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Affine Root Systems and Dedekind’s #-Function

I. G. MACDONALD (Oxford)

Introduction

Let R be a reduced root system in a real vector space V, as defined
for example in [B], Chapter V1. Define positive and negative roots by
choosing a Weyl chamber for R, and let p denote half the sum of the
positive roots. Let W(R) be the Weyl group of R, and let £(w) denote the
determinant (equal to +1) of an element w of W(R). Then there is a
well-known polynomial identity, due to Hermann Weyl:

(0.1) Y ew)err=[] (e*—e"?),

weW (R) a>0
where the e’s are formal exponentials and the product on the right is
over all the positive roots ([B], p. 185).

The main purpose of this paper is to establish an analogue of (0.1)
for an “affine root system” S. For the precise definition of an affine root
system we refer to § 2; all we shall say here is that the elements of S are
affine-linear functions on a finite-dimensional real Euclidean space E
and satisfy axioms analogous to those for a finite root system. The set S
of “affine roots” is infinite, and the Weyl group W(S) is an affine Weyl
group, that is to say an infinite group of displacements of E generated
by reflections.

One type of affine root system may be constructed as follows. Let R
be a (not necessarily reduced) finite root system in V¥, and let (x, y) be
a scalar product on V which is invariant under the action of the Weyl
group W(R). For each xeR and integer k let a,, be the affine-linear
function on V defined by

aa,k(x)=<a’ X> +k

Then the functions a, ,, where k is any integer if La¢R, and k is an odd
integer if 1 aeR, form an affine root system on ¥ which we shall denote
by S(R).

For an affine root system S we can define positive and negative roots
in the usual way, by choosing a Weyl chamber C for 8. If § is irreducible,
C is a rectilinear I-simplex, where [ is the dimension of the Euclidean
space E. A first objection to finding an analogue of Weyl’s identity (0.1)
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in the affine case is that there are infinitely many positive roots and there-
fore no analogue of p. However, it is easy to banish p from (0.1). We
have only to divide both sides by ¢ and observe that p—w p is equal
to the sum, say s(w), of the positive roots a such that w—!« is negative.
Hence (0.1) can be rewritten in the form

0.2) Y ewe™=[](1-e.

we W (R) a>0
Both sides of (0.2) make sense for an affine root system S and its Weyl
group W(S): the left-hand side is a formal power series and the right-hand
side a formal infinite product. So it is reasonable to ask whether (0.2)
remains true as a formal identity in the affine case.

In fact, it doesn’t quite; there is an extra factor which has to be inserted
on the right-hand side. Assume for simplicity of description that S is
irreducible, so that the chamber C is a simplex. Let q,,...,a, be the
positive affine roots which vanish on the walls of C. Then there is a unique
relation of the form

1
Y na;=c
i=0

in which the n, are positive integers with no common factor *1, and ¢
is a constant function. Let X stand for the formal exponential e, i.c.

i
X =[] e ™. Then the analogue of (0.2) for the affine root system S is
i=0

0.3) Y ew e ™=PX)[[(1—e).

weW (S) a>0
Here ¢(w) and s(w) are defined exactly as before; the product on the right
is over all the positive affine roots; and P(X) is an infinite product of the
form w

P(X)= nlp(X"),

where p(X) is a certain polynomial with integral coefficients, depending
on § and of degree equal to I=dim E. For example, if $=S(R) the poly-
nomial p(X) is equal to (1 —X).

By computing the sum s(w) explicitly we are led to write the identity
(0.3) in a different form. Applied to the affine root system S(R), where R
is irreducible and reduced, this leads to the following result. Let || x|*=
{x, x)> for xe V, let ¢ be the highest root of R and let g =1 (|| ¢+ p |1 — | p|?).
Also let M be the lattice generated by the vectors 2g a/| «| %, where xeR.
Then (0.3) takes the form

oo

0.4 H ((1 —X" l‘[ 1-x" e“))= Z 1 (1) XUlutpli2~liolih2g

n=1 aeR neM
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where Z S(W) ew(n+p)
weW (R)
e(w)e
weW{R)

x(w=

wp

If we now replace each e* by 1 in (0.4) we obtain a power-series for
n(X)*, where

n(X)= X" ] (1-X")

n=1

is Dedekind’s #-function, and d is the dimension of the Lie algebra g
having R as its root system: namely

0.5) (XY= Z d(ﬂ)X||u+ﬁ|I2/23
where wet
{utp, o)
d(u)= - L.
(u) al;IO <p’ a>

The simplest case of (0.4) is that in which R is of type A,, with just
two roots &, —a. In this case (0.4) becomes

meZ

(0.6) ﬁ((l—X”)(l—X” )1 =X""te )= Y (—1m X2 gmme,
n=1

which is one form of a famous theta-function identity due to Jacobi
(see for example [3], p. 282). The identity (0.3) may therefore be regarded
as a common generalization of Weyl's identity (0.1) and J acobi’s identity
(0.6).

Likewise, when R is of type 4,, (0.5) becomes

(07) ﬂ(X)3= Z anl/S’
n=1(4)
or equivalently

[T-x7= S (= 1y @me+1) xmor 02

n=1 m=0

which is also due to Jacobi. When R is of type BC, we obtain in the same
way from the basic identity (0.3) the formulae

nXY (X =F nX"

n=1(6
n(XmXP= ¥ (=1 n X"
n=1(3)
7*
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Particular cases of (0.3) have been discovered by various people. The
identity for R of type B, was found by Winquist [6], who used it (or
rather the specialized form (0.5)) to give an elegant and elementary proof
of Ramanujan’s congruence p(11n+6)=0 (mod 11) for the partition
function p(n). (The congruence p(7n+5)=0 (mod 7) comes from (0.5) for
R of type A, x A, in the same way: see [3], p. 289.) Pursuing Winquist’s
methods, F.J. Dyson (unpublished) found many cases of (0.3), in partic-
ular those corresponding to affine root systems S(R) with R of classical
type (4,, B,, C; and D)). Others are due to A.O.L. Atkin (also unpub-
lished).

One other special case of (0.5) may perhaps be mentioned here. When
R is of type A,, the dimension d of the Lie algebra is 24. Hence in this
case (0.5) leads to the following formula (due originally to Dyson) for
Ramanujan’s t-function:

1
T =Tra3041 Z,.l:[j(“"’“f)

summed over integers u,, ..., u5 subject to the conditions
w;=i(mod5), Y u;=0, Y u}=10n.

The contents of the paper are as follows. § 1 establishes basic notation
and terminology. In § 2 we define affine root systems. §§ 3-6 are devoted
to their elementary properties and the classification of the irreducible
reduced affine root systems: there are seven infinite families and seven
“exceptional” systems. They are all either of the form S(R) described
earlier in this introduction, or are the duals of these (Theorem (5.2)).

Incidentally, the notion of an affine root system is equivalent to that
of an “échelonnage” defined by Bruhat and Tits ([1], Chapter I, § 1.4).
It follows therefore from their work that to each reductive group over
a local field there is canonically associated an affine root system, and
moreover that all affine root systems (including the non-reduced ones)
arise in this way. It should also be remarked that the list of Dynkin
diagrams of reduced irreducible affine root systems which we obtain in
§ 5 also occurs in the work of Moody ([7 a, 7b]) on Euclidean Lie algebras.

The remainder of the paper is concerned with the identity (0.3).
§ 7 deals with the calculation of the exponent s(w), and §8 with the
statement of the main theorem (Theorem (8.1)) and various specializations
of it such as (0.5) mentioned above. The proof occupies §§ 9-12. Here the
determination of the factor P(X) offers most resistance, and is achieved
by specializing the identity in two different ways and then comparing
the results. The paper concludes with appendices which list the irreducible
affine root systems.
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As the reader will see for himself, our proof of the basic identity is
a purely formal exercise and does not explain in any satisfactory way
why there should be any relationship between powers of Dedekind’s
n-function and root systems of Lie algebras. For example, the presence
of the factor X%2* on the left-hand side of (0.5) is accounted for on the
right-hand side by the following “strange formula” ([2], p. 243):

PDr(p, p)=d/24

where @, is the scalar product on R induced by the Killing form on g.

Finally, it is a pleasure to acknowledge the benefit I have derived from correspondence
with F.J. Dyson on this subject.

1. Notation and Terminology

Let E be an affine space over a field K: that is to say, E is a set on
which a K-vector space V acts faithfully and transitively. The elements
of V are called translations of E, and the effect of a translation veV on
a point xeE is written x+v. If y=x+v we write v=y— x.

Let E' be another affine space over K, and V' its vector space of
translations. A mapping f: E— E' is said to be affine-linear if there
exists a K-linear mapping Df: V— V', called the derivative of f, such that

(1.1) fx+v)=f(x)+(Df)w),

for all xeE and veV. In particular, a function f: E— K is affine-linear
if and only if there exists a linear form Df: V— K such that (1.1) holds.

Let F denote the K-vector space of all affine-linear functions f: E—~K,
and let V* be the dual of the vector space V. Then D is a linear mapping
of F onto V*, and its kernel is the line F° in F consisting of the constant
functions.

From now on K will be the field R of real numbers, and V will be a
real vector space of finite dimension I, equipped with a positive definite
bilinear form <u, v). Let |u| = {u,ud:. Then E is a Euclidean space of
dimension I, and is a metric space with respect to the distance function
Ix—yll.

V\)’;e shall identify ¥ with its dual space V* by means of the bilinear
form (u, v)>. Then for any affine-linear function f: E— R, (1.1) now takes

the form flx+v)y=f(x)+<{Dfiv),

and Df is the gradient of f, in the usual sense of clementary calculus.
We define a bilinear form < f; g> on the space F as follows:

(1.2) (f,g>=<(Df.Dg).
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This bilinear form is positive semi-definite, and feF is isotropic if and
only if f is a constant function.

For each v+0 in V we define
v'=2v/{v,v),
and for each non-constant fe F we define
S =2fKAS>
H ={xeE: f(x)=0}.

and

Then H, is an affine hyperplane in E. The reflection in this hyperplane
is the affine-linear isometry w,: E — E given by

(1.3) w(x)=x—f"(x)Df=x—f(x) Df".

By transposition, w, acts on F: wf(g)=gowf“1=gowf. Explicitly,
(1.4) wig=g—<{f" e f=g—-{f S
for any geF.

For each u=%0in V, let w,: V— V be the reflection in the hyperplane
orthogonal to u, so that

w,(v)=v—(u, > u'.

Then for any non-constant fe F we have

(1.5) Dw,=wp,.

For if ve V and xeE, then

Dw)v)=w (x+v)—w(x)

=(x+v—f(x+0v)Df*)—(x—f(x) Df*) by (L3)
=0—(f(x+0v)~f(x)) Df*
=v—{Df,v) Df*=wp (v).

Finally, let w: E— E be an affine-linear isometry. Then its derivative
Dw is a linear isometry of V, i.e. we have {(Dw)u, (D w)v)>=<{u,v) for
all u,veV. The mapping w acts by transposition on F: w(f)=fow™!,
and we have

(1.6) D(w(f)=(Dw)(DS).
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For if veV and xeE, then

Dwf),v>=wf)(x+v)—(Wf)(x)
=fw Hx+0v)—fw ' x)
=fw ' x+Dw)y ' (©)—fwx)
=<{Df,(Dw)"'v)
={Dw)Df),v>.

In §2 we shall define affine root systems. To distinguish them from
root systems of the usual sort, as defined for example in [B], p. 142, we
shall call the latter finite root systems. If R is a (finite or affine) root
system, we denote by L(R) the lattice generated by R, and by W(R) the
Weyl group of R. If a basis of R has been fixed we denote by R* the set
of positive roots relative to that basis, and we shall sometimes write
o>0 to mean xeR*.

2. Affine Root Systems
As in § 1 let E be a real Euclidean space of dimension I, and let V be
its space of translations. We give E the usual topology, defined by the
metric [|x—y|, so that E is locally compact. As before, let F denote the
vector space of affine-linear functions on E.
An affine root system on E is defined to be a subset S of F satisfying
the following axioms (AR 1)-(AR 4):

(AR1) S spans F, and the elements of S are non-isotropic (with respect
to the scalar product (1.2)), i.e. they are non-constant functions.

(AR2) w,S=S forall aeSs.
(AR3) <a,b*'y€eZ for all a,beS.

