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Introduction 

For the reader's convenience, we begin by stating the main theorem 
of this paper leaving the precise definitions of some of the concepts 
until the later sections. 

Let R -~ R be a homomorphism of an integral domain R into an 
integral domain R. We suppose these integral domains to have identity 
elements, but it is not supposed that they have the same characteristic. 
The quotient fields of the two integral domains will be denoted by F 
and # respectively. 

Assume next that we have n polynomials l~(X1, X2 . . . . .  X~) = ti(X), 
where 1 ~< i ~< n, in n variables whose coefficients belong to R. The 
equations 

/,(x) = 0 (: ~ i ~ n) 

define an algebraic variety over the algebraic closure of the ground- 
field F. The components of this variety will, in general, be of assorted 
dimensions. Those components which reduce to single points are called 
isolated common zeros of the/i(X), and, if we take each such zero with 
the appropriate multiplicity, we get a complete set of isolated common 
zeros of the f~(X). This notion is given a precise formulation in w 1. 

Let us now apply the homomorphism R -+ R. This transforms the 
polynomials ]i(X) into new polynomials 9~(X), with coefficients in R, 
and these will have their own isolated common zeros. Our object is 
to prove the following theorem. 

Theorem. Let the members o / a  complete set o I isolated common zeros 
oJ the polynomials ]~(X) be specialized simultaneously over R--> R. 
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The images o] these common zeros can then be separated into two non- 
overlapping sets, one o/which is a complete set o] isolated common zeros 
o/the polynomials ~(X) .  

The notion of a specialization over R - ~  R needs clarification. 
This is provided in w 2. 

1. Isolated zeros 

In this section we shall be concerned with fields F and F*, where F* 
is an arbitrary extension ofF,  and F* itseff is regarded as being embedded 
in some algebraically closed field. In addition, we focus our attention 
on n given polynomials ]i(X1 . . . .  , Xn) (1 ~< i ~< n), in n variables, 
whose coefficients belong to F. 

Let  ~1, ~2, --- ,  ~ be elements taken from the field in which F* is 
embedded. These determine a prime ideal P in If[X] ~ F[X1, X 2 . . . . .  Xn]; 
indeed g(X) e P if and only if g(2) = 0. The dimension of P is equal 
to the transcendence degree of E(~) over F and, in particular, P has 
dimension zero if and only if the ~i are algebraic over F. Clearly (~) 
is a common zero of the / i (X)  if and only if P contains the F[X]-ideal 

(h, 1~ . . . . .  In). 
De/inition. The set (~) is called an 'isolated common zero' o] the poly- 

nomials ]~(X) i] (i) P is zero-dimensional and (ii) P is a minimal prime 
ideal o/the ideal generated by/1,/2 . . . . .  In in F[X].  

Suppose now that the elements ~i are algebraic over F,  then the 
ideal P is unchanged if we replace (~) by one of its conjugates over F. 
By a complete set of conjugates o/(2)  over F one understands a set con- 
sisting of the distinct conjugates of (2) over F each repeated [F(~) :F] ,  
times. (We use [F(~):F]~ to denote the degree of inseparability of 
F(~) over F.) Since this complete set is already determined by  the prime 
ideal P, we may use the symbol {P} to denote it. As a further extension 
of this notation, we shall use re{P}, where m >~ 0 is an integer, to 
denote the set consisting of {P} repeated m times. 

De]inition. By  a 'complete set o/isolated common zeros' o/ the It(X) 
we understand the ~et 

U Lgth[(/); P ]  (P}, 
P 

where P ranges over all zero-dimensional prime ideals o] _F[X] which 
are also minimal prime ideals o[ the ideal (]1, ]2 . . . . .  ]n). 

In this definition, Lgth[(/); P]  denotes the length of the P-primary 
component of the ideal (/1,/2, . . . , / , )  = (]). 

Monatshefte filr Mathematik. Bd. 66/1. 2 



18 D.G. Northcott 

After these preliminaries, let us shift our attention to the field F*. 
If P is a prime ideal ofF[X1, . . . ,  X~] and P* a prime ideal of F*[X1 . . . .  
. . . .  X~], it will be convenient to write P*/P ff P* contracts to P in 
F[X]. Observe that if P is zero-dimensional and P*/P, then P* is also 
zero-dimensional. 

