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Affine Root Systems and Dedekind's q-Function 

I. G .  MACDONALD (Oxford)  

Introduction 

Let R be a reduced root system in a real vector space V, as defined 
for example in [B], Chapter VI. Define positive and negative roots by 
choosing a Weyl chamber for R, and let p denote half the sum of the 
positive roots. Let W(R) be the Weyl group of R, and let e (w) denote the 
determinant (equal to + 1) of an element w of W(R). Then there is a 
well-known polynomial identity, due to Hermann Weyl: 

(0.1) ~ r e wp= [ I  (e~/2-e-~/2), 
w~W(R) ~>0 

where the e's are formal exponentials and the product on the right is 
over all the positive roots ([B], p. 185). 

The main purpose of this paper is to establish an analogue of (0.1) 
for an "affine root system" S. For the precise definition of an affine root 
system we refer to w 2; all we shall say here is that the elements of S are 
affine-linear functions on a finite-dimensional real Euclidean space E 
and satisfy axioms analogous to those for a finite root system. The set S 
of "affine roots"  is infinite, and the Weyl group W(S) is an affine Weyl 
group, that is to say an infinite group of displacements of E generated 
by reflections. 

One type of affine root system may be constructed as follows. Let R 
be a (not necessarily reduced) finite root system in V, and let (x, y)  be 
a scalar product on V which is invariant under the action of the Weyl 
group W(R). For each ~eR and integer k let a,, k be the affine-linear 
function on V defined by 

a~,k(x) = (c4 x)  +k.  

Then the functions a~, k, where k is any integer if �89 ~r R, and k is an odd 
integer if�89 ~eR, form an affine root system on V which we shall denote 
by S(R). 

For an affine root system S we can define positive and negative roots 
in the usual way, by choosing a Weyl chamber C for S. If S is irreducible, 
C is a rectilinear /-simplex, where l is the dimension of the Euclidean 
space E. A first objection to finding an analogue of Weyl's identity (0.1) 
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in the affine case is that there are infinitely many positive roots and there- 
fore no analogue of p. However, it is easy to banish p from (0.1). We 
have only to divide both sides by e p and observe that p -  w p is equal 
to the sum, say s(w), of the positive roots ~ such that w -~ ~ is negative. 
Hence (0.1) can be rewritten in the form 

(0.2) Z e(w) e -~ )=  1-~ ( l -e - ' ) .  
w ~ W ( R )  ~ > 0  

Both sides of (0.2) make sense for an affine root system S and its Weyl 
group W(S): the left-hand side is a formal power series and the right-hand 
side a formal infinite product. So it is reasonable to ask whether (0.2) 
remains true as a formal identity in the affine case. 

In fact, it doesn't quite; there is an extra factor which has to be inserted 
on the right-hand side. Assume for simplicity of description that S is 
irreducible, so that the chamber C is a simplex. Let ao . . . . .  a t be the 
positive affine roots which vanish on the walls of C. Then there is a unique 
relation of the form t 

Z nlai=c 
i = o  

in which the n i are positive integers with no common factor 4 = 1, and c 
is a constant function. Let X stand for the formal exponential e -c, i.e. 

l 

X =  l-~ e . . . .  '. Then the analogue of (0.2) for the affine root system S is 
i = 0  

(0.3) ~ e(w) e-~~ I-[ (1 --e-a). 
w E W (S) a > 0 

Here e(w) and s(w) are defined exactly as before; the product on the right 
is over all the positive affine roots; and P(X) is an infinite product of the 
form 

P ( X ) =  f i  p(X"), 
n = l  

where p(X) is a certain polynomial with integral coefficients, depending 
on S and of degree equal to l = dim E. For example, if S = S (R) the poly- 
nomial p(X) is equal to (1 - X )  s. 

By computing the sum s(w) explicitly we are led to write the identity 
(0.3) in a different form. Applied to the affine root system S(R), where R 
is irreducible and reduced, this leads to the following result. Let Ilxll 2= 
(x, x )  for x e V, let ~b be the highest root of R and let g = �89 (11 ~b + p II 2 - -  I IP  l[ 2 ) .  

Also let M be the lattice generated by the vectors 2g ~/11~112, where aeR.  
Then (0.3) takes the form 

oo 

(0.4) l-I ((1 -- X")' 1- I (1 - X "  e '))= Z X(#) XdlU+~176 
n =  1 a ~ R  / ~ M  
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where 
e(w) e "(u+~ 

w~W(R) 

z(~)= Z ~(w) e ~" 
wEW(R) 

If we now replace each e" by 1 in (0.4) we obtain a power-series for 
q (X)  d, where 

oo 

( x )  = x " ~  I-[(1 - x " )  
n= l  

is Dedekind's q-function, and d is the dimension of the Lie algebra 
having R as its root system: namely 

(0.5) ~t(x)e= ~ d(;) X ''"+01'2/2~ 
/~EM 

where 

d(#)= [I  <#+P'~> 
~>o  <P, ~> 

The simplest case of (0.4) is that in which R is of type A~, with just 
two roots ~, -~ .  In this case (0.4) becomes 

oo 
(0.6) I ]  ((1 - x n ) ( l  - X "  e~)(1 - X  n - '  e-m)) = ~ ( -  !) m Ira(m-I)/2 e- 'n ' ,  

n= 1 mEZ 

which is one form of a famous theta-function identity due to Jacobi 
(see for example [3], p. 282). The identity (0.3) may therefore be regarded 
as a common generalization of Weyl's identity (0.1) and Jacobi's identity 
(O.6). 

Likewise, when R is of type A~, (0.5) becomes 

rt(X) 3 = Y, n X "~/8, 
n~ 1(4) 

(0.7) 

or equivalently 

f i ( 1  -X" )  3 = ~ ( -  1)n'( 2m+ 1) X m("+1)/2 

n = l  m~O 

which is also due to Jacobi. When R is of type BC1 we obtain in the same 
way from the basic identity (0.3) the formulae 

= n X  , (x)5/, 7(x~) z ~ .2/z, 
n_=l(6) 

~(xz)51~(x)2 = y~ ( -  1) "-1 n x "2/3. 
n=_l(3) 

7" 
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Particular cases of (0.3) have been discovered by various people. The 
identity for R of type B 2 was found by Winquist [6], who used it (or 
rather the specialized form (0.5)) to give an elegant and elementary proof 
of Ramanujan's congruence p ( l l n + 6 ) = 0  (mod 11) for the partition 
function p(n). (The congruence p(7 n + 5)= 0 (mod 7) comes from (0.5) for 
R of type A1 • A~ in the same way: see [3], p. 289.) Pursuing Winquist's 
methods, F.J. Dyson (unpublished) found many cases of (0.3), in partic- 
ular those corresponding to affine root systems S(R) with R of classical 
type (At, Bt, C t and Dr). Others are due to A.O.L. Atkin (also unpub- 
lished). 

One other special case of (0.5) may perhaps be mentioned here. When 
R is of type A 4, the dimension d of the Lie algebra is 24. Hence in this 
case (0.5) leads to the following formula (due originally to Dyson) for 
Ramanujan's z-function: 

1 
z (n) = 1 ! 2 ! 3 ! 4 ! ~ 1-I (u i -  u j) 

i<j  

summed over integers u 1 . . . . .  u 5 subject to the conditions 

ui=i (mod5) ,  ~ u i = O ,  ~ u 2 = 1 0 n .  

The contents of the paper are as follows. w 1 establishes basic notation 
and terminology. In w 2 we define affine root systems. w167 3-6 are devoted 
to their elementary properties and the classification of the irreducible 
reduced affine root systems: there are seven infinite families and seven 
"exceptional" systems. They are all either of the form S(R) described 
earlier in this introduction, or are the duals of these (Theorem (5.2)). 

Incidentally, the notion of an affine root system is equivalent to that 
of an "6chelonnage" defined by Bruhat and Tits ([1], Chapter I, w 1.4). 
It follows therefore from their work that to each reductive group over 
a local field there is canonically associated an affine root system, and 
moreover that all affine root systems (including the non-reduced ones) 
arise in this way. It should also be remarked that the list of Dynkin 
diagrams of reduced irreducible affine root systems which we obtain in 
w 5 also occurs in the work of Moody (I-7 a, 7 b]) on Euclidean Lie algebras. 

The remainder of the paper is concerned with the identity (0.3). 
w 7 deals with the calculation of the exponent s(w), and w 8 with the 
statement of the main theorem (Theorem (8.1)) and various specializations 
of it such as (0.5) mentioned above. The proof occupies w167 9-12. Here the 
determination of the factor P(X) offers most resistance, and is achieved 
by specializing the identity in two different ways and then comparing 
the results. The paper concludes with appendices which list the irreducible 
affine root systems. 
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As the reader will see for himself, our proof of the basic identity is 
a purely formal exercise and does not explain in any satisfactory way 
why there should be any relationship between powers of Dedekind's 
q-function and root systems of Lie algebras. For  example, the presence 
of the factor X a/24 o n  the left-hand side of (0.5) is accounted for on the 
right-hand side by the following "strange formula" ([2], p. 243): 

~R (P, P) = d/24 

where 4~ R is the scalar product on R induced by the Killing form on g. 

Finally, it is a pleasure to acknowledge the benefit I have derived from correspondence 
with F. J. Dyson on this subject. 

1. Notation and Terminology 

Let E be an affine space over a field K: that is to say, E is a set on 
which a K-vector  space V acts faithfully and transitively. The elements 
of V are called translations of E, and the effect of a translation ve V on 
a point x e E is written x + v. If y = x + v we write v = y -  x. 

Let E' be another affine space over K, and V' its vector space of 
translations. A mapping f :  E--~ E' is said to be affine-linear if there 
exists a K-linear mapping D f: V-~ V', called the derivative off, such that 

(1.1) f (x + v) = f (x) + (D f)(v), 

for all x e E and w V. In particular, a function f :  E-~ K is affine-linear 
if and only if there exists a linear form D f: V-* K such that (1.1) holds. 

Let F denote the K-vector space of all affine-linear functions f :  E ~  K, 
and let V* be the dual of the vector space V. Then D is a linear mapping 
of F onto V*, and its kernel is the line F ~ in F consisting of the constant 
functions. 

From now on K will be the field N of real numbers, and V will be a 
real vector space of finite dimension l, equipped with a positive definite 
bilinear form (u, v). Let Ilull = (u, u) �89 Then E is a Euclidean space of 
dimension l, and is a metric space with respect to the distance function 

IIx -yll. 
We shall identify V with its dual space V* by means of the bilinear 

form (u, v). Then for any affine-linear function f :  E - ,  IR, (1.1) now takes 

the form 
f ( x  +v)= f(x)+ (D f, v), 

and Df  is the gradient of f ,  in the usual sense of elementary calculus. 

We define a bilinear form ( f ,  g) on the space F as follows: 

(1.2) ( f  g )  --- (D f, Dg). 



96 I.G. Macdonald: 

This bilinear form is positive semi-definite, and f ~  F is isotropic if and 
only if f is a constant function. 

For  each v =4= 0 in V we define 

v v =2v/ (v ,  v ) ,  

and for each non-constant f e  F we define 

f v = 2 f / ( f , , f )  
and 

H f = { x e E :  f(x)=O}.  

Then Hy is an affine hyperplane in E. The reflection in this hyperplane 
is the affine-linear isometry wy: E--+ E given by 

(1.3) wy (x) = x - - f "  (x) D f =  x - f  (x) D f ' .  

By transposition, wy acts on F: wf(g) = g o wy 1= g o wf. Explicitly, 

(1.4) wy(g) = g -  ( f ' ,  g ) f = g -  ( f  g) f~ 

for any g e F. 

For each u=#0 in V, let %:  V-~ V be the reflection in the hyperplane 
orthogonal to u, so that 

w . ( v ) = v - < u ,  v) u'. 

Then for any non-constant f e F  we have 

(1.5) D wf = wo~.. 

For  if ve V and xeE,  then 

(D w f)(v) = w f (x + v ) -  w f (x) 

= (x + v - f ( x  + v) Df ' )  - ( x - f  (x) D f  ~) by (1.3) 

= v - ( f ( x  + v) - f ( x ) )  DT ~ 

= v -  ( D r  v) D f" = WDf (V). 

Finally, let w: E --* E be an affine-linear isometry. Then its derivative 
D w is a linear isometry of V, i.e. we have ((Dw)u, (D w)v )=  (u, v) for 
all u, ve V. The mapping w acts by transposition on F: w ( f ) = f o w  -1, 
and we have 

(1.6) D (w (f)) = (D w)(D f ) .  



Affine Root Systems and Dedekind's r/-Function 97 

For  if vs V and xsE,  then 

(D (w f) ,  v) = (w f ) ( x  + v ) -  (w f )(x)  

= f ( w - l ( x  + v))-- f ( w - i  x) 

= f (w  - '  x + (D w)-'  (v)) -- f (w  - - 1  X) 

= (Of, (O w) -1 v) 

= ((D w)(D.f), v). 

In w 2 we shall define affine root systems. To distinguish them from 
root systems of the usual sort, as defined for example in [B], p. 142, we 
shall call the latter finite root systems. If R is a (finite or affine) root 
system, we denote by L(R) the lattice generated by R, and by W(R) the 
Weyl group of R. If a basis of R has been fixed we denote by R + the set 
of positive roots relative to that basis, and we shall sometimes write 
a > 0  to mean a s R  +. 

2. Affine Root Systems 
As in w 1 let E be a real Euclidean space of dimension 1, and let V be 

its space of translations. We give E the usual topology, defined by the 
metric Ilx-y[I,  so that E is locally compact. As before, let F denote the 
vector space of affine-linear functions on E. 

An affine root system on E is defined to be a subset S of F satisfying 
the following axioms (AR 1)-(AR4): 

(AR 1) S spans F, and the elements of S are non-isotropic (with respect 
to the scalar product (1.2)), i.e. they are non-constant functions. 

(AR2) waS=S for allasS.  

(AR3) (a, bv)sZ foralla,  bsS. 

The elements of S are called affine roots, or just roots. Let W(S) be 
the group of displacements of E generated by the reflections w a (asS). 
The group W(S) is called the Weft group of S. The fourth axiom, which 
replaces the finiteness condition in the definition of an ordinary root 
system, is 

(AR4) W(S) (as a discrete group) acts properly on E. 

In other words ([B], p. 72), if K 1 and K 2 are compact subsets of E, 
then the set of elements we W such that w(K1) meets K 2 is finite. 

