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Construction 
of Non-Linear Local Quantum Processes. II* 

IRVIN~ SE6AL (Cambridge, Mass.) 

Introduction 

Part I of this series treated singular perturbations V of given self- 
adjoint operators H acting in L2(M), M being a given probability 
measure space. If A is a given self-adjoint operator in a Hilbert space H 
such that A>=~I for some ~>0, the theory of Part I (referred to as " I "  in 
the following) applied to operators H of the form dF(A), acting in an 
associated quantum field space and canonically induced from A (see I 
for notation). As a corollary, certain non-linear local quantum processes 
could be constructed. 

This article extends the theory of such singular 'perturbations, 
treating an abstract Hilbert space in which there is given a general kind 
of "calibration" by auxiliary norms which in I were the Lp-norms. This 
is natural from a purely mathematical viewpoint, and is useful for 
further applications in quantum field theory. In addition, the perturba- 
tion of a proper lowest vector is treated. 

The theory applies in particular to any self-adjoint operator H in a 
Hilbert algebra K with unit having the properties that e - tn  is bounded 
from Lz to Lp for some t > 0  and p>2 ,  and that e - tn  is bounded from Lp 
to Lp for all sufficiently small t by e "t, for some constant a. Concerning V, 
it suffices if it is of the form Lv + Rv, where v is an hermitian element of K 
such that IJ v I1 p + II e -  ~ IIp < oo for all p < oo and L~ (respectively, R,) denote 
the suitably formulated operations of left and right multiplication by v. 
Under these hypotheses, there exists a self-adjoint operator denoted 
H ~  V having the properties, among others, that H + f , ( V ) ~ H ' ~ V f o r  
every sequence {f,} of real bounded Baire functions on R 1 such that 
f,(2) ~ f ( 2 )  and If,(2)[__< I,~[ for all 2~R1; that e -"n~;v) is bounded from 
L 2 to L2,,B, by e b' for some f l>0  and real constant b; for arbitrary 
k~[0, 1], H ~ - V _ > _ ( 1 - k ) H - ( k i n f H + 2 1 0 g  [[e-~ll4/kc), where c is a con- 
stant dependent only on H; and H-T-V ~ H + V, which is essentially self- 
adjoint. 

* Research supported in part by the NSF. 
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In case K has the form L 2 (M), where M is a given probability measure 
space (or equivalently, if K is abelian), and H is "indecomposable" in a 
certain sense relevant to the theory of positivity-preserving operators, 
the same is true of H-T- V, implying the unicity and essential positivity of 
a proper lowest vector (PLV) for H ~  V, if any exists. If H is inverse 
compact (i.e. (c I + H)-  1 is compact for some constant c), a PLV for H -T- V 
necessarily exists; it is here shown that this remains the case if H is in a 
certain sense "approximately inverse compact" (AIC). All this applies in 
particular to the case studied in I in which, briefly and informally, H is 
the hamiltonian of the covariant Weyl process determined by the dif- 
ferential equation [] q~o = m2 ~bo, with the condition q~o = ~b*, in two space- 
time dimensions, and V has the form S q ~ tko (~, 0)f(~)dE, where q is a 
given non-negative polynomial on R ~, Eo is the state determined by the 
PLV for H, q~o(~, t) is the generalized-operator-valued distribution on 
space, at each fixed t, determined by the process and satisfying the cited 
equation, f is a given non-negative, mildly regular, function of compact 
support on R 1, and the subscript "Eo" to the composition symbol o 
signifies that renormalization is made, in the sense of [9], with respect to 
the state Eo, in formulating the a priori undefined non-linear function q 
of the operator-valued distribution of symbolic kernel q5 o (~, 0). For any 
state E, renormalization of powers of a Weyl process in space with 
respect to E is a local operation in space and is independent of any 
dynamical structure; in the case of the particular state Eo, this renor- 
malization coincides formally with the heuristically-established concept 
of "Wick ordering". It is here shown that the ("perturbed") process 
whose kernel is given symbolically by the equation 

ck(Yc, t )=e  "~u~-v) C~o(~, O) e -"~n~v) 

(which is rigorously valid when ~b(~, t), etc. is formulated in terms of 
generalized-operator-valued functions) has the property that for any 
fixed t, the renormalized powers with respect to the PLV for H ~ V exist 
and enjoy certain regularity properties; and that ~b(~, t) satisfies the local 
partial differential equation 

7q q~(~, t )=m 2 q~(~, t)+q'oEc~(s t)+ r(~)oE q~(~, t), 

where r(&) is for each ~ a polynomial on R 1 of degree less than that ofq'. 
If space is taken as the circle T ~ in place of R 1, and iffis taken as constant, 
the same is true, and in addition r(~) is independent of ~; it is left open 
whether the mapping q--*q '+r  carries the set P of all non-negative 
polynomials on R 1 onto P'. Thus, in this case, when space is T ~, there is a 
solution in a natural sense for the ("quantized") partial differential 
equation [] ~b = m 2 q~ q-p(q~) ,  for an extensive class of certain polynomials 
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p e P ' - n o t  however according to present knowledge, necessarily in- 
cluding the polynomials p(2)=g2 z"+~ (g>0;  n =  1, 2 . . . .  ). 

Recent work of Gross [4] has initiated the extension of the classic 
theory of positivity-preserving operators due to Perron, Krein, et al., to 
the (non-lattice) case of a probability Hilbert algebra, and at the same 
time eliminated the compactness assumption, replacing it by the assump- 
tion that the operator is bounded from L 2 to Lp for some p>2 .  The 
existence as well as essential positivity of a highest proper vector is shown 
for any self-adjoint such operator, as well as, in the abelian case, the 
finite multiplicity of the corresponding proper value. These remarkably 
general results are in a direction similar to that of the section of the present 
work dealing with the PLV for H ~  V, and are indeed applicable to 
certain such cases, associated with Clifford as well as Weyl quantum 
processes. On the other hand, the present results, while limited to the 
abelian case, and in part making the assumption that H is AIC, yield a 
somewhat stronger conclusion about the spectrum near its infimum, may 
well be adaptable to the Clifford process case, and do not require 
boundedness from L2 to Lp, or in the case of the existence result, a 
positivity-preserving assumption. 

Recent work by Glimm and Jaffe [3] treats, in another form and 
spirit, the quantum process application described earlier, in the special 
case in which q (2)=g 2 4, with g > 0. Unicity and existence of a PLV are 
shown with the use of Markov process theory and estimates dependent 
on the low degree of this q. It is stated that "the quantum field ~b is a 
solution to [the equation] [--]q~ =m 2 q$+4g~b 3, provided that q~3 is suit- 
ably interpreted". Actually ~b 3 is defined in terms of its Cauchy data at 
time t = 0 and the operator H ~ V, rather than in terms of the Cauchy data 
for ~b itself at time t; it is the "Wick-ordered" cube of the free field which 
is directly involved, rather than a generally defined operation on ~b. In 
terms of the local renormalized operations treated here, the equation 
satisfied by 4b is 

[-]ff~=m2 ffj+4gc~3 +ro(x)(b2 +rl(x)c~+r2(x), 

where the ri(x) are certain f-dependent continuous functions on R 1, The 
"power" ~b(2, t)" involved here is definable, say as the kernel of a dis- 
tribution in space, as the limit of the operators 

(~(~z, t)" + So(~)cbh(~, 0 "-1 + ... + Sr(~)), 

where qSh (X, t)= S q~(X + i9, t)h (~)d~, and the s~(x) are certain well-defined 
continuous functions determined by the PLV for H ~  V, as the "test 
function" h converges to the delta-distribution. It is thus constructible in 
explicit terms from the Cauchy data for ~b at time t in any neighborhood 
of~. 
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1. Moderated Perturbations 

A calibrated Banach space is here defined as a Banach space B, a 
simply ordered set P with an infimum Po, and a mapping p ~ II. tl. from e 
to non-negative functionals on B, which functionals are (possibly- 
infinite-)valued norms, and which mapping has the properties: 

1) II.llpo is the given norm in B; 
2) II ullp is monotone increasing as a function of p, for every u s B; 

3) the common part of the sets Bp=[u~B:  l l u l l~<~]  as p ranges 
over P is dense in B; 

4) i fu , -~u  in B, then [lull~__<sup Ilu.llp for all peP. 
n 

Example. In any probability measure space, or more generally in any 
probability gage space, say M, let B=Lpo(M ) for some po~[1, ~ ) ;  let 
P =  [Po, ~) ,  and let Ilullp--(~ lulV) 1/~. The foregoing conditions are then 
satisfied. 

The subset [ueB:  Ilull~<ov] will be denoted as Bp. As a normed 
linear space with the norm II. tip, B~ will be denoted as [Bp]. The common 
part of the Kp as p varies over P will be denoted as Ko,. In the topology in 
which convergence means convergence in each II.ll,-norm, K,o will be 
denoted as [ K j .  If Tis any operator in B, II Tllp, q will denote its bound as 
an operator from [Kp] to [Kq], i.e. the supremum of IITutlq/llullp as u 
varies over the non-zero elements of Kp. 

Let V(t), t>0 ,  be a given continuous semigroup in B, i.e. each V(t) 
is a continuous linear operator in B, V(O)= I, V(t) V(t')= V(t + t') for all t 
and t' > 0, and V(t) is a continuous function of t, in the strong operator 
topology. This topology for operators will be employed exclusively in 
the following unless otherwise specified. The semigroup V(t), or the 
negative of its generator, will be said to be of type (Q, e, a, to), where Q is 
a given subinterval of P, which is here and henceforth assumed to be a 
real, finite or infinite, interval, and e, a, and to are given real numbers, of 
which to>0,  in case II V(t)llp, pe~,<: eat for all t~[0, to] and peQ (in par- 
ticular, it is assumed that pe~t~P for all such t and p). It will be said to be 
of type (Q, ~, a) if there exists a to > 0 such that it is of type (Q, c~, a, to). 

