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1. Introduction 

Finitely generated groups and actions of finitely generated groups often come up 
in studying topology and geometry. While the most important example may be 
as fundamental groups of compact manifolds, questions involving finitely gener- 
ated groups also arise in transformation groups, dynamical systems, and Klein- 
ian groups. A very striking example is Mostow's theorem [17], which says that, 
for dimensions greater than or equal to three, closed hyperbolic manifolds are 
determined up to isometry by their fundamental groups. 

Jakob Nielsen, in a series of papers ([18-21]), used the Poincar6 disk model 
of hyperbolic 2-space, H 2, as int(D 2) to study surfaces and their diffeo- 
morphisms. Given a closed surface M 2 of genus g > 2  and a diffeomorphism 
f :  M--+M, he lifted f to a homeomorphism f ' :  H 2 ~ H  e and showed that f 
extends to a homeomorphism of the circle S 1 =P,D 2. Furthermore, the map on 
the circle does not depend on the particular diffeomorphism J; but only on its 
homotopy type. Nielsen made use of the extension o f f '  to D 2 and of the COl'- 
responding actions of H~(M) and Aut(HI(M))  on S 1 to systematically study 
topological properties of diffeomorphisms of surfaces. 

The proof of Mostow's theorem also uses the action of Hi(M" ) on S"- 
Given two closed hyperbolic n-manifolds M" and N" with 11 > 3 and an isomor- 
phism q>: HI(M)--,Il l(N),  there is a homotopy equivalence f :  M--+N inducing 
4> (since M and N are K(H, 1)'s). f can be lifted to the universal covers to 
!" H"~H" ,  and f extends to a homeomorphism f ' :  S"-I--+S "- 1. The essence of 
M �9 ostow s proof is to show that f '  is conformal; this is done by first showing 
lhat J" is quasi-conformal and then using ergodicity of the action of H~(M) on 
S"-1 to show conformality. It was realized by Margulis and at least implicity by 
Mostow that the homotopy equivalence f :  M ~ N  used to construct f '  was not 
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essential to the proof. Margulis indicated in [12J how to use the isomorphism 
eb: FII(M)--,III(N ) and the actions of 171(M ) and FII(N ) on S "-1 to directly 
construct the homomorphism f ' :  S " - I ~ S  "-1 and to show that it is quasi- 
conformal. Margulis's proof uses word metrics on finitely generated groups, 
which we will describe in Sect. 2. 

Another result showing the interplay between finitely generated groups and 
geometry is the FencheI-Nielsen isomorphism theorem (see [10] or [27] for a 
proof), which gives conditions under which an isomorphism of Fuchsian groups 
induces a homeomorphism f :  H 2 ~ H  2 and an extension (also a homeomor-  
phism) f ' :  S1--.S 1 which preserves stabilizers. A corresponding isomorphism 
theorem for Kleinian groups has been proved by Marden and Maskit [11]. 

In light of these results it is natural to ask whether one can recover much of 
the structure solely from the groups. For  example, can you construct a closed 
hyperbolic manifold (either topologically or conformally) as a functor of its 
fundamental group? Similarly, for a Kleinian group G, when can you construct 
the limit set A q~G) from the group itself? 

If M is a closed hyperbolic n-manifold, then IlL(M) acts on S ~-I  =~D", as 
can be seeen by using the Poincar6 disk model of H" as int (D") (when n = 3, S 2 is 
the limit set of the Kleinian group Hi(M)). This action of Hi(M) on S "-1 is 
ergodic (this is used in proving Mostow's theorem), and from the action one can 
construct topologically the Stiefel manifold of 2-frames on M. A reasonable 
initial goal for any construction on the group level would be whether one can 
construct S"-1, together with the action of 171(M) on S ~- 1, as a functor of the 
group HI(M ). 

The Hopf-Freudenthal  theory ([4, 6]) of ends of groups does not suffice, since 
the fundamental groups mentioned above have only one end. What is needed is 
a refinement which detects different ways in the group of getting to infinity. In this 
paper we give and develop a group construction, based on an idea of Thurston's 
and inspired by a construction of Sullivan's (several mathematicians, including 
Gromov,  Sullivan, and Thurston, have thought about these questions). Given a 
finitely generated group G with a chosen finite generating set 22, we put a metric 
on the graph of G so that the completion (~=comple t ion(graph(G)) -graph(G)  
is a compact  metric space with a natural G action. If M is a closed hyperbolic n- 
manifold and G=III(M),  then there is a G-equivariant homeomorphism 
q) : G --~ S n-1. 