From (AR 3), just as in the finite case, we deduce that if a, 2 a are 
proportional affine roots, then 2 is one of the numbers + !  + 1, +2. If 

- - 2 ,  - -  - -  

a s s  and �89162 the root a is said to be indivisible. We say that S is reduced 
if each a s s  is indivisible, i.e. if the only roots proportional to a are +a.  
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If S is an affine root system on E, then 

S ' =  {a': a~S} 

is also an affine root system on E, called the dual of S. Clearly S and S ~ 
have the same Weyl group. 

The rank of S is defined to be the dimension l of E. If S' is another 
affine root system on a Euclidean space E', then an isomorphism of S 
onto S' is a bijection of S onto S' which is induced by an affine-linear 
isometry of E onto E'. 

The following proposition provides examples of affine root systems. 

(2.1) Proposition. Let R be a (finite) root system in a real finite-dimen- 
sional vector space K For each ~ R  and n~7l let a,,~ be the affine-linear 
function on V defined by 

a,,, (x) = n + (o~, x )  

where (u, v) is a positive-definite bilinear form on V invariant under the 
Weyl group of R. Then the set S (R) of functions a .. . .  where ~ ~ R and 

n~77 if �89162 n ~ 2 Z + l  if � 8 9  

is a reduced affine root system on V. 

Proof The fact that S(R) satisfies (AR 1) and (AR3) follows immedi- 
ately from the corresponding axioms for R ([B], Chapter VI). As to 
(AR 2), let a, b E S (R), say a = a,,,, and b = a,,p. Then a simple calculation 
shows that w~(b)=ak, ~ where 

k = n - ( ~ v ,  fl) m, 7=w~(fl). 

We have k~Z  in any case; and if �89 then also �89 and therefore 
(�89 ~v) is an integer, so that (~v, fl) is an even integer; but n is odd, and 
therefore k is odd. 

As to (AR4), it is clear from the definitions that the Weyl group 
W of S(R) is the affine Weyl group ([B], p. 173) of the reduced root 
system consisting of the cc ~ R such that 2 c~ ~ R. Hence W acts properly on 
V. Finally, it is clear that S (R) is reduced. 

3. Direct Sums. Reducibility 

Let E 1 . . . . .  E, be finite-dimensional real Euclidean spaces, and for 
each i = 1 . . . . .  r let V/be the space of translations of E i, and F~ the space 
of affine-linear functions on E i. Let E be the product of the El and V the 
direct sum of the vector spaces V/. Then E is naturally a Euclidean space 
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with V as space of translations; the action of V on E is defined by 

(xl  . . . . .  x , )+(v~  . . . . .  v , ) = ( x l  +v~ . . . . .  x , + v , )  

(xieEi,  vie Vii, 1 <= i<=r), and the bilinear form on V by 

( (u~ . . . . .  u,), (v~, . . . ,  v,) ) = (u~, v~) + . . .  + ( u,, v , ) .  

Let F be the space of affine-linear functions on E, and for each i let 
Pi be the projection of E onto E i. Then the mappings hi: F/-~ F defined 
by ni(f~)=f~op i are injective linear isometries (for the scalar product 
(1.2)). The subspaces hi(F/) generate F, are mutually orthogonal, and 
all contain the line F ~ of constant functions. 

Now let S i be an affine root system on E i, for each i=  1 . . . . .  r, and 
t (22 let Si=T~i(Si) F. Let 

(3.1) S= ~) S'i. 
i = 1  

Then it is a routine matter to check that S is an affine root system on E. 
This root system S is called the direct sum of the S i, and we denote it by 

r 

I_l si. The subsets S' i of S evidently satisfy 
i = 1  

(3.2) Sj, S~ are orthogonal if  i 4:j. 

Conversely, let E be a finite-dimensional real Euclidean space, V 
its space of translations, and S an affine root system on E. Let S'i (1 __< i =< r) 
be subsets of S satisfying (3.1) and (3.2). From (AR 1) it follows that the 
S'i are pairwise disjoint, and therefore form a partition of S into mutually 
orthogonal sets of roots. 

Let Vii be the subspace of V generated by the gradients of the roots 
belonging to S~. Let V~ l be the orthogonal complement of Vi in V, and 
let Ei be the space of orbits of E under the action of V~ • Then Ei has a 
natural structure of a Euclidean space with V~ as space of translations, 
such that the mapping Pi: E--* Ei, which assigns to each point of E its 
orbit under Vi • is affine-linear. The mapping x ~ ( p l ( x )  . . . . .  pr(x)) 
identifies E with the product Euclidean space E~ x ... x Er. 

Let F~ be the space of affine-linear functions on Ei, and define as 
t c before the injective linear isometries n~: F I E F .  Then S~ ni(F~), and 

S i = nf-l(S'i) is an affine root system on E~, and finally the identification 
t "  

of E with E~ x ... x E~ identifies S with the direct sum LI si. 
i = l  

An affine root system S is said to be irreducible if S is not empty 
and is not the direct sum of two or more non-empty affine root systems. 
Equivalently, as we have just seen, S is irreducible if and only if S is not 
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empty and there exists no partition of S into two or more non-empty 
subsets S' i satisfying (3.2). Just as in the case of finite root systems we have 

(3.3) Proposition. Every affine root system is expressible as the direct 
sum of a finite family of irreducible affine root systems. This decomposition 
is unique to within isomorphism. 

The proof  may be left to the reader. 

The notion of isomorphism of root systems defined in w is too 
restrictive for many  purposes. For  example, if S is an affine root system 
and 2 is a non-zero real number, then S and 2 S = { 2 a : a e S }  are not 
isomorphic, although they are effectively "the same". We therefore 
define a weaker equivalence relation, similarity, as follows. Let S be 
an affine root system, which by (3.3) we can write as a direct sum of irre- 
ducible systems Si. Then a root system S' is said to be similar to S if S' is 
isomorphic to the direct sum 1_] 2~ S~, where the 2 i are non-zero real 
numbers. 

4. Chambers and Bases 

Let S be an affine root system on a Euclidean space E of dimension l. 
The set 

~ = { H a : a E S }  

of affine hyperplanes in E on which the affine roots vanish satisfies 
conditions (D1) and (D2) of [B], p. 72, because w(Ha)=H,, a for all 
we W(S) and a~S. Hence (loc. cit., Lemma 1): 

(4.1) Proposition..~ is locally finite. 

It follows that the set E -  U Ha is open in E, and therefore so are the 
a~:S 

connected components of this set, because E is locally connected. These 
components  are called the chambers of the root system S, or of its Weyl 
group W(S). We recall ([B], p. 74, Theorem 1): 

(4.2) Proposition. The Weyl group W(S) acts faithfully and transitively 
on the set of chambers. 

Assume from now on that S is irreducible. This is purely a matter  of 
convenience, to simplify statements of results. Then ([B], p. 86, Prop. 8) 
each chamber is an open rectilinear/-simplex. (IfS is reducible, the cham- 
bers are orthogonal products of simplexes.) Choose a chamber C once 
and for all. Let Xo, ..., xt be the vertices of C, so that C is the set of all 

! 

points x~ E of the form x = ~ 2 i x i with ~ 2i = 1 and each 2i > 0. 
i=O 

Let B = B ( C )  be the set of indivisible affine roots a~S which satisfy 
the following condition: H a is a wall of C, and a(x)>O for all x~ C. Then 
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B consists of l+  1 roots, one for each wall of C. Clearly B is a basis of 
the space F ofaffine-linear functions on E. Moreover ([B], p. 73, Lemma 2): 

(4.3) Proposition. The Weyl group W(S) is generated by the reflections 
wafor a~B. 

(4.4) Proposition. Let b~S be indivisible. Then b = w a for some we W(S) 
and some aeB.  

Proof The hyperplane H b is a wall of some chamber C' on which b 
is positive. By (4.2), C'=w C for some we W(S). Hence w-~b is positive 
on C, and Hw_~b=w-lHb is a wall of C, so that w - l b e B .  

Let L be the lattice in F generated by B. It is a free abelian group of 
rank l § 1. 

(4.5) Proposition. L is equal to the lattice L(S) in F generated by S. 

Proof Clearly L(S) is generated by the indivisible affine roots. Hence 
by (4.4) it is enough to show that L is stable under W(S), and by (4.3) 
it is therefore enough to show that w , ( L ) c L  for all aeB.  But if beB  
we have wa(b)=b-(aV,  b) a by (1.4), and (a ' ,b)e7z  by (AR3). Hence 
wa(b)~L and therefore wa(L) c L .  

An affine root a is said to be positive (resp. negative) (relative to the 
chamber C) if a ( x ) > 0  (resp. a (x)<0)  for all xe  C. Every affine root is 
either positive or negative. 

The elements of B will be denoted by a o . . . . .  _a t, the notation being 
chosen so that a i (x j )=  0 whenever i:~j. Since xie C, we have a i (xi)> O. 

(4.6) Proposition. Each affine root ae S is a linear combination of a o . . . . .  a t 
with rational integer coefficients which are all >0 if a is positive, and all 
<0 if a is negative. 

Proof By (4.5) we have aeL,  say 

l 

a = ~ 2j aj 
j = 0  

with coefficients 2 jeZ.  Evaluating both sides of this equation at xg, 
we have 2i=a(xg)/ai(x~). If a is positive then a(x)>O for all x in the 
closure of C, and in particular a(xi)>O. Since ag(x~)>0, it follows that 
2~>0. Likewise, i ra  is negative, 2~<0 for all i. 

B is called a basis of S. 

(4.7) Example. Let R be a finite irreducible root  system, ctt, . . . , a  t a 
basis of R, and let ~b be the highest root of R relative to this basis. Then the 
affine roots a 0 = 1 - ~b, a i = ~t~ (1 < i < l) form a basis of  the affine root system 
S(R) defined in (2.1). 
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5. Classification of Affine Root Systems 
As before let S be an irreducible affine root system, C a chamber for 

S, x 0 . . . .  ,x  t the vertices of C, and B =  {a 0 . . . . .  at} the corresponding 
basis. For  each i let F~ be the subspace of F consisting of the affine-linear 
functions on E which vanish at xi, and put S i = S n F~. On F~ the bilinear 
form ( f ,  g)  is positive definite. Also let W~ be the subgroup of W(S)  
which fixes x i. 

(5.1) Proposition. (1) S i is a ( f in i te )  root system in Fi, and is reduced i f  
S is reduced. 

(2) B -  {ai} is a basis o f  S i. 

(3) W/is the Wef t  group o f  S i . 

Proof. (1) Since ~ is locally finite by (4.1) it is clear that S i is finite; 
also S i spans F/and does not contain 0. If a, b e S  i then wa(b)=b - (a',  b )  a 
belongs to S and vanishes at x~, hence belongs to Si. Finally it is clear 
that Si is reduced if S is reduced. 

(2) Let a e S  i. Then a = ~ A j a j  with the 2j all integers of the same 
sign, by (4.6); evaluating both sides at x~ we see that 2~=0. Hence the 
aj with j4=i form a basis of S~, by I-B], p. 162, Prop. 20, Cor. 3. 

(3) By a basic theorem on reflection groups ([B], p. 75, Prop. 1), 
W~ is generated by the reflections belonging to W(S) which fix xg, that 
is to say by the reflections w o where a~Sg.  Hence W~= W(Si). 

Now assume that S is reduced. We construct a Dynkin diagram for S 
according to the usual prescription: the nodes of the diagram correspond 
to the roots a o . . . . .  a t belonging to the basis B, and bonds and arrows 
are inserted according to the same rules as for a finite root  system. 
(When the rank of S is 1, we have to allow bonds of"  infinite multiplicity ".) 
By (5.1) this Dynkin diagram has the property that when any node is 
removed (together with the bonds issuing from that node) the resulting 
diagram is that of some finite reduced root system. Hence fiB], p. 196, 
Prop. 1) each of the S~ is determined up to similarity by the Dynkin 
diagram, and therefore so also is S. The similarity class of S is called the 
type of S. 

In view of the known classifications of finite root systems and of 
affine Weyl groups, it is a straightforward matter to enumerate all 
possible Dynkin diagrams of irreducible reduced affine root systems. 
We have merely to take the Coxeter diagrams of the affine Weyl groups 
(which will be found for example on p. 199 of [B]) and replace each 
bond o 4 o by either o---x/--o or o--(---o, and each bond o 6 o by either 

or ~ .  In this way we obtain the following list of possible 
connected Dynkin diagrams: 
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Type 

AI = A'I 

B C i = B C '  1 

A t = A  ~ (1>2) 

B, (1>3) 

B~ (I=>3) 

C~ (1> 2) 

BCt=BC~t (/>2) 

D, = D I (l_>_ 4) 

_ V E 6 - - E  6 

E 7 =E~ 

E8 = ~ s  

0 ~176 0 

o ~ o  

> 

o->-o 
o--<-o 
o->-o 

> 

o-<-o 

G2 o o--)-D 
G] o o--(--o 

0""0 > 

0 " - 0  

0--- ...--0 0-->--0 

0-- -----0 0---~0 

0--- "" ---0 

0--- ... ---0 

0-- "- ---0 0--->--0 

0--- ... --0 < 

0 0 I 0 0 

0 0 0 I 0 0 0 

0 0 0 0 0 ~ 0 0 

0 0 ~ 0 

0 0 0 

Let X be any of the symbols A~, B~ . . . . .  G 2 .  An affine root system S 
is said to be of type X (resp. type X ~) if S is similar to S(R) (resp. S(R)') 
where R is a finite root system of type X. If S is of type X, it follows from 
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(4.7) that its Dynkin diagram is the "completed Dynkin diagram" 
([B], p. 198) of type X. If S is of type iV', its Dynkin diagram is obtained 
from the preceding one by reversing all the arrows. 

The list above now shows that 

(5.2) Theorem. Every irreducible reduced affine root system is similar to 
either S(R) or S(R) ~, where R is a finite irreducible root system. 

In w 6 we shall give another proof of (5.2) which does not depend on 
the classification of finite root systems and affine Weyl groups. We shall 
also classify the non-reduced irreducible root systems. 

6. The Gradient Root System 

Let S be an affine root system on E and let 

27=DS={Da: a~S} 

be the set of gradients (w 1) of the affine roots. 

(6.1) Proposition. (1) 27 is a finite root system in V, the space of trans- 
lations of E. 

(2) I f  S is irreducible, so is 2;. 

