

Proton $h_{11/2}^2$ **and Octupole Excitations in** $\frac{148}{66}Dy_{82}$ **and** $\frac{149}{66}Dy_{83}$

P.J. Daly*

Institut für Kernphysik, Kernforschungsanlage Jülich, Jülich, F.R. Germany and Chemistry Department, Purdue University, W. Lafayette, Indiana, USA

P. Kleinheinz, R. Broda^{**} and S. Lunardi*** Institut für Kernphysik, Kernforschungsanlage Jülich, Jülich, Federal Republic of Germany

H. Backe

Institut ffir Kernphysik der TH Darmstadt, Darmstadt, Federal Republic of Germany

J. Blomqvist

Research Institute of Physics, Stockholm, Sweden

Received July 25, 1980

The yrast states of ¹⁴⁸Dy and ¹⁴⁹Dy have been studied by y-ray and conversion electron measurements in (α, xn) and $(160, xn)$ reactions on enriched $152Gd$ and $136Ce$ targets. Level schemes to above 4 MeV for the two nuclei are reported. The $\pi h_{11/2}^2$ spectrum identified in ¹⁴⁸Dy and the $\pi h_{11/2}$ effective charge $e_{\text{eff}} = 1.52 \pm 0.05e$, derived from the measured E2 transition rate between the $(\pi h_{11/2}^2)$ 10⁺ and 8⁺ states, are discussed and compared with results for other two-particle nuclei. The yrast cascades in 148 Dy and ¹⁴⁹Dy continue above the $(\pi h_{11/2}^2)$ 10⁺ and $(\pi h_{11/2}^2 v f_{7/2})$ 27/2⁻ states by \sim 1 MeV E1 transitions de-exciting the lowest members of octupole multiplets built on these states. The energy shifts for the observed members of the $\pi h_{11/2}^2 \times 3^-$ multiplet are analyzed in terms of twoparticle-phonon exchange coupling using an empirical coupling strength extracted from the one valence particle nucleus ¹⁴ Tb. The dominant $v f_{7/2} \times 3$ ⁻ character of low-lying $13/2^+$ isomers in ¹⁴⁹Dy and other $N = 83$ nuclei is emphasized.

1. Introduction

A recent analysis [1] of high-spin particle-hole excitations in the $N=82$ nucleus ¹⁴⁶Gd has shown that there is a large gap in the single particle spectrum at $Z=64$. We are examining the consequences of this gap by studying the nuclei around 146 Gd to determine whether their high-spin level spectra can be described as successfully in shell model terms as those of the few valence particle nuclei around $208Pb$. Studies of the one-particle nuclei $147Gd$ and $147Tb$ have already shown $\lceil 1, 2 \rceil$ that their yrast states up to \sim 4 MeV excitation energy arise from the coupling of the valence particle to the 146 Gd core states, and recent results $\lceil 3-5 \rceil$ for the one-hole nuclei 145Gd and 145Eu may also be interpreted in a similar way. An earlier investigation $\lceil 6, 7 \rceil$ of the three valence particle nucleus 149 Dy located a $27/2^-$ isomeric state of $\pi h_{11/2}^2 v f_{7/2}$ character and partially characterized the states populated in its decay to the ¹⁴⁹Dy $v f_{7/2}$ ground state.

We have now investigated the two-proton nucleus ¹⁴⁸Dy, and have also obtained some useful new data for the ¹⁴⁹Dy nucleus. Since the $h_{11/2}$, $s_{1/2}$ and $d_{3/2}$ proton orbitals lie close together and are the only orbitals between the $Z=64$ and $Z=82$ gaps, one could anticipate that excitations involving $h_{11/2}$ protons would be yrast states in the Dy nuclei. Specifically one could hope to observe in 148 Dy a complete $\pi h_{11/2}^2$ spectrum, similar to the well-studied [8] $\pi h_{9/2}^2$ sequence in 2^{10} Po. In a short note [9], we have

^{*} Supported in part by the U.S. Department of Energy

^{**} Present address: Institute of Nuclear Physics, Cracow, Poland

^{***} Present address: I.N.F.N. Sezione di Padova, Padova, Italy

already summarized some of the results of the present investigation, including the identification of all the ¹⁴⁸Dy $\pi h_{11/2}^2$ states.