Let ( ~ ) -  ($j, ~2, . . . ,  $~) be a set of elements all algebraic over 
F, (~(1)), (~(~)), . . . ,  (~o)) a complete set of conjugates of (~) over F, 
and P the prime F[X]-ideal associated with (~). We introduce an 
equivalence relation ~ between the (~(~)) by writting (~(~))~ (~(~)) if 
(~(~)) and (~(')) are conjugates over F*; then the equivalence classes 
correspond to the prime ideals P* such that P*/P. Indeed, the (~(~)) 
belonging to the class attached to P*, constitute a complete set of 
conjugates over F* repeated 

[F(~) : F]~/EF*(~ (.)) : F*]~ = [FEX]/P:F]J[F*[X]/P* :F*]~ 
times, which shows that 

{P} ~-- U ?'p. {P*}, (1.1) 
P*/P 

where 
jp. = [F[X]/P : F]j[F*[X]/P* : F*]~. (1.2) 

Next, still assuming that P is zero-dimensional, let N be a P-primary 
ideal. If now P*/P, then P* is a minimal prime ideal of NF[X]. 
Denote the P*-primary component of NF[X] by N*. We shall need 
the following lemma, a proof of which will be found in the appendix. 

Lemma 1. In the situation just described, 

Lgth(N*) = ie* Lg~h(N), 

where ]~, is defined by (1.2). 

To apply this result, le~ P1, P~ , . . . ,  P~ be the zero-dimensional 
prime ideals of F[X] which are also minimal prime ideals of (]1, . . . ,  ],). 
If  now P* is a prime ideal of F*[X], then, in order that P* should be 
zero-dimensional and a minimal prime ideal of (]1,-.-, ],)F*[X], 
it is necessary and sufficient that P*IPi for some i. Assume now 
that P*/P, where P occurs among P~, P~ , . . . ,  P~, and let N be 
the P-primary component of (]1,-. . ,  ]~). Then (]1,-.. ,/~)F*[X] and 
NE*[X] have the same P*-primary component N* (say), and so, 
by Lemma 1, 

Lgth[(l) ;  P* ]  = iP~ Lgth[(t) ;  P ]  

I t  follows, from (1.1), that 
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Lgth[(/); e j  {P,} = ~ u Lg~h[(/); P*] {P*} 
i = 1  i = 1  P*/2 i 

Referring back to the last definition we see that  we have proved 
Proposition 1. Any  complete set o] isolated common zeros o] the n 

polynomials ]i(X1, . . . ,  X~), when these are regarded as having coe]fieients 
in F, remains such when the polynomials are regarded as having eoe/ficients 
in the extension field F*. 

Proposition 1 not only helps to justify the terminology but  it pro- 
vides an extremely useful tool in some of the arguments which follow. 

2. Specializations 

Let  R -+ R be a homomorphism of an integral domain R into an 
integral domain R, and let F and F be their respective quotient fields. 
We shall regard each of F and F as being embedded in an appropriate 
universal domain. By a universal domain for F, we understand an 
algebraically closed extension field which has infinite transcendence 
degree over F. 

Let  (co) = (oJ1, co2, . . . ,  co~) and (~) = (~1, o~2, - . . ,  ~m) be two sets, 
each of m dements, the former taken from the universal domain for F 
and the latter from the universal domain for F. We shah say provisionally 
tha t  (~) is a specialization of (r over R -+ R, if there is a homomorphism 

R[~I, . . . ,  ~ ]  -* R[51, . . . ,  5m] 
which extends R -+ ~) and in which co~ -~ ~i. 

This definition has now to be broadened so that  we can always 
be sure of the existence of specializations in appropriate circumstances. 
To this end, we adjoin an 'infinite element' to each of the universal 
domains and denote them both by ~.  Furthermore, we adopt the 
convention that  - 1  = 0 and 0 -1 = ~.  

Suppose now that  (wl, ~2, �9  %~) has the property that, for each i, 
to~ is either an element of the universal domain for F or is the infinite 
element. For brevity, we say that  (w) is a set of generalized elements 
over F. Should e ~ = •  for 1 ~ i ~ < m ,  then (o)[ ~,o) 2~' . . . . .  eo ~ )  
is also a set of generalized elements and we say that  it has been obtained 
from ((o) by  a reciprocation. If, in addition, (eo~, o~ . . . . .  ~ )  is a set of 
generalized elements over F, then (m~, . . . ,  e%~m) and (~ ' ,  . . . ,  ~ m )  
are said to be obtained from ((o) and (~) by a common reciprocation. 
Finally, when ~ does not occur among w~, m.2, . . . ,  o~m, (w) is said to 
be finite. 