(3) The mapping D: w ~ D w is a homomorphism of W(S) onto W(2;), 
the Weyl group of 27, and the kernel of D is the subgroup T of translations 
in W(S). 

Proof (1) It follows from [B], p. 80, Theorem 3, that the number of 
families of parallel hyperplanes belonging to .~ is finite. Also by (AR 3) 
we have (~v,/~)~Z for all ~ , /~2; ,  so that if fl is proportional to c~ the 
number of possibilities for /J is finite. Hence 27 is finite, and axioms 
(AR 1)-(AR 3) now imply directly that 27 is a root system in V. 

(2) is obvious. 

(3) Clearly D is a homomorphism. From (1.5), we have D w,=woa 
for all a~S. Since W(27) is generated by the reflections wDa, it follows that 
D is surjective. Finally, D w = 1 if and only if w is a translation, so that 
Ker D = T. 

We remark that 2; need not be reduced, even ifS is reduced. IfS = S(R) 
(Prop. (2.1)) where R is a finite root system of type B C z, then S is reduced, 
but 2; = R is not reduced. 

A point x~E is a special point for S if there exist affine roots b~ . . . . .  b z 
vanishing at x, whose gradients D b~, ..., D b~ form a basis of 2;. 

(6.2) Proposition. (1) There exist special points for S. 

(2) I f  x is a special point for S, then x is a special point ([B], p. 87) for 
the Weft group W(S). 
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(3) I f  C is a chamber of S, there exists a vertex of C which is a special 
point for S. 

Proof (1) Let {fll~..., ill} be a basis of 2:, and for each i let b i be an 
affine root with gradient flit. Then since the fli are linearly independent, 
the affine hyperplanes Hb, intersect in a single point x eE, which is 
therefore a special point for S. 

(2) Let W x be the subgroup of W(S) which fixes x. Then W b e W  x 
( l < i < l ) ;  also by (1.5) DWb,=Wob ,, and by hypothesis the Dbi are a 
basis of 2:, hence the reflections Wob ' generate W(2:). It follows that 
D(Wx)= W(2:), and since W x contains no translations 4:1, we conclude 
from (6.1.3) that D: Wx~ W(2:) is an isomorphism. Hence ([B], p. 87, 
Prop. 9) x is a special point for W(S). 

(3) From the previous paragraph, the reflections Wb, generate W x, 
and therefore the cone F = { y e E :  b~(y)>0 (l<i_<l)} is a chamber for 
W x. Hence ([-B], p.88, Prop. 11) there exists a unique chamber C' for 
W(S) such that C ' c F  and such that x is a vertex of C'. But W(S) acts 
transitively on the set of chambers (4.2), hence there exists a vertex of 
the chamber C which is a special point for S. 

Suppose from now on that S is irreducible. As in w 4, let B = {a o . . . .  , a~} 
be the basis of S corresponding to the chamber C. Then 

(6.3) Corollary. There exists a ~ B  such that the gradients Daj for 
j :f- i form a basis of Z. 

Proof Since S is irreducible, the chambers of S are simplexes. In the 
notation of the proof of (6.2.3), it is clear that b~,.. . ,  b~ belong to the 
basis B' of S determined by the chamber C'. Hence if w C '=  C we have 
w B' = B, and therefore B consists of w b~ . . . . .  w b~ together with say a i. 
Then the set of gradients {Daj: j:#i} is the image by Dw of the basis 
{fix . . . . .  fit} of 2:. 

As in w 5, let S~ be the set of affine roots which vanish at x i, and let 
Xi -- DS~ be the set of gradients of the roots of S i. Then X~ is a subsystem 
of 2:, and the gradient map D: S t--~ 2:i is an isomorphism of finite root 
systems. 

(6.4) Proposition. Suppose that S is reduced and that the vertex x i of C 
is special for S. Then 2:i is the set of indivisible roots of 2:. 

Proof Since S is reduced, so is S t and therefore so also is Xi. Hence 
X~ is the reduced subsystem of X generated by a basis of 2:, whence the 
result. 

We shall write aj = D aj for 0__< j =< I. Then the ~j for j #= i are a basis of 
2:i, because by (5.1) the aj for j + i  are a basis of S~. It follows that 
<~i, ctj>__<0 for O<=i<j<=l. 
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Now suppose that the vertex x i of C is a special point for S. Since 
<-a~,  ctj>>0 for all j~-i,  it follows that -ct~ is a positive root of 2~ 
relative to the basis {a j: j:# i}. Hence we have 

j :~i  

where each nj is a non-negative integer. In fact each nj must be positive, 
because if nj=O for some j :#i ,  then the roots ~k with k ~ j  would be 
linearly dependent, which is impossible because they form a basis of Xj. 
The relation above may be written 

l 

(6.5) ~ ni ~i = 0 
i=O  

where each n~ is a positive integer, and n~ = 1 if the vertex x~ is special for S. 

(6.6) Proposition. Let  S be an irreducible reduced affine root system, x i a 
vertex o f  the chamber C. Then the following are equivalent: 

(1) x i is a special point for  S; 

(2) x i is a special point for W(S), and n i = 1. 

Proof. (1) ~ (2) by (6.2.2) and the remark above. 
(2) ~ (1). Since x i is special for W(S) it follows that W(2~)= W(2~), by 

['B], p. 87, Prop. 9 (ii). Hence given ~ e X there exists ~ e S, i such that w~ = wp, 
and therefore ~ is proportional to ft. If ~ = ___~ or __+2~, then ~ is a linear 
combination of the basis elements ct, (j 4= i) with integer coefficients all of 
the same sign. Suppose that 0t = ___~fl. Since ng= 1 it follows that ct is a 
linear combination of the ctj ( j .  i) with integer coefficients, i.e. ~eL(X~) 
where L(S,i) is the lattice in V generated by Z i. Hence fle2L(2~). But Xi 
is reduced (because S is reduced), hence there exists w e  W(Xi) such that 
w fl = ~j for some j :# i. Consequently ~je 2 L(S,i), which is absurd. 

Hence every cte,~ is a linear combination of the ~j (j:# i) with integer 
coefficients all of the same sign, and hence ([B], p. 162, Prop. 20, Cor. 3) 
the ctj (j # i) form a basis of Z, i.e. x~ is a special point for S. 

The function 
l 

(6.7) c = ~ n i a i 
i = 0  

is constant on E (because by (6.5) its gradient is zero) and positive 
(because it is positive on C). Moreover, every constant function c' in 
L(S) is an integral multiple of c. For if c ' = ~  n'~a i, then ~ n'i~ti=0 and 
hence n' i=mn i (O<i<l)  for some meZ. Hence c is the unique positive 
generator of L(S) n F ~ ~- Z. 
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For each a~S let a+ be the unique affine root such that a + - a  is 
constant, positive and as small as possible. Let ua=a + - a ,  and let t a be 
the translation wa+ wa~ W(S). Then by (1.3) and (1.4) we have 

ta(x) = x - u . D a ' ,  
(6.8) 

t , ( f ) = f  + u , ( a ' , f )  
for any x ~ E  and f~F .  

(6.9) Proposition. (1) l f a E S and 2 6 IR, then a + 2 ~ S if and only if 2 ~ Z u , . 

(2) l f  a~S and w~ W(S), then u,,~=u a. 

(3) I f  S is reduced, a~S and 2 a + 2 ~ S  for some 2 ~R ,  then 2=mua 
where m is an odd integer. 

(4) u a is a positive integral multiple of the constant c. 

Proof (1) Ifme7Z and )~e~ then by (6.8) we have 

t"~(a+ 2 )=a+ 2 + m %  (a v,a+ 2) 

= a + 2 + 2 m u , .  

Taking 2 = 0  and 2=u~, we see that a + n u ,  eS  for all n~Z.  Conversely, 
if a+2ES  then t~(a+2)~S for all integers m. Choosing m suitably we 
obtain an affine root a + # with - u a  < p < u,, and if/~ is not equal to 0 
or u, this leads to a contradiction. Hence 2~;E u~, and (1) is proved. 

(2) We have w ( a + u , ) = w a + % ,  hence Ua~ZUwa by (1) above. 
Similarly uw~ Z u,, hence u,,~ = u~. 

(3) Le t / t  be the least real number > 0  such that 2 a + # e S .  Since S 
is reduced and aeS,  we have # > 0 .  Now w a ( 2 a + p ) =  - ( 2 a - # ) ,  so that 
2 a - # e S .  From the definition of p it follows that there is no affine 
root 2 a + 2  with 121<#, and therefore (1) above (applied to 2 a + # )  
shows that 2 a + 2 e S  if and only if 2 = m p  with m an odd integer. It 
remains to show that p = u,. 

Since w2 ,+u(a )= - ( a+ /~ ) ,  we have a + # ~ S  and hence p = r u .  for 
some integer r > 1. If r = 2 then 2 (a + u,) and a + u~ are affine roots, which 
is impossible because S is reduced. If  r > 3 there exists an integer s such 
that �88189 now we have 

w,+s.o(2a+ru,)= - ( 2 a + ( 4 s - r )  u,) 

and therefore 2a  + ( 4 s -  r) u, eS. But by our choice of s, 

0 < ( 4 s - r )  u. <ru,=l~ 

which contradicts the definition of #. Hence r >  3 is impossible and so 
r = 1 and # = ua. 

(4) u, = a + -  a e L(S)c~ F ~ hence u, is an integer multiple of c. 
8 lnventiones math., Vol. 15 
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From (6.9.1) it follows that u, depends only on the gradient of a. 
Hence for each ~e27 we may define u, to be u, for any aeS with Da=ct, 
For each ~eS let 

~, =U~-l~, ~* ----- U~ ~v = (c(,) v 
and let 

27"={~*: ~e27}, 27,={~,:  ~27}.  

(6.10) Proposition. Z* and S ,  are dual finite root systems in E I f  S is 
reduced then Z* and 27, are reduced. 

Proof. It is clear that Z* is finite, does not contain 0, and spans V. 
By (6,9.2) and (1.6) we have u~=Uw~ for all ~27  and we W(Z), so that 27* 
is stable under the action of W(Z). Next, if a~S has gradient ~, then by 
(6.8) we have t ,(b)=b+(~*,fl) for any b~S with gradient ft. Since 
ta(b)~S, it follows from (6.9.1) that (~* , f l )~Zup,  i.e. that (~*, f l , ) e Z .  
Hence Z* is a finite root system in F,, and so also is Z ,  =(27,)v. 

Finally, suppose that S is reduced. If 27 is reduced it is clear that Z* 
and Z,  are reduced. If 27 is not reduced, let ~ and 2~t both belong to 27. 
Then it follows from (6.9.3) that u2~=2u ~, hence that (2~)*=~* and 
(2~), = ~ , .  Hence 27* and Z,  are reduced. 

Let A be the set of vectors 2E V such that the translation x r-~ x + 2 
belongs to T, the translation subgroup of W(S). Since T is a free abelian 
group on I generators, A is a lattice in E For  each 2 ~ A let t (2): x w~ x + 2 
be the corresponding element of T. From (6.8) we have t(~*)=t~ -1 if a 
is an affine root with gradient ~. Hence ~*~A for all ~ Z ,  and therefore 
L(S*) c A. 

(6.11) Proposition. I f  27 is reduced then A =L(X*). 

Proof Let T' be the subgroup of T consisting of the translations t(2) 
where 2~L(S*). Let x i be a vertex of C which is special for S. Then x/ 
is a special point for W(S) by (6.2.2) and therefore W(S) is the semi- 
direct product T. W~, where W~ is the subgroup of W(S) which fixes x~. 
Also W~ normalizes T', because w t ( 2 ) w - l =  t((D w) 2) (we W//, 2~L(X*)). 
Hence the subgroup of W(S) generated by T' and W~ is the semi-direct 
product T ' .  W~. 

Now since Z is reduced, S is reduced and by (6.4) the gradient mapping 
is an isomorphism of S i onto 2;. Hence for each ~ S  there is an affine 
root a~ with gradient ~ which vanishes at x~. By (6.9.1) the affine roots 
are a~+ku, for all ~ S  and k~Z. I fa=a ,+ku , ,  then from (6.8) we have 
w,=t ( - kT*)  w , j T ' .  W i. Hence W(S)= T ' .  W/, and therefore T ' =  T, so 
that A =L(27"). 

We shall now give another proof  of Theorem (5.2). Let S be a reduced 
irreducible root system and let 2;' be the set of indivisible roots of 27 = DS. 
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Let x i be a special vertex of C. By (6.4), for each a~Z'  there exists an 
affine root a, with gradient a and vanishing at xl, and by (6.9) the affine 
roots with gradient a are a,+ku,  (keZ), and those with gradient 2a (if 
2 ~ Z )  are 2a~+(2k+  1) u~ (k~Z). 

Consider the root systems Z' and Z, .  They are both reduced and 
irreducible, and from the proof of (6.10) we have 2?,={u~-lct: ~27'}. 
Hence there are just two possibilities: either (1) 2?, is similar to 2;' or 
(2) Z* is similar to 27'. 

We shall take case (1) first. Here all the u, (~27') are equal, and since 
we are concerned with S only up to similarity we may assume that u,-- 1 
for all ~27' .  Then the identification of E with V obtained by taking x~ 
as origin in E clearly identifies a,+k with ak, ~ in the notation of (2.1), 
and hence identifies S with S (R) v, where R = S v. 

In case(2) all the u~/]l~[I 2 (~27') are equal. Suppose first that 2; is 
reduced, so that Z ' = Z .  Then the affine root system S v dual to S falls 
under case(l)  above, and S is therefore similar to S(R), where R=Z.  

Now suppose that 2? is not reduced. If l=  dim E is equal to l, then 
Z ' =  {~, - ~ }  and we are still in case (1). If 1__>2, then Z is of type BC~ and 
hence there exist two orthogonal roots ~, fl~Z of the same length, such 
that ct___fl, 2c~, 2fl all belong to S. We may assume that I1~11 = If/~ll = u ~ =  
up = 1, whence u~_ a = II ~ - / ~  II 2 = 2. If a, b are the affine roots with gradients 
~,fl respectively which vanish at xi, then a+b~S by (6.4), and 2 b - l ~ S  
by (6.9.3). Now w2b_l (a+b)=a-b+l ,  hence a - b + l ~ S  and therefore 
u~_a<l,  contradicting u~_a=2. Hence case(2) cannot arise when 2? 
is not reduced and of rank > 2, and the proof is complete. 