The 10^+ coupling of the two $h_{11/2}$ protons, which generates ten units of angular momentum at low cost in excitation energy, should play a particularly important role in the yrast spectroscopy of the Dy nuclei. The maximally aligned $(\pi h_{11/2}^2)10^+$ and $(\pi h_{11/2}^2 v_{7/2}^{\prime})27/2^-$ states in ¹⁴⁸Dy and ¹⁴⁵Dy should have exceptionally pure configurations; however the energies of these states cannot be calculated from empirical single particle energies and nucleon-nucleon interactions because the ground state masses of the two nuclei are not known. Instead, as we show in a forthcoming paper [10], the experimental energies of these $10⁺$ and $27/2⁻$ states can be combined with spectroscopic information from neighbouring nuclei to yield rather precise estimates of the previously unknown ground state masses of $148, 149$ Dy and several other nuclei in this region.

At $I = 10$, the valence spin of ¹⁴⁸Dy is exhausted, and it is not obvious a priori how the yrast line should continue above the $(h_{1/2}^2)10^+$ state. The present investigation demonstrates that the next higher yrast states are of the type $\pi h_{1/2}^2 \times 3^-$, obtained by excitation of the low-lying 146Gd 3 core state. Since the dominant component of that octupole excitation is $\pi h_{11/2} d_{5/2}^{-1}$, we observe in ¹⁴⁸Dy (and also in ¹⁴⁹ novel and interesting features of two particle phonon exchange coupling.

2. Measurements and Results

2.1. The ¹⁴⁸Dy Level Scheme

At the start of this investigation, all that was known [11, 12] about ¹⁴⁸Dy was that its 3.1 min β -decay populates exclusively a 1^+ level in ¹⁴⁸Tb which deexcites by means of a 620keV E1 transition. Extensive excitation function measurements involving 70- 100 MeV α -particle bombardments of a \gg 99 $\%$ enriched ¹⁵²Gd target and preliminary $\gamma\gamma$ coincidence studies identified a cascade of 86, 94, 390, 661 and 1,688 keV γ -rays, which were assigned to ¹⁴⁸Dy because they followed the same $(\alpha, 8n)$ excitation function and had nearly the same intensity as the 620 keV γ -ray from the decay of ¹⁴⁸Dy. The angular distributions of the five γ -rays were later found to be isotropic, and a lifetime measurement using a μs beam pulsing system showed that these transitions (and some other weaker ones) follow an isomer with a half life of about $0.5 \,\mu s$.

Comprehensive $\gamma\gamma$ coincidence experiments were performed with two 70 cm^3 coaxial Ge(Li) detectors

using a pulsed beam of $106 \,\text{MeV}$ α -particles on the ¹⁵²Gd target; the interval between beam bursts on target was 120ns. Coincidence data were stored in a four parameter $(E_1, E_2, t_{12}, t_{2RF})$ mode and were later sorted by setting various energy gates with appropriate conditions on the two time parameters. Some key *y*-ray coincidence spectra extracted from the list mode data are displayed in Fig. 1. The $\gamma\gamma$ coincidence results demonstrated that the 86 keV transition occurs between the $0.5 \mu s$ isomer at 2.919 keV and a shorter lived isomer at 2,833keV, which deexcites to ground mainly through the 94, 390, 661, 1,688 keV γ -ray cascade. They also established a weaker 101, 383keV branch in parallel with the 94, 390keV section of the main cascade. The bottommost spectrum in Fig. 1 identified the 1,061, 496 and 1,046 keV γ -rays as transitions occurring above the $0.5 \mu s$ isomer; it was also found that the 496 keV transition is in prompt coincidence with both the 1,046 and 1,061 keV transitions.

The remaining measurements were performed using the more favorable ¹³⁶Ce (¹⁶O, 4n) reaction, which gave greater 148 Dy yields and much cleaner 148 Dy γ ray spectra than the $^{152}Gd(x, 8n)$ reaction. In these experiments targets of $>99\%$ enriched ¹³⁶Ce (in oxide form, made in a Sidonie mass separator) were bombarded with beams of $85-95 \,\mathrm{MeV}$ 1⁶O ions from the Emperor Tandem at the MPI Heidelberg; recoiling nuclei were caught in Au or A1 foils placed directly behind the targets. Most of the measurements utilized a 92 MeV beam pulsed in a 1 μ s on, $5 \mu s$ off mode. A delayed γ -ray spectrum recorded in the intervals between beam bursts is shown in Fig. 2 with isotopic assignments indicated for all the strong γ -rays. Table 1 lists the energies of all the γ -rays assigned to 148 Dy, together with their observed intensities in both $(\alpha, 8n)$ and $(160, 4n)$ reactions. Time distributions for several ¹⁴⁸Dy *y*-rays obtained in a two-parameter measurement between the 16 O beam bursts are shown in Fig. 3 (a); they give the half life for the 2,919 keV isomer

 $T_{1/2}$ (2,919 keV) = 480 \pm 30 ns.