In Sect. 2 we give the construction and show some basic properties of it (e.g., 
independence of the generating set, behavior under finite index, and behavior 
under direct sum). We also show that it is natural in the sense that isomor- 
phisms of groups induce homeomorphisms of their completions. 

Section 3 gives a proof  of the following 

Theorem. I f  G is a polycyclic group with one end, then the completion CJ is a point. 

We also briefly discuss how this relates to questions concerning polynomial 
growth and concerning flat manifolds. 

In Sect. 4 we use group completions to study the limit sets of Kleinian 
groups. For a finitely generated Kleinian group G, we give general conditions 
for there to be a G-equivariant mapq~: G-~A(G) .  Our main result is the 
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Theorem. If" G is a geometrically finite Kleinian group, then there is a G- 
equivariant map cp: G---~A(G). q) is 2-to-I onto parabolic .fixed points of rank one 
and i~jective everywhere else. 

I would like to thank Steve Kerckhoff, Dennis Sullivan, and (especially) Bill Thurston for 
numerous conversations during the course of this work. 

2. Definition of (~ and Basic Results 

Let G be a finitely generated group with a chosen finite generating set 2; 
= {gl . . . .  ,g,,}. Corresponding to Z there is a left-invariant metric on G, called 
the word metric of G, and a 1-complex, K (G, X), called the graph of G. We will 
put a metric on K(G, X) so that the completion ( f =  completion (K(G, X))- K(G, l;) 
is a compact metric space with a natural G action. 

We will use the following ideas about metric spaces. Let X, Y be metric 
spaces with metrics p( , ) and p'( , ), respectively. A map f :  X ~  Y is a quasi- 
isometry if there are constants c, d > 0 so that c p(x, y)< p'(f(x),f(y))< d O(x, y) for 
all x, yeX. Two metrics on X are commensurable if the identity map on X is a 
quasi-isometry. X and Y are Lipschitz equivalent if there is a homeomorphism 
f :  X ~ Y which is a quasi-isometry. 

For geG define the norm ]gl=minimal  word length of (word in gl . . . . .  g,) 
=g ,  where multiplicities count in measuring the word length. Make this into a 
left-invariant metric on G, called the word metric, by setting (a, b)= ia -1 bl for 
a, beG. The word metric depends on the choice of the generating set s but any 
two word metrics on G are commensurable. 

Define K(G,X)as follows. Vertices of K(G,Z) correspond bijectively to 
elements of G (the vertices are labelled by this correspondence), and two vertices 
a, beg are joined by an (unordered) edge if a = bg + 1 for some get; .  The standard 
definition of the graph of G uses ordered edges, but we forget the order here to 
avoid confusion. K(G,Z) is also called the Cayley diagram or the group 
diagram. 

To construct (J, let f :  N-~IR + be a monic, summable function such that, 
given keN,  there exist M, N > 0  so that Mf(r)<f (kr )<Nf(r )  for all r e N  (for 
example, f ( r ) =  r-2). Put a metric on K(G, l;) by giving the edge between vertices 
a, beG the length min {f(jaj),.f(jbl)} (define f ( 0 ) = f ( l )  to make this well-defined) 
and enlarging this to a metric ( , ) on K(G, X) by taking shortest paths. Then 
complete K(G,Z) as a metric space, and define d(r,f)=completion(K(G,~)) 
-K(G, Z), giving G(X,f) the metric topology. We will often abuse notation and 
write (j instead of G(2;, f ) .  

Here is an example. Let G = 7 1 , Z  with a generating set X={a,b}, and let 
f (r)=r -2. K(G, Z) is a tree, and G(Z, f ) is  the Cantor set that forms the ends of 
2g *2g. ]n Fig. I is the subset of the graph of G of vertices with norm < 4  and the 
edges between them. 

The following results come easily from the construction. Since the proofs are 
straightforward arguments mainly involving choosing generating sets and then 
looking at Cauchy sequences, most of the details will be left to the reader. 
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Fig. 1. Graph of 2g * 7/ 

Assume for the rest of this section that f is a monic, summable function, that G 
is a finitely generated group with a chosen finite generating set 22, and that all 
groups mentioned are finitely generated. 

Lemma 1. G(Z, f )  is a compact metric space. 

Proof. Completion(K(G, Z)) is compact since for every ~>0 there is a finite set 
which is e-dense, and (~(27,f) is a closed subset of completion(K(G, Z)). []  

Lemma 2. I f  Z' is a finite generating set for G, then G(Z', f)  is Lipschitz 
equivalent to G(X,f).  