The elements of S are called affine roots, or just roots. Let W(S) be
the group of displacements of E generated by the reflections w, (a€S).
The group W(S) is called the Weyl group of S. The fourth axiom, which
replaces the finiteness condition in the definition of an ordinary root
system, is

(AR4) W(S) (as a discrete group) acts properly on E.

In other words ([B], p. 72), if K, and K, are compact subsets of E,
then the set of elements we W such that w(K,) meets K, is finite.

From (AR 3), just as in the finite case, we deduce that if a, 1a are
proportional affine roots, then A is one of the numbers +4, +1, +2. If
aeS and } a¢S$, the root a is said to be indivisible. We say that S is reduced
if each a€S is indivisible, i.e. if the only roots proportional to a are +a.
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If S is an affine root system on E, then
S'={a": aeS}

is also an affine root system on E, called the dual of S. Clearly S and S
have the same Weyl group.

The rank of S is defined to be the dimension I of E. If S’ is another
affine root system on a Euclidean space E’, then an isomorphism of S
onto S’ is a bijection of S onto §’ which is induced by an affine-linear
isometry of E onto E'.

The following proposition provides examples of affine root systems.

(2.1) Proposition. Let R be a (finite) root system in a real finite-dimen-
sional vector space V. For each aeR and neZ let a, , be the affine-linear
function on V defined by

a, (x)=n+<{a, x>

where {u,v) is a positive-definite bilinear form on V invariant under the
Weyl group of R. Then the set S(R) of functions a,, ., where aeR and

neZ if ia¢R; ne2Z+1 if iwueR

is a reduced affine root system on V.

Proof. The fact that S(R) satisfies (AR 1) and (AR 3) follows immedi-
ately from the corresponding axioms for R ([B], Chapter VI). As to
(AR2), let a,beS(R), say a=a,, , and b=a, ;. Then a simple calculation
shows that w,(b)=g, , where

k=n—<a*, B>m, y=w,/(p).

We have keZ in any case; and if $yeR then also 1 feR and therefore
(3 B,a"> is an integer, so that (o, B is an even integer; but n is odd, and
therefore k is odd.

As to (ARY), it is clear from the definitions that the Weyl group
W of S(R) is the affine Weyl group ([B], p. 173) of the reduced root
system consisting of the e R such that 2o¢ R. Hence W acts properly on
V. Finally, it is clear that S(R) is reduced.

3. Direct Sums. Reducibility

Let E,, ..., E, be finite-dimensional real Euclidean spaces, and for
each i=1,...,r let V; be the space of translations of E;, and F, the space
of affine-linear functions on E;. Let E be the product of the E; and V the
direct sum of the vector spaces V. Then E is naturally a Euclidean space
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with V as space of translations; the action of ¥ on E is defined by
(X1, s X))+ (0, ., 0 )=(x 0y, 0, X, 4+ 0,)

(x;€E;, v;eV;, 1 £i<r), and the bilinear form on V by

gy ey t), (Vg .o, 0)>=Luy, 00+ +LU,, 0.

Let F be the space of affine-linear functions on E, and for each i let
p; be the projection of E onto E,. Then the mappings n;: F,— F defined
by m,(f)=/f.op; are injective linear isometries (for the scalar product
(1.2)). The subspaces n;(F,) generate F, are mutually orthogonal, and
all contain the line F° of constant functions.

Now let S; be an affine root system on E,, for each i=1,...,r, and
let S;=n,(S;)cF. Let

(3.1) s=s;.
i=1

Then it is a routine matter to check that S is an affine root system on E.
This root system S is called the direct sum of the S;, and we denote it by

L1 S;. The subsets S} of S evidently satisfy

i=1

(3.2) S.,S;areorthogonal if ij.

Fidae)

Conversely, let E be a finite-dimensional real Euclidean space, V
its space of translations, and S an affine root system on E. Let S (1 <i<r)
be subsets of S satisfying (3.1) and (3.2). From (AR 1) it follows that the
S are pairwise disjoint, and therefore form a partition of S into mutually
orthogonal sets of roots.

Let V; be the subspace of V generated by the gradients of the roots
belonging to S;. Let ¥;* be the orthogonal complement of V; in ¥, and
let E; be the space of orbits of E under the action of V;*. Then E; has a
natural structure of a Euclidean space with V; as space of translations,
such that the mapping p;: E — E;, which assigns to each point of E its
orbit under ¥V, is affine-linear. The mapping x> (py(x), ..., p,(x))
identifies E with the product Euclidean space E; x --- x E,.

Let F; be the space of affine-linear functions on E;, and define as
before the injective linear isometries n;: F,— F. Then S<n,(F), and
S;=n;1(S)) is an affine root system on E;, and finally the identification

of E with E, x --- x E, identifies S with the direct sum s,
i=1
An affine root system S is said to be irreducible if S is not empty
and is not the direct sum of two or more non-empty affine root systems.

Equivalently, as we have just seen, S is irreducible if and only if S is not
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empty and there exists no partition of § into two or more non-empty
subsets S; satisfying (3.2). Just as in the case of finite root systems we have

(3.3) Proposition. Every affine root system is expressible as the direct
sum of a finite family of irreducible affine root systems. This decomposition
is unique to within isomorphism.

The proof may be left to the reader.

The notion of isomorphism of root systems defined in §2 is too
restrictive for many purposes. For example, if S is an affine root system
and 1 is a non-zero real number, then S and AS={Aa:aeS} are not
isomorphic, although they are effectively “the same”. We therefore
define a weaker equivalence relation, similarity, as follows. Let S be
an affine root system, which by (3.3) we can write as a direct sum of irre-
ducible systems S;. Then a root system S’ is said to be similar to S if §’ is
isomorphic to the direct sum ||/ S;, where the /; are non-zero real
numbers.

4. Chambers and Bases

Let S be an affine root system on a Euclidean space E of dimension [.

The set
H={H, aeS}

of affine hyperplanes in E on which the affine roots vanish satisfies
conditions (D 1) and (D2) of [B], p.72, because w(H,)=H,,, for all
we W(S) and aeS. Hence (loc. cit., Lemma 1):

(4.1) Proposition. $ is locally finite.
It follows that the set E— | | H, is open in E, and therefore so are the

asS

connected components of this set, because E is locally connected. These
components are called the chambers of the root system S, or of its Weyl
group W(S). We recall ([B], p. 74, Theorem 1):

(4.2) Proposition. The Weyl group W(S) acts faithfully and transitively
on the set of chambers.

Assume from now on that S is irreducible. This is purely a matter of
convenience, to simplify statements of results. Then ([B], p. 86, Prop. 8)
each chamber is an open rectilinear [-simplex. (If S is reducible, the cham-
bers are orthogonal products of simplexes.) Choose a chamber C once
and for all. Let x,, ..., x; be the vertices of C, so that C is the set of all

i

points xe E of the form x= Y 4, x, with ) 1,=1and each 1,>0.
i=0
Let B=B(C) be the set of indivisible affine roots aeS which satisfy
the following condition: H, is a wall of C, and a(x)>0 for all xe C. Then
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B consists of [+ 1 roots, one for each wall of C. Clearly B is a basis of
the space F of affine-linear functions on E. Moreover ([B], p. 73, Lemma 2):

(4.3) Proposition. The Weyl group W(S) is generated by the reflections
w, for acB.

(4.4) Proposition. Let beS be indivisible. Then b=w a for some we W(S)
and some aeB.

Proof. The hyperplane H, is a wall of some chamber C’ on which b
is positive. By (4.2), C'=w C for some we W(S). Hence w~'b is positive
on C,and H,_,,=w~'H, is a wall of C, so that w~! beB.

Let L be the lattice in F generated by B. It is a free abelian group of
rank [+ 1.

(4.5) Proposition. L is equal to the lattice 1(S) in F generated by S.

Proof. Clearly L(S) is generated by the indivisible affine roots. Hence
by (4.4) it is enough to show that L is stable under W(S), and by (4.3)
it is therefore enough to show that w,(L)<L for all aeB. But if beB
we have w, (b)=b—(a",b) a by (1.4), and {a’,b>eZ by (AR 3). Hence
w,(b)e L and therefore w, (L)< L.

An affine root a is said to be positive (resp. negative) (relative to the
chamber C) if a(x)>0 (resp. a(x)<0) for all xe C. Every affine root is
either positive or negative.

The elements of B will be denoted by q,, ..., g;, the notation being
chosen so that a;(x;)=0 whenever i =j. Since x;e C, we have a;(x;)>0.

(4.6) Proposition. Each affine root a€S is a linear combination of ag, ..., q,
with rational integer coefficients which are all 20 if a is positive, and all
<0 if a is negative.

Proof. By (4.5) we have aeL, say

with coefficients A,€Z. Evaluating both sides of this equation at x;,
we have A,=a(x;)/a;(x,). If a is positive then a(x)=0 for all x in the
closure of C, and in particular a(x;)20. Since a;(x;)>0, it follows that
4,2 0. Likewise, if a is negative, 4, <0 for all i.

B is called a basis of S.
(4.7) Example. Let R be a finite irreducible root system, o, ..., a
basis of R, and let ¢ be the highest root of R relative to this basis. Then the

affineroots ag=1— ¢, a;=u;(1 £i <) form a basis of the affine root system
S(R) defined in (2.1).
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5. Classification of Affine Root Systems

As before let S be an irreducible affine root system, C a chamber for
S, Xy, ..., X, the vertices of C, and B={a,,...,a;} the corresponding
basis. For each i let F; be the subspace of F consisting of the affine-linear
functions on E which vanish at x;, and put S;=SnF,. On F, the bilinear
form {(f, g»> is positive definite. Also let W, be the subgroup of W(S)
which fixes x;.

(5.1) Proposition. (1) S; is a (finite) root system in F,, and is reduced if
S is reduced.

(2) B—{a;} is a basis of S;.
(3) W.is the Weyl group of S,.

Proof. (1) Since $ is locally finite by (4.1) it is clear that S, is finite;
also §; spans F; and does not contain 0. If g, be S; then w,(b)=b—{a", b a
belongs to S and vanishes at x;, hence belongs to §;. Finally it is clear
that S, is reduced if S is reduced.

(2) Let aeS;. Then a=) A;a; with the 4; all integers of the same
sign, by (4.6); evaluating both sides at x; we see that A,=0. Hence the
a; with j =i form a basis of §;, by [B], p. 162, Prop. 20, Cor. 3.

(3) By a basic theorem on reflection groups ([B], p. 75, Prop. 1),
W, is generated by the reflections belonging to W(S) which fix x;, that
is to say by the reflections w, where a€ S;. Hence W,=W(S,).

Now assume that S is reduced. We construct a Dynkin diagram for S
according to the usual prescription: the nodes of the diagram correspond
to the roots a,, ..., a, belonging to the basis B, and bonds and arrows
are inserted according to the same rules as for a finite root system.
(When the rank of S is 1, we have to allow bonds of “ infinite multiplicity ”.)
By (5.1) this Dynkin diagram has the property that when any node is
removed (together with the bonds issuing from that node) the resulting
diagram is that of some finite reduced root system. Hence ([B], p. 196,
Prop. 1) each of the S, is determined up to similarity by the Dynkin
diagram, and therefore so also is S. The similarity class of S is called the
type of S.

In view of the known classifications of finite root systems and of
affine Weyl groups, it is a straightforward matter to enumerate all
possible Dynkin diagrams of irreducible reduced affine root systems.
We have merely to take the Coxeter diagrams of the affine Weyl groups
(which will be found for example on p. 199 of [B]) and replace each
bond o—%—0 by either o=>=0 or o=(=0, and each bond o—2—o by either
o=x=0 or c=%=0. In this way we obtain the following list of possible
connected Dynkin diagrams:
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Type
A= A} o—=-0
BC,=B(y 0—>—0

B! (I1=3) >>———%---—o——o=éo

C, (1z2) O==0—-0— +++ —0—0==0
C (1z2) o=—%=0—-0—++ —0—0==0
BC,=BC; (Iz2) O=>=0——0— +:+ —O——O0==0

D,=D} (I1z4) >o——o—~o——o<z
E,=Ej o fL—E O—0

F, 0 O— =0 0
F; o0—O0—0=%0—0
G, o—C==0
G o—c=0

Let X be any of the symbols A,, B, ..., G,. An affine root system S
is said to be of type X (resp. type X") if S is similar to S(R) (resp. S(R)")
where R is a finite root system of type X. If S is of type X, it follows from
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(4.7) that its Dynkin diagram is the “completed Dynkin diagram”
([B1, p- 198) of type X. If S is of type X, its Dynkin diagram is obtained
from the preceding one by reversing all the arrows.