2~ 
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Consider two generalized sets (oh . . . .  , ore) and (~1 . . . .  , ~m). I t  
may be possible to turn them into finite sets (co') and (~'), by means of 
a common reciprocation, in such a way that  there exists a homomorphism 

t - - t  R[eo'] -~ R[~ ' ] ,  extending R -+ R and for which o~ ~ --> ~ i. In these 
circumstances we continue to say that  (~) is a specialization of ((o) 
over R -+ R and we write ((o) -> (~) (over R -~ i~). 

Assuming that  (~o) --> (~) (over R ~ R), this situation will continue 
to hold if we apply a common reciprocation to (co) and (~). Should 
the reciprocation turn them both into [inite sets (co*) and (~*), then 
(~*) will be a specialization of (co*), over R -~ R, in the original (pro- 
visional) sense. 

The advantage of the above generalization resides in the following 
result. I t (wl, (02, . . . ,  (ore) is a set oi generalized elements over F, then it 
is always possible to ]ind generalized elements col, co2, . . . ,  ~m such that 
(~) ---> (~) over the homomorphism R --->. R. This is proved easily by 
induction with respect to m once the case m ~ 1 has been established. 
So far as m ~ 1 is concerned, we can use the fact that  either R[wl] or 
R[w~ -~] will contain a prime ideal which contracts, in R, to the kernel 
of the homomorphism R -> R. A proof of this is to be found in ([2]. 
Th. 7, p. 260). 

3. Reduction of the problem 

We shall now use Proposition 1 to reduce our theorem to a special 
case in which we have a good deal of additional information. First, 
however, we prove 

Lemma 2. Let D be a Noetherian integral domain and Q one o/ its 
proper prime ideals. Then there exists a regular one-dimensional local ring 
( :  valuation ring o/a  discrete, real-valued valuation) A with the following 
properties : 

(i) A is an extension ring o/ D and has the same quotient/iele[; 

(ii) the maximal ideal J o] A contracts, in D, to Q. 

Proof. Let D 1 be the ring of fractions of D with respect to Q, then 
D 1 is a local domain with maximal ideal Q1 (say) and Q1 n D --~ Q. 
Let  Q~ be generated by al, a2, . . . ,  a s and let t be an indeterminate. 
Put* D 2 : D~[al t, a 2 t . . . .  , a~ t, t - l ] ,  then D~ is a Noetherian integral 
domain and D 2 t -1 n D 1 : Q1. Let  Q2 be any minimal prime ideal of 

* The device which follows is due to D. Reea. 
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D 2t -1, then rank Q 2 = l  and, since Q1 is a maximal ideal of 
D1, Q2 n D 1 =Q1.  I t  followsfhatQ2 n D : Q .  

Next let Da be the ring of fractions of D~ with respect to Q2, then 
D3 is a one-dimensional local domain with maximal ideal Q3 (say) and 
Q~nD=Q. 

Consider the integral closure of D a in its quotient field. I t  is known 
([5] Th. 7, p. 168) that  this is a principal ideal domain with only a finite 
number of non-trivial prime ideals. Let A 1 be the ring of fractions, 
of the integral closure, with respect to any one of these prime ideals. 
A 1 is a one-dimensional regular local ring with maximal ideal J1 (say) 
and J1 n Ds = Q3. Accordingly J1 n D = Q. 

Finally, let E be the quotient field of D and put A = / ~  n A~, 
J = E n J r  Then A is a one-dimensional regular local ring and J is 
its maximal ideal. (This is most easily seen by regarding A 1 as arising 
from a discrete, real-valued valuation, and considering the restriction 
of the valuation to E.) Since D _ c A _ c E  and J n D = J l n D = Q ,  
the lemma is proved. 

I t  is worthwhile noting that, if A is obtained by the above construction, 
then A/J will be of finite transcendence degree over the quotient field 
of R/Q. 