While the theory to be developed fits logically into a Banach space 
context, present applications are limited to the Hilbert space case, and 
only this case will here be treated. A sequence {A,} of self-adjoint oper- 
ators in a complex Hilbert space K is said to converge to a self-adjoint 
operator A in K (symbolically, A, ~ A) in case any one of the following 
equivalent conditions holds: (a) e itA"--~ e ira for all real t; ( b ) f (A . )~ f (A)  
for all bounded continuous functions f ;  (c) the same as (b) for a l l fwhich 
are continuous and vanish at infinity on R 1 (or any set of such f which 
separates R~); (d) the spectral family E.(2) for A. converges to that, E(2), 
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for A, for every 2 which is not a point of discontinuity of E(2). This 
notion is treated in Kato [6], where it is called "generalized strong 
convergence" (in particular, a sufficient condition that A, ~ A  is that 
A . x  ~ A x  for all x in a domain D on which A is essentially self-adjoint). 
With regard to the indicated equivalences, see also Kallman [5]. In the 
present article, only the following result from Segal [11] will be used: if 
the A, are uniformly bounded from below, then (a) holds if and only if 
e - t A " - - ~  e - t A  for all t > 0  (or equivalently, for one t>0). 

Let H and V be given self-adjoint operators in the complex Hilbert 
space K, and let S be a given set of sequences { V,} of bounded self-adjoint 
operators, each sequence being convergent to V. The moderated pertur- 
bation of H by V, relative to the given set S, is said to exist if there exists a 
self-adjoint operator H' in K such that H +  V.--* H', for all sequences 
{V,}eS. In this event, H' is called the moderated sum of H and V, and 
denoted as H ~ V. 

In the case of a calibrated Hilbert space, it will be convenient to make 
the normalization Po = 2. 

Theorem 1. Let H and V be given self-adjoint operators in the given 
calibrated Hilbert space K. Let ~, fl, 7, a, b, and c be given real numbers, 
such that ct > 0 and ~ + 7 > O. Let Po and qo be given numbers in P such that 

2 < q o < P o .  
Suppose that H is of type (2, ~, a) and also of type ([2, Po], fl, b). Let C 

denote the class of all selJ=adjoint operators Win K of type ([2, Po], 7, c), such 
that Kqo ~ D ( W )  and 11W]lqo, 2 < ~ ,  and let Co denote the set of all bounded 
elements of C. Suppose that VeC, and that S is a given non-empty set of 
sequences { V,} of elements of Co, such that for each sequence, 1,1, ~ V and 
II Vn - -  Vl{qo, 2 "-+ O. Then 

1) H~ -V  exists, is > - ( a + c ) l ,  and for any pl~(2, po) is of type 
(I, fl+7, b+c), where I =  [2, P t ] / f f l + 7  >0, I =  [Pl, P o ] / f f l + 7 < 0 ,  and I 
may be taken as [2, Po] i f f l+7--0 .  

2) I f  V' and S' satisfy the same conditions as V and S, with possibly 
different constants 7' and c', such that ~ + 7 + 7 ' > 0 ,  then for all ueKro and 
all sufficiently small t, 

t 
e-t~n~ v) u -  e -t~n~v') u = S e-"-s)ln~-v'~( V -  V') e -sIH~-v) u ds, 

o 
the integral being taken in the Riemann sense, the integrand being contin- 
uous. 

Moreover, if V ,+V , '~ (V+V ' )*  for all sequences and {V.}~S and 
{V'} eS', then (H~- V )~  V ' = H ~ ( V +  V')*. 

3) If~ + 7 > 0  and f l+ 7 > 0 ,  and i fH is of type (2, ~, a, to) with 2e"~ >qo,  
then every entire vector w for H ~ V is in D ( H ) n  D (V), and (H ~ V)w = 
H w +  Vw. 
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Lemma 1.1. I f  {n.} is a sequence of self-adjoint operators converging 
to a self-adjoint operator H, and if V is a bounded self-adjoint operator, 
then H, + V ~ H +  V. 

Proof It suffices to show that e"(H"+V)~e"(U+v) for all real t. By 
Duhamel's formula, for arbitrary u~K, 

t 

e it(H"+V) u = e itH" u + i f e " t  - s )nn  VeiS(Hn+V) U d s  j 
0 

and similarly for e "~n+v). Subtracting, it follows that 

e i t(H'+V) U - -  e it(H+V) u 

= (e itH" u - -  e i ' n  u) + i i ( e l ( t -  s)U. V e i S ( u .  + v) _ e i ( t - s )H V e l s ( n  + v)) u d s .  

0 

Setting g,(t) = lie i"n"+v~ u -  e "~H+v) ull, and noting that the integrand may 
be written as 

( e i ( t -  s) H.  _ ei(, - s) H) V ( e i s (n  + v)) u + e i ( t -  s)H" V ( e is(H" + v) - e is(H + V)) u ,  

it follows that t 

g.(t)< A.(t) + I[ VII S g.(s) ds, 
0 

where 
t 

A.( t )  = I le"H"u-e  itn ull + .[ II(e " ' - ~ ) ' "  - - e  i ( t -s)H) Ve i~(H+v) ull ds. 
0 

The integrand in the last integral is bounded uniformly in n and s, and 
0 as n ~ 0 for each s. Hence A . ( t ) ~  0 for each t, and boundedly in 

each finite t-interval. It follows from Gronwall's inequality that g . ( t ) ~  0. 
The following lemma is essentially a special case of Lemma 1.3, but 

it is convenient to state it separately. 

Lemma 1.2. Let A and B be self-adjoint operators in K, and suppose 
that B is bounded. I f  A is of type (2, ~, a) and B is of type ([2, Po], -~ ,  b) for 
some po>2,  where e>0,  then A + B is of type (2, 0, a + b ,  ~).  

Proof By the Lie-Trotter formula, e-"A+n)= lim (e -tB/" e-tA/") ", SO it 
n 

suffices to show that lie - ' ' / "  e-'A/"ll < d  a+b'/". Now 

II e-'B/" e-tA/"ll < Ile-'A/"ll2,p Ilel'B/"llp, 2. 

Taking p = 2e% the conclusion follows. 

The hypothesis on B may evidently be weakened to the assumption 
that II e - ' n II 2 e~', 2 --< ebt for all sufficiently small t > 0. 

Lemma 1.3. Let A and B be self-adjoint operators in K, of which B 
is bounded. Suppose that A is of type ([2, to], ~, a) and that B is of type 
([2, to], fl, b), where r o > 2 and ~ positive. Then for arbitrary q ~(2, to), A + B 
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is of type (I, ct + fl, a + b, ta), where I is of the form I-2, ra]/fct + f l>0 ,  of the 
form [q, ro] /f ct + fl < 0, and of  the form [2, ro] /f ~ + fl = 0; and t; = 
I~+fl] -~ log(ro/q)/f~ +fl >0;  q = ~ / f ~  + f l=0;  andfi =ta+f l l  -~ log(rJ2) 
/ f ~ + f l < 0 .  

Proof As in the proof of Lemma 1.2, if p is in the interior of [2, ro], 
then for sufficiently large n, 

lie -'B/" e- 'a/%, pc,-+ ,,',- < Ile-'AIl,, pe't/n Ile-'~ll,e.,,, pe,. +0,,,, 
e(a +b)t/n. 

It follows that if ['p, pe ~'+#)'] = [2, ro], then 

[I (e - t n / .  e -"4/")" II., ~ ~,,+ ,,, < e r + b)t. 

As earlier, it results that ][e-t~A+ml[p,, e'.+')' < e~"+b)t. 

If c t+f l>0  and p~1-2, q] with 2 < r l < r o ,  then [p, pe('+#)t]=[2, ro] 
provided rle~+#)t<ro, giving the value of ta indicated. Analogous 
arguments apply in case ~ + fl--0 or is < 0. 

Proof of  Theorem. Let W and W' be arbitrary in Co, and let u be 
arbitrary in K. Then by Duhamel's formula, 

t 
e-t~n+W) u_e-t~H+W')u= ~e-,-s)(n+w')(W, W) e-s~n+W)uds. 

It follows that o 

Ile-t~n + w) u -  e -t(H + w') u l[ 

< i [le-"-~)("+w')ll2,2 [I W ' -  Wllqo,2 Ile-~'"+W~l[,,o, qo [lullpo ds. 
0 

By Lemma 1.2, ]le-(t-~)m+w')]12, a<eCa+c)t. By Lemma 1.3, if t is suffi- 
ciently small, say t~(0, to), I]e-t(n+w)]]po.qo<e~"+b)'. 

Hence if ueKpo, {V,} eS, te[0,/1), tl <to,  then 

Ile-tr as m , n + m .  

It follows that e-"n+V")u ~ Mo(t)u for some operator Mo(t), uniformly 
in t, for tel-0, q). Since [le-"n+v")ll2, 2 is bounded as n-~m,  Mo(t) is a 
bounded linear operator, and can be uniquely extended to an every- 
where-defined bounded linear operator M(t), which is evidently self- 
adjoint and positive. 

Straightforward approximation shows that if t, t', and t + t' are in 
[0, q), then M(t )M (t')= M(t  + t'). Moreover, if e > 0, then m (t) '= m(~ t), 
since the approximations e -~tn+v") have the same property. If now t is 
arbitrary in (0, oo), choose m so large that t im<q ,  and define M(t)= 
M(t/m)"; then M(t) is independent of the choice of m, by the preceding 
sentence, and is a one-parameter semigroup. This semigroup is con- 
tinuous, in view of the uniformity of the convergence in t, for te l0 ,  h), 
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and hence of the form (see Hille [8]) M(t )=  e - in '  for a unique self-adjoint 
operator H'. Thus H + V, ~ H'. 

If {V,'} is another sequence in S, then taking W =  V, and W '=  V,' in 
the foregoing, and noting that H V,-V, ' j lqo,2~O, shows that the same 
operator Mo(t), and hence the same M(t), are obtained from {V,'}. Thus 
H ~  V exists, and the type indicated for it follows from property 4) of a 
calibration. This completes the proof of conclusion 1). 