The list above now shows that

(5.2) Theorem. Every irreducible reduced affine root system is similar to
either S(R) or S(R)", where R is a finite irreducible root system.

In § 6 we shall give another proof of (5.2) which does not depend on
the classification of finite root systems and affine Weyl groups. We shall
also classify the non-reduced irreducible root systems.

6. The Gradient Root System
Let S be an affine root system on E and let
2=DS={Da: aeS}
be the set of gradients (§ 1) of the affine roots.
(6.1) Proposition. (1) 2 is a finite root system in V, the space of trans-
lations of E.

(2) If S is irreducible, so is .

(3) The mapping D: wi— Dw is a homomorphism of W(S) onto W(Z),
the Weyl group of X, and the kernel of D is the subgroup T of translations
in W(S).

Proof. (1) It follows from [B], p.80, Theorem 3, that the number of
families of parallel hyperplanes belonging to $ is finite. Also by (AR 3)
we have {a*, f>€Z for all a, feX, so that if § is proportional to « the
number of possibilities for § is finite. Hence X is finite, and axioms
(AR 1)<AR 3) now imply directly that X is a root system in V.

(2) is obvious.

(3) Clearly D is a homomorphism. From (1.5), we have Dw,=w,,
for all ae S. Since W(Z) is generated by the reflections wy,, it follows that
D is surjective. Finally, Dw=1 if and only if w is a translation, so that
Ker D=T.

We remark that 2 need not be reduced, even if S is reduced. If S = S(R)
(Prop. (2.1)) where R is a finite root system of type BC,, then S is reduced,
but =R is not reduced.

A point xeE is a special point for S if there exist affine roots b, ..., b,
vanishing at x, whose gradients D b,, ..., D b, form a basis of Z.
(6.2) Proposition. (1) There exist special points for S.

(2) If x is a special point for S, then x is a special point ([B], p. 87) for
the Weyl group W(S).
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(3) If Cis a chamber of S, there exists a vertex of C which is a special
point for S.

Proof. (1) Let {, ..., B} be a basis of X, and for each i let b, be an
affine root with gradient ;. Then since the §; are linearly independent,
the affine hyperplanes H, intersect in a single point xeE, which is
therefore a special point for S.

(2) Let W, be the subgroup of W(S) which fixes x. Then w, eW,
(1=i<l); also by (1.5) Dw,,=wp,, and by hypothesis the Db, are a
basis of X, hence the reflections w,, generate W(X). It follows that
D(W.)=W(Z), and since W, contains no translations %1, we conclude
from (6.1.3) that D: W,— W(2) is an isomorphism. Hence ([B], p.87,
Prop. 9) x is a special point for W(S).

(3) From the previous paragraph, the reflections w, generate W,
and therefore the cone I'={yeE: b,(y)>0 (1=i<])} is a chamber for
W.. Hence ([B], p.88, Prop. 11) there exists a unique chamber C’ for
W(S) such that C'<=TI and such that x is a vertex of C’. But W(S) acts
transitively on the set of chambers (4.2), hence there exists a vertex of
the chamber C which is a special point for S.

Suppose from now on that S is irreducible. Asin §4,let B={a,, ..., a,}
be the basis of S corresponding to the chamber C. Then

(6.3) Corollary. There exists a;cB such that the gradients D a; for
j=*i form a basis of Z.

Proof. Since § is irreducible, the chambers of § are simplexes. In the
notation of the proof of (6.2.3), it is clear that b,, ..., b, belong to the
basis B’ of § determined by the chamber C’. Hence if w C'=C we have
wB' =B, and therefore B consists of wb,, ..., wb, together with say a;.
Then the set of gradients {Da;: j+i} is the image by Dw of the basis
{Bys.... B} of 2.

As in § 5, let S, be the set of affine roots which vanish at x;, and let
2,=DS, be the set of gradients of the roots of S;. Then Z; is a subsystem
of X, and the gradient map D: S;— X, is an isomorphism of finite root
systems.

(6.4) Proposition. Suppose that S is reduced and that the vertex x; of C
is special for S. Then X, is the set of indivisible roots of X.

Proof. Since S is reduced, so is S; and therefore so also is Z;. Hence
Z, is the reduced subsystem of 2 generated by a basis of X, whence the
result.

We shall write «;=D a; for 0< j<I. Then the «; for j+i are a basis of

Z;, because by (5.1) the a; for j#i are a basis of S;. It follows that
oy, ap<0for0gi<jsl
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Now suppose that the vertex x; of C is a special point for S. Since
{—a;, ;> =0 for all j+i, it follows that —a; is a positive root of X
relative to the basis {«;: j+i}. Hence we have

—a;= Y n;a;
j¥i

where each n; is a non-negative integer. In fact each n; must be positive,
because if n;=0 for some j=+i, then the roots «, with k= j would be
linearly dependent, which is impossible because they form a basis of .

The relation above may be written

(6.5) Zl: n;o;=0

where each n, is a positive integer, and n; =1 if the vertex x; is special for S.

(6.6) Proposition. Let S be an irreducible reduced affine root system, x; a
vertex of the chamber C. Then the following are equivalent:

(1) x, is a special point for S;

(2) x;is a special point for W(S), and n;=1.

Proof. (1) = (2) by (6.2.2) and the remark above.

(2) = (1). Since x, is special for W(S) it follows that W(Z;)=W(2), by
[BJ, p. 87, Prop. 9(ii). Hence given a.e X there exists f € Z; such that w,=wy,
and therefore o is proportional to §. If a= + or +2p, then « is a linear
combination of the basis elements «, (j=i) with integer coefficients all of
the same sign. Suppose that a= i%’ﬂ. Since n,=1 it follows that a is a
linear combination of the «; (j=+i) with integer coefficients, i.e. ae L(Z)
where L(X)) is the lattice in ¥ generated by 2;. Hence fe2 L(X). But X,
is reduced (because S is reduced), hence there exists we W(Z)) such that
w p=a, for some j+i. Consequently a;€2 L(X,), which is absurd.

Hence every aeX is a linear combination of the «; (j=i) with integer
coefficients all of the same sign, and hence ([B], p. 162, Prop. 20, Cor. 3)
the a; (j#1) form a basis of Z, i.e. x; is a special point for S.

The function

!
(6.7) c=) ma
i=0

is constant on E (because by (6.5) its gradient is zero) and positive
(because it is positive on C). Moreover, every constant function ¢’ in
L(S) is an integral multiple of c. For if ¢’'=) n;a;, then ) njo;=0 and
hence n;=mn; (0<i<!) for some meZ. Hence ¢ is the unique positive
generator of L(S)n F°~Z.
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For each aeS let a, be the unique affine root such that a, —a is
constant, positive and as small as possible. Let u,=a_, —a, and let ¢, be
the translation w,, w,e W(S). Then by (1.3) and (1.4) we have

t,(x)=x—u,Dda",

t(f)=rf+u,la", />

(6.8)

for any xeE and feF.

(6.9) Proposition. (1) If aeS and Ac R, thena+AeSif and only if AeZu,.
(2) If aeS and we W(S), then u,, ,=u,.
(3) If S is reduced, aeS and 2a+ €S for some AcR, then A=mu,
where m is an odd integer.
(4) u, is a positive integral multiple of the constant c.

Proof. (1) If meZ and A€ R then by (6.8) we have

ta+A)=a+A+mu,(a’, a+ 1)
=a+A+2mu,.

Taking 1=0 and A=u,, we see that a+nu,eS for all neZ. Conversely,
if a+AeS then £7(a+A)eS for all integers m. Choosing m suitably we
obtain an affine root a+u with —u,<p=<u,, and if ¢ is not equal to 0
or u, this leads to a contradiction. Hence A€ Z u,, and (1) is proved.

(2) We have w(a+u)=wa+u,, hence u,eZu,, by (1) above.
Similarly u,,,eZ u,, hence u,, ,=u,.

(3) Let u be the least real number =0 such that 2a+ueS. Since S
is reduced and a€S, we have u>0. Now w,(2a+ u)= —(2a—p), so that
2a—ueS. From the definition of u it follows that there is no affine
root 2a-+A with |A|<py, and therefore (1) above (applied to 2a+pu)
shows that 2a+A4eS if and only if A=mpu with m an odd integer. It
remains to show that u=u,.

Since w,,,,(@)=—(a+p), we have a+pueS and hence u=ru, for
some integer r = 1. If r=2 then 2(a+u,) and a+u, are affine roots, which
is impossible because S is reduced. If =3 there exists an integer s such
that Lr<s<2r; now we have

Worsu,Qa+ru)=—(2a+@ds—ru,)
and therefore 2a+(4s—r)u,eS. But by our choice of s,
0s@s—nru,<ru,=p

which contradicts the definition of y. Hence r=3 is impossible and so
r=1and p=u,.
4) u,=a, —aeL(S)nF 9, hence u, is an integer multiple of c.

8 Inventiones math., Vol. {5
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From (6.9.1) it follows that u, depends only on the gradient of a.
Hence for each ae we may define u, to be u, for any aeS with Da=a.
For each aeX let

o, o*=ua’=(x)"
and let
2¥={o*: ac2}, X ={o,: aeX}.

(6.10) Proposition. Z* and X, are dual finite root systems in V. If S is
reduced then X* and X, are reduced.

Proof. It is clear that Z* is finite, does not contain 0, and spans V.
By (6.9.2) and (1.6) we have u,=u,,, for all ae X and we W(Z2), so that 2*
is stable under the action of W(ZX). Next, if aeS has gradient o, then by
(6.8) we have t (b)=b+<a* B> for any beS with gradient . Since
t,(b)eS, it follows from (6.9.1) that {u*, B>eZ ug, i.e. that {a*, B, HeZ.
Hence 2* is a finite root system in V] and so also is 2, =(Z*)".

Finally, suppose that S is reduced. If X is reduced it is clear that X*
and X, are reduced. If 2 is not reduced, let « and 2« both belong to X.
Then it follows from (6.9.3) that u,,=2u,, hence that 2a)*=a* and
(22}, =a,. Hence Z* and X, are reduced.

Let A be the set of vectors AeV such that the translation x+— x+ 1
belongs to 7, the translation subgroup of W(S). Since T is a free abelian
group on [ generators, A is a lattice in V. For each le A let t(A): x> x+4
be the corresponding element of T. From (6.8) we have t(a*)=¢;"' il a
is an affine root with gradient «. Hence a*e A for all xe X, and therefore
L(Z*)c A.

(6.11) Proposition. If X is reduced then A= L(Z*).

Proof. Let T’ be the subgroup of T consisting of the translations t(A)
where 1e L(Z*). Let x; be a vertex of C which is special for S. Then x;
is a special point for W(S) by (6.2.2) and therefore W(S) is the semi-
direct product T- W, where W, is the subgroup of W(S) which fixes x;.
Also W, normalizes T', because wt(A)w™'=t((Dw) 1) (weW, ieL(Z*)).
Hence the subgroup of W(S) generated by T’ and W, is the semi-direct
product T'- W,.

Now since X is reduced, S is reduced and by (6.4) the gradient mapping
is an isomorphism of §; onto X. Hence for each a€X there is an affine
root a, with gradient « which vanishes at x,. By (6.9.1) the affine roots
are a,+ku, for allae2 and keZ. If a=a, +k u,, then from (6.8) we have
w,=t(—ko*)w, eT"- W,. Hence W(S)=T"- W,, and therefore T'=T, so
that A=L(Z*).

We shall now give another proof of Theorem (5.2). Let S be a reduced
irreducible root system and let 2’ be the set of indivisible roots of X = DS.
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Let x; be a special vertex of C. By (6.4), for each ae2’ there exists an
affine root a, with gradient a and vanishing at x;, and by (6.9) the affine
roots with gradient « are a,+ku, (keZ), and those with gradient 2« (if
2aelX)are 2a,+(2k+ 1) u, (keZ).