Suppose now that we have an arbitrary specialization (~o~ . . . .  
. . . .  m~) --> (~1, . . . ,  ~ )  over R --> R and let us apply a common 
reciprocation so as to make both sets finite. We then have a homo- 

morphism R[co] ~ R I l l ,  extending R ~ R, for which o) i ~ ~i- 
Denote by R0 the subring of R generated by the identity element 
and the coefficients of the n polynomials ]~(X1, . . . ,  Xn) whose zeros 
we are investigating. Then R0 is Noetherian. Put  

D = R0[~o], 

then D is Noetherian, and, by restricting the domain and increasing 
the range of Rim] ~ R I l l ,  we obtain a homomorphism 

D --, F(m) 

in which m i ~ ~i- 
By Lemma 2, there exists a one-dimensional regular local ring A, 

with maximal ideal J ,  such that  (i) A is an extension ring of D having 
the same quotient field and (ii) J n D is the kernel Q (say) of the homo- 
morphism D --> F(~). Thus A/J is an extension field of the quotient 
field of D/Q and may be taken as having finite transcendence degree 



22 D.G. Northoott 

over it. Accordingly, there exists an extension field F '  of F(~),  con- 
tained in the universal domain for F, for which D - +  _~(~) can be 
enlarged to a homomorphism A -+ F '  with kernel J .  

Let Fo be the quotient field of R0 and put L = ~v 0 n A, M = Pc n J .  
Then L is a regular one-dimensional local ring and M is its maximal 
ideal. Note that  Re _c L __c L[~o] _.c A. 

The mapping A -+ F '  induces a homomorphism L[o~] -+ _~' which, 
because it vanishes on M, produces a homomorphism L --~ K of L 
on to a field K. L[o)] is therefore mapped on to K[~]  and we have, 
in fact, a specialization (o~) -* (~) (over L -+ K). I t  will be recalled 
that  we applied a preliminary reciprocation to (o)) and (~) to make 
them both finite. I f  the same reciprocation is applied again, (m) and (~) 
will return to their original forms. Thus the o~'iginal specialization 
(•) - ,  (~) (over R -+ R) has been transformed into a specialization 
(co) -+ (N) (over L -+ K). Observe that  the coefficients of the f~(X) 
are in L. 

Let  us apply this by  taking ((ol, o2 . . . . .  r to be the set of elements 
obtained when we write out, in full, the coordinates of a complete set 
of isolated common zeros of the/i(X). The given specialization (re -+ (N) 
(over R -+ R) then provides an entirely general specialization of these 
common zeros. 

In this situation, the co i are algebraic over the quotient field F 1 (say) 
of L. Denote by  L* the completion of L, as a local ring, and let FI* be 
the quotient field of L*. Notice that  the mapping L -+ K gives rise to 
a homomorphism L* -> K. 

I t  is known that  (~o) -+ (~) (over L -~ K) is equivalent to a spe- 
cialization over L* -+ K. To be precise [see (4) Th. 1.], there is an 
isomorphism of ~vl(w), over F 1 and into the algebraic closure of El*, 
such that (w*) -~ (~) (over L* -+ K), where (~*) denotes the image 
of (w) under the isomorphism in question. But (w*) will consist of the 
coordinates of a complete set of isolated common zeros of the ]i(X), 
when these are regarded as polynomials with coefficients in FI*. This 
enormously simplifies our problem as is shown in the opening paragraph 
of the next section. 

4. Completion of the proof 

In this section, we shall use L to denote a complete, one-dimensional, 
regular local ring, with quotient field F, and we suppose given a homo- 
morphism L -+ K of L on to a field K. The kernel of the homomorphism 
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must, of course, be the maximal ideal M of L. We shall be concerned 
with n polynomials/i(X1, . . . .  Xn) in n variables, and with their images 
f~(X) under the homomorphism L -> K. The discussion, carried out 
in Section 3, shows that  the theorem, described in the introduction, 
will be proved if we can establish the following special case. 

Lemma 3. Let the members o] a complete set o] isolated common zeros, 
o] the polynomials /i(X), be specialized simultaneously over L--> K. 
The images o/ the common zeros can then be separatec~ into two disjoint sets, 
one o/which is a complete set o/isolated common zeros o] the ~(X) .  

Of course, as in the more general situation, each o f f  and K is regarded 
as being embedded in a universal domain. 

In order to handle this problem, we shall fix our attention on a 
particular isolated common zero (~1, ~2, . -- ,  ~n) of the fi(X). This will 
determine a prime ideal P in K[X]. Denote by ~b the prime ideal which 
is the inverse image of P under the homomorphism L[X] ---> K[X] 
induced by L -+ K. Further, let t be an element of L which generates 
its maximal ideal M. 

I t  is clear that  O contains t,/1 . . . .  ,/~ and, indeed, is a minimal 
prime ideal of the L[X]-ideal which they generate. Accordingly, 
rank(O) ~ n - F  1. On the other hand, rank(tL[X]) = 1 and 
rank(O/tL[X]) = rank(P) = n. Consequently rank(O) = n d- 1. 