Finally, we shall briefly classify the non-reduced irreducible affine 
root systems. If S is irreducible and not reduced, let S' (resp. S") be the 
set of a t  S such that �89 r S (resp. 2 a~ S). Then S', S" are reduced systems, 
and W(S')= W(S")= W(S). 

Since S is not reduced, neither is 2; = DS. Let 2?' (resp. 27') be the set 
of cteS such that �89  (resp. 2er  Then 2? is of type BC l, S' of type B t 
and 27' of type C~. Also we have 27'~D(S')~_27 and 27"~_D(S")c_27. Hence 
either D(S')=S, in which case S' is of type BCI; or D(S')=2?', in which 
case S' is of type B z or C~. Hence S' is of one of the types BCt, Bt, C7, and 
likewise S" is of one of the types BC~, B'{, C~. But since S' and S" have 
the same Weyl group, it follows that if S' is of type B~ then S" must be of 
type B[; and if S' is of type BCt or Cy then S" is of type BC l or C~. By 
examining the various possibilities we conclude that there are four series 
of irreducible non-reduced affine root systems, for which the types of 
S', S" are respectively BC t, C~; C[, BC~; Bt, B[; C~, C~. The first two 
are duals of each other; the last two are each self-dual (up to similarity). 
They are listed in Appendix 2. 
8* 
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7. The Function s (w) 

In this section S is an irreducible reduced affine root system, C is a 
chamber of S, and B = {ao . . . . .  at} the basis of S determined by C. The 
vertices of the simplex C are x o . . . . .  xt, the vertex x i being opposite the 
face on which a i vanishes, so that a i ( x ) = 0  whenever i#=j. 

(7.1) Proposition. There exists a unique point r eE  at which the functions 
a~ (0 < i < l) all take the same value. 

Proof Let reE,  say r = Z 2 i x  i where Z 2 i =  1. Then a~(r)=2ia~(xi) so 
that 2i = ar (r)/ar (xi) and therefore 

al(r ) 
i=o ar(xi) = 1. 

If the a~(r) are all equal, let g-1 denote their common value. Then we have 

I 

g = ~ a'/(xl)-I 
i = O  

(7.2) t 

r = g -1 ~ a~ (xi)- 1 xi" 
i = 0  

Conversely, if r and g are given by (7.2) it is clear that ai(r)=g -~ for 
0 < i < l .  

The point r lies in the simplex C, because a~(x3>0 for all i. Its 
location in C may be described as follows. The gradients D aj (j 4= i) are 
a basis of the finite root system Zi. Let p~ be half the sum of the positive 
roots of Z~ relative to this basis. Then we have 

(7.3) Proposition. r = x i + g  -1 Pi (O<=i<l). 

Proof Let v = r - x ~  e V. Then for any j = 0, .. . ,  1 we have 

_ u u g-1 =a~(r)--aj (xi)+ ( ~ ,  v) ,  

where ~j=Daj .  Since a.[(xi)=0 if j . i ,  it follows that ( c t ~ , g v ) = l  for 
0~ v all j4= i. But also ( j, &)  = I for all j + i  ([B], p. 168, Prop. 29(iii)). Hence 

g v - p ~  is orthogonal to ct~ for all j 4= i, and hence g v = pi. 

Let S + (resp. S - )  be the set of positive (resp. negative) affine roots, and 
for each we W(S) let S(w)=S  + n w S - .  Then, for aeS,  

aeS(w)r a is positive on C and negative on w C 

r a > 0 and the hyperplane H, separates C and w C. 

By (4.1) it follows that S(w) is a finite set of affine roots (and the number  
of elements in S(w) is equal to the length l(w) of w as a reduced word in 
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the generators w~ (aeB)). Let 

s(w)= E a 
a~S(w) 

so that s(w)~L(S), the lattice spanned by S in F. 

(7.4) Lemma. Let w 1, w 2 e W(S). Then 

S(WlW2)= WlS(W2)+s(wl). 
Proof. Let 

X=S+ nwlS-c~wlw2S +, 

Y=S+ n w l S - ~ w l  w2 S-, 

Z=S+ nwlS+ nwa w2 S-. 
Then 

S ( % ) = X ~  Y, X n  Y=0,  

w~S(w2)=( -X)uZ ,  ( - X ) n  Z=O, 

S(wl wz)= Yu Z, Yn  Z = 0 .  

(7.4) follows directly from these equations. 

Now let ~: E--~ R be the quadratic function 

�9 (x)=�89 2 

where r is the point defined in (7.1). For any we W(S) let wq~ denote the 
function x~--~Cb(w-lx)---�89 2. Then we have the following 
formula for s(w): 

(7.5) Proposition. s (w)= wq~-  ~b. 

Proof We shall first verify (7.5) when w is the reflection w a in a wall 
H a of C. In this case s(wa) =a, because Ha is the only hyperplane separating 
C and w~ C. Let xeE and put v-- -x-re  V. Then 

(w~ ~)(x)=~(w,x)=�89 Ilx-warll 2 

=�89 l lx-r+aV(r)  Ball 2 

=�89 Oall 2, 
so that 

(wa ~-~)(x)=�89 Oall 2 -Iltl! 2) 

= (v, Oa) +�89 ilOallZ 

=(v, Oa)+a(r) 

(because a(r)=�89 Ilall 2 a'(r)=�89 -1 IlOali2). 
Hence (wa~-~)(x)=a(r+v)=a(x),  and therefore (7.5) is true for 

w=w,(aeB). 
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For the general case we proceed by induction on the length l(w) of 
w. We can write w = w ' w  a for some aeB and l(w')<l(w). Then 

S(W)=S(W'Wa)=W' S(Wa)+S(W' ) by (7.4). 

=w'(w, 4 -  4 )+(w'  4 -  ~)=w 4 , -  

by the first part of the proof, and the inductive hypothesis. 

(7.6) Corollary. s(w)(r) = �89 Itr- w rll z, 

D s ( w ) = g ( r - w r ) .  

Proof From (7.5) we have, for any v e V  

s(w)(r + v)=�89 r + vJl z -Ilvll z) 

=�89 [Ir- w rll z + (v, g ( r - w  r)) 

from which (7.6) follows. 

The following formula will be useful later. As before, let W~ be the 
subgroup of W(S) which fixes the vertex xl of C. Let wie W~ and let 
2eA, so that the translation t(2): x ~ x + 2  belongs to W(S). Then for 
any we W(S) we have 

(7.7) Proposition. 
1 

S(W i t(•) W)=~-g (If/~ll 2 -  liP,lira), 

O s(w i t(2) w)= p i - ( O  wi) It, 

where lt = g 2 + p i -  D s(w ). 

Proof From (7.5) we have 

s (w i t(2) w)(x,) = �89 (ll r -- (w i t(2) w)- 1 x, [I 2 _ [I r -- x, II 2) 
and 

r - (w~ t (,~) w ) - '  x ,  = r - w - '  ( x ,  - ~.) 

= w - l ( w r - x i + 2 )  

= w - l ( r - - g - l D s ( w ) - x i + 2 )  by (7.6) 

= 1  w _ l ( g 2 + p  _ D s ( w )  ) by (7.3) 
g 

1 w_ip" 
g 

Hence s(w i t(2)w)(xi)=~l~s (flail 2 -  IfPill 2), by (7.3) again. 
z g  



Affine Root Systems and Dedekind's q-Function 113 

But 

Next, by (7.4)we have s(w, t (2)w)= w, t(2)s(w)+ s (w  i t(~)) s o  that 

D s (w i t (2) w) = D(w i t (2)) D s (w) + D s (w i t (2)) 

=Owi .  Os (w)+g(r -w l t (2 ) r  ) by (7.6) 

= D w i . O s (w) + g ( r -  w i (r + 2)). 

r - w i r = ( x i + g - l p i ) - w i ( x i + g - l p i )  by (7.3) 

=g-l (p i - (Dwl)p l ) ,  since wi(xi)=x i. 
Hence 

D s (w, t0,) w) = Pi - (D wl)(g 2 + p~ - D s (w)). 

There is another expression for s(w) which is also useful. For  each 
~eZ  let a, be the smallest positive affine root with gradient ct (so that 
a, is positive and a , - u ,  is negative). Define a quadratic function q' 
on E by 

'I'(x) = �88 Z u;'  a~(x) 2. 
r 

(7.8) Proposition. s ( w ) =  w 7 j -  7*. 

Proof. As in the case of (7.5) we shall first verify this formula for 
w=w, ,  where aEB. If ~=Da then a,=a and a _ ~ = - a + u , ,  so that 
w, (a,) -- - a, w,(a , )=a+u, ,  and the % for f l ,  +~ are permuted by 
w a. Hence 

w a V--  ~=�88 2 - ( - a + u ~ )  2) 

=a=S(Wa) 

so that (7.8) is true for w = w,. The rest of the proof is the same as in (7.5). 

From (7.5) and (7.8) it follows that 4 - 7  ~ is invariant under all 
we W(S), and is therefore a constant. On the other hand, ~( r )=0 ,  and 
therefore ~ ( r + v ) =  t t ' ( r+v)-  7~(r) for all v~V, so that 

2'-g Ilvll 2 =�88 Z uZ'(a~( r+v)2 -a , ( r )z )  
a t E -  ~ 

=�88 Z ug~(2a=(r) (~, v) + (c~, v)2). 
~t 

Replacing v by - v  and adding, we obtain 

u~ -1 (~, v) a = 2 g  Ilvll z, 

and by linearizing this identity 

(u~-* ct, u) (~, v ) = 2 g  (u, v) 
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for all u, ve V. Letting u vary, we deduce that 

(7.9) ~ (~ , ,  v) ~ =g v 

where 27+ denotes the set of positive roots in 2; relative to some basis. 
Let A be the lattice in V determined by the translation subgroup 

of W(S), as in w 6. Then i f2eA and aeS  we have 

t (2 ) (a )=a-  (2, ~) 

where ~=Da; since t(2)(a)eS, it follows from (6.9) that (2 ,~)e7 /u , ,  
so that (2 ,~.)e2~ for all cte27. Hence from (7.9) with v=2  we see that 

(7.10) g A ~ L(27) 

where L(2~) is the lattice in V generated by 2;. 

We shall use (7.9) to compute the constant g. For this purpose we 
need the following lemma: 

(7.1l) Lemma. Let R be a finite root system and let ct, t i e r  be such that 
II~ll < II//l]. Then [(ct, if')[ < 1 unless fl= +ct. 

Proof. We have 
2 (ct,//) I1~11 

I1~11' 11//11 I[//ll 

Since I(0t,//)1 < I1~11" II//ll, with equality if and only if 0r,//are proportional, 
it follows that I(~, ff')l <2,  with equality if and only if~ and/ /a re  propor- 
tional and [1~11--II//11, i.e. if and only i f / /=  ___~. Since (~, if') is an integer, 
the result follows. 

Choose a basis of 27, and let ~be27 be such that q~, = u~ 1 tk is the highest 
root of 2;,. Then neither �89 ~b nor 2 q~ belong to Z, so that ~b is uniquely 
determined. (This is clear if 2~ is reduced. If 2; is not reduced, let 27' be the 
subsystem of 27 consisting of the indivisible roots. By (5.2) the u~ for 
~e27' are all equal, hence 2;, is similar to Z', so that q~ is the highest root 
of 27'. But 27 is of type BC t and 27' is of type Bt, hence neither �89 nor 2tk 
belong to 27.) 

The vector ~b, lies in the positive chamber for 27, hence ( % ,  q~*)>0 
for all ~e27 § By (7.11) applied to the root system 2;, it follows that 
(~ , ,  ~b*) is equal to 0 or 1 for all ~ b  in S +. 

Let ~ be the sum of the positive roots of 27 not orthogonal to ~b. 
From (7.9) we have 

g~b*= ~ (ct , ,~b*)~=~b+n.  
~eZ + 
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On the other hand, 
r~=p-wg, p = ( p ,  O ) ~" 

where p is half the sum of the positive roots of 2;. Hence 

so that 

(7.12) 

g c~ * = c~ + ( p , c~ > (a ~ , 

g=u~X(�89 II~bllZ + <p, q5>) 

=(2ur 2 -  IIp]12). 

Suppose that S=S(R) ,  where R is an irreducible finite root system. 
Then 2;=R and u , =  1 for all a~2;', so that 2;, =2;'. Hence 4) is the highest 
indivisible root of R, and uo= 1, so that g=�89 2 -  HpH 2) by (7.12). 
Also ifR is reduced it is clear from (7.9) that (2g) -1 (u, v> is the canonical 
bilinear form on R ([B], p. 172). 

If on the other hand S = S (R) ", where R is irreducible and reduced, 
then 2;=R ~ and u,=�89 ]lct]l 2 for all ct~2;, so that a , = ~ "  and therefore 
2 ; , = ~ ' = R .  Hence by (7.12) we have g = l + ( ~ b ' , p > ,  where & is the 
highest root of R. But (4~', P> = h -  1, where h is the Coxeter number of 
R ([B], p. 169, Prop. 31). Hence in this case g=h. 

To summarize: 

(7.13) Proposition. (1) I f  S=S(R)  where R is an irreducible finite root 
system, then 

g=�89 +pll 2 -  IlPil2), 

where 4) is the highest indivisible root in R relative to some basis, and p 
is half the sum of the positive roots of R. I f  R is reduced, then ~R(U, V)---- 
(2g) -1 (U, V) is the canonical bilinear form on V. 

(2) I f  S=S(R) ' ,  where R is irreducible and reduced, then g is equal to 
the Coxeter number h of R. 

8. The Main Theorem 

Let S be a reduced irreducible affine root system and L(S) the lattice 
in F generated by S. For  each f~L(S)  let e I denote the corresponding 
element of the integral group ring 7~ [L(S)], so that for all f, g ~ L(S) we have 

e I" e g = e I + g, (e f ) -  1 = e -  I ,  e ~ = 1 .  

We shall sometimes write exp( f )  in place of e s, when the exponent f 
is a complicated expression. 

We write f > 0 to mean that f takes values > 0 on the chamber C. 

This will be the case if and only if f =  ~ m i a i with all coefficients ml > 0. 
i=o 
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Let A be the ring of all formal infinite series ~ a I e -I ,  with coefficients 
f>__o 

a f ~ Z  and the obvious definitions of addition and multiplication. 
Alternatively, A is the formal power series ring Z l ie  -"~ . . . .  , e-" ']]  in 
l+  1 analytically independent variables e -a'. 