Additional $\gamma\gamma$ coincidence measurements were performed between the 16 O beam bursts using 70 cm³ Ge(Li) and $3'' \times 3''$ NaI(Tl) detectors in 180 $^{\circ}$ geometry. The t_{av} data shown in Fig. 3b gave the half life for the 2,833 keV isomer in 148 Dy

$$
T_{1/2}(2,833 \text{ keV}) = 65 \pm 20 \text{ ns.}
$$

Examples of NaI spectra recorded in prompt coincidence with individual γ -ray Ge(Li) gates are shown in Fig. 4. These results, together with the measured γ ray intensities, settled the placement of all transitions

Fig. 1. Some important (α , β *n*) $\gamma\gamma$ coincidence spectra. The five central spectra show prompt (\pm 10ns) coincidences with γ rays emitted during 80 ns intervals centered between the 120 ns separated beam bursts. In the other two spectra, labelled preprompt, the t_{12} condition was set to accept y-rays preceding the gating transitions by 40 to 200 ns. In one case y-rays emitted between beam bursts are shown, and in the other case those emitted during beam bursts

Fig. 2. *y*-ray singles spectrum measured from 100 to 1,600 ns after 1 µs wide ¹⁶O beam bursts. Energies are given for ¹⁴⁸Dy and ¹⁴⁹Dy transitions

E_{γ} (keV)	Rel. γ intensity ^a		$\alpha_K \times 10^2$	$\alpha_{\Sigma L}$	$\alpha_{\rm tot}^{\quad e}$	Multi-	Placement	
	$\overline{(^{16}O, 4n})$ 92 MeV	$(\alpha, 8n)$ 106 MeV				polarity	E_i	$I_i \rightarrow I_f$
	Transitions below the $10+$ isomer							
85.7(4)	18	obsc.		2.9(4)	4.8(4)	E2	2,919.2	$10^+ \rightarrow 8^+$
94.3(4)	50	35(8)		< 0.05	0.40(6)	E1	2,833.5	$8^+ \rightarrow 7^-$
$101.5(3)^{b}$	\sim 14 ^b	12(4)		1.3(3)	1.9(4)	E2	2,833.5	$8^+ \rightarrow 6^+$
304.5(2)	13	13(3)	5(1)			E2	2,732.1	$6^+ \rightarrow 4^+$
382.6(2)	27	19(7)	1.1(3)			E1	2,732.1	$6^+ \rightarrow 5^-$
389.6(2)	70	66(9)	2.0(3)			E2	2,739.1	$7^- \rightarrow 5^-$
661.3(2)	88	88	0.60(7)			E2	2,349.5	$5^- \rightarrow 3^-$
739.6(3)	8.6		0.18(8)			E1	2,427.7	$4^{+} \rightarrow 3^{-}$
750.1(4)	3.7		0.55(15)			E2	2,427.7	$4^+ \rightarrow 2^+$
1,677.7(7)	19	17	0.11(2)			E2	1,677.7	$2^+ \rightarrow 0^+$
1,688.2(7)	81	83	0.18(2)			E3	1,688.2	$3^- \rightarrow 0^+$
	Transitions above the $10+$ isomer							
				A_2 ^c	A_4 °			
495.9(2)	63	$48(9)^{d}$	2.0(5)	$-0.24(6)$	$-0.00(10)$	$M1(+E2)$	4,476.2	$12^- \rightarrow 11^-$
1,045.6(2)	42	31(7)	0.23(3)	$+0.22(10)$	$-0.16(14)$	E2		
1,061.1(2)	65	53	0.08(1)	$-0.15(5)$	$+0.00(7)$	E1	3,980.3	$11^- \rightarrow 10^+$

Table 1. Properties of Transitions in ¹⁴⁸Dy

^a Unless otherwise specified intensity error $\approx 10\%$. For (¹⁶O, 4*n*) off beam intensities are given for transitions below the 10⁺ isomer; inbeam intensities are listed for the above lying transitions and for $(\alpha, 8n)$.

^b Data less certain due to poorly resolved 100.8 keV M1 transition from 149 Dy β -decay

 \degree Measured in (α , 8 n). Transitions below the 10⁺ isomer were isotropic.