Consider the root systems 2’ and X,. They are both reduced and
irreducible, and from the proof of (6.10) we have Z, ={u; 'a: aeX'}.
Hence there are just two possibilities: either (1) Z_ is similar to 2’ or
(2) Z* is similar to 2.

We shall take case (1) first. Here all the u, (xe2’) are equal, and since
we are concerned with S only up to similarity we may assume that u, =1
for all 2€2’. Then the identification of E with V' obtained by taking x,
as origin in E clearly identifies a,+k with g, , in the notation of (2.1),
and hence identifies S with S(R)", where R=2".

In case (2) all the u,/||«||* (x€ZX’) are equal. Suppose first that X is
reduced, so that 2’=2. Then the affine root system S" dual to S falls
under case (1) above, and S is therefore similar to S(R), where R=2.

Now suppose that X is not reduced. If I=dimE is equal to 1, then
2'={a, —a} and we are still in case (1). If /=2, then X is of type BC, and
hence there exist two orthogonal roots o, fe X of the same length, such
that o+, 20, 28 all belong to 2. We may assume that |af =[|fl|=u,=
uy=1,whenceu, ,=|oa—p |2=2.If a, b are the affine roots with gradients
a, B respectively which vanish at x;, then a+bheS by (6.4), and 2b—1€S
by (6.9.3). Now w,, ,(a+b)=a—b+1, hence a—b+1€eS§ and therefore
u,_p<1, contradicting u, ,=2. Hence case(2) cannot arise when X
is not reduced and of rank =2, and the proof is complete.

Finally, we shall briefly classify the non-reduced irreducible affine
root systems. If S is irreducible and not reduced, let S’ (resp. S”) be the
set of ae S such that $a¢S (resp. 2a¢S). Then S, S” are reduced systems,
and W(S")=W(§")=W(S).

Since S is not reduced, neither is Z=DS. Let 2’ (resp. 2”) be the set
of ae X such that 3a¢X (resp. 2a¢ X). Then X is of type BC,, 2’ of type B,
and 2" of type C,. Also we have 2’ < D(S')< 2 and 2" = D(S")< 2. Hence
either D(S')=Z, in which case S’ is of type BC;; or D(S')=2", in which
case §' is of type B, or C;. Hence S is of one of the types BC,, B,, C}, and
likewise S” is of one of the types BC,, By, C,. But since S’ and S” have
the same Weyl group, it follows that if S’ is of type B, then S” must be of
type By; and if S’ is of type BC, or C} then S" is of type BC, or C,. By
examining the various possibilities we conclude that there are four series
of irreducible non-reduced affine root systems, for which the types of
§’, 8" are respectively BC,, C,; C}, BC,; B,, B}; C}, C,. The first two
are duals of each other; the last two are each self-dual (up to similarity).
They are listed in Appendix 2.

8%
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7. The Function s(w)

In this section S is an irreducible reduced affine root system, C is a
chamber of S, and B={ay, ..., a;} the basis of S determined by C. The
vertices of the simplex C are x,, ..., X;, the vertex x; being opposite the
face on which q; vanishes, so that a;(x;)=0 whenever i+ j.

(7.1) Proposition. There exists a unique point re E at which the functions
a! (0LiZ]) all take the same value.

Proof. Let reE, say r=2 A, x; where Z A;=1. Then a}(r)=4;4] (x;) so
that A,=a}(r)/a}(x;) and therefore

.,

i—o ai(x) a
If the a} (r) are all equal, let g~* denote their common value. Then we have

1
g= Z af(x)™"
i=0
(7.2) .
r=g~'3 af(x)"'x;
i=0

Conversely, if r and g are given by (7.2) it is clear that q;(r)=g~" for
0=<igl!

The point r lies in the simplex C, because af(x;)>0 for all i Its
location in C may be described as follows. The gradients D a; (j=i) are
a basis of the finite root system X,. Let p; be half the sum of the positive
roots of X, relative to this basis. Then we have

(7.3) Proposition. r=x,+g~ ' p, (0<i<)).
Proof. Let v=r~—x;e V. Then for any j=0,...,1 we have

g™ =aj(r)=aj(x)+<{a},v),

where a;=Da;. Since aj(x,)=0 if j+i, it follows that {a},gv)=1 for
all j#i. But also <a}, p;>=1 for all j=+i ([B], p.168, Prop. 29 (iii)). Hence
gv—p, is orthogonal to af for all j+i, and hence gv=p,.

Let S™ (resp. S ) be the set of positive (resp. negative) affine roots, and
for each we W(S) let S(w)=S* nwS§~. Then, for aeS,

aeS(w) < a is positive on C and negative on w C
<> a>0 and the hyperplane H, separates C and wC.

By (4.1) it follows that S(w) is a finite set of affine roots (and the number
of elements in S(w) is equal to the length I(w) of w as a reduced word in



Affine Root Systems and Dedekind’s #-Function 111

the generators w, (ae B)). Let

sw)= ) a

aeS{w}
so that s(w)e L(S), the lattice spanned by S in F.
(74) Lemma. Let w,, w,€ W(S). Then
s(w, wy)=w, s(wy)+s(w,).
Proof. Let
X=8S*nw, S nw,w,S*,
Y=S*nw, S nww,S",

Z=S*"nw, S*tnww,S5".
Then
Sw)=X0uY, XnY=0,

wSwy)=(-X)vZ, (-X)nZ=9,
Sw,wy)=Yu Z, YnZ=0.
(7.4) follows directly from these equations.
Now let @: E— R be the quadratic function

P(x)=3glIr—x|?

where r is the point defined in (7.1). For any we W(S) let w @ denote the
function x> @(w 'x)=1g|wr—x|®. Then we have the following
formula for s(w):

{1.5) Proposition. s(w)=wd— .

Proof. We shall first verify (7.5) when w is the reflection w, in a wall
H, of C. In this case s(w,)=a, because H, is the only hyperplane separating
C and w, C. Let xeE and put v=x—re V. Then

(W, D) (x)=(w, x)=3g | x—w,r|>
=iglx—r+a'(r) Dal?
=}glv+g ' Dal?,

so that
(W, &—P)(x)=%g(lv+g " Dal®—|tl}?)
={v,Da)+3g " |Dal?
={v,Da)+a(r)
(because a(r)=%|all?a*(r)=3g~ ' |Dal?).

Hence (w,®—®)(x)=a(r+v)=a(x), and therefore (7.5) is true for
w=w,(aeB).
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For the general case we proceed by induction on the length I(w) of
w. We can write w=w"w, for some aeB and l(w)<I(w). Then
swy=s(wwy)=wsw,)+sw) by (74).
=ww,o-D)+(WP—-P)=wP—9

by the first part of the proof, and the inductive hypothesis.

(7.6) Corollary. sw)=Lglr—wr|?,

Ds(w)=g(r—wr).
Proof. From (7.5) we have, for any veV

swr+v)=zg(lr—wr+o|?=|lv|?)
=3glr—wrl*+<v, gr—wr)>
from which (7.6) follows.

The following formula will be useful later. As before, let W, be the
subgroup of W(S) which fixes the vertex x; of C. Let w,eW, and let
A€, so that the translation t(1): x> x+ 4 belongs to W(S). Then for
any we W(S) we have
(7.7) Proposition. {

s(w; t(2) W)=—2§(H/tllz*llpill2),
Ds(w;t(2)w)=p,—(Dw,) u,

where u=g i1+ p,—Ds(w).
Proof. From (7.5) we have
s(w;t () w)(x) =38(lIr ~ (w;t () w) "  x;[1* = lIr — x; %)

and
r—(wt()w) ' x;=r—w(x,— 1)

=wlwr—x,+4)
=w-'(r—g 'Ds(w)—x;+4) by(7.6)

1
=? w g A+p;—Ds(w)) by (1.3)
=i w*1 /]

8

1
Hence s(w; () w)(x)=—5 (>~ 1), by (7.9 again.
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Next, by (7.4) we have s(w; (1) w)=w,t(4) s(w)+s(w; (1)) so that

D s(w;t(2) w)=D(w,t(1)) D s(w)+ D s(w, t (%))
=Dw;-Ds(w)+g(r—w;t(1)r) by (1.6)
=Dw,-Ds(w)+g(r—w;(r+4)).

But
r—wir=(x;+g 'p)—wi(x,+g7'p) by (7.3)
=g Yp,—(Dw)p;), since w(x;)=x;.
Hence
Ds(w;t(A) w)=p,—(Dw)(g A+ p;—Ds(w)).
There is another expression for s(w) which is also useful. For each

aeX let a, be the smallest positive affine root with gradient a (so that
a, is positive and a,—u, is negative). Define a quadratic function ¥

on Eb
y W(x)=L Y ura,(x).
ael

(7.8) Proposition. s(w)=w ¥ —¥.

Proof. As in the case of (7.5) we shall first verify this formula for
w=w,, where aeB. If «=Da then a,=a and a_,= —a+u,, so that
w,(a)=—a, w,(a_,)=a+u,, and the a; for f+ +a are permuted by

w,. Hence
w, ¥ —¥=4u ((a+u,) ~(—a+u,)’)

—a=s(w,)

so that (7.8) is true for w=w,. The rest of the proof is the same as in (7.5).

From (7.5) and (7.8) it follows that &—Y¥ is invariant under all
we W(S), and is therefore a constant. On the other hand, #(r)=0, and
therefore @ (r+v)=¥(r +v)— ¥ (r) for all veV, so that

1 lvl*=% Y uy Y(a,(r +v)* —a,(r)?)

aelX

=5 X 4" (2a,(r) <o ) + (o, D).
Replacing v by —v and adding, we obtain

You e vp?=2g |v]?,
acX
and by linearizing this identity
Y Cugta, up (o, vy =2g {u, v)

ael
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for all u, ve V. Letting u vary, we deduce that

(7.9) Y <o, v>a=gv

aeXt

where Z* denotes the set of positive roots in X relative to some basis.

Let A be the lattice in V' determined by the translation subgroup
of W(S), asin § 6. Then if le A and acS we have

tA)(@)=a—{4,0)

where a=Daj; since t(4)(a)es, it follows from (6.9) that (i, ad>eZu,
so that {4,a,>€Z for all ueZ. Hence from (7.9) with v=4 we see that

(7.10) gA<=L(2)

where L(X) is the lattice in V generated by .

We shall use (7.9) to compute the constant g. For this purpose we
need the following lemma:

(7.11) Lemma. Let R be a finite root system and let o, SR be such that
lell S 1Bl Then [<a, f'>| £ 1 unless f= +ta.

Proof. We have _2@p  Jal
loell - 081 18I

Since [<a, )| = |l - || B]l, with equality if and only if «, § are proportional,
it follows that [{a, f*>| = 2, with equality if and only if « and B are propor-
tional and [a|| = |||, i.e. if and only if #= +«. Since <a, f*> is an integer,
the result follows.

Choose a basis of 2, and let ¢ € 2 be such that ¢, =u; ' ¢ is the highest
root of X, . Then neither § ¢ nor 2 ¢ belong to Z, so that ¢ is uniquely
determined. (This is clear if X is reduced. If 2 is not reduced, let 2’ be the
subsystem of X consisting of the indivisible roots. By (5.2) the u, for
a€l’ are all equal, hence X is similar to X', so that ¢ is the highest root
of Z'. But X is of type BC, and X' is of type B,, hence neither 1 ¢ nor 2 ¢
belong to %)

The vector ¢, lies in the positive chamber for X, hence (o, , ¢*> 20
for all aeX*. By (7.11) applied to the root system X, it follows that
{a,,¢*> isequal toOor 1 forallas¢ in Z*.

Let n be the sum of the positive roots of ~ not orthogonal to ¢.
From (7.9) we have

go*= 3 <o, ¢*>a=¢+n.

aeX*

o, B
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On the other hand,
n=p—w,p={p, ¢ ¢

where p is half the sum of the positive roots of . Hence
go*=o+<p, ¢ ¢",

g=uz'GloI>+<p, )
=Quy) "(lg+pl*—lpl?).

Suppose that S=S(R), where R is an irreducible finite root system.
Then ¥ =R and u,=1 for all x€ 2", so that X =23". Hence ¢ is the highest
indivisible root of R, and u, =1, so that g=3(|l¢+plI* —[lp|?) by (7.12).
Also if R is reduced it is clear from (7.9) that (2g)~! (u, v} is the canonical
bilinear form on R ([B], p. 172).