We propose to compare the infinite product 

H =  1~ (1 --e-") 
a>O 

taken over all the positive affine roots, with the infinite series 

A= ~ ~(w)e -s(') 
w ~ W  (S)  

where e ( w ) = ( -  1) z(w) is the signature of w, and as in w 7 s(w) is the sum 
of the positive affine roots a~S such that w - l a  is negative. Both H and 
A are elements of A. 

Our main theorem is the following formal identity: 

(8.1) Theorem. Let S be a reduced affine root system. Then 

~(w)e-S(~)=P �9 l~(l-e -a) 
w e  W ( S )  a > 0 

(8.1.1) 

where 

(8.1.2) P = H  1-I ( 1 - e  . . . .  ). 
n= 1 ~ B ( Z )  

Here B(Z) is any basis of the gradient root system DS = Z, and u~ is defined 
as follows (w 6): /f a~S has gradient D a--~, then u, is the least positive 
real number such that a + u~ ~ S. 

In the statement of (8.1) we have not assumed that S is irreducible. 
If S is reducible, both sides of (8.1.1) factorize concordantly with the 
decomposition of S into a direct sum of irreducible subsystems (w 3). 
Hence we shall continue to assume that S is irreducible (and reduced). 

The proof of Theorem (8.1) will be given in w167 9-12. In this section 
we shall calculate the two sides of(8.1) more explicitly, using the formulae 
established in w 7, and we shall then specialize the resulting identity in 
various ways. 

Choose a vertex x i of the simplex C, and take x i as origin in E. Then 
the affine space E is identified with the vector space V: namely a point 
xEE is identified with the vector x - x i ~ V .  The affine-linear functions 
on E which vanish at x i are then identified with linear forms on V, and 
hence with elements of V via the identification (w 1) of V with its dual 
space. I f f ~ F  vanishes at x~, then f is identified with Df~ V. In particular, 
the root systems Si and Z~ = DS~ are identified, and the subgroup W~ of 
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W(S) which fixes x i is identified with W(Zi), by virtue of (5.1.3). The 
affine Weyl group W(S) is identified with the semi-direct product of 
W(Z) and the translation group T. 

More generally, any f ~ F  is identified with the function v ~ f ( x  3 
+ ( D r  v) on V. We shall denote this function by f(xl)  + Df. 

As in w 7, let p~ denote half the sum of the positive roots of Z~, relative 
to the basis {Daj: j~:i}. Let wi~ W(Z 3, 2~A and we W(S). Then by (7.7) 
and the identifications we have just described, we have 

1 
(8.2) s (w i t(J,) w) = ~-g (11 ~ I12 _ II pi  II 2) + p~ _ Wg ~ ,  

where p- -g  2 - D s ( w ) +  Pi. 
Now let W ~ be a set of right coset representatives of W(ZI) in W(Z). 

Then every element w of W(S) is uniquely expressible as w=w~t(2)w ~ 
with w~e W~, 2EA and w~eW ~. 

Hence 
A = ~, e(wi) e(w i) e -s~w''ta)w'~ 

W i, 2 ,  w i 

and therefore by (8.2) 

(8.3) A = e - " '  ~ e(w') ~ J i (# )exp -  ~l-~ (llPll z -  IlP,II 2) 
w i A z g  

where p = g 2 - D s (w i) + Pi and 

Ji(v) = 2 e(w) e w~ 

for any v in the weight lattice of Z~. 
Next consider the product H. Take first the factors ( l - e - " )  in H 

for which a(x~)=~O. These form the product H ( 1 - e  -~) taken over the 
positive roots of Z~, which by Weyl's identity (0.1) is equal to e - "  Ji(P~). 
The remaining factors in H are ( 1 - e  -~) for all a6S such that a(xi)>O 
(for if a(xi)>O, the root a must be positive). Hence Theorem (8.1) takes 
the following form: 

P" H ( l - -e-")  
(8.4) a~x,) > o 

II o, II ~/2 g ~ e (w i) ~ Zi (g 2 - O s (wi)) exp - ~ [Ig 2 - O s (w') + Pi l[ 2 e 
w i 2 c A  

z g  

where 

(8.5) z~(v) = J~ (v + p~)/J~ (p~) 

is Weyl's character formula for the root system Si. 
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If x i is a special point for W(S), then W(Xi)= W(Z) and so (8.3) and 
(8.4) take the simpler forms 

(8.y) 

(8.4') 

1 
A =e-P'y ', Ji(g2+p,) e x p - ~ - g  (llg 2 + p,l[ 2 - l ip ,  l[ 2), 

2 e A  

1 
P" l-I ( 1 - e - a ) = e  Iipdt~/2g ~_,zi(g),)exp-~g IIg2+p,II 2. 

a (xi) > 0 2 e A  

By (5.2), S is similar to either S(R) or S(R)', where R is an irreducible 
finite root system. Suppose first that S=S(R), where R is reduced. 
Choose a basis of R, which determines a basis of S as in (4.7), and take x~ 
to be the origin in V (in other words i=  0). This is a special point for S, 
and therefore also for W(S). We have p~ = p, half the sum of the positive 
roots of R. Let 

d = l + card (R) 

which is the dimension of a compact Lie group having R as its system 
of roots relative to a maximal torus. By (7.13), ~R(u, v)=(2g) -1 (u, v) 
is the canonical bilinear form on V defined by R. Now there is the fol- 
lowing "strange formula": 

(8.5) ~R (P, P) = d/24 

(see Freudenthal and de Vries [2], p. 243, where it is deduced from Weyl's 
character formula for the adjoint representation). Moreover, each u~ 
is equal to 1, and the affine roots which are positive at the origin are 
n+ct for n >  1 and all ~eR. Hence, writing X = e x p ( - 1 ) ,  the left-hand 

oo 

side of (8.4') is seen to be equal to l-I p(X"), where 
n = l  

(8.6) p(X) =(1  - X)t l-[ (1 - X e  ~) 
ateR 

is in a formal sense the characteristic polynomial of the adjoint repre- 
sentation of G. 

Moreover, from (7.9) we have 

~t>0 

Also by (6.11) we have A=L(R*), the lattice spanned by the dual root 
system R v. Hence M = g  A is the image of L(R v) in L(R) under the mapping 

~t>0 
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The identity (8.4') now takes the following form: 

(8.7) Theorem. Let R be the system of roots of a compact Lie group G 
of dimension d relative to a maximal torus. Let �9 be the canonical bilinear 
form associated with R, and let M be the sublattice of L(R) defined above. 
Then 

E x(~) x~*"'"*"'=x ~" ~ p(X"), 
t ram n= 1 

where p(X) is the characteristic polynomial (8.6) of the adjoint representa- 
tion of G, and Z(/~)=d(/a +p)/J(p), where p is half the sum of the positive 
roots of R relative to some basis, and J(v)= ~ e(w)e my for any v in 
the weight lattice of R. w~w(~) 

Both sides of (8.7) may be regarded as functions on G with values 
in the power series ring IE [[X]].  Let us evaluate both sides at the identity 
element of G. Then Z (it) is replaced by 

(8.8) d(~)= I]  (~'+P' ~7 
�9 ER* (p, CO 

and p(X) becomes simply ( l - X )  a. Hence, introducing Dedekind's q- 
function 

q(X) =X1/24 I-I (1 - x " )  
n = l  

we obtain from (8.7) the formula 

(8.9) ~ d(~) X +~"+',~+p> =~(X) ~. 
,u~M 

Next, take S = S (R')' with R reduced and irreducible. This time g = h, 
the Coxeter number of R (7.13), and X=R. We have us= �89 I1~112 for all 
~eR,  so that c~*=u,~*=~ and therefore (6.11) A=L(R). Assume that 
11~II2~Z for all ~eR. Then, writing X=exp( - �89  the left hand side of 

(8.4') is equal to I v] q (X"), where 
n = l  

(8.10) q(X)= I-[ (1-XH~H2)H(1-XI"H~e'), 
f l~B(R)  ~ R  

B(R) being any basis of R. Hence in this case the identity (8.1) takes the 
following form: 

(8.11) Theorem. Let R be a reduced irreducible root system, q(X) the 
polynomial defined by (8.10). Then 

E i~( h2) XnllalI2+z<a'p>= f iq(X") .  
2EL(R)  n= 1 
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As before, we shall specialize this identity by mapping each e" to 1. 
Since the action on R of a Coxeter element of the Weyl group is to par- 
tition R into I orbits, each containing h roots and each containing exactly 
one root from the basis B(R) ([B], p. 170, Prop. 33), it follows that q(X) 
specializes to the polynomial 

1-I (1-xrl~ll2) h+l. 
#~B(R) 

On the other hand the exponent of X on the left-hand side in (8.10) is 
equal to h-l(llh2+pll 2 -  I[p[12). Now we have another strange formula: 

(8.12) Ilpll 2=h(h+l) Y~ Ilflll 2, 
24 #~B~R~ 

Assuming this for the moment, we obtain from (8.10) 

(8.13) ~ d(h~')Xh-Xllh't+PH2= H ~](xdlOll2) 
2eL(R) fleB(R) 

where as before r/(X) is Dedekind's rl-function. 

To prove (8.12), we may assume that the bilinear form (u, v) is the 
canonical bilinear form ~ (u, v), i.e. that 

y~ (~, u)  (~, v) = (u, v).  
~e;R 

This implies that the matrix ((a, fl))~,O,R is idempotent: since its rank 
is l, it follows that its trace is equal to l, i.e. that 

y" 11~112=l. 
~ER 

Hence, considering the orbits of the action ofa Coxeter element as before, 
we see that 

11flll2= l/h. 
[3eB(R) 

On the other hand, by (9.5), 

II p 112 = d/24 = l(h + 1)/24 
and (8.12) is proved. 

Finally, we shall make one other specialization of the identity (8.11). 
Let 09 = exp(2iTz/h) be a primitive h-th root of unity (here of course exp 
is the usual complex exponential). We shall specialize each e" to co <''>, 
where a is half the sum of the positive roots of the dual root system R v. 
We recall that (~, a)  is the height of ~ R ;  in particular it is an integer. 
Consider first the effect of the specialization on x(h 2) = J(h 2 + p)/J(p). 
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Now J(h 2 + p) specializes to 

E E(W) O) (w(h;t+p)'') 
weW(R) 

and since (2, rr)E2g for 2~L(R), we have r <wp,~>. Hence 
z(h 2) specializes to 1. 

Next consider the polynomial q(X)  defined by (8.10). We need the 
following result: 

(8.14) Proposition. Let R be an irreducible reduced f ini te  root system 
o f  rank l, with Coxeter  number h. For each p = 1 . . . .  , h let rlp be the number 
o f  roots of  height p in R, relative to some basis o f  R. Then qp + rlq = I i f  
p + q = h + l .  

Proof. This is an easy consequence of the following two facts: 

(a) If m 1 ~ m 2 >. - .  >mt are the exponents of R, then m i+ m j = h  if 
i + j = l + l ;  

(b) the partitions (ml,. . . ,ml) and ( q t , ' " , r / h - 0  are conjugate (in 
other words, if F is the set of points (i,j)~Z 2 such that 1 < j < m  i, then 
F is also the set of (i,j)~Z 2 such that 1 ~i_<t/j). 

For  a proof of (a) see [B], p. 118; for (b) see [4] or [5]. 

Assume now that tl~ll =1 for all c~eR. Then the polynomial q(X)  
specializes to 

(8.15) (1 - x ) '  I-I (l - o ~  <~,~> x ) .  

It follows from (8.14) that, for 1 < p < h - 1 ,  

l if p is not an exponent mi 

FJP'I'-I~h--P= Idi - 1 if p is an exponent. 

For r/p=qp_~ ifp is not an exponent, and % =  r/p_t + 1 ifp is an exponent. 
Hence (8.15) is equal to 

l 
( 1 - X h) IV[ ( 1 - co m' X )  = (1 - Xh) ' c (X),  

where c(X)  is the characteristic polynomial of a Coxeter element of 
W(R). Hence 

(8.16) Theorem. Let R be a reduced irreducible f ini te  root system such 
that ]l~l] = 1 for  all c~e R. Then 

E x~-' ~"~+'"~=,(x~) ' x'~'[I c(x~ 
2eL(R) n= 1 

l 

= r/(Xh) ~ I ]  r/(co~ x )  
i = 1  
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where c(X)  is the characteristic polynomial and col, . . . ,  to z the eigenvalues 
of  a Coxeter  element of  W(R).  

When  R contains  roots  of  different lengths, the formula  correspond-  
ing to (8.16) is more  complicated,  and  we shall not reproduce  it here. 

9. Proof of the Main Theorem 

The  p roo f  of T h e o r e m  (8.1) will occupy ~ 9-12. As we remarked  
in w 8, we m a y  assume that  S is irreducible. Let  

l 

(9.1) X = e  - c =  VI e-r~,a, 
i=O 

where c is the constant  defined in (6.7). By (6.9.4) it follows that  e . . . .  is a 
posit ive integral power  of X, for all ct~ ~, and therefore the product  P 
defined in (8.1.2) belongs to 7~ [ [ X ] ] .  The first stage in the p roof  of  (8.1) 
is to show that  (8.1.1) holds for some P ~ Z [ [ X ] ] .  The  p roof  that  P is 
given by the p roduc t  (8.1.2) is then achieved by specializing (8.1.1) in 
two different ways (in w167 10 and  11) and compar ing  the results. 

When  multipl ied out, the produc t  H = 1-[ (1 - e -a) is of  the form 
a>O 

(9.2) 17= Z ay e - y  
f>=o 

with coefficients ayETZ. Consider  the effect of t ransforming H by an 
element w of  W(S): 

w U =  I - I ( 1 - e - W ~  
a>O 

For  each affine roo t  a > 0 such that  w a < 0 we write 

1 - e  -wa= - e-W'(1 - e  wa) 

and then it is clear tha t  
w Fl=e(w)  e -~wa 17, 

the sum in the exponent  being over all a > 0 such that  w a < 0. Writ ing 
w a = - b, we have b > 0 and w -  1 b < 0, so that  - S w a = s (w), and therefore 

w Fl =e(w)  eS~W) II .  

Hence  f rom (9.2) we obta in  

(9.3) a s. =~(w) awy +~w ) . 

Define a (non-linear) ac t ion  of the Weyl group W(S) on the space F 
of affine-linear functions on E, as follows: 

(9.4) w o f =  w f  + s(w) = w ( f  + q~) - 
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by (7.6). In this notation (9.3) takes the form 

(9.5) a w of = e (w) a s. 