^d Corrected for 31% contribution from degenerate line in ¹⁵⁰Gd

~ From intensity balance

Fig. 3. Isomeric half lives in 148Dy measured with the pulsed 16 O beam. a On the left is shown the half life of the 2.92 MeV $10⁺$ isomer obtained from γ -ray singles intensities between beam bursts, b On the right is shown the half life of the 10 2.83 MeV 8⁺ isomer from a ν ^y coincidence measurement, using a Ge(Li) as the start- and a NaJ as the stop detector. Only coincidences events during beam pauses were accepted

in 148 Dy below the 480 ns isomer, and the resulting level scheme is shown in Fig. 8. It is noted that the coincidence results clearly showed the existence of an unobserved 10.5 keV transition between the 1,688 and 1,678 keV levels.

Conversion electron measurements were essential in order to determine transition multipolarities and thus the spins and parities of the established 148 Dy levels. These experiments were performed using specially prepared thin 136Ce targets and a solenoid spectrometer [13] operating in magnetic lens mode. The targets consisted of $\sim 200 \,\mu\text{g/cm}^2$ of the >99 % enriched ¹³⁶Ce deposited on $\sim 30 \mu$ g/cm² carbon foils by sputtering during collection in the mass separator. In the measurement, a 136 Ce target was placed at 45° to the 160 beam direction and was backed by an Al foil,

Fig. 4. $\gamma\gamma$ coincidences measured between beam bursts with a 70 cm³ Ge(Li) and a 3" × 3" NaJ detector in 180° geometry. Gates are set on the Ge(Li) peaks, and coincident NaJ spectra are displayed. The 304 keV gate lies on the steep Compton edge of the 511 keV β^+ decay radiation

Fig. 5. Total- and off beam (100 to $1,600$ ns after 1 µs beam bursts) electron spectra measured with the solenoid spectrometer [13] operated in lens mode. The solenoid current sweep covered the 280 to 1,680 keV electron energy range. Transition energies are given for the ¹⁴⁸Dy and 149 Dy lines. The K-line of the 679 keV $M4$ transition in ¹⁴⁷Dy is also labelled

Fig. 6. Conversion electron spectrum for the 70 to 280 keV electron energy range measured in a similar manner as the lower one in Fig. 5

barely thick enough to stop the recoiling nuclei. Electrons were accepted in the 10° to 20° conical aperture of the lens spectrometer and were energy analysed in a cooled Si(Li) detector at the end of the solenoid. Both in-beam and out-of-beam electron spectra were recorded and representative samples of the data obtained are shown in Figs. 5 and 6. Conversion coefficients extracted from the electron and γ -

ray intensities are given in Table 1, and they are compared with theoretical conversion coefficients for various multipolarities in Fig. 7. For the three low energy transitions in 148 Dy, total conversion coefficients were also deduced from the intensity balance requirements between the off-beam transition intensities. These results settled the multipolarities of all the $148Dy$ transitions below the 480 ns isomer including E1 character for the 10.5keV transition and established the spin-parity values shown in Fig. 8 for the ¹⁴⁸Dy levels up to the $10⁺$ isomeric state. It is clear that the 496 keV M1 and $1,061 \text{ keV}$ E1 transitions occur in cascade into the $10⁺$ state, but the approximately equal intensities of these two transitions observed in both the $(\alpha, 8n)$ and $(^{16}O, 4n)$ reactions leaves a question about the transition or-

dering. The ordering shown in Fig. 8 is slightly, but not decisively, favored by the data; however as is discussed later, theoretical consideration of how the yrast line of 148 Dy might continue above the $10⁺$ state strongly favors this transition ordering over the alternative.

2.2. The 149Dy *Level Scheme*

Levels in the $N = 83$ nucleus ¹⁴⁹Dy were also strongly populated in the 16 O ion bombardments of 136 Ce

Fig, 7. A comparison of the measured conversion coefficients for transitions in 148Dy and 149Dy with theoretical values. For the 679 keV transition of ¹⁴⁷Dy the data gave $\alpha_K > 5 \times 10^{-2}$ consistent with $M3$, $M4$, or higher multipolarities

Fig.& Level schemes for 148Dy and 149Dy with proposed shell model configuration assignments. Transition intensities are those measured in-beam in the $(\alpha, 8n)$ and $(\alpha, 7n)$ reactions. All multipolarities shown have been determined from conversion coefficient measurements. Level energies and more precise transition energies are listed in Tables 1 and 2

and it was possible to extract from the data valuable new information about transitions in 149Dy. In addition, new lifetime measurements for ¹⁴⁹Dy were performed using the $^{152}Gd(\alpha, 7n)$ reaction, and more detailed sorting of our old 149 Dy $\gamma\gamma$ coincidence data was also fruitful. The results of these experiments established that all the transitions listed as "probable" 149 Dy γ -rays in [6] certainly occur above the $27/2$ ⁻ isomer in this nucleus and a few other highlying ¹⁴⁹Dy transitions were also identified.