Now substituting W= V, and W '=  V" in the foregoing, where {V,'} ~S' 
in conclusion 2), and noting that I I (v , -v , ' ) - (V-V' ) l lqo ,2- -*O,  the ex- 
pression given for e -  tin ~ v) u - e -  tin -T v,) u follows. 

Now note the 

Sublemma. Let  6 and d be given real numbers such that ~ + 6 > 0 ,  
: r  7hen for all sufficiently small t, and any given u~K,  

e - t ( (H~-W)~V~)  u --.* e - t ( ( H ~  w)~-v ' )  u 

uniformly for all self-adjoint operators W of type ([2, Po], 6, d). 

Proof In view of the uniformity of the bounds on the e -'~luz~w)~-v~) 
for t in a sufficiently small interval J independent of W and n, it suffices 
to establish the conclusion for the case that u~Kpo. In this case, 

e -t((H3~ W)~  V~) U - -  e -t((H~- w)~- v ' )  u 

= i e-(t-~)((n~- w)+v~) ( V -  11",) e -~(In~ w)7-v') u ds, 
0 

for t6J.  Using again the uniformity of the bounds, and estimating as in 
the proof of 1), the required conclusion follows. End. 

Resuming the proof of 2), since V, + V,' --* (V+ V')* and 

I[(V,+V,')-(V+V')*[Iqo,2--'O, H~(V ,+Vd) - -*H-T- (V+V' )*  

by the proof of 1), and the observation that (V+ V ' ) c ( V +  V')*. On the 
other hand, e - t ( ( n + v m ) + V ~ ) u  ~ e- t ( (H+V'~) 'Y-V ' )u  a s  n - -~  oo,  uniformly in m, 
while as m--, oo and n is held fixed there is convergence to e -t((nvv)-y-v") 
by Lemma 1.1. It follows that e-t((n+vm)+V:)u is convergent as a double 
sequence to e -t((n~v)+v') u; in particular, e -'((n+v")+v~) u ~ e -'((n~ v)~;V')u. 
Since it is evident that ( ( H + V , ) + V ~ = H + ( V , + V ~ ) ,  it follows that 
( H ~ V ) ~ V ' = H ~ ( V ~ V ' ) .  

To show 3), let w be an entire vector for H' = H ~  V,, i.e. w~D(e tH') for 
all t. Then w = e- tn '  (etn" w). From Lemma 1.3 it follows that H'  is of type 
([2,pl],  f l+7, b+c,  q), where t 1 =lf l+7[  -1 log(po/pO, and qo<pl  <Po. 
Taking t = q,  it follows that w sKp for all p < Po. The Duhamel formula is 
therefore applicable to e-"n%V) w for all sufficiently small t, expressing 
it as t 

e - t n w +  ~e-( t -s)n V e - s n w d s .  
0 
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Hence 
t 

t - X ( e - t U - I )  w = t - l ( e  - t n ' - I )  w + t -1 ~ e -(t-s)t-I Ve  -sn' was .  
0 

Evidently, t -  1 (e-  tn' _ I) w ~ - H' w as t ~ 0. Now e-  tn' w is a continuous 
function of t near 0 with values in [Kqo], since 

e - t H '  w - -  w -~- e -sn' (e -tn" v -- v) 

for arbitrary s > 0 and suitable v, and this shows that 

IJe- 'U'w-wllqo<COnStIJe-m'v-vJI2-oO as t - , 0 .  

From this it follows by estimates used earlier that the integrand 

e - ( t - s ) H  V e  - s H "  w 

is a continuous function of s and t with values in K, in the range 0 < s < t. 
At s = t = 0, the integrand takes the value Vw, and it results that 

t-1 i e-(t-s)n Ve-SH' W--~ Vw. 
0 

Thus, w is in the domain of H, and H w = H ' w -  Vw. 

Corollary 1.1. I f  H + V has a self -adjoint extension (in particular if for 
all u~D(V), 1,1, u -o Vu for all {V,} ~S), then H +  V c H ~ -  V. 

Proof  Let E denote the domain of all entire vectors for H'. Then 
H + V and H-T- V agree on E. But H ~ V is the unique self-adjoint operator 
extending its restriction to E, so any self-adjoint extension of H ~ V must 
he identical with H-T- V. 

If in particular, the indicated special condition is satisfied, then since 
( (H + V,) u, u) > const (u, u) for all u ~ D (H), it follows that if in addition 
u~D(V), then ( ( H +  V)u, u ) > c o n s t  (u, u). Thus H +  Vis semi-bounded, 
and being hermitian, has therefore a self-adjoint extension. 

Remark. Conceivably, H + V always has a self-adjoint extension, but 
this is not known. By 3) of Theorem 1, a self-adjoint extension could fail 
to exist only when c~ + ~ = 0. 

Corollary 1.2. I f  in 2), ( V -  V')* together with the V -  V', is self-adjoint 
and is for { V,'} ~ S', of  type ([2, Po], 3, d), where ~ + 6 > O, then 

(H'~ V)-T-(-  V')= H ~ ( V -  V')*. 

Proof  By Lemma 2.1, the conclusion is valid if V' is bounded. In 
particular, (H'~ V ) -  V , ' = H ~ ( V -  V,'). But H ' ~ ( V -  V,')--, H ~ ( V -  V')*, 
so that (H ~ V)~ ( -  V') exists and has the indicated value. 

The notation Rw (resp. Lw) for any element w of a Hilbert algebra K 
will denote the operation of right (left) multiplication by w, in the sense 
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indicated in Segal [12]. For w=w*,  R w and Lw are self-adjoint and 
commute, so that defining Mw as the closure Rw +L~,  Mw also is self- 
adjoint. 

Corollary 1.3. Let K be a Hilbert algebra with unit e of unit norm, and 
let Ilulljor arbitrary ueK denote the Lp-norm: E(lulP) ~/p, where E denotes 
the trace. 

Let H be a self-adjoint operator in K of types (2, ~, a) and ([2, Po], ~, b), 
for some Po > 2, where ~ > 0 and fl > O. 

Let v be a given hermitian element of K such that e -~ and v are in Kp 
for all p< oo. Let S denote the set of all sequences of the form { M J ,  where 
vn=f,(v), {f~} being an arbitrary sequence of real bounded Baire functions 
on R 1, having the property that If.(2)1<121 for all n and 2ER x, and that 

f.(2) ~ f ( 2 )  as n ~ oo, for all 2. Then: 

1) H ~-Mo exists, and for any Pl ~(2, Po) and all sufficiently small e>0,  
is of type 

([2, Pl], f l - e ,  b +  2 log Ile-~ 

2) I f  v' satisfies the same conditions as v, then for all u~K, 
t 
f e - - ( t -s )~n~-M~,)  M e - s ( H ~ - M ~ ) u d s  e - t ( H t : M v )  u - -  e - t (H:gM~')  U : j v - v '  

0 

( Bochner integral), the integrand being bounded for s~ [0, t]. 

Moreover, (H g Mo)~ M~,=H'~ Mv+o,. 

3) Every analytic vector for H ~ M~ is in D ( H ) n  D (M~), and H + M~ 
HgMo. 

4) For any 26[0, 1], 

H ~  V > ( 1 - 2 ) H - ( 2  a + 2  log Ile-Vll4/~). 
5) Let B denote the class of all operators H satisfying the indicated 

conditions, and C the class of all v satisfying the indicated conditions, 
together with the conditions that [1 v II ~ + II e - v II p < Cp for  p ~ [2, oo), where for 
each p, cp is a given constant. Let ~ be an arbitrary positive number. Then 
there exist constants C and a, and a fixed index q~ [2, oo) such that 

I[e-"HJ; Mo)--e-t'H'Z-Mv')II <--__ c(ll(n- n')((1 + a) l -k  H) -11[ q- IIv- v'llq). 

Lemma 1.4. For any ~ > 0 and t > O, 
- t M u  < --v 2t lie lip, pe . . . .  lie l] 2p/e- 

Proof. Let an element u of K be called "special" if it lies in K, for some 
p>2 .  Note first that if u is special, then u e D ( e  -tu~) and e-'Mou= 
e-t~u e -~. To see this, observe that if v is bounded, then e -~Lv u = e - ~ u  
for all ueK. In particular, if vn=fn(v), then e -~t~ u=e  -t~ u. By Htilder's 
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inequality (see Kunze [7], for the form used here) e-tV" u ~ e -tv u. On the 
other hand, by commutative spectral theory, e -t~t" is the closure of 
e-tL~ -tRy. Now, e- t ""u~e- tVu  by H61der's inequality. On the other 
hand, e-tLv,=f,(L~). It follows from commutative spectral theory and 
Fatou's lemma that u~ D(e-tL"), and it follows in turn that e-tLou= 
e-tOu. Since L, and R~ commute, it results that e- t~vu=e-tVue-t~.  

By H61der's inequality, if 1 <q<p,  

Ile-tV u e - ' %  < Ile-t~ll,Z Ilullp 

if q-1 =2r-1  +p-1.  Substituting q = p e - "  and using the monotone in- 
creasing character of II wtls as a function of s together with the inequality, 
e t ' -  1 > te, the lemma follows. 

Proof of Corollary. According to Lemma 1.4, M~ is for any Po ~(2, ~ )  
and e > 0 of type (I-2, Po], - e ,  c) for finite c (as given in 1), which thereupon 
follows. Conclusion 2) follows from 2) of the theorem together with the 
observation that, by what has just been shown, e-~(HZ~M~ remains 
special for arbitrarily large s, if u is special. The boundedness of the 
integrand for s~[0, t/2] follows from the fact that e -"-~)(n+M~') is then 
uniformly bounded from L2 to Lp for suitable p>2,  while for se[t/2, t], 
this is true of e -~(n-wavl. The indicated associativity property follows 
directly from the theorem and Lemma 1.4. 

The same argument as for Part 3 of the theorem shows that in the 
present case, inasmuch as qo can be chosen arbitrarily > 2, it suffices if w 
is an analytic vector; for then w=e-tn'(etn'w) for some t>0,  showing 
that w is special, which suffices. 