We shall now describe this action of W(S) on F more concretely. 
Define ~: F ~ E by the rule 

d/ ( f )=r-g- l  Df  

where r is the point in the simplex C defined in w 7. Clearly O is surjective 
and its fibres are the cosets of F ~ (the line of constant functions) in F. 
The action of W(S) on F defined by (9.4) passes to the quotient F/F ~ 
for if f l - f 2  is constant then so is wofl-wof2. Hence it induces an 
action of W(S) on E, and this action is just the usual one: namely 

Ip(wof)=w(~,(f)). (9.6) 

For  
~p(wof)=~(wf +s(w)) 

=r -g - ' (Dw .Df  +Ds(w)) 

= r - g - l D w  . D f - ( r - w r )  by (7.6) 

= w ( r - g  - 1 D f ) = w ( r  

From (9.6) it follows that the action (9.4) of W(S) on F is that of a 
reflection group, the reflecting hyperplanes being all parallel to the 
line F ~ Hence, by a basic property of reflection groups: 

(9.7) Lemma. For each f eF  the group 

Wf = {we W(S): w o f = f }  

is generated by the reflections it contains. 

For each f e  F let 
A :=  ~ ~;(w) e -w~ 

w~W(S) 

(9.8) Lemma. Ay~eO if and only if W:= {1}. 

Proof Suppose As=0.  Then the term e: in A: must cancel with 
e(w) e w~ for some w+ 1. Hence f =  w of (and e(w)= - 1 )  for some w4:1 
in W(S), and therefore W: 4:{1 }. 

Conversely, if I4::=t= {1} then by (9.7) there exists a reflection we W(S) 
such that w of=f. Hence A s = Awo: = e(w) A: = - A :  and therefore A~ = 0. 

From (9.2) and (9.5) we have 

(9.9) H = ~ a: A f 
S 

9 Inventiones math., Vol. 15 
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where the sum is over a set of representatives of the orbits of W(S) for 
the action (9.4) which intersect L(S) § = {f~L(S): f >0}. By (9.8) we need 
consider only those orbits on which W(S) acts faithfully, and these are 
identified by 

(9.10) Lemma. The only orbits in L(S) on which W(S) acts faithfully 
(for the action (9.4)) are those which intersect the line F ~ of constant 
functions. 

Proof By (9.6) we may equivalently consider the orbit of r - g - l D f  
in E under the usual action of W(S). If W acts faithfully on this orbit 
then we may assume that the representative f of the orbit is such that 
r - g - l D f e C ,  i.e. such that a~(r -g - lDf )>O for O<i.<_l. But 

a~ (r -- g- 1 D f )  = a~ (r) - g-1 (o~, D f > 

= g-X (1 - (ct~, D f>) 

by (7.1), where ~q is the gradient ofa i. Hence ( ~ ,  D f ) <  1, hence is <0,  
because it is an integer. But from (6.5) there is a relation of the form 

l 

m i ~ = 0, in which each coefficient m i is strictly positive. Hence 
i = O  

i 

mi(~,  O f ) = 0  
i = 0  

and therefore (a~, D f ) = 0  for O< i < l, so that D f =O. 

From (9.8), (9.9) and (9.10) we have 

11= ~ a, cA,c, 
n = O  

and wo(nc)=nc+s(w), so that 

A,c= e-"C A = X" A . 

Hence H = a,c X A, or say 
. = 0  

(9.11) n = Q~ 

where Q =  ~ a,~X"eZ[[X]]. 
n=O 

Since a o = 1, Q is a unit in Z [ [ x ] ] ,  and it remains therefore to show 
that Q - 1 = p, where P is the product (8.1.2). We shall do this by specializing 
(9.11) in two different ways, in N 10 and 11. For  the purposes of the cal- 
culations it seems to be necessary to assume that the gradient system 2; 
is reduced. The case where 2; is not reduced (i.e. where S is of type BCt) 
will be dealt with separately in w 12. 



Affine Root Systems and Dedekind's r/-Function 125 

10. First Specialization 
Until further notice we shall assume that S is irreducible and that 

X = D S  is reduced. We can assume that the vertex x o of the simplex is 
a special point for S (w As in w we shall identify the affine space E 
with the vector space V by taking x o as origin in E. Then the root 
systems S O and 2;0 are identified, and Z o =2; (6.4). The gradients ~i=-Dai 
(1=<i~/) form a basis of 2;. This choice of basis defines positive and 
negative roots for Z, and hence also for 2;* and Z, .  The positive affine 
roots are 

~+nu~, - ~ + ( n + l ) u ~  

where ~EX + and n is any integer >0. In particular, the root a~B is 
now identified with ~ (1 =<j__< l); also a o is identified with ~o + u~o. Since 
no= 1 in (6.7) it follows that U~o=C. Hence e . . . .  Xe-~O. 

Let p* be half the sum of the positive roots of 2;*. If ~ 2 ; + ,  then 
(a, p * ) = u ~ ( a , ,  p*)  is a positive integral multiple of u~, and hence by 
(6.9.4), e -  <~' Q*) is a positive integral power of X = e -c. 

Define a homomorphism 0 of A = Z  [[e -a~ . . . . .  e -a ' ] ]  into 7~ [ [X] ]  
as follows: 

O(e-~)=e -(~,Q*) (a~Z+), 

O(X)=X h+l 

where as before h is the Coxeter number of 2;. (To show that 0 does 
map A into Z [ [ X ] l  we observe that 0 (e- ao) = 0 (X e-  ~o) = X h + 1 e -  <~o, Q*> 
and 

(~0, P*) = U~o <~o,,  P*) =< c (h -  1) 

because the height of a root of 2;, is at most h - 1 .  Consequently 
O(e-a~ m where m is an integer >2.) 

We have to calculate O(A) and O(H). Consider 0(H) first. It is the 
product of factors 

(1 - X)~" ~*> +"(h +')), (1 - X ~  - <~*' ~'> +(" +l)(h + 1)) 

for all a ~ Z  + and all integers n>0 ,  where X~=e- ' .  To transform this 
product we need the following property of finite root systems: 

Let R be an irreducible reduced finite root system. We shall say 
that a root a~R is short if there exists tieR such that [lfll[ > [I~H; other- 
wise a is long. (So if all the roots of R have the same length, they are 
all long roots.) Choose a basis of R, so that the heights (w of the roots 
aER are defined. Let h be the Coxeter number of R, and for l<p<h 
let the (resp. t/2p) be the number of short (resp. long) roots of height p 
in R, and let l~ ( = q u )  (resp. l a (=r/20) be the number of short (resp. 
long) roots in a basis of R. Then 

(10.1) Lemma.  l f  p+q=h + l then thp+tl~q=li (i=1,2).  
9* 



126 I.G. Macdonald: 

In view of (8.14) it is enough to establish (10.1) for the short roots, 
and this is a consequence of the following observation: 

(10.2) Observation. The number h I =h/(l 1 + 1) is always an integer, and 
the sequence (qap)l<=p~h consists of h 1 terms equal to 11, followed by h 1 
terms equal to 11 -- 1, and so on, ending with h I terms equal to O. 

I do not know of any uniform explanation of (10.2). It is easily 
checked case by case (there are effectively only four cases to check). 

Let ~t, fles If II~,ll--Ir/~,ll then 0% and fl, are congruent under 
W(2;,) = W(2;), hence 0t and fl are congruent under W(27), and therefore 
u~ = u~, so that X~ = X~. Let X 1 (resp. X2) denote X~ for ~, short (resp. 
:t. long). In the notation used above, with R = X , ,  it is clear that O(II) 
is the product of ~/fp factors equal to ( 1 - X f  +n(h+l)) and qip factors 
equal to (1 --Xhi+l-p+n(h+l)), for i=  1, 2; p = 1, ..., h, and all integers n>0.  
Hence by (10.1) it is the product of I i factors equal to (1--X p+n(h+l)) 
for the same range of values i, p and n. 

On the other hand, from the definition (8.1.2) of P=P(X) ,  we have 

P(X) = I ]  (1 - XT)" (1 - x g )  f2. 

Hence 

(10.3) 0(II) = P(X)/P(Xh+ I). 

Now consider O(A). Each element of W(S) is uniquely of the form 
w t(2), where we W(X) and 2eA. From (7.5) we have O(e -'(w"~))) = e -v(w' ~), 
where 

(10.4) U(w, 2)=(h+l)(�89 2 ) ) + ( p - w ( g 2 + p ) , p  *) 

in which p is half the sum of the positive roots of 27. Hence O(A)=R(X), 
where 

(10.5) R(X)= X e(w)X e-v~ 
w~W(Z) 2~A 

By applying 0 to both sides of (9.11) we obtain, from (10.3) and (10.5), 

P(X) 
(10.6) p ( X  h + 1) = Q ( Xh + 1) R (X). 

For purposes of comparison later we need to express U(w, 2) in a 
form which does not involve p*. For this we require the following 

(10.7) Observation. There exists an element w' ~ W(r,) such that 

g p * = ( h + l ) p - w '  p. 
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I do not know a uniform proof  of (10.7). Suppose first that S = S(R) V, 
so that 2 ;=R' .  Then g=h (7.13), and u~=~llsII  2 for all ~ X ,  so that 
c~* = 5  and hence p* =p .  So (10.7) is satisfied with w ' =  1. 

Now let S=S(R). Then each u , =  1, so that 5* =5* and therefore p* 
is half the sum of the positive roots of R v. We need consider only root 
systems R which have roots of different lengths, since the others are 
already covered by the previous paragraph. We consider each case 
(types B l, C t, F 4, G2) in turn, using the notation of the tables at the 
end of [B]. 

l 1 

(i) If R is of type B~, then p =  ~.(l+�89 i and p * =  ~.(l+l-i)ei. 
Also g = 2 l -  1 and h = 2 l, so that i= 1 ~= 

l 
( h + l ) p - g p *  ~ 3 �9 , = ( l + ~ - 2 0 ~ i = w  P 

i = |  

where w' is the element of W(R) which maps el,/~2 ,.e3 . . . .  respectively 

t o  /31~ - - / 3 l , / ~ 2 ,  - - / ~ l - 1 ,  . . . .  

(ii) If R is of type C~, then p and p* in (i) are interchanged. Also 
g = 2 l + 2  and h=21, so that 

l 

(h+ l)p-gp*= 2 i~i=w' p 
i = 1  

where w'(el)= et+ 1_i (1 < i < l). 
(iii) If  R is of type F 4 then p=�89 p * =  

8e 1 + 3 e  2 + 2 e  3 + e  4. Also g = 9  and h =  12, so that 

(h+ l)p-gp*=�89 + lle2 + 3ea-5e4)=w'p 

where w' is the element of W(R) which maps el, ~2, %, e4 to e. 2, - e  4, 
e3, - e l  respectively. 

(iv) I f R  is of type G 2, then p = 5 5 a + 3 5 1 ,  p * = 9 ~  1+5ct1. Also g = 4  
and h = 6, so that 

(h+l)p-gp*= -0~1 +0~2 --- w' p 

where w' is the reflection associated with the root 3 5 1 + ~  2. This com- 
pletes the verification of (10.7). 

Using (10.7), we obtain by a straightforward calculation from (10.4) 
the following expression for U(w, 2): 

1 
(10.8) U(w, 2)=  (ll(h+l)(w(g2+p)-p)+w'ptl 2-  IlPlf2) - 

2 g ( h + l )  
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11. Second Specialization 
We retain the notation and assumptions ofw 10. Let ~o = exp(2n i/(h+ 1)), 

where exp is the ordinary complex exponential. Define a homomorphism 
~: A ~ �9 [[X]]  as follows: 

@(e-=)=o) <='~ (acX) 

r 

where a is half the sum of the positive roots of Z ~, so that (~, a )  is the 
height of a ~ 2;. 

As in w we split up the product H into two parts, say H o and/ /1 ,  
where//o is the product of the factors (1 - e  -") for which a (Xo)= 0, so that 

(11.1) Ho= ]-[ (1-e-~) ,  

and H 1 is the product of the ( 1 - e  -~) for which a(xo)>0, so that 

/ /1=  f l  l-[ (1 __ e . . . . . .  ). 
n =  1 a~Z 

Hence 

(11.2) r  f l  l-[(1-co<"~>e . . . .  ). 

This product can be simplified means of 

(11.3) Lemma. Let R be a finite irreducible reduced root system, B a 
basis of R, and h the Coxeter number of R. For each ~ ~ R let X ,  be an 
indeterminate, such that X , ~ = X ~  for all ~ R  and we W(R). Then 

lq  (1 - ~<: ,~  [ I  (1 - x~+')/(1 - x e )  

where o~ = exp(2 n i/(h + 1)) and a is half the sum of the positive roots of R v. 

Proof. This is a consequence of (10.l). Let X 1 (resp. X2) denote X: 
for ~ short (resp. ~ long). Then the product H(1-co<:'"> X:) consists of 
tli, factors (1 -~o p Xi) and t/iv factors (1 - c o - "  X~), for i=  1, 2 and 1 < p < h. 
Since o~-P=oo h+l-" we have by (10.1) altogether I~ factors (1-r 
for i = 1, 2 and 1 < p < h, whence the result. 

From (11.2)and (11.3) it is clear that 

(11.4) ~ (H0 = P(X  h + a )/P(X). 

Next, consider A. From (8.3'), we have 

1 
A =e -v Z J ( ~ + P ) e x p - ~ - g  (H/2-{-pH 2 -HpU 2) 

/~EM 
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where M--  g A and 
J ( # + P ) =  ~ e(w)e wtu+~). 

w~W(l~) 
Now 

~b(J(/~+p))= Z e(w) ~<w(u+Q)'~> 
weW(Z) 

which by Weyl's formula (0.1) is equal to 

H ((D(/~ + ~o, ~'/2) - -  (D- (/~+ 0, ~v/2)). 
~Z+ 

Hence ~k (J(/~ + p)) ~e 0 if and only if/~ satisfies the following condition: 

(11.5) (~ t+p ,~ ' )~g0mod(h+ l )  for all asS. 

[The scalar product (/~ +p,  ~') is an integer because M = g  A c L(S) by 
(6.11).] 

We have to investigate which elements/~ of M satisfy (11.5). 

(11.6) Lemma. Let #~L(Z). Then I~ satisfies (11.5) if and only if there 
exist w6 W(S) and 2~L(Z) such that 

(11.6.1) l~+p-w p=(h+ l)2. 