Proof. By commensurability of different word metrics and the requirement that 
Mf(r)<=f(kr)<=Nf(r). [] 

Lemma 3. I f  H - ~  G ~ J is an exact sequence of groups and H is a finite 
group, then G and ] are Lipschitz equivalent. 

Lemma 4. If  ~: H-+G is a homomorphism of groups and a quasi-isometry OJ" word 
metrics, then there is an induced, continuous map eb: H--+G. 

Since an isomorphism of groups is a quasi-isometry of word metrics (look at 
what it does to a finite generating set), an immediate corollary to Lemma 4 is 
the 

Theorem. Aut G acts on Ca, and so in particular G acts on CJ (using the action of G 
on itself by inner automorphisms). 

Lemma5.  I f  H c G  is a subgroup of finite index, then H and d are Lipschitz 
equivalent. 

Proof. Since H contains a normal subgroup of finite index in G, we can assume 
that H is a normal subgroup of G. It is easily shown (for example, see [2] or 
[26]) that the inclusion i: H ~ G  is a quasi-isometry of word metrics. The proof 
then follows by looking at Cauchy sequences. []  

Any point co~G(22,f) can be represented by a Cauchy sequence {wi} in 
K(G, Z) with wieG (a vertex) for all iEN. We call such a sequence shortest if Lwi[ 
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=i  and (w~, we+ 1) = 1 for all i~N. Ifo) is defined by a shortest sequence {wi} , then 
we can think of o) as an infinite word g'l g~...g',-., in X which is written in 
shortest form at each finite stage. Alternately we can think of co as a path in 
K(G, 2;) which only goes one step at a time and never backtracks. 

Lemma 6. Every point in G can be represented by a shortest sequence. 

Proof Let oJ~G be represented by a Cauchy sequence {wi} of vertices, and write 
each we as a word in 2; in shortest form. Then use a variant of the Cantor 
diagonal argument. [] 

Lemma 7. I f  G and H are infinite groups, then G @ H is a point. 

Proof Choose finite generating sets 2;~, 222, and 221 k ' ) 2 2 2  f o r  G ,  H ,  and G| 
respectively (using the natural inclusions of G and H in G|  the inclusions are 
isometrics of these particular word metrics). Given c>0 ,  we will choose N e N  
and a vertex W N e G |  so that any vertex g e G |  with Ig l>N is within ~ ofw N 
in K(G@ H, 21wX2). 

Since G and H are infinite their completions are not empty. Pick coeG, v~/4, 
and choose respective shortest sequences {w~} and {v~} defining them. Choose 

N ' ~ N  so that ~ f (k )<e /4 ,  and let N = 2 N ' .  Let g = a |  be a vertex with 

~F  

.J= N '  

jgl> N. If Ibl>=N/2 then the path in K ( G |  _rlw22) 

a 1 w, N b i 
g = a @ b  --+WN@b--~W N 

has length _<_~: (here ~  - ~  means a path given by writing a -  1 wn ' as a word in 
shortest form and then taking the steps corresponding to this word in 
K (G | H, X 1 w 2;2)). If tal > N/2 choose M e N  large enough that 
f(M)<~:/4(w N, a) Then the path 

b 1 t, M ~ t -  1 W N  c~41 

g = a @ b  ........ --~,a@ v M . . . . . .  , WN@V M .. . . . . . . .  ~-* W N 

has length =<c. [] 

The infinite cyclic group 7/ has completion Z=d i s jo in t  union of two points 
(corresponding to the ends of 77). An immediate consequence of Lemma's  5 and 
7 is the 

Corollary. I f  G is a finitely generated abelian group of rank >= 2, then CJ is a point. 

Lemma 8. Let f and g be monic, summable functions. 

1) I f  f ( r )<g(r)  fi)r all suJl~ciently large r, then there is a continuous map 
h. d(Z, g) -  d(x,f). 

2) U'f (r ) /k<g(r)<kf (r )  for some k > 0  and all r~iN, then G(Z, f )  and (J(X,g) 
are Lipschitz equivalent. 

Proof Uniform continuity. [] 

While the choice of the function f is not delicate, some care must be taken. If 
.f is large then many sequences in K(G, ~) will not be Cauchy, and if f is too 
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small then G(X,f) will be a point. The functions f (r)=r -p, p >  1, tend to work 
well. Since we are not concerned in this work with the effect of changing .~ we 
will later restrict ourselves to the case f(r)=r -2 for convenience. 