If on the other hand S=S(R)", where R is irreducible and reduced,
then £=R" and u,=7 |«|* for all aeZX, so that o, =0 and therefore
2,=2=R. Hence by (7.12) we have g=1+4(¢", p), where ¢" is the
highest root of R. But {(¢", p> =h—1, where h is the Coxeter number of
R ([B], p. 169, Prop. 31). Hence in this case g=h.

To summarize:
(7.13) Proposition. (1) If S=S(R) where R is an irreducible finite root

system, then , ) 5
g=3(lo+pl*—=lpl*,

where ¢ is the highest indivisible root in R relative to some basis, and p
is half the sum of the positive roots of R. If R is reduced, then ®y(u, v)=
(2g)~ 1 (u, v) is the canonical bilinear form on V.

(2) If S=S(R)', where R is irreducible and reduced, then g is equal to
the Coxeter number h of R.

so that

(7.12)

8. The Main Theorem

Let S be a reduced irreducible affine root system and L(S) the lattice
in F generated by S. For each feL(S) let ¢/ denote the corresponding
element of the integral group ring Z [ L(S)], so that for all £, ge L(S) we have

e - ef=eltE () l=eS, €°=1.

We shall sometimes write exp(f) in place of e/, when the exponent f
is a complicated expression.

We write f =0 to mean that f takes values =0 on the chamber C.
1

This will be the case if and only if f= Y m;a; with all coefficients m,>0.
i=0

=
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Let A be the ring of all formal infinite series Z a fe‘f , with coefficients
=0

a;eZ and the obvious definitions of addition and multiplication.

Alternatively, 4 is the formal power series ring Z[[e™“,...,e~“]] in

I+1 analytically independent variables e~%.
We propose to compare the infinite product

m=](1-e"

a>0

taken over all the positive affine roots, with the infinite series
4= Y ew)e 5™
weW (S)

where e(w)=(—1)'™ is the signature of w, and as in § 7 s(w) is the sum
of the positive affine roots aeS such that w™'a is negative. Both IT and
4 are elements of 4.

Our main theorem is the following formal identity:
(8.1) Theorem. Let S be a reduced affine root system. Then

(8.1.1) Y, ew)e*™=P. [[(1-e™?
weW(8) a>0
where
(8.1.2) P=1] ]_[ (1—e").
n=1 aeB(2)

Here B(X) is any basis of the gradient root system DS =2, and u, is defined
as follows (§ 6): if aeS has gradient D a=ua, then u, is the least positive
real number such that a+u,€S.

In the statement of (8.1) we have not assumed that S is irreducible.
If S is reducible, both sides of (8.1.1) factorize concordantly with the
decomposition of S into a direct sum of irreducible subsystems (§ 3).
Hence we shall continue to assume that S is irreducible (and reduced).

The proof of Theorem (8.1) will be given in §§ 9-12. In this section
we shall calculate the two sides of (8.1) more explicitly, using the formulae
established in § 7, and we shall then specialize the resulting identity in
various ways.

Choose a vertex x; of the simplex C, and take x; as origin in E. Then
the affine space E is identified with the vector space V: namely a point
xekE is identified with the vector x—x,e V. The affine-linear functions
on E which vanish at x; are then identified with linear forms on V, and
hence with elements of V via the identification (§ 1) of V with its dual
space. If fe F vanishes at x;, then f is identified with Dfe V. In particular,
the root systems S; and ;= DS, are identified, and the subgroup W, of
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W(S) which fixes x; is identified with W(Z,), by virtue of (5.1.3). The
affine Weyl group W(S) is identified with the semi-direct product of
W(Z) and the translation group T.

More generally, any feF is identified with the function v f(x))
+{Df,v) on V. We shall denote this function by f(x;)+ Df.

Asin § 7, let p, denote half the sum of the positive roots of Z;, relative
to the basis {Da;: j*i}. Let w,e W(Z)), Ae A4 and we W(S). Then by (7.7)
and the identifications we have just described, we have

1
(8.2) s(w,-t(i)w)=g(llull2—||p,-||"')+pi—wiu’

where u=gA—Ds(w)+p,.
Now let Wi be a set of right coset representatives of W(Z)) in W(2).

Then every element w of W(S) is uniquely expressible as w=w, () w'
with w,e W, e A and w'e W'

H , .
enee A=Y &(w)e(w)estuhnh
wi, A, wi
and therefore by (8.2)
. 1
(8.3) A=e P Y e(w) Y Jilp) XP=5 s (Nal®=le:ll®
wt A

where u=g A—Ds(w')+p, and
Jm= 3 s&we”

weW(Z))

for any v in the weight lattice of X,.

Next consider the product IT. Take first the factors (1—e~?% in II
for which a(x;))=0. These form the product IT(1—e~*) taken over the
positive roots of X;, which by Weyl’s identity (0.1) is equal to e~" J,(p,).
The remaining factors in IT are (1—e~“) for all aeS such that a(x;)>0
(for if a(x;)>0, the root a must be positive). Hence Theorem (8.1) takes
the following form:

P- J] (1—=e™
(84) a(x;))>0
= el ) S (g 1= Ds(w) exp——z—lg g A—Ds(w)+ pyl1?
where
(8.5) 1) =+ 0)/ ()

is Weyl's character formula for the root system 2.
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If x; is a special point for W(S), then W(Z)=W(ZX) and so (8.3} and
(8.4) take the simpler forms

; 1
(8.3 A=e=*} J(gi+p) eXP—z—g(!lg/Hp,-ll2 =led®),

ied
1

®4) P- [} (1—8“’)=e"”‘”2’2gin(gl)exp~7||g/1+Pi|lz-
a(x)>0 Aed g

By (5.2), S is similar to either S(R) or S(R)", where R is an irreducible
finite root system. Suppose first that S=S(R), where R is reduced.
Choose a basis of R, which determines a basis of S as in (4.7), and take x;
to be the origin in V (in other words i=0). This is a special point for S,
and therefore also for W(S). We have p,=p, half the sum of the positive
roots of R. Let

d=I+card(R)

which is the dimension of a compact Lie group having R as its system
of roots relative to a maximal torus. By (7.13), @x(u, v)=(2g) " {u, v)
is the canonical bilinear form on V defined by R. Now there is the fol-
lowing “strange formula™:

8.5 Prlp, p)=d/24

(see Freudenthal and de Vries [2], p. 243, where it is deduced from Weyl’s
character formula for the adjoint representation). Moreover, each u,
is equal to 1, and the affine roots which are positive at the origin are
n+a for n21 and all aeR. Hence, writing X =exp(—1), the left-hand
side of (8.4') is seen to be equal to [ ] p(X"), where

n=1

(8.6) p(X)=(1-X)[[(1-Xe)

acR

is in a formal sense the characteristic polynomial of the adjoint repre-
sentation of G.

Moreover, from (7.9) we have

gi=) (a,Aya.

a>0

Also by (6.11) we have A=L(R"), the lattice spanned by the dual root
system R'. Hence M =g A is the image of L(R") in L(R) under the mapping
A Y La, Ay

>0
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The identity (8.4') now takes the following form:

(8.7) Theorem. Let R be the system of roots of a compact Lie group G
of dimension d relative to a maximal torus. Let & be the canonical bilinear
Jorm associated with R, and let M be the sublattice of L(R) defined above.
Then

Z X(ﬂ) X¢(u+p,n+p)=Xd/24ﬁ p(X"),
neM n=1

where p(X) is the characteristic polynomial (8.6) of the adjoint representa-
tion of G, and y(u)=J(u+ p)/J(p), where p is half the sum of the positive
roots of R relative to some basis, and J(v)= Y. e(w)e” for any v in
the weight lattice of R. weW (R)

Both sides of (8.7) may be regarded as functions on G with values
in the power series ring C[[ X]]. Let us evaluate both sides at the identity
element of G. Then y(u) is replaced by

utp, o)
(8.8) dw= | ————
( ael}* <p’ (X>
and p(X) becomes simply (1 —X)%. Hence, introducing Dedekind’s #-
function ©
n(X)=X"*T(1~X")

n=1

we obtain from (8.7) the formula

89) T d(p) XPUrento =y (XY,
neM
Next, take S =S (R') with R reduced and irreducible. This time g=h,
the Coxeter number of R (7.13), and Z=R. We have u,=1 |«|? for all
a€R, so that a*=u_ o'=a and therefore (6.11) A=L(R). Assume that
la)|2€Z for all aeR. Then, writing X =exp(—3), the left hand side of

(8.4') is equal to [] ¢(X™), where

n=1

(8.10) g(X)= T[] (1_X“ﬂ”z)l_[(l__XHaHzea),

BeB(R) aeR

B(R) being any basis of R. Hence in this case the identity (8.1) takes the
following form:

(8.11) Theorem. Let R be a reduced irreducible root system, q(X) the
polynomial defined by (8.10). Then

Z X(hl) Xh A)12+2<A > — ﬁq(xrt)

AeL(R) n=1
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As before, we shall specialize this identity by mapping each e* to 1.
Since the action on R of a Coxeter element of the Weyl group is to par-
tition R into [ orbits, each containing h roots and each containing exactly
one root from the basis B(R) ([B], p. 170, Prop. 33), it follows that g(X)
specializes to the polynomial

n (1—X181p+1
BEB(R)

On the other hand the exponent of X on the left-hand side in (8.10) is
equal to h~Y(|hA+p|%—|lpl?). Now we have another strange formula:

(8.12) lpl?=

USRS T

24 BeB(R)

Assuming this for the moment, we obtain from (8.10)

(8.13) Z d(h i) X" Ihatell? = n n(X”I’HZ)
AeL(R) BeB(R)

where as before #(X) is Dedekind’s #-function.

To prove (8.12), we may assume that the bilinear form <{u, v) is the
canonical bilinear form @, (u, v), i.e. that

Y Lo, u o, v =<u, v).

aeR

This implies that the matrix ({a, 8)), 4. i idempotent: since its rank
is 1, it follows that its trace is equal to [, i.e. that

¥ 2 =1.

aeR

Hence, considering the orbits of the action of a Coxeter element as before,

we see that
Y B> =1/h.

BeB(R)

On the other hand, by (9.5),

lpl>=d/24=1(h+1)/24
and (8.12) is proved.

Finally, we shall make one other specialization of the identity (8.11).
Let w=exp(2in/h) be a primitive h-th root of unity (here of course exp
is the usual complex exponential). We shall specialize each e* to o<,
where o is half the sum of the positive roots of the dual root system R".
We recall that {a, g) is the height of e R; in particular it is an integer.
Consider first the effect of the specialization on y(h1)=J(h A+ p)/J(p).
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Now J(h A+ p) specializes to

z-;(w) oW ha+p), e
WGIZV:(R)
and since {4, o)eZ for 1€ L(R), we have o#*+90> = (,(Wr. 9> Hence
x (h A) specializes to 1.

Next consider the polynomial ¢(X) defined by (8.10). We need the
following result:

(8.14) Propesition. Let R be an irreducible reduced finite root system
of rank I, with Coxeter number h. For each p=1, ..., h let n,, be the number
of roots of height p in R, relative to some basis of R. Then n,+n,=1if
p+q=h+1.

Proof. This is an easy consequence of the following two facts:

(@) If myzm,=---2m, are the exponents of R, then m;+m;=h if
i+j=1+1;

(b) the partitions (my,...,m) and (q,,...,n,_,) are conjugate (in
other words, if I is the set of points (i, )€ Z* such that 1<j<m,, then
I is also the set of (i, )e Z* such that 1 Zi<n)).

For a proof of (a) see [B], p. 118; for (b) see [4] or [5].

Assume now that |Ja||=1 for all xeR. Then the polynomial g(X)
specializes to
(8.15) (1-XY ][] —™ X).

aeR

It follows from (8.14) that, for 1<p<h—1,

[ if p is not an exponent m;
np+nh—p= . .