The proof of 4) is virtually identical with that for Corollary 2.1 in 
Segal [9]. To prove 5), set V= M~, V'= M,, and write 

e-t(n~-V) e-t(n'~-v')=(e-t(n-y-V)_e-t(n'~-v))+(e-t(n'~-V)_e-t(n'~-v')). 

Applying the Duhamel formula to each of the two summands on the 
right, and estimating the integrand as earlier, in the intervals [0, t/2] and 
It/2, t] separately, with the aid of 4) in dealing with the first summand, 
the conclusion follows. 

Corollary 1.5. I f  H and v are as in Corllary 1.3, then F(t)=e -(nz~tM~) 
has a holomorphic continuation from the half-line t > 0  to the half-plane 
Re(t) > 0, in the uniform operator topology. 

Proof If V is bounded, then H-T-t V is the generator of a one-para- 
meter semigroup, and is easily seen to be a holomorphic function of the 
complex variable t (e.g. by the Lie formula). Moreover, the application 
of the Lie formula as in the proofs of Lemmas 1.2 and 1.3 shows that the 
same results are valid with V replaced by t V in the hypothesis, t being 
complex, but with (Re t)V in the conclusion. Applying the Duhamel 

16 lnventiones math.,VoL 14 
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formula as earlier, it follows that lime-~n+tu", ), where v,=f,(v), the 
n 

sequence f ,  being as earlier, exists in the uniform operator topology, 
uniformly in any bounded t-region in which Re t is bounded away from 0. 
This limit is then a holomorphic function from the half-plane Re t > 0 to 
the bounded operators in the uniform topology, extending F(.). 

Definition. An operator H in K is called indecomposable in case (a) 
if u is a non-negative hermitian element of K and if t~(0, ~) ,  then e- tnu 

, >  is non-negative; (b) if u, u '~K and u, u _0 ,  and if for all t>0 ,  (e - tnu ,  u') 
= 0, then either u = 0 or u '=  0. 

Example. Let H be a given complex Hilbert space, let A be a given 
self-adjoint operator in H such that A > el  for some e > 0; let H = dE(A), 
in the notation of I;  let M be the probability measure space associated 
with the "free" Weyl process over H as in I. Then (a) follows from 
Mehler's formula when u is a tame function, and thence for general non- 
negative f by a simple limiting argument; (b) follows from the fact that 
e - t n u ~ S u  in K, as follows e.g. from the duality transform. 

Corollary 1.6. I f  H and v are as in Corollary 1.3, if H is indecomposable 
and K is abelian, then H + My is indecomposable. 

Proof The Lie formula shows that e -'tnx-sv) is positivity-preserving 
for any s > 0 (i.e. satisfies condition (a)), setting V= My. Now if v < 0, then 
by the Lie formula, e-tln~ v) u > e - tnu  if u > 0, and it follows that 

( e -'~H :z- u) u, u') > ( e -tH u, u'), 

from which (b) follows for H g V. 

For  the case of a general v, let v+ be the positive and negative compo- 
nents of v, so that V= V + -  V_, where V+ = M y .  On replacing H by 
H g ( - V _ )  through the use of the preceding paragraph, the question is 
reduced to the case in which V > 0. Now assuming this, then by the Lie 
formula, e-'(n~sV)u is for fixed t > 0  and u>0 ,  a monotone decreasing 
function of s > 0. Since (a) holds for H g V, it can fail to be indecomposable 
only if there exist u and u' in K, each of which is non-negative and non- 
zero, such that (e-"H:r-V)u, u')=O for all t>0 .  But 

(e- ' lu+V)u,u ')>(e-"n+SV)u,u ') for s > l ,  

and so vanishes for such s. From Corollary 1.4 it results that 

(e-'{n~;SV)u,u')=O for all s > 0 .  

Letting s ~ 0 ,  it follows by continuity that ( e - ' nu ,  u ' ) = 0  for all t>O, in 
contradiction with the assumed indecomposability of H. End. 

Remark. The method used here for the proof of Corollary 1.5 appears 
to be potentially more powerful than that indicated in [11] for a special 
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case, in that it applies to certain cases in which H + V is not necessarily 
essentially self-adjoint, or in which H is not necessarily affiliated with the 
ring of operators determined by H ~  V and V. The earlier method is 
however quite sufficient for the present corollary. 

More specifically, by [1, Theorem 3.3], i fH -~ Vis not indecomposable, 
there exists a measurable set N such that e -t(n*v~ leaves invariant the 
subspace N of all functions in L 2 (M) which vanish outside N. This means 
that N is invariant under the multiplication algebra M of M. On the 
other hand,/-/is affiliated with the ring of operators determined by H ~ V 
and V since H is the closure of (H-T- V) -  V; and hence with the ring 
determined by H ~ Vand M. It follows that the e- tn  also leave N invariant, 
contradicting the indecomposability of N. 

A quite brief proof may be given for the cited result of Ando in the 
particular case needed here, along similar lines, as follows. 

Lemma 1.5. Let H be a self-adjoint operator in L 2 (M) which is bounded 
from below and is such that e -tn is positivity-preserving, for all t>0.  Then 
H is indecomposable if and only if the e -tn, t>0 ,  together with the multi- 
plication algebra of M, act (jointly) irreducibly on L 2 (M). 

Proof Since an invariant subspace under the multiplication algebra 
consists of all vectors in L2(M) which vanish on some measurable set, 
the "only if" part is immediate. Suppose therefore that the e - ' n  together 
with the multiplication algebra act irreducibly, but, as the basis of an 
indirect argument, that H is not indecomposable. Then there exist f, g in 
L 2 (M), neither zero and both non-negative, such that ( e - t n f  g ) =  0 for 
all t>0.  Let N denote the essential union (i.e. union modulo null sets) of 
the supports of the e-tnf(equivalently, the union of the supports of the 
e-~Uf for rational t>0);  then N meets the support of g in a null set, so 
that N differs from all of M by more than a null set. To conclude the proof 
it suffices to show that the subspace N of all vectors h in L2 (M) which 
vanish outside N is invariant under the e - 'n for t>0.  Since the positive 
and negative parts of the real and imaginary parts of any such f are 
again in N, it is no essential loss of generality to consider the case in 
which h > 0. It is easily seen that if h > 0 is in N, then there exist a mono- 
tone increasing sequence {h,} of elements of Lz(M) such that 0 < h , <  
some finite linear combination of the e -tn with positive coefficients, and 
such that h , ~ h .  But for any s>0,  {e-Snh,} is a monotone increasing 
sequence of elements of L2 (M) with the same property, which converges 
to e-Snf, showing that the latter vector is an element of N. 

In this connection, the following well-known result from the theory 
of positivity-preserving transformations should be noted (cf. Ando [1], 
Theorem 3.4). 

16" 
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I f  an indecomposable operator has a proper lowest vector, the cor- 
responding invariant subspace is one-dimensional, and the vector may be 
chosen to be positive a.e. 

Here the term "proper lowest vector" (abbr., " P L V ' )  for a given 
self-adjoint operator T in a Hilbert space K is defined as a unit vector v 
in K such that T v = 2 v  for some 2~R 1, while T > 2 I .  If the invariant 
subspace corresponding to the proper value 2 is one-dimensional, T is 
said to have a unique PLV. Tis said to have the "spectral gap I"  (resp. to 
be "compact in the spectral interval I ' )  if Ct(T)=0,  where C l denotes 
the characteristic function of I (resp.,f(T) is compact for all continuous 
functions f on R 1 which vanish outside I). If 2 = inf T, and if (2, 2 + ~) is a 
spectral gap for T, it is also said that Thas a spectral gap "of width e at 2". 

A self-adjoint operator T in a Hilbert space K will be called inverse- 
compact if either one of the following two equivalent conditions holds: 
(a) ( c I - T )  -~ exists and is compact for some c>0 ;  (b) ( c l - T )  -~ exists 
and is compact for all c not in the spectrum of T. The notation inf T 

M 
will denote the infimum of ( T u ,  u) as u varies over the unit vectors in 
D(T)c~M. 

Definition. A self-adjoint operator T in a Hilbert space K will be 
called approximately inverse-compact (abbr., AIC) if it is bounded from 
below, and if there exists a sequence { T~} of self-adjoint operators in K 
such that: 

(a) I] f (T,)- f (T)N ~ 0  for all continuous functions f of compact 
support; 

(b) K is isomorphic to a direct product K', x K,' in such a way that T, 
is isomorphic to the closure of T,' x I': + I', x T~', where T,' is self-adjoint 
and inverse compact in K', and T," has a unique PLV and a spectral gap 
at inf 7"" of width e > 0 (uniformly in n). 

Lemma 1.6. I f  T is AIC, then T has a PLV, and is compact in the 
spectral interval (inf T, inf T+ ~). Moreover, if 7", has for each n a unique 
P L V  w,, then T has a unique PL  V w = lim c, % ,  for a suitable sequence c. 
of  constants of absolute value one. 

Proof Let 2, (resp. 2',, 2") denote the infimum of the spectrum of 
T, (resp. T~, T~'). Then 2. = 2', + 2~', and any point in the spectrum of T, in 
the range (2,, 2, + e) must be of the form/~ + 2~', where/~ is in the spectrum 
of T,'. Since T,' is inverse-compact, it follows that T, is compact (or 
equivalently, has finite spectrum of finite multiplicity) in the spectral 
interval (2., 2, + e). By virtue of (a), 2.--* infT, and T is compact in the 
spectral interval [inf T, inf T+ e). In particular, T has a PLV. If T, has a 
unique PLV, then it is easily seen to have the form w'. x w~', where w'. 
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and w',' are unique PLVs for T,' and T'.  Iff is  a continuous function which 
is 1 in a sufficiently small interval around 2 = inf T, and which vanishes 
outside of a properly larger interval, then tl f (T,)- f (T) l l  ~ 0 uniformly, 
implying that the projection P, onto the one-dimensional subspace 
spanned by w'. • w~' converges to that onto the corresponding subspace 
for T. It follows that this subspace is one-dimensional and spanned by a 
vector of the indicated form. 