A useful fact to note is that  if M is a closed Riemannian manifold and the 
universal cover AI is given the induced metric from M, then each word metric 
on Ill(M ) is commensurable  to the induced metric on Hi(M) coming from 
viewing it as the orbit of a basepoint  in AI. 

3. P o l y c y c l i e  Groups  

We have shown that a finitely generated abelian group with one end completes 
to a point and, more  generally, that  the direct sum of two infinite groups 
completes to a point. It seems that a group with enough "abel ian behavior"  
completes to a point. In this section we prove a general result in this direction - 
a finitely generated polycyclic group with one end completes to a point�9 We 
prove the result first for nilpotent groups, and then go through the extension to 
polycyclic groups. 

Proposition. I f  G is a finitely generated nilpotent group with one end, then G is a 
point. 

Proof Since (~ does not  change under finite extensions, we can assume ([83) 
that G is torsion free�9 Recall that  the lower central series {Gi} for G is defined by 
Gt=G and Gi+I=[Gi, G]. G is nilpotent if G i + l = { 1 }  for some c ~ N ;  the least 
such c is the class of G. 

We will prove the proposi t ion by induction on the class of G, using for an 
induction hypothesis the stronger statement that  given e, > 0 there exists N > 0 so 
that any two elements of G of  norm > N are within e of  each other. We know 
the result for G abelian, so assume it for nilpotent groups of class < m -  1 and let 
G have class m. We can choose a generating set X = {x 1 . . . . .  x,} for G so that each 

�9 ' i,, and A r "{gea:  g=x')...Xir "} is a gEG can be written uniquely as g = x '  1' x'22.., x ,  = 
normal  subgroup for 1 <_r<_n (see [25]). The center Z 1 =Ap  for some p. Given g 

�9 i n  " " in = x't*.., x , ,  we will write g = x y, where x = x'~ ... x~,p and y =  Xp+l...xn.ip +1 
Let e>0 .  Z I - ~ i - > G ~ G / Z 1 ,  and  G/Z 1 is a nilpotent group of  class < m  

- 1. Giving G/Z~ the generating set p(X), by induction there exists N I ~ N  so that 
any two elements of  G/Z 1 of no rm > N  1 are within ~,/4 of each other  in 

K(G/Z 1, p(S)). Choose N 2 so that ~ f (k)< ~/12 and let N = 3 max {N l, N2}. 
k = N  2 

Let  g=xyeG with ]g j>N.  If Ip(g)[>N1, then by induction g is within c/4 of 
x'xU, ~ for some x'eZ1; if Ip(g)l<N1, the path 

y I x n  ~rl 
g = x y - -  "--'. X XNn ~ 

has length -<_e/4. Given xxU,,*eG with x=x) . . . x~peZ, ,  choose M > N  1 so 
that (li,I + . . .  + lipl)f(M)<e/12. Then the path 

XXNn ~ x h s  M x - t  M x ' V l ' s ~  N1 
�9 --q, X X  n ~ X m - X n 

has length < e/4, and hence N, (g,x, 5<8/2 .  [ ]  
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We proceed to generalize the argument to polycyclic groups. Recall ([26]) 
that we can characterize polycyclic groups as the solvable groups for which 
every subgroup is finitely generated. Given a polycyclic group G', by passing to 
a subgroup G of finite index ([26]) we can assume that there is an exact 
sequence of groups N ~ G  o , H, with N =  [G, G] a torsion free nilpotent 
group and H a finitely generated free abelian group. If we try a proof by 
induction on the class of N, we are quickly led to the cases 7Z."~G ~ Z  r. 

Lemma. I f  G is a polycyclic group with an exact sequence 77" i >G p ~7lr, 
where n, r +O and i(7/ ')= [G, G], then CJ is a point. 

Proof Choose a generating set 2;=221 u2;  2 for G, where 2;1 = {xl . . . .  , x~ comes 
from a basis for 77" and X 2 = {z~, ..., zr} projects to a basis for 77r. Each geG can 
be written g=xz ,  where x is a word in X 1 and z is a word in 2;2, and IgI>lo(g)I. 
Each z~ acts on 7Z" be a conjugating matrix qoieGL(n,Z ) (for xei(TZ"), zix 
=qh(x)zi). Since G=1=77 "+~, after possible relabelling we can assume that 
r 1. We can also assume that for each power p e n  q)P,.(xl)~x 1. 