Table 2 summarizes the properties of the transitions assigned to 149 Dy, including conversion coefficients determined from the electron and γ -ray intensities in the $136Ce(16O, 3n)$ reaction. These conversion coefficients are also compared with theory in Fig. 7 and the inferred transition multipolarities are given in Table 2. For the four transitions below the 0.5s isomer the present results confirm the multipolarities deduced earlier from less conclusive evidence. Consequently, the I^{π} values shown in Fig. 8 for the ¹⁴⁹Dy levels up to the $27/2^-$ isomer can now be considered certain. The half life of the $13/2^+$ state at $1,073$ keV has been determined to be

$$
T_{1/2}
$$
(1,073 keV)=12.5±1.5 ns

corresponding to a $B(E3)$ value of 45 ± 5 Weisskopf units.

E_{γ} (keV)	Rel. γ intensity ^a		$\alpha_{\kappa} \cdot 10^2$	A ₂	A_4	Multi-	Placement	
	$(^{16}O, 3n)$ 92 MeV	$(\alpha, 7n)$ $106 \,\mathrm{MeV}$				polarity	E_i	$I_i \rightarrow I_f$
	Transitions below the $27/2^-$ isomer							
110.8(4)		\sim 3 ^b	$13(5)^{c}$			E3	2,661.2	$27/2^ \rightarrow$ $21/2^+$
298.6(1)	80	83	4.9(7)			E2	2,550.4	$21/2^+ \rightarrow 17/2^+$
1,073.2(2)	100	100	0.46(5)			E3	1,073.2	$13/2^+ \rightarrow 7/2^-$
1,178.6(1)	95	91	0.17(3)			E2	2,251.8	$17/2^+ \rightarrow 13/2^+$
	Transitions above the $27/2^-$ isomer							
199.4(3)	50(10)	20(6)		$-0.19(4)$	$-0.05(5)$			
240.0(3)	80(20)	39(6)		$-0.20(5)$	0.00(6)		3,885.5	$31/2 \rightarrow 29/2^+$
255.0(2)	32(9)	$\sim 6^{\rm b}$						
270.0(2)	42	15(3)	8.0(1.5)	$-0.04(5)$	$-0.01(8)$	$(M1 + E2)$		
430.3(2)	43(8)	18(6)						
984.3(2)	78	61	0.11(2)	$-0.18(3)$	$+0.00(4)$	E1	3,645.5	$29/2^+ \rightarrow 27/2^-$
1,337.2(4)	35(6)	18(3)		$+0.19(9)$	$-0.02(9)$			
1,393.7(5)	30	18(4)	0.11(4)			E2		

Table 2. Properties of Tranqitions in ¹⁴⁹Dy

^a Unless specified otherwise intensity error $\approx 10\%$. In-beam intensities listed for both reactions.

b Estimated from coincidence data.

^c Value listed is α_{τ} , extracted from Fig. 6 via comparison with 299 K line intensity.

The present results also establish that the cascade of 240 and 984 keV transitions populates the $27/2^-$ isomer, and the $(\alpha, 7n)$ singles y-ray intensities show that the 984 keV transition is lower lying. Since the conversion coefficient and angular distribution results clearly indicate stretched E1 character for the 984keV transition, the next yrast state above the $27/2^-$ isomer is a $29/2^+$ level at 3,645 keV. The 240keV dipole transition de-excites a level at 3,885 keV, and the other transitions in Table 2 occur above this level.

Finally, the half life of the higher-lying isomer first reported in [6] has been redetermined to be 36 ± 8 ns. This isomer has also been observed recently by other workers [14-16], but the excitation energy and spinparity of the isomeric state are still unknown.

3. Discussion

3.1. The Nucleus $148Dv$

In [9] we have already commented on the energy systematics of the lowest 2^+ and 3^- states in the $N = 82$ isotones and have pointed out that the location of the 148 Dy 2⁺ state at a much lower energy than the ¹⁴⁶Gd 1,972 keV 2^+ state lends support to earlier arguments for the $Z=64$ shell closure. Since the dominant component of the 3^- octupole excitation at $N=82$ is $\pi h_{11/2}d_{5/2}^{-1}$, involving the promotion of a proton across the $Z=64$ gap, the 3^- energy is as expected lowest in ¹⁴⁶Gd, and somewhat higher in 148 Dy, where the Fermi surface is displaced upwards. Later in this section the $3⁻$ energies will be examined from another viewpoint.