Denote by Mult[( t , / ) ;O] the multiplicity of the O-primary com- 
ponent of the ideal (t, [1, �9 �9 [n), or, what comes to the same thing, the 
multiplicity of t, [1, . . . ,  [~ regarded as a system of parameters in the 
ring of fractions of L[X] with respect to O. We propose to use the 
associative law for multiplicities* to compute this in two different ways. 

Taking the more difficult computation first, we have 

Mult[t, 1); O] = ZMult[ / ) ;  QJMult[((t,/) ~- Q)/Q; O/Q], (4.1) 
Q 

where Q ranges over all the minimal prime ideals of the L[X]qdeal 
(]1, - . . ,  ],~), which satisfy Q _c O and rank (Q) ~- rank(O/Q) = n -F 1. 

Suppose that  Q is one of the prime ideals which occurs in the above 
sum. Then rank (Q) is at most n and rank (O/Q) is a t  most unity; con- 
sequently we have 

rank (Q) = n, rank (O/Q) =- n q- 1. 

In addition Q a L = (0). (For otherwise, since Q n L is a prime L-ideal, 
Q would contain all of t, ]1, �9 . . ,  ]~ and therefore would coincide with O. 

* See C. Lech ([3], Theorem 1). 
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This, however, is impossible, because rank (Q) ~ n.) Denote by P the 
extension of Q in F[X] and observe that F[X] is the ring of fractions 
of L[X], formed with respect to the non-zero elements of L. This shows 
that 

(a) P is a minimal prime ideal of the f[X]-ideal (/1,/~, . . . , /~) ;  

(b) P has rank n, or, equivalently, dimension zero; 

(c) P n L[X] = Q. 

Conversely, suppose that P is a prime of F[X], which satisfies (a) 
and (b) and has the further property that P n L[X] c qS. Then 
Q --  P n Z[X] will be one of the prime ideals occurring on the right 
hand side of (4.1). 

Assume that Q and P are related in the manner just described. 
Then Muir[(/); Q] ~- Multi(/); P]. But the ring of fractions of F[X] 
with respect to P, is a regular local ring in which /1,/~, . . . , /~  is a 
system of parameters; accordinglyq Muir[(/); P]  = Lgth[(/); P]  so that 

Multi(/); Q] = Lgth[(]); PJ. (4.2) 

We have next to evaluate Mult[((t,/)-~ Q)/Q; r for a prime 
ideal Q of the kind we arc considering. Since L n Q = (0), L[X]/Q is 
an extension ring of L. Observe that, because ~5 is a minimal prime 
ideal of ML[X] + Q, ~/Q is a minimal prime ideal of the extension 
of M in L[X]/Q. 

Denote by A the ring of fractious of L[XJ/Q with respect to q~/Q. 
A is a local ring with maximal ideal M' (say), MA is M'-primary and 

[A/M' : L/M] = [Z[X]/~ : L/M] = [K[X]/P : g] < ~. 

But L is complete, consequently** A is a finite L-module. It  follows 
that L[X]/Q is a/inite Z-module. 

Our results, so far, show that L' -~ L[X]/Q is a complete, one-dimen- 
sional, local domain whose quotient field is F ' ~  F[XJ/P. Further, 
Mult[((t,/) + Q)/Q; r is just the multiplicity of tL', considered as 
a primary L'-ideal, and this is the same as its length. 

Let v be the valuation associated with L and v' the extension of 
v to F'.  (Each of v and v' is to have the full additive group of integers 
as its value-group.) Now* the length of tL' is equal to v'(t) multiplied 

+ See, for example, ([6], Theorem 5, p. 123). 
** See C. Chevalley ([1], Prop. 4, p. 695). 
* See ([5], Prop 5, p. 165). 
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by the degree of the residue field of v' over the residue field of L' ;  
and this degree is equal to [Kr : K~] divided by 

[L[X]/r L/M] = [K[X]/P : K]. 

(Here Kr and Kv denote the residue fields of v' and v respectively.) 
Accordingly 

Mult[((t, t) + Q)/Q : qS/QJ[K[X]/P :K] ---- v'(t) [K+: K,]. 