Given ~:>0, choose N~ so that ~ f(k)<a/16 and let N=2N~. We will show 
k = N ~  

that if geG has [gl > N, then for sufficiently large peN,  (g, ~0P(x)} <~:/2 in K(G, Z). 
Write g = x z ,  let (peGL(n, 77) be the conjugating matrix lbr z, and assume for 
convenience that the exponent of zr in z is non-negative. Choose p', q e N  so that 
Ix~0o~o~q(x~)l>N+lp(z)l and I~pff(x~)l>g+ixq~oqJq(xOI for all p e n  with p>p'. 

> , Let y=q~otpq(x~). Then for p e n  with p=p,  the path in K(G,E) given by g 
zq  

~ X Z - - -L-~  X Z 2 q 

Xl 2 r  q z 1 zP  
- - ~ ' x z z q x l - - - - - - - ~ x z z q x l z ~ - q = x y z  - * x y  r . x , , z  p 

' J  - r  
x l  z ;  p (xy) 

P P 
- - §  p > ( D r P ( x  1 )  

has length __<~/2. [] 

Theorem. I f  G is a polycyclic group with one end, then the completion G is a point. 

Proof As mentioned previously, we can assume that there is an exact sequence 
N - - , G ~ H ,  with N=[G,G]  a torsion free nilpotent group and H a finitely 
generated free abelian group. We prove the theorem by induction on the class of 
N. The above lemma gives a proof for N abetian. If N is not abelian, tet Z 1 
=center(N).  There is an exact sequence Z1-- ,G- ,G/Z  1, where G/Z 1 is a 
polycyclic group whose commutator  subgroup has class less than the class of N. 
Using this, the proof of the induction step is an easy consequence of the proofs 
of the above lemma and proposition. [] 

The above result leads to questions in two different areas, which we will now 
briefly discuss. 

Given a finitely generated group G with a chosen, finite generating set and 
associated word metric and norm, define the growth function ([13, 15]) qS: ] N ~  
]N by qS(t)--the cardinality of {geG: [gl <t}. G has polynomial growth if there is a 
polynomial f ( t)  with qS(t)__< f( t )  for all t e N (this is independent of the generating 
set). If  G has a nilpotent subgroup of finite index then G has polynomial growth 
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(Bass [2], Wolf [26]); the converse is conjectured. The conjecture has been 
proved for solvable groups (Milnor [14] and Wolf [26]), linear groups (Tits 
[24]), and groups of differentiable germs (Plante and Thurston [22]). By the 
above result, a weaker conjecture would be the 

Conjecture. I f  G has polynomial growth then G is a point. 

J. Milnor [16] has shown the following result. 

Theorem. I f  the torsion Jree, finitely generated group G has a polycyclic subgroup 
of.finite index, then G is the fundamental group of a complete, q[finely fiat 
manifold. 

In the same paper he raises the question of whether the converse is true, and 

notes that if the converse is false then 7/ ,  77 gives a counterexample. Since 7/* 7/ 
is a Cantor set, the converse is equivalent to the question of whether the 
fundamental group of a complete, affinely flat manifold completes to a point 
when the group has one end. A related question is whether the fundamental 
group of a compact, affinely flat manifold completes to a point. 

4. Kleinian Groups 

A Kleinian group G is a discrete subgroup of PSL(2, ~). If we think of the 
Poincar6 disk model for hyperbolic 3-space, in which Ha=int (Da) ,  with the 
metric given by dsZ=4dx2/(1 --r2) 24t, then G acts on H 3 by orientation preserv- 
ing isometries, and the action extends to an action on S 2 =(?D ~ by conformal 
homeomorphisms.  G acts discontinuously on H 3 by discreteness, but the action 
on S 2 need not be discontinuous. The limit set A(G) is the set of accumulation 
points of the orbit of a point in int(D3); it is independent of the point chosen. 
The regular set O(G)=SZ-A(G) (we are not assuming that O(G)4=~ in our 
definition of a Kleinian group), g2(G) is the largest open subset of S 2 on which 
the action is discontinuous. For details in the theory of Kleinian groups not 
mentioned here, see Harvey [5], Marden [9], and Thurston [23]. 

Let xsS 2. A horosphere around x is a Euclidean sphere in in t (D3)=H 3 which 
is tangent to S2=~D 3 at the point x. A horoball is the convex region in H 3 
bounded by a horosphere. 