Corollary 1.7. Let M be a given probability measure space, and let v 
be a given real function in Lp(M) for all p< ~ ,  such that e-VeL4/,(M), 
where ~ is a given constant > O. Let H be a given self-adjoint operator in 
L2(M) of type (2, ct, a). Suppose that H is AIC, with the properties that: 
(a) 14, is also of type (2, c~, a), and II(H,-H)(cI+H)-~I[---,O for some 
constant c; (b) there exist independent complemented a-subrings R', and 
R': of the ring of measurable sets of M, which jointly generate the latter 
ring, such that K', and K': are naturally isomorphic to the subspaces of K 
consisting of the elements measurable with respect to these respective 
subrings. 

Remark. If R', and R~' are as indicated, and M is the triple (R, R, r), 
then it is straightforward to verify that the mapping f • g ~ f g  extends 
uniquely to a unitary transformation from L 2 (M') • L z (M") onto L2 (M), 
where M ' =  (R, R', r) and M " =  (R, R", r). This is the natural isomorphism 
referred to. Hypothesis (b) does not restrict materially further H, but 
effectively relates the action of M~ to the AIC formulation of H. 

Proof It will suffice to treat the case ~ > 0, for the case ct = 0 is similar 
and simpler. Note that if v. denotes the conditional expectation of v 
with respect to the subring R., then Itv, lJp<llvl[p, since conditional 
expectation is a contraction on any Lp-space. Similarly, I[e-""[lp< IJe-"lJp 
+1, for if v=v+-v_ ,  where v• are non-negative and have disjoint 
support, then v,=(v+),-(v) , ,  so that 

It follows that 
e - , v .  = e p W  _ ),, e - p w  + ) .  < e p ( V -  ) . .  

~e-PV"<~e p'v '"=~(k~oPk(k')-l(V_)Q, 

which by monotone convergence equals 

pk(k!)-l~(V_)k,< ~ pk(kr)-l=~ePV-<~eP~+ 1. 
k=0 k=0 

It follows from Corollary 1.3, Part 5), that 

Ile-'~n" +m- ~- e-tln+M~ll ~ 0, 
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which implies in turn, setting M~. = V,, and M~ = V, that 

II f(H= ~ V. ) - f (H~  V)ll ~ 0  

for all continuous functions f of compact support. Now taking T. = 
/4. 7 V., T.' = H'. ~ V.' where V.' denotes the restriction of 1I. to K. c~ D (V.), 
it follows that the sequence {T.} satisfies the conditions given in the 
definition for AIC. Applying Scholium 1 the corollary follows. 

Corollary 1.8. The operator H'(H, V(f)) indicated in Corollary 3.3 of 
[9] admits a unique PLV, and has compact spectrum in the interval of width 
m above its infimum. 

Proof Suppose first that H is an arbitrary complex Hilbert space, 
M and M • are arbitrary orthocomplementary closed linear subspaces, 
and A o is a non-negative self-adjoint operator in H which leaves M 
invariant and whose point spectrum (if any) omits 0. If (K, W, F, v) denotes 
the free Weyl process over H, i f J  denotes an arbitrary conjugation on H 
leaving M invariant, and if H ' = [ x e H :  Jx=x],  M ' = [ x e M : J x = x ] ,  
and M •  [x~Ml:Jx=x] ,  then the duality transform represents K as 
L 2 (H', g), where (H', g) denotes the isonormal probability space over H', 
in a fashion which induces representations of K(M) and K(M • as 
L2(M', g) and Lz(M • Thus K ~ K ' x  K", with K'=LE(M',  g) and 
K " = L 2 ( M  • g), in such a way that dF(Ao) is decomposable with H ' =  
dF(A'o) and H'=dF(A~), where A~ and A~ are the restrictions of A to M 
and M', respectively. The operators H' and H" have unique PLVs, and 
if Ao > eI for some e > 0, are of type ([2, ~) ,  ~, 0) for a fixed e (dependent 
on e). 

Turning now to the specific case cited, let z denote any fixed real 
cyclic vector for the (so-called single-particle hamiltonian) operator A, 
and set M,  for the closed linear manifold spanned by the vectors 
C[m/E,,(m+l)/2,](A), where C1 denotes the characteristic function of the 
interval I and m = 0, ..., 2" n. Let A, = ~ Ctm/2", Im+~/2"l (A); then A, 

O<_m<2nn 

leaves invariant the finite-dimensional submanifold M,,  and so has self- 
adjoint restrictions A', and A~' to M, and M, ~. The reality conditions of 
the previous paragraph are fulfilled, and setting H, = dF(A,), and defining 
H,~ and H~,' similarly, all the hypotheses of Corollary 1.6 follows, except 
for the inverse compactness of H', and the suitable convergence of /4 ,  
to H. The first of the latter conditions follows from the finite-dimension- 
ality of M, .  The second is easily checked in the particle representation. 
Finally, since infA = m, the same is true of A~', whence H~' has the spectral 
gap m above infH~,' = 0. 
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2. Nonlinear Perturbations of Weyl Processes 

We now specialize to the case in which there is given a complex 
Hilbert space H, a self-adjoint operator B in H such that B > e I  for some 

> 0, and a conjugation J on H commuting with B. Let (K, W, F, v) denote 
the free Weyl process over H; and as earlier, let ~U(z) denote the self- 
adjoint generator of the one-parameter unitary group 

[W(tz) : t~R1],  H=dF(B) ,  and H ' = [ z ~ H : J z = z ] .  

As usual, for any positive definite self-adjoint operator C in a Hilbert 
space K, [D(C)] denotes the completion of D(C) as a pre-Hilbert space 
with the inner product: (x,  y )c  = (Cx ,  Cy).  It is evident that C has a 
unique continuous linear extension from D(C) to all of [D(C)] into K; 
in the present contexts it will cause no confusion to denote this extension 
also as C. 

For  arbitrary z~ [D(B-~)],  define 

~o (z, t) = r(t) ~P(B- ~ z) F( - t) 

where F(t) is an abbreviated notation for F(e"n), and for zeD(B~), 
define 

q'o (z, t) = r(t)  q,(i B~ z) r ( -  t). 

The continuous (antilinear) extension of J to all of [D (Ba)] (for a 4: 0) will 
also be denoted as J, and a J-invariant element will be called "real";  the 
set of all real elements in a given domain will be denoted by the sub- 
script "r". 

Lemma 2.1. I f  x~Dr(B~), and if the ui (i = 1, 2) are arbitrary elements 
of D(H~), then ( ~o(X, t)Ul, u2) is a differentiable function of t~R x, with 
derivative (&o(X, t)ul,  u2). I f  in addition x6D(B~), then the latter ex- 
pression is also differentiable, with derivative - ( ~ o ( B  z x, t)ux, u2). 

Proof This is straightforward, hence omitted. 

If A is an abelian ring of operators in a Hilbert space K, and v is a 
unit vector in K, the space of all normal operators T in K which are 
affiliated with A and have v in the domain of lTJ p/2 will be denoted as 
Lp(A,v), and considered as a Banach space with the norm: I]TJ[p--- 
]][TI p/2 v]l 2/p. If M is any measure space, or couple (A, v), the notation 
Lx(M), I being a subset of (0, ~ ] ,  will denote the common part of the 
spaces Lp(M), as p ranges over I, in the topology of convergence in each 
such space. 

Theorem 2. With the same notation as earlier as regards (H, B, J), etc., 
let A denote the ring of operators generated by the bounded functions of the 
q~(x) for x~H' ,  and let V denote a self-adjoint element of LE2" | v) 
having the property that e -v  is in L[2 ' ~)(A, v). 
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Let x be an element o fD(B ~) such that the map 
S "~ e iscb~ o) Ve-isCbo(X, o) 

is differentiable at s=0 ,  from R 1 into L[2, ~o)(A, v), with derivative V(x). 
Define 

~(x, t)= e "H' ~o(X, O)e -"H', ~(x, t)= e itH" ~o(X, O) e -i 'w. 

I f  the ui (i= 1, 2) are arbitrary analytic vectors for H' =H-T-V, then the 
following equations hold: 

(c3/c~t) (,~(x, t) ul, u2) = (~(x ,  t) Ux, u2) (x~D(B�89 

(632/~t 2) (~(X, t) Ul, U2) + ( ~ ( B  2 x, t) ul, u2) + (e"n'V(x) e -i 'H' ul,  u2 )  = 0  

Lemma 2.2. I f  H is self-adjoint, V is bounded self-adjoint, and T is a 
bounded linear operator on K, then for arbitrary t~ R 1, 

eit(n+v) T e - i t ( n + v )  

= eitH Te-itH + i ei(t-s)(H+ v) IV, e i*H T e - i S l t ]  e-i(t-s)(H+ v) ds  
o 

(integral taken in the strong operator topology). 

Proof If H is bounded, this is a special case of Duhamel's formula, 
applied to the perturbation ad Vof the operator ad H in the Banach space 
of all bounded linear operators in K. If H is unbounded, let {H,} be a 
sequence of bounded self-adjoint operators such that H , ~ H ;  then 
H, + V ~  H + V by Lemma 1.1, and a limiting argument employing dom- 
inated convergence and the formation of matrix elements with arbitrary 
elements of K completes the proof. 

Lemma 2.3. For arbitrary t~R 1, bounded linear operator G on K, and 
analytic vectors ui (i= 1, 2)for H', the following equation holds: 

( e "H' G e -"H" Ul , U 2 )  = ( e "n G e -"H ul , uz) 
t 

+ S (IV, e i'H G e - i 'n]  e -i"-s)n' ul, e -i"-')n" u2) ds. (*) 
o 

Proof When V is bounded, this is implied by Lemma 2. For un- 
bounded V, let V,=f.(V), where {f,} is a sequence of functions on R 1 
such that [f, (2)[ < ]2[ andf.(2) ~ 2 for all 2. Then equation (.) holds with V 
replaced by V.. The only question in passing to the limit as n-* ~ is 
with the integral on the right side. 