I[+1 if pisan exponent.
For n,=n,_, if pis not an exponent, and ,=n,_,+1if p is an exponent.
Hence (8.15) is equal to

(I—X")Ill(l —o" X)=(1-X"c(X),

i=1
where c(X) is the characteristic polynomial of a Coxeter element of
W(R). Hence

(8.16) Theorem. Let R be a reduced irreducible finite root system such
that |all=1 for all aeR. Then

Z Xh““hi+p||2=’,,(Xh)l_Xl/24ﬁc(Xn)

AeL(R) n=1

)
=n(X")'H1r1(wiX)

i
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where c(X) is the characteristic polynomial and ,, ..., o, the eigenvalues
of a Coxeter element of W(R).

When R contains roots of different lengths, the formula correspond-
ing to (8.16) is more complicated, and we shall not reproduce it here.

9, Proof of the Main Theorem

The proof of Theorem (8.1) will occupy §§9-12. As we remarked
in § 8, we may assume that S is irreducible. Let

!
(9.1) X = ‘= He—mae
i=0

where ¢ is the constant defined in (6.7). By (6.9.4) it follows that e ™"*:is a
positive integral power of X, for all aeZ, and therefore the product P
defined in (8.1.2) belongs to Z{[X]]. The first stage in the proof of (8.1)
is to show that (8.1.1) holds for some PeZ[[X]]. The proof that P is
given by the product (8.1.2) is then achieved by specializing (8.1.1) in
two different ways (in §§ 10 and 11) and comparing the results.

When multiplied out, the product IT= [ (1 —e~%) is of the form

a>0

(92) H= Z afe_f
fz0

with coefficients a,eZ. Consider the effect of transforming IT by an
element w of W(S):
wll=]](1—e".

a>0

For each affine root a>0 such that wa <0 we write
l—e~"9= _e—wa(l _ewa)

and then it is clear that
wll=g(w)e ™11,

the sum in the exponent being over all a>0 such that wa<0. Writing
wa= —b,wehave b>0and w1 b<0, so that —Z wa=s(w}), and therefore

wIT=g(w)e"™IT.
Hence from (9.2) we obtain
9.3) a,=eW)a, ., owm-

Define a (non-linear) action of the Weyl group W(S) on the space F
of affine-linear functions on E, as follows:

(9.4) wof=wf+sw)=w(f+P)—P
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by (7.6). In this notation (9.3) takes the form
9.9) a,.,=ew)a;.
We shall now describe this action of W(S) on F more concretely.
Define : F— E by the rule
Y(f)=r-g 'Df

where r is the point in the simplex C defined in § 7. Clearly y is surjective
and its fibres are the cosets of F° (the line of constant functions) in F.
The action of W(S) on F defined by (9.4) passes to the quotient F/F°,
for if f; —f, is constant then so is wof, —wof,. Hence it induces an
action of W(S) on E, and this action is just the usual one: namely

(9.6) Ywof)=w(y (/).

For
Yywef)=y(wf+sw)

=r—g " (Dw-Df+Ds(w))
=r—g 'Dw-Df—(r—wr) by(7.6
=w(r—g ' Df)=w( (/).

From (9.6) it follows that the action (9.4) of W(S) on F is that of a

reflection group, the reflecting hyperplanes being all parallel to the
line F°. Hence, by a basic property of reflection groups:

(9.7) Lemma. For each feF the group
W,={weW(S): wef=f}

is generated by the reflections it contains.

For each feF let
A,= Y ew)e ™.

weW(S)
(9.8) Lemma. 4,0 if and only if W,={1}.

Proof. Suppose 4,=0. Then the term e/ in 4, must cancel with
£(w) e/ for some w1. Hence f=wof (and ¢(w)= —1) for some w1
in W(S), and therefore W+ {1}.

Conversely, if W, + {1} then by (9.7) there exists a reflection we W(S)
such that wof=f. Hence 4,=4,,.,=¢&(w) 4,= — 4, and therefore 4,=0.

From (9.2) and (9.5) we have
9.9) n=} a4,
s

9 Inventiones math, Vol. 15
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where the sum is over a set of representatives of the orbits of W(S) for
the action (9.4) which intersect L(S)* ={fe L(S): f =0}. By (9.8) we need
consider only those orbits on which W(S) acts faithfully, and these are
identified by

(9.10) Lemma. The only orbits in L(S) on which W(S) acts faithfully
(for the action (9.4)) are those which intersect the line F® of constant
Junctions.

Proof. By (9.6) we may equivalently consider the orbit of r—g~ 1D f
in E under the usual action of W(S). If W acts faithfully on this orbit
then we may assume that the representative f of the orbit is such that
r—g 'DfeC,i.e. such that a)(r—g~'Df)=0 for 0<i<I But

al(r—g ' Df)=al(r)—g~' <!, Df>
=g (1<, Df>)

by (7.1), where o; is the gradient of ;. Hence (a}, D f) <1, hence is <0,
because it is an integer. But from (6.5) there is a relation of the form

1
Y m; o} =0, in which each coefficient m, is strictly positive. Hence
i=0

!
> m<of,Df>=0
i=0

and therefore (o, Df>=0for 0<i</, so that D f=0.
From (9.8), (9.9) and (9.10) we have

H= Z anc Anc’
n=0

and we(nc)=nc+s(w), so that

A =e™A=X"4.

n
0

Hence IT= ) a, X" 4, or say

n=0

©.11) =04
where Q= i a,. X"eZ[[X]].
n=0

Since a,=1, @ is a unit in Z[{X]], and it remains therefore to show
that Q ~! = P, where P is the product (8.1.2). We shall do this by specializing
(9.11) in two different ways, in §§ 10 and 11. For the purposes of the cal-
culations it seems to be necessary to assume that the gradient system X
is reduced. The case where 2 is not reduced (i.e. where S is of type BC))
will be dealt with separately in § 12.
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10. First Specialization

Until further notice we shall assume that S is irreducible and that
2=DS is reduced. We can assume that the vertex x, of the simplex is
a special point for S (§6). As in §8 we shall identify the affine space E
with the vector space V by taking x, as origin in E. Then the root
systems S, and X, are identified, and X, =2 (6.4). The gradients a;=D a;
(1<iZ]) form a basis of X. This choice of basis defines positive and
negative roots for X, and hence also for 2* and X . The positive affine

roots are
a+nu, —oat+m+1lju,

where ae2* and n is any integer =0. In particular, the root a;eB is
now identified with o, (1<j<); also a, is identified with o, +u,,. Since
ny=11n (6.7) it follows that u, =c. Hence e~ =X e~ ".

Let p* be half the sum of the positive roots of Z*. If aeX™*, then
{a, p*>=u,{a,, p*) is a positive integral multiple of u,, and hence by
(6.9.4), e~ <= " is a positive integral power of X =e~*.

Define a homomorphism 6 of A=Z[[e™“,...,e *]] into Z[[X]]
as follows:

e Y=e " (aeX¥),

0(X)=x"+!

where as before h is the Coxeter number of Z. (To show that § does
map A into Z[[X]] we observe that §(e~“)=0(X e~%0)= X" +!g =<0 e

and
<a0’ P*>=“a0<ao*:p*>§c(h_1)

because the height of a root of X, is at most h—1. Consequently
0(e~“)= X™ where m is an integer =2.)

We have to calculate 0(4) and 6(F7). Consider 8(I1) first. It is the
product of factors

(1 —Xaf“"’ a*)+n(h+1))’ (1 ——X; (ay, 0‘>+(n+1)(h+1))

for all xe X+ and all integers n=0, where X,=e~". To transform this
product we need the following property of finite root systems:

Let R be an irreducible reduced finite root system. We shall say
that a root acR is short if there exists feR such that ||f] > ||| ; other-
wise a is long. (So if all the roots of R have the same length, they are
all long roots.) Choose a basis of R, so that the heights (§8) of the roots
aeR are defined. Let & be the Coxeter number of R, and for 1 <p<h
let n,, (resp. n,,) be the number of short (resp. long) roots of height p
in R, and let I, (=#,,) (resp. I, (=n,,)) be the number of short (resp.
long) roots in a basis of R. Then

(10.1) Lemma. If p+g=h+1thenn,,+n;,=1(i=12)

[
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In view of (8.14) it is enough to establish (10.1) for the short roots,
and this is a consequence of the following observation:

(10.2) Observation. The number h, =h/(l, +1) is always an integer, and
the sequence (11;,); <<y consists of hy terms equal to l,, followed by h,
terms equal to |, — 1, and so on, ending with h, terms equal to 0.

I do not know of any uniform explanation of (10.2). It is easily
checked case by case (there are effectively only four cases to check).

Let a, BeX. If |jo, || =|pB,]l then «, and B, are congruent under
W(Z,)=W(Z), hence a and B are congruent under W(Z), and therefore
u,=ug, so that X,=X,. Let X, (resp. X,) denote X, for o, short (resp.
a, long). In the notation used above, with R=2, it is clear that 0(I1)
is the product of #,, factors equal to (1—XP*"**Y) and #,, factors
equal to (1 — Xt+1-p+nt+1y for j=1,2; p=1, ..., h, and all integers n=0.
Hence by (10.1) it is the product of [, factors equal to (1 —X?+"*+D)
for the same range of values i, p and n.

On the other hand, from the definition (8.1.2) of P=P(X), we have

P(X)= H1(1 - XD -X5)"
Hence )
(10.3) 6(I)=P(X)/P(X*+1).

Now consider 6(4). Each element of W(S) is uniquely of the form
w t(4), where we W(Z)and A€ A. From (7.5) we have 0(e 5™ @)= ¢=U0w &),
where

(104)  Uw, )=(h+1)Gg 41> +<p, D) +<p—w(g A+ p) p*>

in which p is half the sum of the positive roots of X. Hence 6(4)=R(X),
where

(10.5) RX)= Y ew)Y evowd,

weW(X) AeA
By applying 0 to both sides of (9.11) we obtain, from (10.3) and (10.5),

P(X)

=Q(X"*) R(X).

For purposes of comparison later we need to express U(w, ) in a
form which does not involve p*. For this we require the following

(10.7) Observation. There exists an element w'e W(Z) such that

gp*=(h+1)p-wp.
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I do not know a uniform proof of (10.7). Suppose first that S=S(R)",
so that £=R". Then g=h (7.13), and u,=1|«|* for all aeZ, so that
o*=a and hence p*=p. So (10.7) is satisfied with w'=1.

Now let S=S(R). Then each u,=1, so that a*=a" and therefore p*
is half the sum of the positive roots of R'. We need consider only root
systems R which have roots of different lengths, since the others are
already covered by the previous paragraph. We consider each case
(types B,, C,, F,, G,) in turn, using the notation of the tables at the
end of [B].

1 i
(i) If R is of type B, then p= ) (I+5—i)¢; and p*= Y (I+1-i)¢,.
Also g=21—1 and h=21, so that i=! i=1

]
(h+1)p—gp*= ) (I+3-2])e=wp

i=1

where w' is the element of W(R) which maps ¢, ¢,, &5, ... Tespectively
tO €, —&, €y, —&_1s----
(i) If R is of type C,, then p and p* in (i) are interchanged. Also
g=21+2and h=21, so that
1
(h+1)p—gp*=

13

igg=wp
1
where w'(e)=¢,,,_,(1Zi<)).
(iii) If R is of type F, then p=3(1le;+5e,+3e34¢,), p*=
8¢, +36,+2¢5+¢,. Also g=9 and h=12, so that

(h+1)p—gp*=2(—& +11e,+3e,—5e,)=wp
where w' is the element of W(R) which maps ¢,¢,,¢85,8, 10 &;, —¢&,,
&5, —&, respectively.

(iv) If R is of type G,, then p=5a, +3a,, p*=9a, +5a,. Also g=4
and h=6, so that

(h+1)p—gp*=—a;+oa,=wp
where w' is the reflection associated with the root 3o, +a,. This com-
pletes the verification of (10.7).

Using (10.7), we obtain by a straightforward calculation from (10.4)
the following expression for U(w, A):

(108) Ul =i (1 + D0t 29) =)+ oI = Lo ).
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11. Second Specialization

We retain the notation and assumptions of § 10. Let w =exp(27i/(h+1)),
where exp is the ordinary complex exponential. Define a homomorphism
Y: A—- C[[X]] as follows:

Ve H)=w*" (xeX)
Yy(X)=X,

where ¢ is half the sum of the positive roots of 2, so that {«, ¢) is the
height of ae 2.