Let zeA(G) and let L be a geodesic in H 3 which converges to z. z is a point 
of approximation if there is a sequence {hi}, hleG, so that {hi(0) } converges to z 
and stays within a finite distance of L (see Beardon and Maskit [3] for 
alternate, equivalent definitions). Fixed points of parabolic elements are not 
points of approximation. If zeA(G) is a parabolic fixed point with isotropy 
subgroup J ( J =  {g~G: g(z)=z}), then z is a cusped parabolic point if either J has 
rank two (a Z |  subgroup) or if J has rank one (a finite extension of Z) and 
there is a non-empty region U in H a which is the union of two disjoint half- 
spaces and is precisely invariant under J. 

* The standard metric for the Poincar6 disk model is dx2/(l --r2}2; we use this metric since it is 
compatible with the metric in the upper half space model for H 3 
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We can find a fundamental region for the action of G o n  H 3 as follows. Pick 
a basepoint y e l l  3 which is not fixed by any non-trivial element of G. Then the 
Poincar6 fundamental polyhedron P =  Py = {xeH3: p(x, y)< p(x, g(y)) for all 
geG}, where p( , ) is the hyperbolic distance, is a fundamental region for the 
action of G on H 3. The faces of P are identified in pairs under the action of G. G 
is geometrically finite if P has a finite number of faces. If G is geometrically 
finite, then (Beardon and Maskit [3]) every limit point is either a point of 
approximation or a cusped parabolic point. 

Now let G be a finitely generated Kleinian group with a chosen, finite 
generating set 27, Ig]=word norm of geG, h(g)=p(0, g(0)), and r(g)=the Eu- 
clidean distance between 0 and g(0). If G is geometrically finite assume that 2; is 
the set of face pairing transformations. In what follows, by (~ we will mean the 
completion with respect to the summable function f ( r ) = r  -2. h(g) and r(g) are 
related by the equations 

h(g)=logl ( l+r(g) ) (1-r (g) ) - l t ,  r(g)=(eh~g)--l)(eh~g)+l) -1 

Proposition. If" there are constants N, k so that 21oglg l -k<h(g)  Jbr all geG 
with Igl > N, then there is a continuous, G-equivariant sutjection qo: (J-~A(G). 

Proof Define qS: K(G, X)--+int(D 3) as follows. Map the vertex labelled by aeG to 
a(0)eD 3 and map the edge joining the vertices a, beG to the hyperbolic geodesic 
are between a(0) and b(0). We are interested in q$ as a map of metric spaces, 
where we are thinking of D 3 with the Euclidean metric. 

Suppose 21og lg l - k<h(g  ) for all geG with Ig[>=N. Let aeG have [al=n>=N, 
and let L be an edge in K(G, S) joining the vertices a, beG. L has length either 
n -2 or ( n + l )  2 depending on Ibl. Since the hyperbolic length of fS(L) is 
bounded by max{h(g)' g~S}, there exists K > 0  so that q$(L) has Euclidean 
length <K(1- -r (a)2)=4K(eh(" l+2+e-h l" l ) - l<4Kekn  2. Thus 4) is Lipschitz 
and induces a map q$': completion (K(G, X)) ~ completion (q$(K(G, Z'))). qV re- 
stricts to a map 49: G~A(G) .  (o is onto since A(G) is the set of accumulation 
points of the orbit of 0, and 40 is equivariant since ~bIG ~ K(G, Z) commutes with 
the action of G. [] 

Lemma. I f  the geometrically finite Kleinian group G has no parabolic elements, 
then there are constants k, k'> 0 so that k I gl < h(g)< k' [g[ for all g eG. 

Proof The inequality h(g)<k'lg[ holds with k'=max{h(a):  aeZ} by the triangle 
inequality. To prove the other inequality, let J f f c H  3 be the Nielsen convex 
region (~f" is the convex hull of A(G)), and assume for convenience that the 
basepoint 0e~ ,/g" is invariant under the action of G, P ' = P c ~ 4  ~" is compact, 
and the geodesic arc L between 0 and g(0) is contained in ~P for each g~G 
([23]). 

Let d=diam(P') and let C=max{Igl: geG, h(g)=<7d}. Given geG and a 
geodesic arc L between 0 and g(0), divide L into intervals of length 5 d (with one 
shorter interval), and connect each endpoint of each interval to the closest point 
in the orbit of 0. This gives the estimate ]gl < C(1 +h(g)/5d), which establishes 
the lemma. []  
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) 
Fig. 2. P"=P~,A/'' 