Setting wi(s)=e-"t-*)n'u~ (t being held fixed for the moment), the 
w~(s) are again analytic vectors for H, for all i and s. By an argument 
given in an earlier proof, they are therefore in Lp for some p > 2, and 
moreover 

Ilwi(s)llp_-< const lie "H' u~ll; 
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here, p and the constant depend only on the e > 0  for which ul and/-/2 
are in D(e ~n') and so are uniform in s. The integrand is 

( e  islt G e- isn  wx (s), V~ W 2 ( S ) )  - -  ( e  islt G e- isn  V, wl (s), W 2 (s)); 

applying H61der's inequality and the fact that V ~ V  in Lq, q < ~ ,  
including the q such that p-  1 + q - i  = �89 the required dominated conver- 
gence follows. 

Lemma 2.4. For arbitrary analytic vectors u and u' for H', 

( e "n'  ~(x ,  O) e -i'n" Ul, u2) 
t 

= (~o(X, t) u 1, u2) + [. (e  "'-s>n' V(x) e - i" -sm" ul, u2) ds. 
0 

Proof  Note first that the expressions involved in the lemma do in 
fact exist. For e - " n ' u  is again analytic for H', hence is contained in the 
domain of ( H ' + c ' I )  for a sufficiently large constant c', and hence con- 
tained in the domain of ( H + c l )  �89 for sufficiently large c. This implies 
that it is in the domain of ~(x, t) for all t and x~D(B+). An argument 
similar to that used for the proof of Lemma 3 shows that the integrand 
and the integral on the right side are well-defined. 

Now set G = e irwin' o) r~R1; then it follows from Lemma 3 that 

( e itlt' r - l  ( G -  I) e -i 'n'  u I, u2) = ( e ittt r - t  ( G -  l) e -ittt Ul, U2) 
(.') 

t 

+ r -1  I ( I V ,  e isH G e -isH] e -i(t-s)H" Ul, e - i l ' - s )n '  u2)ds.  
o 

If w is analytic for H', it is in the domain of ~(x, s) by the argument 
above for all s, so that g ~ n r - l ( G - I ) e - ~ n w ,  which is the same as 
r-l(eir4~lx'~)--I)w, converges as r ~ 0  to i ~ ( x , s ) w .  Thus, as r ~ 0  the 
left side of Eq. (*') converges to the left side of Eq. (*). 

Setting G(s)=eg~nG e - ~ n  and defining the w~(s) as earlier, the inte- 
grand on the right may be written as 

- - r  -1 ((G(s) VG(s) -~ - V)Gw,(s), w2 (s)). 

For  any fixed s, r - l ( G ( s ) V G ( s )  - 1 -  V) converges as r ~ 0  to V(x) in Lp 
for all p <  ~ .  It follows as earlier that if zEKp, p>2 ,  then 

[Ir-'(G(s) VG(s) -1 - I ) z -  V(x) z[[ <c  Ilzll~ 

as r--+ O, where c depends only on x and V and not on z. 

Now writing 

r - ' (G(s )  VG(s) -1 - I )  G(s) w 

= r-X (G (s) VG (s)- i  _ I) w + r-1 (G (s) VG (s)- '  - I) (G ( s ) -  I) w, 
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the first term on the right converges to V(x)w, uniformly in s, by the 
observation just made. To examine the second term on the right, note 
that [[r-I(G(s)VG(s)-I--I)IILp~A,E~ remains bounded as r-o0, for all 
p e [2, oe); while (G (s) - I) w 2 (s) -* 0. Since 

r - I  ((G (s) VG (s) -1 _ I) (G (s) - I) wl (s), w 2 (s)) 

= (s) - i )  w l  ( , ) ,  r-l(  _ l )  w2 - - ,  0 

boundedly in s, it follows that 
t t 

r -  1 1 ( [ V, G (s)] W 1 (S), W 2 (S)) ds --* I (V(x)  wl (s), w2 (s)) ds. 
0 0 

Proof of  Theorem. Evidently, for arbitrary e > 0, 

@- l(e"' +~m' ,b(x, O) e -'(' § - e  " w  ,b(x, O) e -' 'n') ul, u2) 

= @-1 (e,~n, ~(x ,  O) e - ' ~n ' -  ~(x ,  0)) w,,  w2),  

where wi=e - " w  ui. By Lemma 2.4, the last expression is 
e 

@-i(,~ 0 (x, e ) -  ~0 (x, 0)) w, w')  + ~-1 ~ (e,,~-sm, V (x )e -  ''~-~m" w,,  w2) ds. 
0 

By observations concerning ~0 already made, 

@-1(~ 0 (x, e ) -  ~0 (x, 0)) w,, w 2) --* - (~0 ( B2 x) Wl, w2). 

Since (e II~-~m' Ve -il~-~m' w 1, w2) is a jointly continuous function of 
and s, 

e - '  I ( e"~-~'w V(x) e -"~-~,n' w,, w2) ds ~ (V(x) wl, We). 
0 

It follows that (O/~t) (~ (x ,  t) ul, u2) exists and equals 

--  ( ~ o ( B  2 x)  Wl, w 2 ) - -  ( V ( x )  Wl, w 2 )  = - ( ~ ( B  2 x,  t) Ul,  u 2 )  

- (e i 'w V(x) e -i 'n'  ul, u2). 

Finally, (O/c~t) ( cI)(x, t) Ul , u2) = ( ~(x,  t) u~ , u2), for 

(c3/Ot) ( Cb(x, t) Ul , u2) = (~/c?t) ( e " w  Cb(x, O) e -itn" ul, u2) 

= - i (e  i'n' ~(x,  O) H' e -itn' ul, u2) + i (~(x, 0) e -itn' ux, e -itn' H' u2) 

(note that H' ui is again an analytic vector for H', so the indicated deriv- 
ative exists and the expression given for it is well-defined). Now if u is 
analytic for H', then it is in the domain of H and of V, and H' u = H u + Vu. 

It follows that the last expression may be written as 

( , )=  - i  (cI)(x, 0)(H+ V) wl, w2) + i ( ~(x,  O) wl, (H + V) w2).  
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Note next that H w i  and Vwl are in D(q~(x, 0)) (i=1,2). For if w is 
any analytic vector for H', w~Lp for some p > 2, so by H61der's inequality 
and the assumption that V6C, Vw~Lq  for all q < p ,  showing that 
Vw e D (q~(x, 0)), inasmuch as q~(x, 0) is the operation of multiplication by 
an element of D. On the other hand, H w = H ' w - V w ;  H ' w  is again 
analytic for H', hence is in Lp~ for some Pl >2,  and consequently in 
D 0)). 

It follows that 

(,) = - i (@(x, O) VW1, W2) -~ i (cb (x, O) % ,  Vw2)  - i (Cb(x, O) H wa, w2) 

+ i (clg(x, O) wa, H w2) .  

Now V and ~/,(x, 0) commute, in the sense that their spectral projections 
do so; it follows that 

Thus, 
- i ( ~ ( x ,  0) VW1, W 2 ) ~- i (~(x,  O) wl, VW 2 ) = O. 

? ,  
(*) = ~ t t  (eitIt ~(X, O) e - i tn  w 1 , w2)lt= o 

= (~)o(X,  O) Wl,  W2> = (eirn'~o(X, O) e - i ' n '  ux, u2) 

= (•(x,  t) ul, u2).  End. 

In the Lemmas and Theorem of this section, the processes ~o(X, t) 
and process ~(x, t) are treated for suitably regular x. As a function of x 
for fixed t, these processes are operator-valued distributions. In an 
analogous classical context, these distributions may be established as 
functions. Although it is out of the question to define the present processes 
as strict operator-valued functions, they may be identified with generalized 
operator-valued functions, in the case of a two-dimensional space time. 
This is a corollary to the following results, together with the fact that the 
delta distribution on space is in the domain of B -  ~ in the two-dimensional 
space time case. 

It is convenient to use the following notational conventions. If B is 
a given sesquilinear form with domain G in the Hilbert space K, the 
value orB on the given ordered pair of vectors ut, u2 in G will be denoted 
as ( B u l , u 2 ) ;  and (Ul,BU2) will denote ( B u 2 , u l ) .  If P and Q are 
operators in K of which P is bounded while Q and Q* are defined on G, 
then ([P, Q] ul, u2) will denote (Q ul, P* u2) - ( P  ul, Q* u2). 

If B is a self-adjoint operator in a Hilbert space H such that B>_eI 
for some e > 0, the notation D _ ~ (B) will refer to the union of the [D (B- k)], 
k = l , 2 , . . . ,  with the usual identifications between these respective 
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domains; in the topology of convergence in some one [D(B-k)], this 
space will be denoted as [ D  oo (B)]; C will denote B �89 

Scholium 2.1. The sesquilinearforms (~o (x, t) ul, u2) and (4'o (x, t) ul, u2) 
on [Do~(H)] (uieD~o(H)) extend continuously (and uniquely so)from the 
given domains for x to the domain [ D  ~(B)]; and on this domain 

(0/~ t) (~o (x, tl ul, u2 } = (4'o Ix, t /u l ,  u2 }, 

(~2fi?t2) (O 0 (x, t)ul, u2 )=  - - (~o(B 2 x, t)ul, u2). 

Proof This is by recursion from the relations 

(4'otx, t) u,, u2) = (El F/, ~o(X, t)] u,, u2) ,  

( r  ( B2 X, t) Ul, U 2 ) =  ([i  H, 4'0 (x, t)] u 1 , u 2). 

Thus (4"o(X, t)ul, u2), originally defined only for x6D(B~), is bounded 
by const [1 C - i x  I[ t [(I+H)ul  [[ ][(I+H)u2[[, and so extends in a unique 
continuous fashion to D(B-�89 Similarly, (r t)u~, u2) extends in a 
unique continuous fashion to D (B-~). Similarly, ( r  (x, t) ul, u2) extends 
in a unique continuous fashion from x6D(B  -�89 to x6D(B-~) .  The 
original relations remain valid for these extensions, and the procedure 
indicated may be iterated, yielding ultimately the indicated extensions. 