But v'(t) is the ramification index for the extension from v to v'. Conse- 
quently, the right hand side of the above expression is just the degree 
of F'  over F, and therefore 

Mult[((t,/) + Q)/Q; qS/QJ[K[X]/i) : K] = [F[XJ/P : F]. (4.3) 

Finally, combining (4.1), (4.2) and (4.3) all together, we obtain 
Lemma 4. With the previous notation 

Mult[(t, ]); q~][K[XJ/P : K] = X Lgth[([); P] [F[X]/P : F], (4.4) 
P 

where P ranges over all the zero-dimensional prime ideals o] F[X], which 
are minimal prime ideals o/(]1, [2, . �9 [n) and which satis]y P n L[ X] c_ r 

We can also compute Mult[(t, [); r  by considering the minimal 
prime ideals of tL[X]. Since tL[X] is itself prime and L[XJ/tL[X] 
is just K[X], the associative law for multiplicities shows that Mult[t,/); r  
is equal to the product of Mult[tL[X]; tL[X]] and 

Mult[((t,/) + tL[X])/tL[X]; O/tL[X]] ----- Mult[(f); P] = Lgth[(f); P]. 

But clearly Mult[tL[X]; tL[X]] ----- 1 and therefore we have shown that 

Mult[(t,/); r  = Lgth[(f);  P]. (4.5) 

Consider the zero-dimensional prime ideals P of _F[X] which are 
also minimal prime ideals of ([1, [2, �9 �9 [~). We divide these into two 
disjoint sets 271 and X~ by putting into 2:1 those P for which P n L[X] c ~> 
(E 2 is to consist of those which are left over.) On this understanding, 
we can combine (4.r and (4.5) and thus obtain 

X Lgth[([); P] [F[X]/P:F] ---- Lgth[(f);  P] [K[X]/P:K].  (4.6) 

Let ($) ~-- (21 . . . .  , ~)  be an isolated common zero of the [i(X) and 
P the corresponding prime ideal of FIX]. Then P belongs to X~ u X~. 
Suppose first that  P s 2:1 and put Q = P n L[X] so that Q _c r The 
combined mapping 

L[X] -+ K[X] -+ ~:[~], 
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in which X i -> ~, has kernel ~b and so there is induced a homomorphism 
L[X]/Q ---> K[~:]. But L[X]/Q is isomorphic to L[$] ad nnow we see 
that  (~) -+ (~) (over L --~ K). But we can say more. For we saw earlier 
that  L[X]/Q, or equivalently L[$], is a finite L-module and therefore a 
complete local domain. We see from this that  there is only one prime 
ideal of L[~] which contracts, in L, to M. Accordingly, if P e X1 then 
($) -7 (~) (over L ---> K) and the only other specializations o/ (~) over 
L ~ K are the conjugates of (~) over K. 

Instead of assuming that  P e Z'l, let us suppose instead that  (~) ~ (~) 
(over L ~ K). Then the combined mapping 

L[X] ~ L[$] --> g[~]  

has kernel ~b whereas L[X] ---> L[~] has kernel P n L[X]. Accordingly 
P e Z ~ .  

The remarks of the last two paragraphs show that  P e E1 if and 
only i / (~) -> (5) (over L --> K). Put  

{A) = U Lgth[([); P]  {P} (4.7) 
PsZ'I 

and 
{B} = U Lgth[(f);  P ]  {P} (4.S) 

PeX~ 

Then {A} and {B) together make up a complete set of isolated common 
zeros of the ]~(X). Further, if we specialize {A} over L -~ K, the result 
will be composed entirely of conjugates of (~) over K. On the other 
ha~d, if we specialize {B} over L --> K, no conjugate of ($) will occur. 

Let P e 2:1, let ul, u2, . . . ,  u~, z be indeterminates, suppose tha t  
(~) e {P} and write 

u * ~  = ul ~1 + u~ ~ + . . .  + u~ ~ .  (4.9) 

I f  now (~') also belongs to {P}, then u*~ and u*~'  are conjugate over 
F(u) and, as (~') varies, we get all the distinct conjugates of u , ~  over 
F(u) each repeated [F(~) : F]~ times. Now 

[F(~) :F]~ = [F(u, ~): F(u)]~ 

= I F ( u ,  ~) : F(u  �9 ~)]~ [F (~ ,  ~) : F(u)]~ 

which shows that  the u* ~' form a complete set of conjugates of u* ~, 
over F(u), repeated [F(u, ~ ) : F ( u , ~ ) ]  i times. Accordingly, if qS(z) is 
the irreducible polynomial for u * ~ over F(u) and e = [F(u, ~) : F * (u~)] i, 
then 