The rate of the 10 keV 3⁻ \rightarrow 2⁺ E1 transition is 2 $\times 10^{-3}$ Weisskopf units, assuming that the 3⁻ \rightarrow 0⁺ E3 transition rate is 37 Weisskopf units as in 146 Gd [17]. We note that the corresponding $E1$ transition [18] in the $N=82$ two proton hole nucleus ¹⁴⁴Sm is

equally fast. Rates of $3^{-}_{1} \rightarrow 2^{+}_{1} E1$ transitions in other spherical nuclei in the Zr and Pb regions are of similar magnitude.

3.1.1. The $\pi h_{11/2}^2$ Spectrum and the $\pi h_{11/2}$ *Effective Charge.* The 10^+ isomer at 2,919 keV in 148 Dy is without doubt the fully aligned $\pi h_{1/2}^2$ state, and all other members of the $\pi h_{11/2}^2$ multiplet are also identified in this study. The levels with $I \geq 6$, and especially the $8⁺$ and $10⁺$ states, should have exceptionally pure $\pi h_{11/2}^2$ configurations, since the only other available single proton states are $s_{1/2}$ and $d_{3/2}$ above the gap, and $d_{5/2}$ and $g_{7/2}$ below the gap. Examples of such complete j^2 spectra are rather rare, and thus far include no other case with $i > 9/2$.

The energy spectra of nuclei with two valence nucleons are prime sources of information about two nucleon residual interactions, essential for many shell model applications. There have been several attempts to fit the interaction matrix elements derived from the experimental data. Of particular note is the extensive analysis by Schiffer and True $[19]$ of all the known $T=0$ and $T=1$ matrix elements, which elucidated the universal properties of the nucleon-nucleon residual interaction throughout the nuclear chart. The present study provides the first information about residual interactions for two $h_{11/2}$ protons. It is instructive to compare these results with the other known cases of two identical valence particles in the same j-shell, with nodeless radial wave functions (Fig. 9).

The 0^+ ground states in all six nuclei have admixtures from other configurations. In particular, a large $\pi p_{1/2}^2$ contribution to the ⁹⁰Zr ground state has been established [20] from single nucleon transfer data, and one expects a similar situation in 148 Dy with the $\pi s_{1/2}^2$ and $\pi d_{3/2}^2$ configurations contributing substantially to the ground state. The clustering of the $h_{11/2}$, $s_{1/2}$ and $d_{3/2}$ states in the single particle diagram above $Z = 64$ contrasts with the situation above the Z

Fig. 9. A comparison of j^2 -spectra for nuclei with two identical valence nucleons

 $= 50$ and $Z = 82$ gaps where the lowest single particle states are well separated from other orbitals.

The lowering of the 0^+ levels in these i^2 spectra is largely determined by the pairing interaction. The energy of the 0^+ ground state relative to the top of the i^2 spectrum can be written as

$$
\delta E(0) = G_{\rm eff} \Omega,
$$

where G_{eff} is an effective pair coupling constant, G_{eff} $=cA^{-1}$, and Ω is the pair degeneracy of the single j shell, $\Omega = j + \frac{1}{2}$. For the four heaviest nuclei the strength parameter c is about 65 MeV, which is 2 to 3 times larger than standard values [21] used in BCS calculations within an entire major shell. This shows that several orbitals must contribute substantially to the 0^+ lowering. The variation of $\delta E(0)$ with A and j is, however, well reproduced by the $A^{-1}(i+\frac{1}{2})$ dependence, indicating that in these four cases the enhancement due to other orbitals than the leading one is constant within 10 $\%$.

As is well known, the energy levels of i^2 spectra, such as those in Fig. 9, can be roughly reproduced by considering only a short range force between the two nucleons. A delta force, for example, is often used in first approximation. However, the observed multiplet members are invariably more widely spread apart than is calculated using a δ -force; particularly, the 2^+ level is always found at a lower energy than the $\delta E(2)/\delta E(0) \simeq 1/4$ given by this force. One simple method that has been used to improve the agreement with experiment is to add to the δ -force a long range quadrupole component mediated by the core. It is apparent from the relative energies of the 2^+ states in Fig. 9 that the quadrupole component must be considerably stronger in 148 Dy than in 134 Te and 210 Po. This may be attributed to the fact that the $Z = 64$ gap lies within the $N = 4$ oscillator shell, giving rise to the low-lying $AN=0$ ²⁺ excitation [22] at 2 MeV in the ¹⁴⁶Gd core, whereas the corresponding 2^+ states in the 132Sn [23] and 208Pb core nuclei lie above 4 MeV. The 148 Dy spectrum more closely resembles that of $90Zr$, where the 2^+ state of the $88Sr$ core nucleus also occurs at about 2 MeV.