Seholium 2.2. Let E denote the domain of all entire vectors for H', in 
the topology in which a generic neighborhood of u~E is 

[u'~G: Ile'H'(u-u')ll <6]  

for some t, 6>0.  Then the sesquilinear forms (~(x, t )ul ,u2)  and 
(4"(x, t)u 1, u2) on E (u/~E) extend continuously, and uniquely so, from 
the given domains for x to the domains D (B-3) and D (B-~), respectively. 
Moreover, 

8 
63 t (~(X't) uI'u2)---(4"(X't)Ul'U2) /f x~D(B-~) .  

Proof Note first that for arbitrary z~D(B), 

I1(1 + H )  -~ ~U(B z)(1 +H)-~I[ <const  Ilzll. 

For by Lemma 3.1 of [10, II], with n = 0  

II ~'(z) ull __< const  Ilzll I1(1 + H )  �89 ull < c  Ilzll I1(1 +H) utl. 

It follows that [[~(z)(l+H)-Xul[<__cl[z][, and by taking adjoints, 
[[(1 + H )  -1 ~g(z) u[[ __<c j]z[]. On the other hand, 

7-'(i B z) w = i [H, 7J(z)] w = i [ 1 + H, 7J(z)] w 
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for wsD~(H), whence 

(1 +H) -1 ~ ( i B z ) ( l  + H) -1 w =i  7J(z)(1 +H)  -1 - i ( 1  +H )  -1 ~(z). 

Taking bounds, the result follows. 

Note next that if u 1 and u2 are in D(H) and if z~H, then 

I < ~/'(z) ul, u2>[ <const  lIB -1 zll ]l(l +H)  ul II II(1 + n )  u2ll. 

This conclusion follows by replacing B z in the preceding paragraph by z. 

Finally, note that if u is entire for H', then by part of Theorem 1, 
II n ull _-< const II e t~ for sufficiently large to. Combining these observa- 
tions, the existence of the extensions described in Scholium 3 follows. 
To conclude the proof, note that in order to show that f ' ( t )=g(t) ,  f a n d  
g being given numerical functions on R 1, it suffices to show that there 
are sequences f ,(t) and g,(t) of continuous such functions such that 
f .(t) ~ f ( t )  and g.(t) ~ g(t) pointwise and boundedly on finite intervals 
and f~(t)=g(t). For 

t t 

f (t) = lim ~ g.(s) ds = ~ g(s) ds. 
0 0 

Now we have pointwise convergence if x .~H,  x.--* x in [D(B-q~)] : 

(~b(x., t) ul, u25 ~ (~(x,  t) ul, u25 

(qb(x,,, t) ul, u25 ~ (qb(X, t) u 1, u25; 
and 

[ (4,(x. ,  t) ul, u251 = [ (q ' ( i  B~ x. ,  t) u~, u251 

<c[IB-~ x,[I l[e~Wul[ [ [[e*H'U21[. End. 

The differential equation obtained in Theorem 2 involves a "source" 
term (e 'i'H' V(t)e -"n" ua, uz) which is in no effective sense a function 
of ~(x, t) and $(x, t). It is remarkable that in the case of the perturbations 
V treated in I, the equation can be given the form of a local differential 
equation in a natural sense. In order to exhibit this form, the concept of 
renormalized (or generalized Wick) power of a Weyl process in space, 
with respect to a relatively general vacuum, must be further developed. 

3. Renormalized Powers with Respect to General Vacuums 
of a Scalar Relativistic Quantum Process 

in a Two-Dimensional Space-Time 

This section is concerned with an extension of the results of treating 
the existence and properties of renormalized powers with respect to the 
free vacuum, to the case of the renormalized powers with respect to a 
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vacuum vector in a general class. These powers were defined in [10], but 
a priori it is not clear how extensive their domains of definition (consisting 
of"  test functions" in space) may be, or indeed if any vectors other than 0 
are in these domains. For finite-dimensional systems, parallel algebraic 
existence, etc. is established in [10]; in question here are the existence and 
properties of certain self-adjoint operators in Hilbert space, constituting 
an infinite-dimensional analogue to the algebraic results. In the case of 
the renormalized powers relative to the free vacuum, the possibility of 
defining the powers as a limit of standardized rearrangements of non- 
commuting monomials, in line with Wick's formal ideas, makes possible 
a variety of approaches to the question. In the general case, lack of any 
simple expression for the expectation value of a product of renormalized 
powers appears to necessitate an approach which depends more on 
functional analysis and less on combinatorics or explicit expressions. 

The definition of the strong renormalized power for an arbitrary 
Weyl process may be briefly recalled as follows. If ~b and ~ is an arbitrary 
Heisenberg pair over a linear space L of functions on a manifold S 
(paired with itself via the usual inner product relative to a given measure 
on S), and v a given vector in the representation space K in the domains 
of all the monomials in the q~(x) and ~b(y) for arbitrary x and y in L, then 
~b I") is defined recursively by the conditions: ( f  here is a suitable real 
element of L) 

(q~t")(f) v, v) =0;  

~b~")(f) is a self-adjoint operator affiliated with the ring of operators 
determined by the O(x), x~L;  

ei6,~) 4 5 c " ' ( f ) e - i ~ = q ~ " ' ( f ) + n  qb~n-l'(fg)+ . . . +  (~) ~,,-r,( fgr)+ 

where ~ ~  In other words, having defined the q~l,,l(.) for m<n, 
including the domains of functions f to which they are applicable (and 
possibly consisting only of 0), a given f is said to be in the domain of 
~b ~") if there exists a self-adjoint operator T affiliated with A such that 

e i'blg) Te-i4'~g)= closure of T+ the indicated operators 

(note that all the operators in question are affiliated with the abelian 
ring A, so there is no problem with their addition and closure). This 
means in particular that fgr  must be in the domain of q~("-r~. 

There is also a more general concept of weak renormalized power, 
where sesquilinear forms relative to a given domain are involved; this 
is not required here. 

On the other hand, the treatment of the general case given here 
depends on the prior existence of a treatment for the case of the free 
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vacuum, and indeed it is necessary to make certain aspects of this treat- 
ment more precise. In presently relevant terms, the basic existential 
result of [10, I] may be stated as follows. 

Recall first that for any measure space M, the notation Ltp ,ql(M), 
where p<q, denotes the common part of the spaces L,.(M), re[p, q], in 
the topology of convergence in each such space L,.(M). If G is a locally 
compact abelian group, and I is any interval in R 1, the notation Lt(G*) 
refers to the space of all functions on G* which are Fourier transforms of 
elements of L~(G), in the topology in which Fourier transformation is a 
homeomorphism. 

Let G be a locally compact abelian group, and let B denote a real 
self-adjoint operator in Lz(G ) which commutes with all translation 
operators 1 in Lz(G ). Suppose that the spectral function B(.) for B on 
the dual group G* has the property that B(.) -~Lo,~(G*).  Let 
(K, ~o, &o, Vo) denote the normal static Heisenberg process 2 associated 
with the given pair (G, B). Let R denote the ring of operators on K 
generated by the bounded Baire functions of the ~(x). 

Then there exists for each n=  1, 2 . . . .  a unique mapping @~o ") from 
the space of all real elements ofL~ (G)/x L 2 (G) to the self-adjoint operators 
in K affiliated with R, having the property that for arbitrary 3 

g~D(B ~)/x L|I,~j(G*), e -i'b~ ~to")(f) e i'b~ 

is the closure of 

Moreover, 
j=o 

q)to")(f)eLrl, ~)(R, Vo). 

There does not appear to be any uniquely convenient spaces in which 
to take the functions f and g which enter into the theorem, due to the 
circumstance that the g's are appropriately chosen to be such that the 
operation M e of multiplication by g is continuous on the space chosen 

i (i.e. those of the form f(x)-~f(a-l.\), for some aeG, and arbitrary feLz(G)). 
2 i.e., these represent the "free scalar quan tum field '" for a scalar particle in the space G, 

whose energy-momentum dependence function is B(. ) at an arbitrary fixed time. e.g. t = 0; 
cf. below. 

3 The condition that g lie in D (B~'), in addition to Ltl ' ~j(G*) was inadvertently omitted 
in the formulation of Theorem 2.1 in [10, I]; as q~(g) is defined only for geD(B~), the 
operator on the left in the statement of the conclusion is undefined, although the right 
side is defined, An extended definition as a limit can readily be supplied (&o(G) can be 
formulated e.g. as the generator of an automorphism of the Weyl algebra treated elsewhere; 
alternatively, sesquilinear forms may be employed); but it is quite sufficient for our purposes 
here to have this conclusion for an arbitrary set of vectors ,e which is dense in [D{C)]. 
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for the f ' s ,  in addition to other natural conditions. In particular, if a 
single space A is desired as a domain for all the ~t'), n > 0, and for ~ as well, 
the following desiderata appear conservatively applicable: (a) A should 
be a real algebra of functions on G; (b) A should be contained and dense 
in [D(C)], which is the natural space for the g's; (c) A should be transla- 
tion invariant; (d) A 2 should be contained in LI(G), so that the constant 
terms entering into the conclusion will be defined. When (b) holds, 
ACLE(G)c[D(C~-I)], where C. is the operator defined below, such 
that q~t") is in a certain sense naturally definable on [D(C21)]. Making 
the conservative assumption that B(.) is continuous on G*, a simple 
algebra A satisfying these conditions is that of all functions on G which 
are Fourier transforms of hermitian-symmetric continuous functions of 
compact support on G*. In the important special case G=R 1 or T 1 
and B(k)=(m 2 +k2) ~, m being a nonzero constant, a more convenient 
space, which has the additional properties of being a Banach algebra 
and of being contained in Ll(G) (so that ~to~ is also defined on it) is 
[D(B)]. The preceding observations follow from 

Lemma3.1. For arbitrary n>0,  the mapping f~ to"~( f  ) extends 
uniquely from LI ( G) /x L 2 ( G) to a continuous linear mapping from [D(C~- 1)] 
to Ltx ' o~)(R, v), where C, is the translation invariant self-adjoint operator 
in L2 (G) whose spectral function is 

(B-l( .)* ... *B-l( .))  -~ (n-fold convolution). 