X 1 I X 2 

Fig. 3. Hyperbolic distance and distance on the horosphere 

If G is geometrically finite and has parabolic elements, then P' will not be 
compact because it will have cusps. Remove a disjoint equivariant family of 
open horoballs around the parabolic fixed points ([-9,23]), and let X ' = Y -  
horoballs. P"=Pc~Y'  is compact (see Fig. 2). Define a metric p'( , ) on Y '  by 
letting p'(a, b) be the minimum length of a path in JV" between a and b, and let 
h'(g)=p'(0, g(0)) (having chosen the horoballs small enough so that the geodesic 
arc between 0 and g(0) is in Y '  for each gsZ). As in the above lemma there are 
constants k,k'>O with klgl<=h'(g)<=k']gl for all g~G. h'(g) differs from h(g) 
whenever the geodesic arc L between 0 and g(0) leaves X '  and cuts across a 
horosphere. To see just how they differ we need to compute, for two points x~ 
and x 2 on a horosphere, their hyperbolic distance and the distance of a path 
between them which stays on the horosphere. 

We can conjugate to the following situation; x 1 and x 2 lie in the y - z  plane 
in the upper half space model for H 3, at height 1 (see Fig. 3). In particular let x~ 

=(0, - - / r  2 ~  l, 1) and x 2 =(0 , ] / r  5 -  1, 1), where r is the Euclidean radius of the 
geodesic arc between them. The path between x 1 and x 2 on the horosphere 

(defined by z =  1, the parabolic fixed point is at oo) has length 2 ] / 7 - 1 ,  and 
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/ 

horobat[ 

J 
Fig. 4. A point of approximation z with a path in .Jl" converging to z 

their hyperbolic distance p(x l , x2 )=2  l og ( I / r2 -1  +r)  (the hyperbolic metric is 
given by ds2=z-2dx2) .  Since h(g) only differs from h'(g) when the arc L cuts 
across a horosphere, this computation shows that h'(g)<e htg)/2, and so 
klg]<e h(g)/2 and 2 loglg[+2 logk<h(g) .  This establishes the 

Proposition. I f  G is a geometrically finite Kleinian group, then there are constants 
N, k > 0  so that 21og lg l - k<h(g )  for all g~G with Igl>N. 

Corollary. I f  G is a geometrically finite Kleinian group, then there is a continuous, 
G-equivariant map qo: ffJ--~A(G). 

~0 will not be a homeomorphism in general, for the following reason. The 
group Z has completion 2~=two points. If we take a hyperbolic element 
g~PSL(2, II;), then the Kleinian group Z generated by g has a limit set with two 
points, and q0: 2 ~ A ( Z )  is a homeomorphism. But if instead we take a parabolic 
element g6PSL(2, II~), then the Kleinian group 7/ generated by g has limit set a 
single point, and q): 2~--.A(7Z) is 2-to-1. This is precisely the way in which q) fails 
to be a homeomorphism when G is geometrically finite. 

Theorem. I f  G is a geometrically finite Kleinian group, then the induced map 
~P: G--~ A(G) is 2-to-1 onto parabolic points of rank one, and injective everywhere 
else. 

Proof. Suppose G is geometrically finite. By passing to a subgroup of finite index 
(G and A(G) do not change under finite index), we can assume that G is torsion 
free. 

Let ~o~G such that z=  ~p(o~) is a point of approximation (see Fig. 4), and let 
{w~} be a shortest sequence which defines on. We claim there is a subsequence of 
{wi(0)} which converges to z in a cone (this is equivalent to converging within a 
finite distance of a geodesic asymptotic to z). To see this connect each wi(O ) to 
w~+1(0) by a geodesic arc to form a path v starting at 0 and converging to z. 
Since the word metric on G is commensurable to the induced metric coming 
from paths in Y',  for a, b~v their distance along v is commensurable to p'(a, b). 
Let v i be the geodesic arc between 0 and wi(O ). As i ~ oo the number of vertices 
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////////////A ~ / ~ ,,,,,,,,~v~ 

Fig. 5. v comes near v, between horoballs 

wi(0) 

of v, between 0 and wi(0), within a bounded  distance of v i goes to infinity (see 
Fig. 5), since the length of a pa th  in H 3 goes up exponential ly with its distance 
from the geodesic (the point is that v must  come near  v~ between horoballs,  and 
either v~ crosses a lot of horobal ls  or the length of v~l>V" goes to infinity). This 
implies that  a subsequence of  {wi(0)} converges to z in a cone. 

Suppose  co'EG with q~(co)=z=q~(co'), and let {wi}, {w'i} be shortest  sequences 
defining co and co'. Choose subsequences {wj} and {w)} so that {w;(0)} and 
{w~.(0)} converge to z in a cone. Since they stay in a cone, one can find a 
sequence {m;}, rn;eG, such that  each rnj=wjk or w'.j~, {ms} goes back and forth 
infinitely often between the w;'s and the w}'s, and {mj} is a Cauchy sequence in 
K(G, 22). {mr} determines a poin t  c~6(~; clearly co=~=co ' .  Thus  q) is injective on 
the pre- image of points of approx imat ion .  