Proof If/~ + p - w p ~(h + 1) L(X), then clearly 

(l~+p,c~v)=(wp,~')mod(h+l) for all ~eZ.  

But (w p, c~') is equal to the height of w-  1 ~v, so that 1 < I (w p, ~') I < h - 1. 
Hence (/~ +p,  c~*) is not divisible by h+  1. 

Conversely, suppose that/~ satisfies (11.5). Then p+p does not lie 
on any of the hyperplanes 

He , ,=  {xcV: (~', x) +n(h+ 1)=0} 

where ~ S  and n~E. Let G be the group of isometries of V generated 
by the reflections in these hyperplanes. Then G is an affine Weyl group 
and is the semi-direct product of W(Z) and the group of translations of 
the form t((h+ 1)2), where 2~L(2;). If & is the highest root of s then 
the open simplex F in V consisting of all x~ V such that 

(c~, x)  > 0  (1 < i < l ) ,  (~b', x ) < h +  1 

is a chamber for the group G. Since /~+p does not lie on any of the 
reflecting hyperplanes for G, it lies in sF for some seG; hence there 
exist w~W(S) and 2~L(X) such that i~+pe(h+l)2+wF, or equiv- 
alently w-~(l~+p-(h+ 1) 2)~F. 
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Let v=w-~(#+p-(h+l)2) -p .  Since w- lp -p~L(Z)  it follows 
that veL(Z), and since v+p~F we have 

(cq*., v + p )  > 0  (1__<i</), (q~',v+p)<h+l. 

But ( ~ ,  p)  = 1 and (&,  p )  = h -  1, so that 

(~,*., v) > 0  (1 < i < / ) ,  (~b', v) < 1. 

Hence (~b*, v), being an integer, must be either 0 or i. 

Suppose that (&,  v ) =  1. Writing ~b* as a linear combination of 
the ~,*., say tk* = ~ mi o~*i, we have 

l 

y~ m i (~,'., v )  = 1. 
i = 1  

Since each m i is a positive integer and each ( ~ ,  v) is a non-negative 
integer, it follows that ( ~ ,  v) =0  for i=  1 . . . . .  l with just one exception, 
and that for this one value of i we have ml = ( ~ ,  v ) =  1. Hence v is a 
fundamental weight to i ([B], p. 167). But the fundamental weights to~ for 
which m~=l are never in the root lattice L(S) ([B], p. 177, Cor. to 
Prop. 6). This is a contradiction, since veL(,Y,). 

Hence we must have (~b*, v) = 0  and therefore ( ~ ,  v) = 0  for 1 < i< l, 
whence v = 0  and so i t+p=wp+(h+ 1)2, as required. 

From (11.5) and (11.6) it follows that if qs(J(/~+p))4:0, then there 
exists w~W(Z) such that (Wl(la+p), tr)= (w lwp, tr) mod(h+  1) for all 
w 1 ~ W(S), and consequently ~,(J(# + p)) = e (w) ~ (J(p)). 

On the other hand, from (11.1) and (0.1) we have Flo=e-QJ(p), and 
therefore 

(11.7) ~b(Flol A)= ~ e(w)exp-- ~---~(llla+p[12-11PllZ), 
/Z, W 

the summation being over all I ~ M = g A  and weW(S) which satisfy 
(11.6.1) for some 2~L(Z). 

The next step is therefore to find all solutions (2, I~, w)E L(Z,) x M • W(Z,) 
of (11.6.1). Given weW(Z,), one solution may be obtained as follows. 
From (10.7) we have 

gw'-l  p* +p=(h+ l) w'-l p. 

Operating on either side with w and subtracting, we get 

g w'-X(p*-wlp*)+ p - w  p=(h + l )w ' - l (p-wlp)  
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where w, = w' w w' - ' .  Hence if we put 

(11.8) 

we have 

20 = w' - '  (p - w, p) e L (Z), 

Po =g w'-'(p* - w  1 p*)eg L(Z*)=gA =M 

#o + p - w  p=(h+ l)2 o. 

Hence 2, p, w satisfy (11.6.1) if and only if 

(11.9) /~ - #o = (h + 1 ) ( 2 -  20). 

Now we have 

(11.10) Observation. M n ( h +  1) L(Z)=(h+ 1) M. 

As in the case of (10.7), I do not know a uniform proof. First, if 
S=S(R)* then g=h and A=L(Z), so that M=hL(Z). Hence 

M n(h + l) L(X)= h L(Z)n(h + 1) L(Z) = h(h + 1) L(X) =(h + 1) M. 

The other possibilities for S (i.e. S=S(R) where R is of one of the 
types B l, Cl, F 4, G2) have to be checked case by case. This presents no 
difficulty, and we shall omit the details. 

From (11.9) and (ll.10) it follows that 2,#, w satisfy (11.6.1) if and 
only if 2 - 2 o e M ,  say 2 - 2 o = g 2 1  for some 2leA. Hence 

I1~ +pll = II(h+ 1) 2+wpl[ 

= II(h+ 1)(g 2, +w'- ' (p-w,p))+w pll 

= II(h + 1)(wi-l(g w' 2, +p) - /9)+ w' pll 

and therefore, from (10.8) 

1 (llp+pll 2_ tlpl[2)=(h + 1) U(w?', w'2,). 
2g 

Hence, from (11.7), we have 

~k(HolA)= ~ e(w)~ exp-(h+l)U(w, 2) 
weW(2) AeA 

= R ( X  h+l) 

by (10.5). From this and (11.4) and (9.11) we obtain 

p(xh+ ~) -Q(X) R (Xh+ '). 
(Ii.II) P(X) 
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12. End of the Proof 

We can now comple te  the p roof  of  (8.1) in the case where 2; is reduced. 
Let u ( X ) =  P(X) Q (X) and v ( X ) =  P(X) R (X) -1. Then f rom (10.6) we have 

u(Xh+l)=v(X), 
and f rom (i1.11) we have 

u(X)=v(Xh+I). 
Hence  

u ( X  ~h + m )  = u ( X )  

f rom which it follows immediate ly  that  u(X) is a constant.  Since P, Q 
each have constant  term 1, it follows that  u (X) = 1, whence Q = P -  ~ and 
therefore A =PH by (9.11). 

Finally, we have to deal with the case where E is not  reduced. We 
may  take S = S (R) where R is of type BC~. Let el, . . . ,  el be an o r thono rma l  
basis of  V. We m a y  take the elements of  R to be the vectors 4-e~, + 2 e  i 
(1 < i < l), ___ el _+ e~ (1 < i < j < l). Then the affine roots  are n _+ ~/, (2 n + 1) + 2 e i, 
n + e~ _+ ei for all integers n. We take as basis of  S the affine roots  a 0 = 1 - 2 ea, 
ai=ei-~i+1 (1 < i < l -  1), at=e I. Then  g = 2 / +  1, h = 2 l  and c = 1. 

Let  R '  be the subsystem (of type B~) of  R obta ined  by deleting the 
roots  +2e~ ( l < i < l ) .  As in w let H 1 denote  the produc t  of the 1 - e  -a  
where aeS and a(Xo)>O, and let H~ denote the corresponding produc t  
for the subsys tem S (R'). Then  H 1 = / /~  �9 where 

//1 = f i  

l 
" 1-I(l_e-2~,X2,+l)(l_e2~,X2n+l). 

n~0 i=1 

We shall apply  the h o m o m o r p h i s m  ~ of w to the identity (9.11): 

r  ~o <' ' '> , ~9 (X)=X 

where cr is half  the sum of  the positive roots  of  (R')', so that  

1 
~= ~ (l+ l - i )~ i ,  

i=1 

and c ,=exp(2z t  i/(21+ 1)). Then we find easily tha t  

(12.1) qJCH'[ )=  f i ( 1 - - x ( 2 n + l ) ( 2 l + l ) ) / ( 1 - - x 2 n + l ) ;  
n=0 

also f rom (11.4) we have 

JJ (//'0 = P( X2 t+ ~)/P(X), 
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00 

where P(X)= 1-I (1 -X") (  Hence if we put 
n=l  

g(X)= f i ( 1 - X 2 " + l ) =  f i (1  +X") -1 
n=O n=l 

we have 

(12.2) 
p ( X 2 I + I ) n ( X  21+1) 

P(X) m(X) 

Next, consider 6(Ho 13). From w 8, 

1 
IloXd = ~', Z(/0exp (H/~+p[] 2 -  Itpt]2), 

~M 4 / + 2  
l 

where p = ~ (l + �89  i) ~i is half the sum of the positive roots of R', and 
i=1 l 

M = ( 2 I + I ) A ,  where A= ~ Z e  i. From the definition of ~k it follows 
i= l  

that r for all / ~ M ,  whence 6(J(p+p))=6(J(p)) and therefore 
6 (Z (/~)) = 1. Hence 

(12.3) 6(//01 A)=- ~ X I~) 
).cA 

where 
1 

f (2 )=  41+2 (11(2/+1)2+p112- Ilpll2) 

=�89 1)lI2]l 2 + (2, p) .  
l 

Hence if 2 = - ~ n i el then 
i = l  

l 

f (2)=  ~ ((2l+ 1) �89 i -  1)+ini) 
i = l  

and therefore from (12.3) we have 
l 

6 ( / / 0 1  A) = U E X((2l+l)n(n-1)/2)+in 
i= 1 n-~Z 

which by Jacobi's identity (0.6) is equal to 

H (1- x'2'+"")(1 + x,2'+,,,.-',+')(1 + 
i=1 n=l  

Hence we find 

(12.4) 6 ( / / 0 '  A) = P(X 2,+') n(X2t+I)/g(X) . 

From (12.2), (12.4) and (9.11) it follows that Q(X)=P(X)  -1. This 
completes the proof of (8.1). 
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Appendix 1 

Reduced Irreducible Affine Root Systems 
F o r  each type of reduced irreducible affine root  system we shall 

exhibit:  

(1) an affine root  system S on a Euclidean space E. 

(2) a basis {% . . . . .  at} of S. 

(3) the values of g, h and c for S. 

(4) the lattice M = g A. 

(5) the Dynk in  diagram.  The  black nodes cor respond  to vertices x i 
of the chamber  C which are special points  for W(S). The numbers  
a t tached to the nodes  are the coefficients n t of  (6.5). 

(6) r/-function identities ob ta ined  by specializing the identi ty (8.1) 
for S. In each of these, c o denotes a numerical  constant  whose value can 
be writ ten down by considering the t e rm of lowest degree in the power  
series. 

Notation. e o, e 1, e2, ... are a sequence of o r t h o n o r m a l  vectors  in a 
real Hi lber t  space. If v = (v I .. . . .  vt) then 

I[vlf2=2;v], zB(v)=I-IviI-I(v~-v]), zo(v)=[-I(v~-vf). 
i i < j  i < j  

Type A z (l_>_ 1) 
(I) B a s i s o f E :  ei_l-~i( l<i<l) .  

Affine roots :  n -+(~t-as) (1 __< i<j< t) (n~TZ). 
(2) a o = l - t o + ~ t ,  ai=~,i_l-el ( 1 < i < / ) .  

(3) g = h = l + l ; c = l .  

(4) M={(l+ l) ~=on, ei:~.,n,=O }. 

. , o  

v w 
1 1 

(6) 

( /=1 )  ( l>2)  

Special izat ion e"' ~ 1 (1 < i < l): 

(a) I even: 

(x) t2  + 2z = Co ~ [ I  (vt - v j) x ,r v I, 2/2. + 1> 
v i < j  

s u m m e d  over  v = (Vo, . . . ,  v l) ~ Z t + 1 satisfying 

v t - i  ( m o d l + l )  (O<=i<l) and  ~vi=O. 
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(b) I o d d :  

'7(x)'2 + 2'=Co ~ I] (v , -v? x ''~'t~/~"+ '~ 
v i< j  

s u m m e d  over  v = (% . . . .  , vz) e Z z + z satisfying 

v ; = 2 i + l  (mod21+2)(O<i<=l) and  ~ v ~ = 0 .  

Type  B z (l > 3) 

(1) B a s i s o f E :  e l , . . . , e  z. 
A f f i n e r o o t s :  n4-e  i ( 1 < i < / ) ,  n+ei+e ~ (l<=i<j<l) (neZ) .  

(2) ao---1-el-82, ai-=ei--ei+ 1 (1_<i<1--1) ,  a t = e  z. 

(3) g = 2 l - 1 ,  h = 2 / ,  c = l .  
I 

,4, 

1 

( 5 )  ' 

l 

(6) (a) Special izat ion e " ' ~  1 (1 <i<l): 

~ (  X)212 +1 =C0 Z )~B(/)) xllvJJ2/8(21-1) 
v 

s u m m e d  over  v =  (v I . . . .  , vz)eZ t satisfying 

v i=2i -1  ( m o d 4 / - 2 )  ( l < i < / )  and Z t ~ i = l  2 ( m o d 8 / - 4 ) .  

(b) Specia l izat ion ea'v --* 1 (1 < i < l -  1), ea'~ -:, - 1: 

(~ ( x 7  ' -~  ,1 (x~) ~)'= Co Z x,~ (~) x II~ tl ~/~ ~ , -  ,, 
v 

s u m m e d  over  the same set o fve2g  j as in (a). 

(c) Specia l izat ion ea~ --, 1 (0-< i_< l -  1): 

(~1(X1/2) 2 ~1(X)2'-3) ̀  =Co Z ( -  1) x~' ZD (v)tI~II2/('z-2) 
v 

s u m m e d  over  v = (vl . . . .  , vz)e Z z satisfying 

v ~ - i - I  ( r o o d 2 / - 1 )  (1__<i__</). 

Type  B~ (I > 3) 

(1) B a s i s o f E :  ~1, . . . ,~ , .  
Affine roo t s :  2 n + 2 a  i ( 1 < i < 1 ) ,  n-4-ei• J (l <i<j<l)  (neZ). 
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(2) 

(3) 

(4) 

(5) 

(6) 

I.G. Macdonald: 

a o = l - e l - ~ 2 ,  ai=,gi-I~i+ 1 ( 1 < i ~ l - 1 ) ,  a l = 2 e  t. 

g = h = 2 1 ;  c = l .  

{2 li~l } M = n i el: ~., n i = 0 (mod 2) . 

1 

. . . .  . . . ~  
2 1 

1 

(a) Specialization ea'~-~ 1 (1 < i</) :  

( t 7 ( / ) 1 - 1  # 7 ( / 2 ) ) 2 / + 1  = CO E ZB(U) X IIvN2/41 
v 

summed over v=(vl,  ..., vl)~TZ I satisfying 

vi=-i (mod2l)  ( 1 < i < / )  and ~ v ~ = � 8 9  (mod4/).  