As in §8 we split up the product IT into two parts, say I1, and I1,,
where 11, is the product of the factors (1 — e~ for which a(x,)=0, so that

(11.1) Oy=[] (1—e"9),
acXt

and I, is the product of the (1 —e~“) for which a(x,)>0, so that

=T [T —e "),

n=1 aelk
Hence

(11.2) ¥ (I,)= ﬁ 11— e,

n=1 aecl
This product can be simplified means of

(11.3) Lemma. Let R be a finite irreducible reduced root system, B a
basis of R, and h the Coxeter number of R. For each o€R let X, be an
indeterminate, such that X, =X, for all xeR and we W(R). Then

[TU-w®X,)=[](1-Xi*1/(1-X),)
aeR peB
where w=exp(2n i/(h+ 1)) and ¢ is half the sum of the positive roots of R".

Proof. This is a consequence of (10.1). Let X, (resp. X,) denote X,
for « short (resp. o long). Then the product IT(1 — > X) consists of
n;p factors (1—w” X;) and 5, factors (1 —w ™" X;), fori=1,2and 1 sp=h.
Since w~P=w"*1~? we have by (10.1) altogether /; factors (1 —w’ X))
for i=1, 2 and 1 £ p < h, whence the result.

From (11.2) and (11.3) it is clear that
(11.4) Y (I,)=P(X"*1)/P(X).

Next, consider 4. From (8.3'), we have

1
A=e7"Y Ju+p)exp———(lp+pl*—lpl?
2g

neM
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where M =g A and
Ju+p)= Y e(w)er+e,
weW(Z)

Y(I(+p)= Y elw)oSreroo

weW (Z)

Now

which by Weyl’s formula (0.1) is equal to

H (et a¥(2> _ y—<u+e a'/2>).
aeX”

Hence ¥ (J(u+ p)) =0 if and only if u satisfies the following condition:

(11.5) {u+p,a>E0mod(h+1) forall acX.

[The scalar product {u+ p,a*) is an integer because M =g A< L(Z) by
(6.11).]

We have to investigate which elements u of M satisfy (11.5).

(11.6) Lemma. Let pe L(X). Then u satisfies (11.5) if and only if there
exist we W(ZX) and A€ L(2) such that

(11.6.1) ut+p—wp=Hh+1)4.
Proof. if u+p—wpe(h+1) L(2), then clearly
{u+p,oy={wp, a2y mod(h+1) forall aeZ.

But {w p, «*) is equal to the height of w=' ', so that 1 Z[<w p, 0" )| Sh—1.
Hence {p+ p, o*) is not divisible by h+ 1.

Conversely, suppose that p satisfies (11.5). Then p+p does not lie
on any of the hyperplanes

H, ,={xeV: ", x)+n(h+1)=0}

where aeX and neZ. Let G be the group of isometries of V generated
by the reflections in these hyperplanes. Then G is an affine Weyl group
and is the semi-direct product of W(ZX) and the group of translations of
the form t((h+1) 4), where Ae L(Z). If ¢" is the highest root of 2", then
the open simplex I' in V consisting of all xeV such that

L, x>>0 (1<ig), (¢, xp<h+l

is a chamber for the group G. Since p+p does not lie on any of the
reflecting hyperplanes for G, it lies in sI' for some seG; hence there
exist weW(Z) and ieL(X) such that u+pe(h+1)A+wl, or equiv-
alently w='(u+p—(h+1) el
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Let v=w='(u+p—(h+1)A)—p. Since w='p—peL(Z) it follows
that ve L(Z), and since v+ pel” we have

lad,v+py>0 (1Zigh), (@' v+py<h+1.
But {o¥, p>=1 and {¢", p>=h—1, so that
{af,v)20 (1=ig]), (¢, vl

Hence {¢", v), being an integer, must be either 0 or 1.

Suppose that {(¢*,v>=1. Writing ¢* as a linear combination of
the a, say ¢'=) m;a}, we have

i
!
Y m; oty vy=1.
i=1

Since each m, is a positive integer and each (a!,v) is a non-negative
integer, it follows that (a!,v>=0 for i=1, ..., ] with just one exception,
and that for this one value of i we have m;=<a},v>=1. Hence vis a
fundamental weight o, ([B], p. 167). But the fundamental weights w, for
which m;=1 are never in the root lattice L(Z) ([B], p.177, Cor. to
Prop. 6). This is a contradiction, since ve L(Z).

Hence we must have {¢", v> =0 and therefore (o}, v> =0 for 1<i</|,
whence v=0 and so u+p=wp+(h+1) 4, as required.

From (11.5) and (11.6) it follows that if y/(J(u+p))=*0, then there
exists weW(2) such that {w,(u+p),6)=<{w,wp, o) mod(h+1) for all
w;€W(Z), and consequently y(J(u+ p))=e(w) ¥ (J(p)).

On the other hand, from (11.1) and (0.1) we have IT,=e¢"¢J(p), and
therefore

(11.7) x//(Ho"lA)=Zs(w)eXp~—2lg—(llu+p||2—||p||2),

ww

the summation being over all ueM=gA and weW(X) which satisfy
(11.6.1) for some Ae L(2).

The next step is therefore to find ali solutions (4, p, w)e L{(Z)x M x W(X)
of (11.6.1). Given weW(ZX), one solution may be obtained as follows.
From (10.7) we have

gw lp*+p=(h+1)w1p.
Operating on either side with w and subtracting, we get

gw " p*—w p¥)+p—wp=(h+1)w' " (p—w,p)
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where w, =w'ww’' ~!. Hence if we put

Ao=w " (p—w, p)eL(Z),

(11.8) L
Bo=gW ~{(p*—w p*)egL(Z¥)=gA=M

we have
Botp—wp=(h+1)4,.

Hence 4, u, w satisfy (11.6.1) if and only if
(11.9) p—po=(h+1)(A—4,).

Now we have
(11.10) Observation. M~ (h+1) L(Z)=(h+1) M.
As in the case of (10.7), I do not know a uniform proof. First, if
S=S(R) then g=h and A= L(Z), so that M=h L(ZX). Hence
Mnh+1) L X)=h L(X)nth+ 1) L(Z)=h(h+ 1) L(X)=(h+ 1) M.

The other possibilities for S (i.e. S=S(R) where R is of one of the
types B,, C,, F,, G,) have to be checked case by case. This presents no
difficulty, and we shall omit the details.

From (11.9) and (11.10) it follows that A, u, w satisfy (11.6.1) if and
only if L —A,e M, say A—A,=g A, for some A, € A. Hence

lu+pll=li(h+1) A+wpl
=[(h+1)(g A +w ~(p—wyp))+wpl
=l(h+D)(wi (g w' Ay +p)—p)+ W pll

and therefore, from (10.8)
1 ’ o
E(||#+P||2*]|P||2)=(h+1) Uwi',w'dy).

Hence, from (11.7), we have
YTy )= Y ew) Y exp—(h+1)Uw, )
weW(2) Aed

:R(Xh+l)
by (10.5). From this and (11.4) and (9.11) we obtain

P(Xh+1)

_ h+1
POX) =QX)R(X"™).

(11.11)
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12. End of the Proof

We can now complete the proof of (8.1) in the case where 2 is reduced.
Let u(X)=P(X) @(X) and v(X)=P(X) R(X)~1. Then from (10.6) we have

u(X** N =v(X),
and from (11.11) we have

u(X)=v(X"*1).
Hence

u(X®+%) =u(X)

from which it follows immediately that (X} is a constant. Since P, Q
each have constant term 1, it follows that u(X)=1, whence Q=P ~! and
therefore 4= PII by (9.11).

Finally, we have to deal with the case where 2 is not reduced. We
may take S =S(R) where R is of type BC,. Let ¢, ..., ¢ be an orthonormal
basis of V. We may take the elements of R to be the vectors tg;, +2¢;
(1=i=]), ¢,+¢;(1=i<j<]). Thentheaffinerootsaren +e¢;,(2n+ 1)+28
n+e; +¢;forallintegers n. We take as basis of S the affine roots ay = 1-2¢,,
a,=¢—¢,, (1Zi<l-1), aj=¢,. Then g=21+1, h=2land c=1.

Let R’ be the subsystem (of type B,) of R obtained by deleting the
roots +2¢ (1=<i<l). Asin §11 let I1, denote the product of the 1 —e~“
where aeS and a(x,)>0, and let II; denote the corresponding product
for the subsystem S(R’). Then I, =I1; - II{, where

m=T1

We shall apply the homomorphism ¢ of §11 to the identity (9.11):

l_e—Z.s,- X2n+1)(1_825,- X2n+1)'

||:.~

Yl Y=o, YX)=X
where ¢ is half the sum of the positive roots of (R)", so that
1
o= (I+1-i)e¢
i=1
and w=exp(27i/(21+1)). Then we find easily that

(12.1) Yy(I1y))= ﬁ(l_X(2"+1)(2’+1))/(1__X2n+1);
n=0

also from (11.4) we have

Y (1) =PX*"*Y/P(X),



Affine Root Systems and Dedekind’s y-Function 133
o
where P(X)= H — X")". Hence if we put

n(X)= H (1—-Xx%+h= H(l +Xxm1
n=0 n=1
we have

(12.2) l//(Hl);_ P(XZHl)’n(XZH'I)

P(X)n(X)
Next, consider  (I15 ' 4). From §8,

1
M- A= _
o wa (W) exp——

(Uu+pl*=lpl?),

where p= Z (I+3—i)e is half the sum of the positive roots of R’, and
M=(1 +1)/1 where A= Zle From the definition of y it follows

that (e*)=1 for all ,ueM whence Y(J(u+p))=¥(J(p)) and therefore
¥ (x(w)=1. Hence

(12.3) NI Z xX/®
where red
f)= (l2i+1a+pl*=1pl?)

4742
=1QI+ AP+ {4 p).
I
Hence if 1= — Z""S' then
=1 1
}_:(21+1)2 (=) +in)

and therefore from (12.3) we have

Q//(n A — ll—[ ZX((21+1)n(n—1)/2)+in
i=1nek

which by Jacobi’s identity (0.6) is equal to
ﬁ ﬁ (1 _X(21+1)n)(1 +X(2!+1)<n—1)+i)(1 +X(2!+1)noi)_
i=1n=1

Hence we find

(12.4) Y(II5 ! A)= P2+ n (X2 )/n(X).

From (12.2), (12.4) and (9.11) it follows that Q(X)=P(X)~'. This
completes the proof of (8.1).
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Appendix 1
Reduced Irreducible Affine Root Systems

For each type of reduced irreducible affine root system we shall
exhibit:

(1) an affine root system S on a Euclidean space E.

(2) a basis {a,,...,a,} of S.

(3) the values of g, h and ¢ for S.

(4) the lattice M=g A.

(5) the Dynkin diagram. The black nodes correspond to vertices x;
of the chamber C which are special points for W(S). The numbers
attached to the nodes are the coefficients n; of (6.5).

(6) n-function identities obtained by specializing the identity (8.1)
for S. In each of these, ¢, denotes a numerical constant whose value can
be written down by considering the term of lowest degree in the power
series.

Notation. gy, &, &5, ... are a sequence of orthonormal vectors in a
real Hilbert space. If v=(v,, ..., v) then

lof?=2 v, XB(U)—’:n U; H (v} “UJ?), xp(v)= n (v? “Uf)-

i i<j i<j
Type 4,(I121)
(1) BasisofE:¢,_,—¢, (1ZiZ])
Affine roots: n+(g;—¢)) (1=i<j<!) (neZ).
Q) ag=1—¢g,+¢,a,=¢_,—¢ (1ZiZ)).
(3 g=h=l+1;c=1

@ M={(l+l)in,-e,.:2n,-=0}.
i=0

1 1
R —
. .
(=1 (22)
(6) Specialization e*+—1 (1Zi<I):
(a) leven:
n(X)*+2 =co ¥ [ (v;—v) X IoN?20+D

v i<j
summed over v=(v,, ..., v)eZ'*! satisfying

v,=i (modI+1) 0O<i<l) and Y v,=0.
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(b) lodd:
)12+21 Z]—[(vi___vj)X||v|(2/8(l+l)

v i<j

summed over v=(v,, ..., v;)eZ'*! satisfying

v;=2i+1 (mod 21+2) 0=i<l) and } v;=O0.

Type B, (2 3)
(1) Basisof E: ¢, ..., ¢.
Affine roots: n+te; (1SiZl), n+tete; 12i<jLl) (nel).