If z~A(G) is not a point of  approximat ion ,  then it is a parabol ic  fixed point  
([3]). Let coe(~ with q)(co)= z, {w;} a shortest  sequence in G defining co, and v the 
path in ,/~', starting at 0 and  converging to z, as defined above. Since z is a 
parabol ic  fixed point,  v stays outside of  some horobal l  abou t  z. By an a rgument  
similar to the one above, one can show that  coEi(J), where J is the isotropy 
subgroup  of z (we are using the fact that the inclusion i: J ~ G  is a quasi- 
isometry). Since G is torsion free J is either Z or 7/. | 77. If J is 77 | 77 then J is a 
point  and q) is injective on the pre- image of z. If J is 77, then Y is two points  and 
~o is at mos t  2-to-1 on the pre- image of z. 

To  prove  that q~ is exactly 2-to-1 onto  z when z is a parabol ic  point  of rank 
one, we will show that  i: J--*G is injective. Let g generate J ;  the two points in J 
are defined by the Cauchy sequences {g"} and {g-"}. Recall that  q~ was defined 
using a m a p  ~b: K(G,X)-+H3=int(D3). If we give O(K(G, 22)) a metr ic  by the 
Euclidean length of paths then  95 is still uniformly continuous,  so it suffices to 
show that  dis t (g"(0) ,g- ' (0))  does not go to zero. Since z is a cusped parabol ic  
point, there are two disjoint ha l f  spaces U 1 and U 2 in H 3 which do not  intersect 
4)(K(G, 22)) (see Fig. 6). c~(K(G, 22)) stays outside of a horobal l  a round z, and the 
part  of  the bounding  horosphere  not  in Ua u U 2 is a strip of finite hyperbol ic  
width. Since {g"(0)} and {g-"(0)} go out in different directions of  the strip, 
dist(g"(0), g-"(0)) does  not go to zero (U~ and U 2 prevent  short  cuts between the 
two ends of  the strip). [ ]  

Here  is an example  to illustrate the theorem. Let S be a closed surface of 
genus g > 2 ,  and let G=/ /~(S) .  d ~ S  t, since we can represent  G as a geometri-  
cally finite Fuchs ian  group with limit set S ~ and no parabol ic  points. Let  F be a 
regular b-group which is i somorphic  to G. We know that  A(F) is the image of a 
circle because of Abikofl 's  t heorem [1]  that  A(F) is locally connected.  Since F is 
geometr ical ly  finite a corol lary to the above theorem is the 
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Fig. 6. A cusped parabolic point z of rank one 

Proposition. Let F be a regular b-group such that F ~ I I I ( S ) ,  where S is a closed 
surJace, Then there is a continuous map qo: S 1 --~A(F). qo is 2-to-1 onto parabolic 
points o f  rank one, and injective elsewhere. 

O n e  of  ou r  ini t ial  goa ls  in s tudy ing  c o m p l e t i o n s  was to cons t ruc t  S n-  1 f rom 

the f u n d a m e n t a l  g r o u p  G = H 1 (M) w h e n  M is a c losed h y p e r b o l i c  n-mani fo ld .  In  
this case  G acts on  h y p e r b o l i c  space  H" and  M ~ H " / G .  By th ink ing  of  the  
Po inca r6  disk m o d e l  of  H" as int  (D"), it is easy to see tha t  the ac t ion  o f  G on  H"  

ex tends  to an  ac t ion  of  G on  S" -1 :?~D ". Since  the  Po inca r6  f u n d a m e n t a l  

p o l y h e d r o n  for the  ac t i on  o f  G on  H" is c o m p a c t ,  w o r d  met r ics  on  G are  
c o m m e n s u r a b l e  to the  i nduced  m e t r i c  c o m i n g  f rom h y p e r b o l i c  dis tance.  Every  

po in t  in S " - 1  is a po in t  of  a p p r o x i m a t i o n ,  a n d  as in the  a b o v e  t h e o r e m  (the 

p r o o f  is easier  he re  since the re  are  no  p a r a b o l i c  fixed points)  we have  the  

T h e o r e m .  Let G = H I(M),  where M is a closed hyperbolic n-man(Jbld. Then there is 
a G-equivariant homeomorphism ~p: G-- ,S  n- 1. 
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