Proof For fELl(G) ^ L2 (G), 

II ~o")(f)ll 2 = const ~ (b-1 . . . . .  b-l) I f(k)12 dk, 

by [10, I] (cf. I); = const(n)II C. f II ~, On the other hand, LI(G)^ L2 (G) 
is a dense subset of [D(C21)], for if yE[D(C2~)] is orthogonal to all 
f e  L1 (G)/x L 2 (G), then (C2 i f  C21 y)  = 0 (where ( . , . )  denotes the L 2- 
inner product), whence ( f ,  C22 y)=0, and C22 y=0 ,  so that y=0 .  

Thus the map f ~  ~o")(f) is continuous from [D(C21)] to L2(R, Vo) 
and defined on the indicated dense subset, and the conclusion follows, 
as regards extension to a continuous mapping from all of [D(C21)] 
into L2(R, Vo). On the other hand, by Corollary 1.1 of I, I[~to")(f)llp= 
const (n, p) II q~o "~ (f)ll 2 for arbitrary p ~ [ 1, ~),  and the entire conclusion 
follows. End. 

The following result, intuitively to the effect that (:~o(X)": v,v) 
exists and is a function, is needed in the proof of the next Theorem. 

Lemma 3.2. Let v be an arbitrary unit vector in Kp for some p>2.  
Then there exists a unique function h.e [D(C.)] such that ( ~o"~(f) v, v)= 
(f ,  h.) for all fEL2(G ). 
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Proof. By H61der's inequality, I<q~l")(/') v, v>l-<const It~l">(f)llq for 
some q < + ,  which in turn by I is <const  IJ+~">(jc-)tl2=const rlCylfNz,. 
Thus (q)l")(f)v, v) as a function of f+[D(C,-1)] is a continuous linear 

C-1 functional, hence of the form ( , f ,  C ~ l g )  for some ge[D(C,~-l)]. 
Setting h, = C~ -1(C~-1 g), the stated conclusion follows. End. 

One direction of refinement of the transformation rule for cbc0">(f) 
under e i~'~ may be indicated as follows. 

Lemma 3.3. I f  geD(C), and if the operation M~ of multiplication by 
g is bounded on (~ [D(C~1)], in the topology of  convergence in each 

n 
[D(C~-I)], and maps this space into L 1 (G), then 

ei~'o'g'q)~o")(f)e-~o'g'=closureof~ 4~'"-~)(fg~) (~).  
j ~ O  

Proof. The validity of the foregoing equation for suitably regular f 
and g as in the cited theorem implies it for all f in (~ [D(C~-~)], and the 

indicated g, inasmuch as transformation by e i~g) acts continuously on 
L 2 (R, v). 

Remark. The further development of the precise spaces on which 
renormalized products are conveniently defined leads to as yet apparently 
untreated questions concerning the Soboleff-Calderon spaces Lp,, [2]. 
The structure of the space of all multiplication operators Mg which 
carry Lp,, into Lq, ,~, for given p, n, q, and m is relevant, particularly in 
the cases p = q = 2. 

In the case of general vacuum, the basic existential result applicable 
to a two-dimensional space time is the 

Theorem 3. Let G and B be as earlier. Let (K, ~o, ~o, Vo) denote the 
normal static Heisenberg process associated with this pair, and the ring of 
operators generated by the bounded functions of the ~o (x). 

Suppose (K, oil ~, v! is another Heisenberg process with w K p  for some 
p > 2, and with ci9 and qb of the Jbrm: 

~ ( x ) = Z @ ( x ) Z  -1, x~L2(G); ~ ( y ) = Z ~ o ( y ) Z  -1, yeD(B),  

Z being a unitary operator on K such that Z v = v. Then the renormalized 
powers ~(") relative to this latter Heisenberg process have all of Lz (G) in 
their domains. 

For complete specificity and the reader's convenience, the following 
terminological notes are made. 

1) (K, q~, ~b, v) is a Heisenberg process with the indicated domains 
means that q~ and cb are mappings from the real vectors in L2 (G) and 

!7a lnventiones math., Vol. 14 
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D (B) respectively to the self-adjoint operators in K, satisfying the relations 

e i~ tx+x ' )=ei~(x)  ei~tx'), c i~(y+y'):eiq)(y)  ei~(y'), 

eit~(x) ei~(y) ~ e i (x, y) ei~(y) eiq~(x) 

for all xeL2(G) and yeD(B); that v is a cyclic vector signifies that the 
only closed linear manifold in K which contains v and is invariant under 
all bounded Baire functions of the r and of the 4~(y) is all of K. In 
addition, the mappings x-~ e ir and y--~ e 16ty) are required to be con- 
tinuous. 

2) Kp is the subset of K consisting of all vectors of the form Tvo, 
with TeLp(R, Vo). 

3) The normal static Heisenberg process associated with the pair 
(G,B) is the process derived from the normal (free Weyl) process 
(K,W,F, vo) over L2(G) as follows. If T(z) denotes the self-adjoint 
generator of the unitary group [W(t z): t e R1], then for real z: 

�9 o(Z) = ~(B-�89 ~o(Z)= 7s(i B~z). 

4) O~"~(.)is defined recursively as follows, o io)(f )= ~ f. Now assuming 
that q~'~ ( f )  is defined for r < n and real f e  L 2 (M) as a self-adjoint operator 
in K affiliated with the abelian ring of operators R generated by the 
bounded Baire functions of the q~(f), feLz(M),  and is such that for 
all geN,  

r 

e i@'") cI)'"(f)e-i'i"<)=closure of E (r] cI)' . . . . . .  ( fg J, 
s = 0  \ S /  

for all n, a given element f of L 2 (M) is said to be in the domain of defini- 
tion of q~c,)(.) in case there exists a self-adjoint operator T affiliated with 
A such that for all geD(B), 

i'   =c,osuroo  
S = I  

such an operator T is necessarily unique, and is defined as q~"~(f). 

Proof of Theorem. This is by induction. Note first that it suffices to 
consider the case Z = I ,  by virtue of the invariance of the notion of 
renormalized power, relative to unitary transformations which leave 
invariant the basic unit vector v. This invariance results directly from 
the definition of the renormalized powers, together with their unicity. 

Now set cI)~m(f)=Cbto~ By Lemma 3.2 there exists a unique 
h, eD(C,)  such that 

(q)l.)(f) v, v) = ( f ,  h,) 
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for all feLz(G). Now as an induction hypothesis, suppose it has been 
shown that for r<n, cbtr)(f) exists satisfying the conclusions of the 
Theorem, and such that moreover: 

(r) r 
qs(r)(f)=closureof ~o (f)+ (1) ~(r-l)(fhl)+"" 

( r )*l(fh,_O+*~ 
+ r -1  

Now let 

T = c l o s u r e o f  *~")'~'" (~) . ~.1)+ cb~"-a)(fhx)+'"+~l~ 
Then 

(n) n ei4'tg) Te-i4'(g)=cl~ ~ 4~ ( f ) + ( 1 ) ~ ( ~  

21-... 

=closureof [rI)~o")(f)+(~)q)~"-l)(fhl)+ ...] 

+ (~)[~(on_l)(fg,@ ( n ~  1)~(n_2)( fh l~)+ . . .  ] 

This means that ~"~(f)  exists, and has the form required to complete 
the induction. 

Corollary 3.1. In the preceding theorem, 

�9 ~")(f)=closure of q~o")(f)+ ~ ~"-J'(fhj)(n), 

where (#~o"~(f) v, v) = S fhj. 
G 

Remark. It follows that 

~r ~ ~bCo"-~)(fk,), 
r=O 

where ko = 1 and the other kr are in Lo, o0). Moreover, the r m~ may be 
similarly expressed in terms of the q'~"). 

Notation. If q(2) = ~  aj 2 j, then the symbolic kernel of the distribution, 
) 

f--+ ~ ajq~lJ)(f), will be denoted as qo~b(x), where E is the state deter- 
J 

mined by the vector v. 

17 h Inventiones math., Vol. 14 
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Remark. The symbol ic  express ion q o~ ~b (x) represent ing a d i s t r ibu t ion  
may  be str ict ly defined as a function of x, whose values are  sesqui l inear  
forms or  general ized opera tors ,  ra ther  than  strict opera tors ,  in the same 
way as in the case E = E o = t h e  PLV for H which is t rea ted  in [10, II] .  

Corollary 3.2. Suppose that the V of the theorem has the form V= 
qOEo~b(x,O)f(x)dx, treated in I. Then ~b(x,t) satisfies the differential 

equation 
[]c~ (x, t)= m 2 c~ (x, t) + q'or c~ (x, t) + r(x)oE ~ (x, t), 

where for each x, r(x) is a polynomial of  degree lower than q', whose 
coefficients, as functions of x, are in Ltl ' o0) (G), and E is the state determined 
by the P L V  for H'. 

In case G= T 1 and f ( x )  is cons tant ,  then it follows from spat ia l  
invar iance  that  the funct ions rj are  constants ,  where  r ( x ) ( 2 ) = ~  rj(x)2 j. 
In this case there then results  a well defined mapp in g  p ~ ~ from the real  
po lynomia l s  on R 1 of the form p=q', q>O, to s imilar  po lynomia l s  ~, 
such that  s tar t ing as in I with a h a m i l t o n i a n  involving p (more precisely,  
S P), there  is ob ta ined  a so lu t ion  ~p of the equa t ion  

[]~=m2~+poE~. 

The quest ion of  whether  the equa t ion  [ ]  ~b = m2t~--I-roEqS, where r 
is a given po lynomia l ,  is soluble  in the sense t rea ted  here, is equivalent  
to the quest ion of  whether  r is of the form p for some p. The m a p p i n g  
p - ~ p  has  not  yet been explored,  pa r t i cu la r ly  in the more  re levant  
aspect  of  its behav ior  for large coefficients aj of q, and  the cited quest ion 
is present ly  open. 
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