H (z - -  u*  g )  - q~(z). 
(r ~ {P} 
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Now in view of the fact that  P e X1, we know that  L[$] is a finite 
L-module and therefore each ~ is integral with respect to L. This 
shows that  u * ~ is integral with respect to L[u]. But L, being a complete, 
one-dimensionM regular local ring, is integrally closed in F, and therefore 
L[u] is integrally closed in F(u). We see from this that  4~(z), regarded 
as a polynomial in z, has its coefficients in L[u]. Accordingly 

/ / ( z -  u * ~ ' ) a n d  therefore also / /  ( z -  u*~) (4.10) 

belong to L[u, z]. 
Let {A} = { . . .  (V) . . .  } be specialized over L -~ K and. let the 

rese t  be { ] }  = {. . .  (~) . . .}. As already observed, each or the (9) 
occurring in {A} is u conjugate of (~) over K and, in particular, is finite. 
Thus we have a homomorphism 

L[ . . . .  Vl . . . . .  V . . . . .  ] - - > K [ . . . ,  ~1 . . . . .  K,  . . . ]  

and this can be extended to a homomorphism 

L [ . . . ,  V, " . . , u ,  z] ~ K [ . . . ,  ~, . . . , u , z ]  

in which all of %, u2 . . . . .  u~, z are left fixed. Applying this to (4.10) 
we find that  

I I  (z - u*~)  

is an element of K[u, z]. But if (~) s (A}, then u * ~  is a conjugate of 
u *~ over K(u). Denote by ~(z) the irreducible polynomial for u * ~ over 
K(u). Then, since 

/ / ( z  - u * ~ )  

is ~ polynomial in z with coefficients in K(u), each of whose roots is 
a conjugate of u �9 ~ over K(u), 

/ / ( z  --  u ,~ )  = ~ (z )  (4.11) 

for a certain integer m. For convenience write 

{0} = Lgth[(f); P] {P}, 
then 

/ /  (z -- u*~')  = ~h(z), (4.12) 

where h is an integer. We now contend that  v?~(z)----vdh(z) and for 
this we need only show that  they have the same degree. But the degree 
of the former is equal to the number of sets (V) which make up (A} or 
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X Lgth[(]); P]  [F[X]/P:F]; 
P#~'I 

while that of the latter is Lgth[(f); P]  [K[X]/ff : K]. The equality of 
these two follows from (4.6). 

Having proved that ~m(z) and v2n(z) are the same polynomial, we 
can compare the left hand sides of (4.11) and (4.12). This shows that 
the set generated by u* ~ as (7) varies in{A}, is the same as that generated 
by u .~ '  as (~') varies in {C}. But this implies that { ]}  = {C} or 

{.~} ---- Lgth[(f);  P]  {P} (4.13) 

Proo/o/Lemma 3. It  is now an easy matter to establish Lemma 3. 
Suppose that a complete set of isolated common zeros of the ]~(X) is 
specialized over L -+ K. By expressing the complete set in the form 
{A} v {B} (see (4.7) and (4.8)), we find that the result of the speciali- 
zation is made up of {A} and {B} (say), which do not overlap, and 
where {A) = Lgth[(f);  P]  {P}. Furthermore, there is such a decom- 
position for every zero-dimensional prime ideal of K[X] which is also a 
minimal prime ideal of ( f i , . . . ,  f,). Lemma 3 merely combines these facts. 

Appendix 

The author was unable to find a reference for a proof of Lemma 1, 
though this result must be known. For the reader's convenience, the 
main outlines of a proof are sketched here. 

Let P be a zero-dimensional prime ideal of F[X1 . . . . .  X,], F* an 
extension field of F, and P* a prime ideal of F*[X1 . . . . .  X~] such 
that P*/P. We begin by showing that 

Lgth[PF*[X]; P*] = [.F[X]/P:F]J[F*[X]/P* : _F*]~ (A) 

which is Lemma 1 for the special case N = P. 
Observe first that 

= r *  

where, in this context, ~ denotes a ring-isomorphism. Put E = F[X]/P, 
then E is an extension field of F and 

F*[xj/P_,v*[x] F* E. (]3) 

Let us use S to denote the field, between _F and B, which consists of 
all the elements of E that are separable over F. We can then obtain 
a new expression for F* QF E by employing the isomorphisms 

F* | E z F* | B) = (F* | S) |  E. (C) 
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Now S is a separable extension of E of finite degree, consequently 
F* | S is a direct sum of fields, say 

E* | S = A1 4- A2 4- . . .  4- Am, (direct sum) 

where each of A1, A~ . . . . .  Am contains both S and F* as subfields and 
is their composition. From (B) and (C) we now obtain the ring-iso- 
morphism 

F*[X]/PF*[X] - (A, | E) + . . .  + (A,~ | E), (D) 

where it is to be understood that, on the right hand side, we have a 
direct sum of rings. 