(b) Specialization e a' v-+ 1 (0 < i < l -  1): 

(r/(X) TM r/(X2)- ') 2/-1 =Co Z (-- 1)'~<v'-i+l)12tZo(v)XIIvll214t 
i )  

summed over v = (u1, . . .  , Ul)~. 7~1 satisfying 

v i - - i - - 1  (mod2l)  ( l < i < l ) .  

Type C I (l > 2) 

(1) Bas i so fE:  e l . . . . .  e t. 

Affineroots:  n+__2e i (1< i< / ) ,  n+ei+_e j (l < i < j < l )  ( n ~ Z ) .  

(2) a o = l - 2 e l ,  a i = e l - e i +  1 ( l < i < l - 1 ) ,  a l = 2 e  I. 

(3) g = 2 l + 2 ,  h = 2 1 ,  c = l .  

(4) M = ( 2 / + 2 ) ~ Z e  i. 
i= l  

(5) o - - . . . - - ~  o -, 
2 2 2 1 

(6) Specialization ea'~--*l ( l < i < l ) :  

11 (S)212 -}- l = Co E ZB (1)) X II v II 2/4 (t + 1) 
V 

summed over v =  (v 1 . . . . .  v l ) e Z  t satisfying 

v i = i  ( rood2 /+2)  (1< i< / ) .  
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Type  C~t (l > 2) 

(1) Basis of  E:  el . . . . .  el- 

Af f ine roo t s "  �89 i ( l < i < l ) ,  rl+Ei-l-e j (l <i<j<l)  (n~TZ). 

(2) ao=�89 1, ai=e.i--gi+ 1 ( 1 _ < i < / - - 1 ) ,  al=e z. 

(3) g=h=21; c=�89 

t 

(4) M = 2 1 ~ Z e  i. 
i = l  

(5) ~ o - - . . . - o  
1 1 1 1 

(6) (a) Specia l izat ion e a' ~ 1 (1 _-< i =</): 

(~(x) ~(x2)'-') 2'+' =% Z z~(~) x H~ 
v 

s u m m e d  over  v = (v 1 . . . . .  v~)~ Z l satisfying 

v i = 2 i - 1  ( m o d 4 / )  ( 1 < i < / ) .  

(b) Specia l iza t ion e a' ~ 1 (1 < i < I -  1), e ~' ~ - 1 : 

( t / ( X )  - 1  I I(X2)l  + l) 21-1 -.~-Co ~ XD(lj) X Hv[]2/Sl 
v 

summed  over  the same v a Z  ~ as in  (a). 
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T y p e  BC~ (l>= 1) 

(1) Basis o f  E:  e 1 . . . . .  et. 

A f f i n e r o o t s :  n + e  i ( 1 < i < / ) ,  2 n + l + 2 e  i ( 1 < i < / ) ,  

n++ei++eg (l <i<j<l)  (neZ). 

(2) a o = l - - 2 e l ,  ai=ei - -e i+l ( l<i<l -1) ,  at=e t. 

(3) g = 2 / + l ,  h = 2 1 ,  c = l .  

l 

(4) M=(21+I) Z 7z~,. 
i = 1  

0 - - -  " "  ~ 

(l= l) (/>2) 
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(6) (a) Specialization e a' v+ 1 (1 < i < / ) :  

(7 ( x )  ~ '+ 3 ~ ( x  ~ ) -  ~), = Co E zB (v) x tlv Lt 2/8 ~ , +  1, 
v 

summed  over  v =(v  1 . . . .  , vl)eTt t satisfying 

v i - 2 i - 1  ( m o d 4 / + 2 )  ( l < i < l ) .  

(b) Specialization e"'++ 1 (0<_ i< l -  1): 

(r/(X'/2) 2 r/(X) 2t-3 r/(X2)2)t= c 0 ~, ZB(V) X 11"112/<4`+2) 
v 

summed  over  v = ( v  1 . . . . .  vt)+Z ~ satisfying 

V i = - i  ( m o d 2 1 + l )  ( l < i < l ) .  

(c) Specialization e a' ~ 1 (1 < i <  l -  1), e a' ~ - 1 : 

(X)212-1= CO E ( - -  1) ~(v'-1)/2 Zo(v) XIIvlI2/St21+D 
i; 

summed  over  the same v e Z  t as in (a). 

(d) Specialization e a~ ~ - -  1, e~--~ 1 (1 < i <  l -  1): 

(r/(X'/2) -2 q(X)2'+ 3) , =Co E ( -  1) ~"' ~(a(v) Xl1~112/<"+2> 
v 

s u m m e d  over  the same v~Tg as in (b). 

Type  D l (l >= 4) 

(1) Basis of  E:  e 1 . . . . .  e t. 

Affine roots :  n + e i + ej (1 < i < j  < l) (n ~ 7Z). 

(2) a o = l - e l - e  2, a i = e l - e i +  1 ( 1 _ < i < / - 1 ) ,  

(3) g = h = 2 1 - 2 ;  c = l .  

(4) M =  (2 niei: ~ n i - O  (rood2)  . 

1 l 

( 5 )  o - -  . . .  - - o  

1 1 

(6) Specialization ea 'v+l  ( l < i < l ) :  

I ' l (X)2tz- l=Co E •D(v) XIIVl12/4(t-1) 
I) 

summed  over  v = ( v l , . . . ,  vl)eTl' satisfying 

v i - i - 1  ( m o d 2 / - 2 )  ( 1 < i < / ) .  

(ll -~ ~l_ 1 "-F ~ l . 
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1 8 
In the next three types (E6, E7, E8) let 0)i=~i-ffi~oei, so that 

8 1 
0)i=0 and (0)i, O.)j): --9-'q-C~ij" 

i=O 

Type E 6 

(1) BasisofE: co I . . . . .  0)6. 

Affine r o o t s :  n@@_(0)i-0)j) (1 < i < j < 6 ) ,  rl"]-"]-.'JE_(0)i-{'-0)j-l-O)k) 

(l<i<j<k<6), n-+(0)1+'"+0)6) (ne7Z). 

(2) ao=l--(0)ld- . . .d-0)6)  , ai:0)i--0)i+ 1 (1< i<5) ,  06=0)4+0)5+0) 6. 

(3) g = h = 1 2 ,  c = l .  

(4) M =  ni0)i: ~ni -O (rood3) . 

1 2 3 2 1 

(6) Specialization ea'~--~l (1 ~i=<6): 

,7 (x)  ~8 = Co Y~ ~, [ I  ( v , -  v? I ]  (u + v, + vj + v~) x ' -  "~ + ~'~ ~)/~" 
u,v i<j i<j<k 

summed over ueT/and v=(v 1 . . . . .  v6)eZ 6 satisfying 

u - 1  (modl2) ,  vi=_-9-i (modl2)  (1< i<6) ,  3u+~vi=O. 

Type E 7 

(1) Basis of V: o91 . . . . .  097. 

Affine roots: n+(0)i-o~) (l __< i <j=< 7), n+(0)t+0)j+0)k) 

(l<i<j<k<7), 1"/-t-(O) 1 "-~ " ' -  - '~-(Di"~-"'" + 0 ) 7 )  

( 1< i<7 )  (neZ). 

(2) ao=l-(0) lq- . . .q-0)6)  , ai=0)i-0)i+l (1< i<6) ,  a7---0)sq-0)6q-0) 7. 

(3) g = h = 1 8 ,  c = l .  

{18g_~l } (4) M =  n~0)~: ~ n , = O  ( m o d 3 )  . 

10 lnventiones math., Vol. 15 
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(5) 

(6) 

1 2 3 4 3 2 1 
O O ? O O 

6 
2 

Specialization e a' ~ 1 (1 < i < 7): 

. ( x )  133 =c0 Y H (u+vl) H (vi-vj) H (u+~i+~s+~k) 
u,v i i<j  i<j<k 

�9 X(-U2+ IlvllZ)/144 

summed over u e Z  and v=(v~ . . . . .  V7)~57~, 7 satisfying 

u=23 (mod36), vi_--29-2i (mod36) (1<i<7) ,  3u+~v~=0 .  

Type E 8 

(1) Basis of V: col . . . . .  cos. 

Affine roots: n +(col-COs) (0< i < j <  8), n +_ ( coi + coj + co k) 

( O < i < j < k < 8 )  (neTZ). 

(2) a o = l + c o o - c o  1, ai=coi-coi+ 1 (1<i=<7), a8=co6+cov+tv8. 

(3) g = h = 3 0 ,  c = l .  

13~ } (4) M =  ~ n i c o i : ~ n i  =-0 (mod3) . 
l "=1 

1 2 3 4- 5 6 4 2 
(5) ~ o o o o ~ o o 

3 

(6) Specialization e a ' ~ l  (1<i<1):  

( X)248 = CO E H (Vi - -  Vj) H (U Ar V,-[- Vj"~ Vk) X ( -  u2 + [[v I[ 2)/60 
u,v i<j  i<j<k 

summed over ueTt and v--(v i . . . . .  v9)eZ 9 satisfying 

u=8  (mod30), v l - i  (mod30) (1< i<8) ,  v9=0, 3Vo-t-~-~,vi=O. 

Type F 4 

(1) Basis of E: e 1, e 2, 83,/34. 

Affineroots: n+8  i (1< i<4) ,  n+8i-t-e j ( l < i < j < 4 ) ,  

/'/+21--( ~1-~1 "~82 ~---~3 -F84) ( HE7~)' 

(2) a0=1+81--82,  al=e2--~ 3, a2=g3--e4,  aa=84--a ,  

where a=�89 +82 "+-83 "+84). 

( / 4=0  - 
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(3) g = 9 ,  h=12 ,  c = 1 .  

} (4) M =  n ic i: ~ n  i -O (mod2) . 

1 2 ~ _ ~  2 
(5) .~ o o 

(6) Specialization e"'t--,1 (1 =<i__<4): 

//(X)52--~ Co 2 l-I Ui I-I (U21 - -V2) l~ (U1 ~---1)2 ~---U3 ~--V4) x[[v[[z/18 
v i i<j 

summed over v=(vl,  v2, v3, v4)~Z 4 satisfying 
v i - i  (mod9) ( 1 < i < 4 ) ,  ~vi=_O (rood2). 
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Type F~4 

(1) Basis of E: gl,e2,E3,~:4. 

Affineroots: 2n+_2e i ( 1 ~ i ~ 4 ) ,  n+ei-+-e J ( l < i < j < 4 ) ,  

2n---el -+e2 -~-g3 "[-~4 (neZ). 

(2) a o = l + / h - g 2 ,  a l = e z - e 3 ,  a2:g3- ,~4 ,  a 3 - 2 e 4 ,  

a4= --@1 -[- ~:2 -~-g3 -[-/34)' 

(3) g = h = 1 2 ,  c = l .  

(4) M =  ni%: ~ni==-O (mod2) . 

(5)  �9 o- o--.<--o o 
1 2 3 2 1 

(6) Specialization e"'w-~l (1 < i < 4 ) :  

(~(X) •(X2)) 26 =C O Z H Vi l~  ( I)2 --I")2) H (U, "[-V 2 -['-P 3 -[- u 4) X [1v[12/24 
v i i<j 

summed over v = (v a, v 2 , v 3 , v,de Z 4 satisfying 

vi--i (mod 12) (1<i=<4) and ~vi=-6 (mod 8). 

In the last two types (G2 and G~) let q~i=ei-}@l +e2 +e3) (i= 1, 2, 3), 
so that ~ ~bi=O and (~b i, ~ j ) =  - lq - f~ i j .  

Type G 2 

(1) BasisofE:  ~bl,~b 2. 

Affine roots: n+dpi (1=<i=<3), 

(2) a0= l -~b l+~b3 ,  ax---~ba-q~2, 
10" 

a2 ~ ~2 �9 
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(3) g = 4 ,  h = 6 ,  c = l .  
3 

(4) M = 4  ~Z~b,.  
i= l  

(51 
1 2 3 

(6) Specialization e ~' ~--~1 (i= 1, 2): 

, 1 (x)  ~" =Co Z 17 v, I-I (v,-~) x 'r"~'~/72 
v i i<j 

summed over v = (v 1, v2, v3)eZ 3 satisfying 

vi=--3i-2 (rood 12) and ~ v i = 0 .  

n+__(qbi--~j ) (l <i<j<3)(nE•) .  

ao=l--q~l+q~ 3, at=q~l--~b2, a2=3ff2.  

g - - h = 6 ,  c = l .  

{62, } (4) M =  niqSi: ~ni---O (rood3) . 

(6) Specialization e"'v--~l ( i= 1, 2): 

(~ ( X )  ~ ( X 3 ) )  7 --~ c O Z H Ui H (1)i- Vj) X Itu[] 2/12 
v i i<j 

summed over v = (v 1, v 2 , v3)~Z 3 satisfying 

v i -  i (rood 6) (i= 1, 2, 3) and ~v~=0.  

Appendix 2 
Non-Reduced Irreducible Affine Root Systems 

In the Dynkin diagrams below, an asterisk placed over a node 
indicates that if a is the affine root corresponding to that node in a 
basis of the affine root system, then 2a is also an affine root. 

Type B C C  t (l>= 1) 

Affineroots n_+e i, n _ 2 e  i (1<-i</), n+__ei+_aj(l<i<j<l) (n~Z). 

~ .... ~ - . . . - - o  - o - ) - o  

(l= l) (l>_ 2) 

I.G. Macdonald: 

Type G~ 

(1) Basis of E: q51, q~2. 

Affine roots: 3n___301 (1 < i < 3 ) ,  

(2) 

(3) 
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Type C" BC t (l> 1) 

Affine roots �89 

O ~ 1 7 6  

( l  = 1) 

2n+2e  i (1<i<_/), n+_ei+_e j (l<=i<j<l) (n~Z). 

0- - . . . - - - .0  

(l>2) 

Type B/~ (1 > 3) 

Affineroots n+e i, 2n+_2e i (1<i<l) ,  

~ o--... ~ 
n--t-~i+g i ( l < i < j < I )  (neZ). 

Type C'Cz (l=> 1) 
/1 

Affineroots ~-_+ei, n+2el (1<i<I),  n+ei+e j (l <=i<j<l) (neZ). 

o ~ o  ~ o - . . . - - o  

(l= 1) (1>2) 
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