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On the Difference between Consecutive Primes

M. N. HuxiLey (Cardiff)

1. Introduction

Montgomery [5, 6, 7] has used ingenious techniques to estimate the
number of zeros of Dirichlet series in certain rectangles, and he has
shown the difference between consecutive primes to satisfy

Pn+1—Pn<Ph (1.1)
for all sufficiently large n, whenever
d>3/5. (1.2)

A slight modification of Montgomery’s argument allows us to conclude
that (1.1) is true whenever
6>7/12. (1.3)

Let N(x, T) denote the number of zeros p=pf+iy of {(s) in the rec-
tangle
asfsl, -—-T=ysT. (L4)
After Ingham [2] it is well known that any result
N(x, T)<T*1-2[B (1.5)
where [ denotes log T and B is fixed, uniform in { <« <1, implies (1.1) for
6>1-1"1, (1.6)

The use of (2.9) below in place of (2.7) in the proof of Theorem 1, Eq. (5)
of [6] gives the following result:

N(oc, T)< T(Sa—S)(l —a)f(@2+a—~1) 19 (17)

uniformly in 2<a < 1. The range $<a <3 is supplied by Ingham’s theo-
rem [3]
Na, T)< T -9/2-a 5, (1.8)

and we have (1.5) with 1=12/5.

On being shewn an earlier version of this paper, Montgomery pro-

osed that
p N(oz, T)< T3 -2/Ba~1) 44 (19)
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uniformly in 3/4 <« <1, which implies
N(x, T)< T2 -0 44 (1.10)

for 5/6 <o < 1. The inequality (1.10) is a form of the “density hypothesis”,
previously obtained for «=9/10 by Montgomery [6] and for «>7/8 by
Jutila [4]. Our results take effect for «>3/4, because this is the range in
which the “large values” method of Halasz, explained in [5, 7], gives a
better bound for the class (i) zeros than do mean square estimates.

The proof of (1.7) adheres closely to that of Theorem 1 in [6], and is
omitted. We prove (1.9) below; it is obtained by treating class (i) zeros by
Jutila’s method. Our results can be improved for 3/4<a<1 by using
known bounds for { (o +it), where the choice of ¢ depends on «, in the
choice of suitable b(1),...,b(N) in (2.5) below, and appealing to Theo-
rem 8.4 of [7]. In particular, using van der Corput’s bound for {(1/6 +it)
we can obtain the density hypothesis for o> 81/98. Professor Bombieri
has informed me in a letter that (1.10) can be obtained in a wider range
without using deep bounds for {(s).

2. The Halasz Inequality
Let s=o+it be a complex variable and

F(s)= ) amm™, 2.1
G= ;|a(m)|2. 2.2)

Suppose that for s=s;, ..., sgp we have

|[F@s) 2V, (2.3)
where 0o, 51/4forr=1,...,Rand
<]t~ ST (2.4)

for 1<g<r=<R. Values of s for which (2.3) holds are regarded as excep-
tional, and we obtain an upper bound for their number. The basic
Halasz inequality states

R R N

RPV2ZGY Y |3 blmym=or=oetiv=it, 25)

r=1¢g=1|m=1

for any sequence b(1), ..., b(N) of real numbers greater than one. Mont-
gomery [5, 7] has shewn how to choose b(1), ..., b{(N) so that the sum

over gin(2.5)1
rgin(23)is <N+RT*10gNT: 26)
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it follows that
R<GNV -2 2.7)

provided that
Vizc, GT*logNT, (2.8)

where ¢, is an absolute constant. If (2.8) is not satisfied we divide the
interval [¢,, t; + T] into subintervals of length at most Ty, where Ty is the
value of T for which equality holds in (2.8). Hence

R<X(T/Ty+1)GNV~-2<GNV~2+G>*NTV ~¢log?> NT. (29)

3. The Classification of Zeros
We follow Montgomery’s method [6] of counting the number of
zeros p=B+iy of {(s) in a rectangle
asp=sl, —-T=y=<T, (3.1)

where o>+ and T will be assumed to be “sufficiently large”. Here T'is not
necessarily the same T as in (2.4). Let X be a large integer to be chosen

below, and let
M(s)= 3 um)m= (3.2)

msX

be a partial sum for the Dirichlet series representing ({(s))~!. For o> 1
we have

{GM()=1+ ) bmym~, (3.3)
where "X
b(m)= .1%.”(‘1)' (34
The integral transform =X
| 2+iw
mz_jiw {o+o)M(p+w) Y I'(w) dw=e“”"+m§xb(m)m"’e‘"‘” (3.5

can be verified term by term. The zero of {(p+ w) cancels the pole of
I'(w) at @=0. When we move the line of integration to Re w=1%— g, the
only pole of the integrand is at w=1— p, with residue

M) Y =T (1—p). (3.6)
We shall suppose
log X <log Y21, 3.7)

where /=log T and T is sufficiently large. Then
(M) Y= (1-p)|<1/10 (3.8)
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for
ly|=1001, (3.9)

and
| Z b(m)m"’e""/yl<1/10. (3.10)

m>1001Y

The inequality (3.8) follows since for fixed o
(o +it)| <|t]°-te tnl (3.11)

as |t] = oo. Since {(s) has </ zeros in any unit square, there are </* zeros
for which (3.9) fails to be true.