In any case, the empirical $h_{1/2}^2$ two particle energies now determined from the spectrum of ¹⁴⁸Dy provide essential input information for calculation of more complex multiparticle configurations in the $A \sim 150$ region. Furthermore the excitation energy of the $10⁺$ state is vital information for the determination [10] of the 148 Dy mass.

The effective charge of the $h_{11/2}$ proton can be calculated from the measured rate of the $10^+ \rightarrow 8^+$ transition in 148 Dy. Using the radial matrix element

$$
\langle r^2 \rangle_{\rm N} = 0.93 A^{1/3} (N + 3/2) = 32
$$
 fm²

and the assumption that only two protons occupy the $h_{11/2}$ shell, we obtain

$$
B(E2, 10^+ \rightarrow 8^+) = 43 \pm 3 e^2 \text{ fm}^4
$$

and

$$
e_{\text{eff}} = 1.52 \pm 0.05 e.
$$

The rate for the $8^+ \rightarrow 6^+$ transition is subject to large experimental uncertainties in both the half life and the branching ratio but gives an effective charge consistent with the above value.

This result is similar to the effective charges found for the two-proton nuclei

$$
{}^{134}\text{Te} \quad \pi g_{7/2}^2(6 \to 4); \qquad e_{\text{eff}} = 1.5 \pm 0.1 e \qquad [24] \quad \text{and}
$$
\n
$$
{}^{210}\text{Po} \quad \pi h_{9/2}^2(8 \to 6); \qquad e_{\text{eff}} = 1.5 \pm 0.1 e \qquad [8, 25].
$$

As we have just discussed in connection with the i^2 energy spectra, the quadrupole polarizability appears to be distinctly larger in 146 Gd than in the 132 Sn and ²⁰⁸Pb cores. Such increased quadrupole softness should also result in enhanced effective E2 charges, and the similar results obtained in the three cases are at first sight unexpected. However, the 146 Gd 2^+ excitation differs markedly from those of 132Sn and 208 Pb in that its structure is dominated by proton components [1]. Because of the strong isospin dependence of core polarization, valence protons should be less effective in polarizing the $146Gd$ core than valence neutrons, and accordingly the coupling to the 146 Gd 2⁺ state should be most clearly manifested in the enhancement of neutron effective charges. First results $[26, 27]$ in $N=84$ and $N=85$ nuclei indeed indicate substantially enhanced effective charges for the valence neutrons, but a more detailed study of this whole question is desirable.

3.1.2. Negative Parity States. The lowest 5- and 7 states in ¹⁴⁶Gd are mainly of $\pi h_{11/2}d_{5/2}^{-1}$ character [1], and corresponding *ph* excitations are expected in ¹⁴⁸Dy at somewhat higher excitation energies. However, the 5^- and 7^- states observed in 148 Dy lie \sim 0.3 MeV lower than the ¹⁴⁶Gd 5⁻, 7⁻ states; we conclude that they must have different structures. Two particle excitations of the type $\pi h_{11/2} s_{1/2}$ and $\pi h_{11/2}d_{3/2}$ should occur at low energies in Dy, and we interpret the 2,350 and 2,739 keV levels in 148 Dy as predominantly $(\pi h_{11/2} s_{1/2})$ 5⁻ and $(\pi h_{11/2} d_{3/2})$ 7⁻ states, the expected lowest-lying (singlet coupling) members of the two multiplets.

3.1.3. Octupole Excitations. At $I=10$ the ¹⁴⁸Dy valence spin is exhausted and higher yrast states must involve breaking of the 146 Gd core. Since the 3⁻ octupole is the lowest core excitation, the yrast line can be expected to continue by excitations of the type $10^{+} \times 3^{-}$. In the experiment, the strong 1,061 keV E1 transition is found to populate the 148 Dy 10⁺ isomer from a $3,980 \,\text{keV}$ 11⁻ level, which we interpret as the lowest member of the octupole multiplet built on the $\pi h_{11/2}^2 10^+$ state.

