n-module (see w 3). Let Jff-  be the universal 
enveloping algebra of n- ,  and let k~ be the field k regarded as an b~-module with 
weight 2. Then V Mix) ~- Jff-  | kx as an I~-module, and the following is straight- 
forward: 

Lemma 9.9. We have 

~(Vm~))= ~ ~(~p)e(2-(p). 

Hence Lemma 9.5 implies: 

Corollary 9.10. We have 

( I-I (1--e(--(P))dim~q')  "~(VM(z, )=e(}~)"  
r zl + 
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Write d for the first factor on the left-hand side. Now in the notation of Theorem 
8.7, each E~ (je 7Z+) lies in the category g, by the last assertion of that theorem and 
the definition of Tj. Moreover, 

~r(Ej)= ~ ~y(vM(w~'+P)-P~). 
w e W  

l ( w ) = j  

But Lemma 9.2 (Euler-Poincar6) applied to the exact sequence in Theorem 8.7 
asserts that 

s = ~ ( -  1)Jhr(Ei). 
j e Z  + 

Combining these last two formulas and multiplying through by d, we get, by 
Corollary 9.10, 

d ~ ( X ) =  ~ (get w)e(w(#+p)-p). 
w e W  

Taking X = k recovers Theorem 9.3, and then Theorem 9.4 is immediate. 

Appendix 

Here we give a proof of Theorem 8.6 (or more precisely, of Proposition 7.9) which 
is somewhat shorter than the one in the body of the paper. However, we do 
not get this way the resolution in terms of generalized Verma modules given in 
Theorem 8.7. 

Let X be a quasisimple ge-module with highest weight #eP.  Recall the 9 e- 
module resolution 

d2x dx 

in Proposition 7.1. For each j e •+ ,  

X e Dj = ~r | e) @ X) 

as a ~e-module. Moreover, 

DX ~_ ~ll - | A1(u- ) | x 

as a q/--module and an re-module, with ql- acting by left multiplication on the 
first factor and ff acting naturally on the tensor product of the three re-modules. 
In particular, D x is ~--free.  The re-module complex C,(X) given by 

... x|174 x|174 0 

is naturally isomorphic to the standard re-module complex for computing 
H , ( u - , X  t) as an re-module, and for each jeTz+, C)(X)..~AJ(u-)| (see Pro- 
position ?.2). 
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Since X and all the D x lie in the category ff of w 4, we can form the Casimir 
operators F x and F(j)=Fox as in w 4. For any vector space Y, let I r denote the 
identity transformation ot ~ Y. Then F x = a ( p +  p, # + P ) Ix ,  by Corollary 4.3. Pro- 
position 4.1 implies that 

dX+l oF( j+  1)=F(j)od]+, for all j ~Z+  

and that 

~ox o r (0 )=  ~r(u + p, ~ + p)~o x. 

But by Proposition 4.2, the F(j) (j~Z+) are ge-module maps, and hence q/--  
module maps. The fact that the Bffs are q/--free thus allows us to construct q/--  
module homomorphisms h j: D:f--*DX+l (j~Z+) such that 

hg_ 1 ~ d~ + djX+ 1 o hg = F(j) - a (U + P, # + P) ID 7 

for all j ~ Z + .  (For j = 0 ,  the first term on the left is of course omitted.)It  follows 
that the operator 

1 | F ( j ) -  a(/~ + p, # + p)Icjcx)eEnd Ci(X) 

induces the zero map on the j-th homology Hi(u-,  X t) of C ,  (X), for each j~  Z+.  
Next we obtain a useful decomposition Fy=Fy, x +F~. 2 of Fy, for yecr Recall 

that A +(S)= {q~A + [g~' c n} (w 8), and set 

ry,~=2 F, o~,~EndY, 
~e d + (S) 

in the notation of w 4. The proof of Proposition 4.2 shows easily that Fy. 1 commutes 
with the action of r e on Y. Thus Fr. z e End Y, defined to be F y -  Fy. 1, commutes 
with the action of r e, by Proposition 4.2. 

Set F2(j)=Fo],.2 (j~Z+). Then as re.module endomorphisms of 

C~(X)-- k | D:], 1 | F(j) = I | F 2 (j), 

so that 

1 @ r , ( j ) - ~ ( u  + p, ~ + p)1c~x~ 

induces the zero map on the j-th homology of C,(X). 
For an re-module Y and 2ePs, let Y~a) denote the sum of all the re-submodules 

of Y isomorphic to M(2) (see Proposition 3.1). As in Proposition 7.9, set 

B j( X) = 1-I c j( x)r 
~ePs 

�9 O.+P, 2 + P)-,~(# +P, # + P) 

and also let 

B'~(x)= I I c j (x) ,~,  
~EPs 

0(2+,0, ~.+p) *o(#+p, iJ+p) 

for all j e Z + .  Then C I(X)=B~(X)@Bj(X), by Proposition 6.3, and C,(X) is 
the direct sum of the r '-module subcomplexes B,(X) and B',(X), defined in the 
obvious way. When restricted to Cj(X)tz~ (2ePs), the operator 1 | F2(j) acts as the 
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scalar a(2 + p, ;t + p), as we can see by applying the operator to a highest weight 
vector. Hence 1 | F2(j)-a(l~ + p, # + p)Icjtx ) is a nonsingular operator on Bj(X), 
and the conclusion is: 

Lemma A.1. The homology of B,(X) is zero. In particular, the homology H.(u - ,  X ~) 
of C.(X) is naturally re-module isomorphic to the homology of its subcomplex 
S,(X).  

Thus we have recovered Proposition 7.9, and the arguments of w 8 prove 
Theorem 8.6. 
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Notes Added in Proof. The present paper is summarized in "The Macdonald-Kac formulas as a con- 
sequence of the Euler-Poincar6 principle," to appear in a collection of papers in honor of E. Kolchin's 
60th birthday. 

V.G. Kac has asked us to mention that the following three additions, supplied by Kac, should 
be made in his paper [11 (b)]: In the second sentence after formula (1), after "G~ and G_~ are dual," 
insert: "modulo the radical R of ( . , .)".  In the first sentence after formula (3), after "bases," insert 
"modulo R". In the third sentence after formula (3), after "that," insert "if M is simple". See also the 
first Remark in s2 of the present paper. 