Let ID denote the characteristic of F, then, since E is purely insepa- 
rable over S, there exists an integer a with the following property: 

i] y e A,| s E, then y v~ belongs to A t considered as a subfield o/At|  s E. 
It  follows that Ar| E possesses only a single prime ideal I r (say) 
which is necessarily maximal. Accordingly 

(A 1 | E) 4- . . .  4- (At_ 1 @s E) 4- 1,4-(A~+ 1 | E) 4- . . .  4- (Am | E) 

is a maximal ideal of the right hand side of (D) and, by varying r, we 
get all its maximal ideals. We shall suppose that ~ is chosen so that 

(A1 @sE) 4- . . .4-  (A~_I | 4- Ir 4- (Ar+I| E) 4- . . .4-  (Am | E) 

corresponds to P*/PF*[X], and then, if N* denotes the P*-primary 
component of PE*[X], N*/PF*[X] corresponds to 

(At | + . . . +  (A,_I | E) + 0 + (A,+~ | + . . . +  (Am| 

We conclude from this that Lgth[PE[X]; P*] is equal to the length of 
the zero ideal of A,| s E, considered as a primary ideal belonging to/~. 

To simplify the notation, let us write A and I for A, and I,  respecti- 
vely. Consider a composition series of (A| s E)-ideals extending from 
the ring itself to the zero ideal. Each composition factor is isomorphic 
to (A| and the number of composition factors is equal to 
Lgth[PF*[X]; P*]. It  follows that the dimension of A | E, con- 
sidered as a vector space over A, is equal to the product of 
Lgth[PF*[X]; P*] and [(A | A]. But the dimension of A | E 
over A is [E : S] = [E : F]i and so we obtain 

[E : F], = Lgth[PF*[X]; P*][(A | E)/I : A] 
Thus, to establish (A), we have only to prove that 

[(A |  E)/I : A] = [F*[X]/P* : F*]~ 

Consider (A| This can be identified with F*[X]/P*. On the 
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other hand, it contains A as a subfield and is inseparable over it. But,  
as was noted earlier, A is a eompositum of F*  and S. Since S is a se- 
parable extension of F, A is separable over F*  and now we see that  
A is the separable closure o f F *  in (A• s E)/I. Accordingly 

[(A| : A] = [(A| s E)/I :F*]i 
= [F*[X]/P* :F*]i 

as required. 
We turn now to the consideration of Lemma 1 itself. Leg N be 

a P-pr imary ideal and 

N = N  h c N h _  l c . . .  c N  1 o N  0 = F [ X ]  

a composition series of F[X]-ideals. Then, for each integer r in the 
range 0 ~< r ~< h - -  1, we have a non-canonical F[X]-isomorphism 

N~/N,+ 1 ~ F[X]/P. 
This will give rise to an isomorphism 

F*| z F*| (E) 

in which the two sides are to be considered as modules with respect to 
the ring F*| F F[X]. 

Observe next  tha t  if A is an F[X]-module, then F * |  A is an exact 
funetor of A. Accordingly 

F * |  0 -~ (Y*| N,)/(_F*| N,+I). 

Furthermore, the inclusion mapping N~ .--> F[X] induces a mono- 
morphism F*|174 ] and therefore 3"* |  can be 
regarded as a submodule of F * |  F[X]. But F* |  F[X] can be identi- 
fied with F*[X]  and, if this is done, F * |  N~ becomes identified with 
Npv*[X]. In this way we arrive at  an isomorphism 

F* | N,.F*[X]/N,+IF*[X ] 
and, by similar arguments, we obtain 

F* |  - F*[X]IPF*[X]. 

Returning to (E) we may conclude from this tha t  N,~'*[X]/Nr+I$'*[X ] 
and F*[X]/PF*[X] are isomorphic as F*[X]-modules. 

I t  is now a simple mat ter  to deduce that  

Lgth[N,+IF*[X];  P*]  - -  Lgth[N~F*[X]; P*]  

= Lg th [PF*[X] ;  P*]  

= [F[X] /P:  .F],I[F*[X]/P* :E*], 
by virtue of (A). Lemma 1 itself follows ff we sum for r ---- 0, . . . ,  h - -  1. 
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