=%

Q) ay=1-¢,—¢,, a;=g—¢,, (1ZiZl-1), a=g¢.

3) g=21-1, h=2l, c=1
]

) M={(21—1)Zniai:ZniEO(modZ)}.
i=1

(5) :: 2 2 2 2

(6) (a) Specialization e 1 (1<i<):
NP+ =y ¥ gg(v) X082

summed over v=(0,, ..., v,)e Z' satisfying

v,=2i—1 (mod4l/-2) (1£i<]) and Zuizlz {mod 81—4).
(b) Specialization e®— 1 (1Zi<[~1), &> —1:

( ( )21 311(X2 )—COZX U)X“ v]|%/8(21-1)

summed over the same set of veZ' as in (a).
(c) Specialization e*—1 (0=i<ZI~1):
(’7 (X1/2)2 n(X)Zl-— 3)! =cq Z ( _ 1)20.' xp (U)Hv“ 2/(41-2)

summed over v=(v,, ..., v,)e Z' satisfying

v,=i—1 (mod2[—1) (1=i<)).

Type B} (1= 3)

(1) BasisofE: ¢,...,¢&.
Affine roots: 2n+2¢ (1Li<), nzkete; (1Si<jsl) (nel).
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Q) ag=1-¢—¢,, a,=¢—¢

(3) g=h=21; c=1.

v USiZI-1), a;=2¢,.

4 M:{Zli n&: Y n,=0 (mod 2)}.

1
©) :>2 5 T3 E1
1

(6) (a) Specialization ¢*—1 (1<iL):
(X 1 (X =, T (o) X704
summed over v=(v,, ..., v,)€Z’ satisfying
v;=i (mod2l) (1Ligh) and Y v;=51(+1) (mod4)).
{(b) Specialization e*+>1 (0<i<[—-1):
(X)L (X212t =y ¥ (— 1)E@ i+ D20y () xlIol7/41
summed over v=(v,, ..., v,)€Z’ satisfying

v;=i—1 (mod 2)) (1£ig)).

Type C, (122)
(1) BasisofE: g, ..., ¢.

Affine roots: n+2¢ (1Si)), ntete (1£i<jsl) (neZ).

(2 ag=1-2¢, a,=g-¢,,

(1gigl-1), a=2¢.
3) g=2i+2, h=2l, c=1.
@ M=QI+2)) Zs,.

i=1

] ﬁ::g———(z)— " : 1
(6) Specialization e* -1 (1Zig)):
11(X)2’2+I=C0 ZXB(U)X”"”Z/“("“)

summed over v=/(v;, ..., v)eZ' satisfying
v, =i (mod 2142) (1<is).
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Type C} (122)
(1) Basisof E: ¢,..., 5.

Affine roots: §nte (1Si<)), ntete (1Zi<jgl) (neZ).

2 002%——81, a;=¢—g,; I1Sisl-1), a=¢.

(3) g=h=2l; c=%.

H
@) M=21Y1Z¢,.

i=1

(5)1é1 11 151

(6) (a) Specialization e“—~1 (1<iZ):
(X)X 1P = 3 xg(o) X IOIS
summed over v=(v,, ..., v,)eZ' satisfying
v,;=2i—1 (mod4)) 1ZiZ)).

(b) Specialization e*+->1 (1<iZi-1), e%>—1:

(H(X)_ln(xz)zn)zz—l =c, ZXD(U) X llvlz/8l

summed over the same veZ' as in (a).

Type BC, (I1z1)
(1) Basisof E: g,...,¢.
Affine roots: n+e¢, (12iZl), 2n+1+42¢ (1Zi]),
ntete (15i<j<l) (nel).

(2) ap=1-2¢, a;=¢—¢,,(1=Zigl-1), a=¢.

(3) g=2l+1, h=2l, c=1.
1

(4) M=Ql+1)Y Zs,

i=1

(5)1;"’2 1%2 2 2 252
(=1 (122)

137
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(6) (a) Specialization e“+—1 (1Zi<I):
(n(X)21+3 n(xZ)—2)1=Co Z XB(U) Xllvll2/8(21+1)
summed over v=(v,, ..., v,)e Z' satisfying
v;=2i—1 (mod4i+2) (1=i<)).
(b) Specialization e®+>1 (0<ZiZ[—1):

(n(Xl/z)zn( )21 3 (X2 )—COZX XII v[[2/(41+2)

summed over v=(v,, ..., v)eZ' satisfying
v;=i (mod21+1) (15ig)).

(c) Specialization e*—1 (1Zigi-1), € +>—1:
n(X)zl?-—l:cO Z (— I)Z(v.-—l)/l XD(U) Xxllel?8@i+D

summed over the same veZ' as in (a).
(d) Specialization e®?r» —1, e%—1 (1<i<I-1):

(n(Xl/Z)—Z n(x)21+3)lzco Z (_ I)Zui XB(U) X||v||1/(4l+2)

summed over the same veZ' as in (b).

Type D, (124)
(1) Basisof E: ¢, ..., ¢,.

Affine roots: nte;+¢ (1Si<j<l) (neZ).
() ay=1-—¢ —¢,, a,=¢—¢

3) g=h=21-2; c=1.

i1 (UISIZ1-1), a=¢_,+g.

) M={(2l—2)zi:ni &: Y. n,=0 (mod 2)}.

i=1

o bttt

6) Spec1allzat10n e"r->1 ( 1<1<l)

nX)P - =co ¥ xp(v) XIeI?40-D

summed over v=(v,, ..., v))e Z' satisfying
p;=i—1 (mod21-2) (1<ig).
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1 8

In the next three types (E,, E,, Eg) let w,:s,.——g—z.sj, so that
8 1 j=0
Y w;=0and {w;, 0> = —E+6U.
i=0
Type Eg
(1) Basisof E: w,,...,ws.

Affine roots: n+(w;,—w) (15i<j<£6), nt(w+w;+wy)

(1Si<j<k=6), nt(w +- - +wy) (neZ).

(2 ap=1—(w +- 4wy, a;=w;—w;,; (1Zi£5), ag=w,+ w5+ ws.

3) g=h=12, c=1.

4 M={12§n,-w,-: Y n=0 (mod3)}.
i=1

1 2 3 2 1

®)

1
(6) Specialization e®1~1 (1Si<6):

(X)) =co Y u[lw;—v) [] +v,+v;+0)X-w+ienze

uv i<j i<j<k
summed over ueZ and v=(v,, ..., v5)€ Z° satisfying

u=1 (mod 12), v;=9—i (mod12) (1LiZ6), 3u+) 1,=0.

Type E;
(1) Basisof V:wy,...,w4.
Affine roots: n+(w;,—w)) (12i<j<7), nt(w,+w;+wy)
(1Si<j<k=7), nt(w+--+d;+ -+,
(1£i7) (neZ).
2 ap=t—(w;+ - +wg), a;=w;,—w;,, (1£i£6), a;=w5+w0s+w,.

(3) g=h=18, c=1.

“4) M={1827:ni o;: Y. n;=0 (mod 3)}.
i=1

10 Inventiones math, Vol. 15
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(5) 1 2 3 4 3 2 1
2

(6) Specialization e*1—>1 (1ZiZ7):
n(X) 3 =c, Y [Tw+v)[1@w;i=v) T[] w+v,+v;+0)

u,v i i<j i<j<k

L x (- llvi|as
summed over ueZ and v=(v;, ..., v,)€Z’ satisfying
u=23 (mod 36), v,=29-2i (mod36) (1<i<7), 3u+) v;=0.

Type E;
(1) Basisof V: wy, ..., wg.
Affine roots: nt(w;—w) 0=i<j<8), n+(w;+w;+0,)
(0Li<j<k£8) (nel).
(1Zig7), ag=ws+w,+wg.

2 ay=l+wy—w;, a;=0;—w;

(3) g=h=30, c=1.

) M={30iniwi: Y n,=0 (mod 3)}.
i=1

(6) Specialization e 1 (1Zi<]):

n(X)?*¥=cy Y. H(vi_vj) I1 (u+tv;+v,+7) X lvizyeo

uvi<j i<j<k
summed over ueZ and v=(v,, ..., vg)e Z° satisfying

u=8 (mod 30), v,=i (mod30) (I<i<8), vy=0, 3v,+),v,=0.

L

Type F,
(1) Basisof E: ¢;, ¢,, &3, &,.
Affine roots: nte¢, (1<i£4), nte te (15i<j<s4),
n+i(te e, +e,te,) (neZ).
Q) ap=l4e —¢,, a=&,—£3, a;=E3—&,, A3=E,—0, A4=0

where o=1(g; +¢6,+&5+¢,).
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(3) g=9, h=12, c=1.

4 M:{gi”ﬁi: 2.n=0 (m0d2)}~

i=1
(5) 1 2 3 4 2
&—O0—O0—>=0—0

(6) Specialization e*—>1 (1<i<4):

X)52—COZH H (v} — ;2 l_[ vy 1, oy £0,) X 01718

i<j

summed over v=(v,, v,, v;, v,)e Z* satisfying
v;=i (mod9) (1Li<4), ) v,=0 (mod 2).

Type F}
(1) Basisof E: g,¢,,65,8,.
Affine roots: 2n+2¢ (15i<4), nztete (1Si<j£4),
2nte, te,te;te, (nel).
(2) ap=1+¢e—¢;, ay=¢;—&3, ay=€3—&,, da3=2s,,
a,= —(g;+¢&,+¢&5+¢y).
3) g=h=12, c¢=1.

4) M:{lZinisi: Y n,=0 (modZ)}.
i=1
5) ?——o—o=(=o—o

2 3 2 1
(6) Specialization e®r1 (1Zi<4):

(X (X)) =co ) (@ 02 [T (0, 20, +05 +0,) X 1017724
(n

i 1<1

summed over v=(vl, v,, U3, Ug)e Z* satisfying
v;=i (mod 12) (1<i<4) and ) v;=6 (mod 8).

In the last two types (G, and G%) let ¢;=¢; —4(e; + &, +£5) (i=1, 2, 3),
so that ) ¢, =0 and <{¢;, ¢;>=—%+6;;.

Type G,
(1) Basis of E: ¢, ¢,.

Affine roots: n+¢; (15i<3), n+t(d:—¢) (15i<j<3) (neZ).
(2) ag=1-¢,+¢3, a=¢,—¢,, a,=¢,.

10*
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3) g=4, h=6, c=1.

@) M=4.iz¢i.

(5) ?————m

27 3
(6) Specialization e“1—»1 (i=1,2):

n(Xy*=co Y. [T [1(v;—vp) X"l

i i<j
summed over v=(v,, v,, v3)e Z> satisfying
v;=3i—2 (mod 12) and ) v;=0.

Type G
(1) Basisof E: ¢y, ¢;.
Affineroots: 3n+3¢; (15i£3), nt(d;,—¢;) (15i<j=£3)(neZ).

() ap=1-¢,+6¢;, a=¢,—¢,, a,=3¢,.
(3) g=h=6, c=1.

3
@) M={6Zni ¢;: Y m;=0 (mod 3)}.
i=1

1 2 1

(5) &—0o==0

(6) Specialization e® 1 (i=1,2):

(X (X)) =co 3, [T v, ] (v,—v) X112

i i<j
summed over v=(v,,v,, v;)eZ? satisfying
v;=i (mod 6) (i=1,2,3) and ) v,=0.

Appendix 2
Non-Reduced Irreducible Affine Root Systems

In the Dynkin diagrams below, an asterisk placed over a node
indicates that if a is the affine root corresponding to that node in a
basis of the affine root system, then 2 a is also an affine root.

Type BCC, (i=1)
Affine roots nte;, ni2e¢ (1Sish), ntete (1Si<jg]) (eZ).

(I=1) (122)
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Type C*BC, (I=1)
Affine roots jnte, 2n+2e (1Zi)), nts e (1Li<j<)) (neZ).

o2 C* O==é=0 O_..._o___o%—_—é
(=1 (122
Type BB (123)

Affine roots n+e;, 2n+2¢ (1Zi<l), nte e (15i<jzl) (neZ).

Type C'C, (12 1)

Afﬁneroots—g—isi, n+2e (1Sisl), ntete (1Si<j<l) (nel).
LIS 3:@-0——o——o—o=)=é
(I=1) (i22)
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