We now subdivide classes (i) and (ii). We split the range X <m<100]Y
into <£21! intervals I(n), the division between I(n) and I(n+ 1) being at
2" Y. We now see that all zeros of {(s) satisfying both (3.1} and (3.9) fall
into at least one of the following classes.

Class (i, n): zeros p at which

| ¥ bmym=?e ™Y|>(6)7", (3.12)
mel(n)
Class (ii, n): zeros p at which
max LG +i)MG+it)>c 2" Y 3, (3.13)
y—tls2n

where c, is chosen so that

8cymax|FG+inl+ Y ;222 max | IPG+in|<2n/3.  (3.14)

ne1 2ngft]<2n

If (3.13) is falsified for n=1, 2, ... then the left hand side of (3.5) is numeri-
cally less than 1/3. If (3.12) is also falsified for each integer n, then the right
hand side of (3.5) has real part

>1-1/Y-1/10-1/10—-2)(6)~"'>1/3 (3.15)

if Y is sufficiently large, contradicting the assumption that p was a zero.

4. Class (i) Zeros
For each positive integer a we have
(Y bmmre ™= Y cmm>* 4.1)
U<mz2U Uscmz20pe
where
cm=Y -y b(my)...b(m,) e+ FmaY, 4.2)

the sum being over all sequences m;, ..., m, of a integers from the interval
(U, 2U] whose product is m. We have

le(m)| Sdyo(m) eV, (4.3)
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and hence
2ayja 2aya

Yle(m))? Se=2aur¥ }1: (dzq(m))? e 2007 ; daz2(m)

ée—ZaU/Y(a(2+10g U))4a2—1 De e,

(4.4)

We apply (2.9) to the sum on the right of (4.1) with U=2""'Y,
GS(2nYy 29227220 (g(2 +-nlog2 +log Y))*** !
é(zn Y)a(l —2a) e—aZ"(3al)4a2’
the T of (2.4) being twice the T of (3.1), and with
V=(6])"° (4.6)

4.5)

We choose a subsequence of the zeros which contains a proportion > /™!
of all the class (i, n) zeros satisfying (3.1) in such a way that (2.4) holds for
the subsequence. By (2.9) the number of zeros in class (i, n) is therefore

<(2n Y)Za(l —a) e—aZ"(3a1)4a2(6 I)Zal

4.7
+T(2n Y)Za(2—3a)e—3a2"(3al)12a2(6l)6al3. ( )
5. The Jutila Breaks
Let H(a)=(Bal** 6121, (5.1)
and let J(a) be the interval ¥, <m<Y, ,, where Y, is given by
y#e-dea-Qa-D=TH3g)(H(a+1)])~! (5.2)

fora=1, ..., A, where A4 is determined by X eJ(A4). Eq. (5.2) is equivalent
t
0 H(a+1) 122(“'1)(1_“)1:1‘13((1) Y;Za(2~3a)T (53)

We sum the estimate (4.7) for the number of class (i, n) zeros over those n
with n <0 for which 2" YeJ(a), and if YeJ(a), over all positive n also. The
number of values of nis </, and the sum is

<H(a) Yaz_al(l —a)e~aYa/Yl+H3(a) YaZa(Z—Sa) Te—3aY,,/Y

54
<H(a) Y24 ~® |+ H(a+1) Y2 @+D1 -2 (54

for ®=3/4. If YeJ(a) we replace ¥,_; by Y, as the negative exponential
makes the upper bound (4.7) decrease rapidly for n>0.

If x< 1 and X is chosen to make
ALE((1~a)l/log ], (5.5)
then for a=4,5,..., A
logH(a+1)<3(1—w)! (5.6)



On the Difference between Consecutive Primes 169

and
Yaz (a+1)(1 —z)H(a+ 1)< Y38(1 —~a) H(4) (57)

If YeJ(2) the number of class (i} zeros totals

<HQY*A -2+ HB) Y2+ HA) YS9

< Y4(1 —a) 122 + T3 1 -a)(3a—1) 144 4 T4(1 —a)(5a—~2) l75‘ (58)
6. The Zero-Density Result
We have
MG+in<X?, (6.1)
and by a lemma of Montgomery [6, 7] when t,, ..., tg satisfy (2.4) then
R
SIG+it )< TP (6.2)
1
If (3.13) holds for t=t¢, ..., tg then
R<g2-4nx2y-2@a-DT5 (6.3)

Each ¢, corresponds to at most <2"/ class (ii, n) zeros, and so the total
number of class (ii) zeros must be

<X?Y-2@e-0 T8, (6.4)

A better estimate is possible, for example by raising the sum M(3+it) to
a high power and using (2.9). To obtain (1.9) for the range 3/4<a<9/11

we put X =T6-60/12a-4) (6.5)
Y =T3/12a-4), (6.6)

the choice for X satisfying (5.5) if T is sufficiently large.
For «=9/11 we use Haneke’s bound [1] for {(s):

LG +it) <17 log(t] +e) <[] 2% (6.7)
If T is sufficiently large and
X1y t=T13/80 (6.8)

(3.13) cannot hold for any n, and all zeros are of class (i). The choice (6.6)

makes
X= T—13/40 Y2a—1 — T(214z~17)/(120a~40)> Y300 (69)

for @ =9/11. Our estimate for the number of zeros is obtained by summing
(4.7) for a=2, 3, ..., 300. The condition (5.5) is satisfied unless

2> 1-32400log I/l (6.10)

and it is well known that N(x, T) is zero when T's sufficiently large and
(6.10) holds, and so (1.9) is still true.
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