Our recent analysis [2] of the related but simpler situation in the $Z=65$ nucleus ¹⁴⁷Tb has provided valuable insight, preparing the way for understanding the $h_{11/2}^2 \times 3$ ⁻ coupling in ¹⁴⁸Dy. The ¹⁴⁷Tb nucleus has *one* $h_{11/2}$ proton in its ground state and the lowest octupole state with $I^{\pi} = 15/2^{+}$ is connected to the ground state by $\Delta I = 2$ transitions. This finding can be understood as a consequence of the Pauli interference with the large $\pi h_{11/2}d_{5/2}^{-1}$ component of the core octupole, and the data have been successfully analyzed in terms of particle core exchange interaction. In the 148 Dy 10^+ state at 2,919 keV, *two* $h_{11/2}$ protons are aligned and in this case one can expect the lowest member of the octupole multiplet to be *two* units in spin less than the maximally aligned 13⁻ member. The particle-phonon exchange diagram appropriate to the ¹⁴⁸Dy $\pi h_{11/2}^2 \times 3$ ⁻ coupling, with three $h_{1/2}$ particles and one $d_{5/2}$ hole in the intermediate state, is shown in Fig. 10; the 147 Tb

Fig. 10. One-particle phonon and two-particle phonon exchange coupling involving the 1,579 keV octupole excitation in the 146 Gd core. Experimental and calculated $\pi h_{11/2} \times 3^-$ and $\pi h_{11/2}^2 \times 3^$ multiplet members in 147 Tb and 148 Dy are shown

case is also illustrated for purposes of comparison. In second order perturbation theory, the energy shifts for members of the octupole multiplet in 148 Dy are given by

$$
\delta E((h_{11/2}^2)_I \times 3^-; I)
$$

= 14(2I'+1) \times X(\frac{11}{2} \frac{11}{2} I'; \frac{11}{2} \frac{5}{2} 3; I' 3I)

$$
\times \frac{\langle (h_{11/2} d_{5/2})_3 |H| 3^- \rangle^2}{E(h_{11/2}) - E(d_{5/2}) - E_{3^-}}
$$

where X is a 9*j* symbol, and I' specifies the coupling of the two $h_{11/2}$ protons in the initial state. The crucial point here is that the energy factor $\langle |H| \rangle^2 / \Delta E$ containing the interaction matrix element is the same as in the 147Tb case, and therefore one can use the empirical energy factor from the one-particle phonon coupling to describe the exchange interaction of two particles with the phonon. With the value of 856 keV for that energy factor, derived from the observed 772 keV splitting of the $15/2^+$ and $17/2^+$ levels in ¹⁴⁷Tb, we have calculated the expected energy shifts for the four highest spin members of the $h_{11/2}^2 \times 3^{-1}$ multiplet in ¹⁴⁸Dy. (The $I' = 10$ and 8 couplings both contribute to the 11^- and 10^- states, and the theoretical energies shown are the lower energy solutions obtained by diagonalizing the interaction in this two-dimensional basis.) In Fig. 10 the calculated level energies are compared with the experimental results. The good agreement with the observed 11^{-} , 12^- energies provides strong support for the interpretation of these states as octupole multiplet members. In future experiments it may be possible to locate additional members of the $h_{11/2}^2 \times 3^{-}$ multiplet, particularly the $13⁻$ member which should be an yrast state.

The fact that the excitation energy of the $3⁻$ octupole state is higher in 148 Dy than in 146 Gd can also be understood as a Pauli interference effect. In this case, the geometrical blocking coefficient $14(2I'+1)X$ for $I' = 0$ equals $2/12$ assuming that two of the twelve $h_{11/2}$ protons are present in the ¹⁴⁸Dy 0⁺ ground state. With the same empirical matrix element, the calculated energy shift is $\delta E = +143 \text{ keV}$, which is close to the experimental number of

 $E_{3-}({}^{148}Dy) - E_{3-}({}^{146}Gd) = 109$ keV.

As mentioned earlier, the proton pair in the 148 Dy ground state also partially occupies the $s_{1/2}$ and $d_{3/2}$ orbitals, and therefore this slightly smaller increase of the 3^- energy in 148 Dy is not unexpected.

As far as we know, this type of particle phonon exchange coupling involving two particles has not been observed before; it is encouraging that the empirical coupling strength derived from the one-particle case describes the more complex situation so well.

3.2. The Nucleus $149Dy$

Earlier [6, 7], we established the 149 Dy level scheme up to the $27/2^-$ isomer at 2,661 keV. In the following sections we discuss some important aspects of the 149 Dy level structure in the light of recent results for neighbouring nuclei, especially 148 Dy, and we also consider the extension of the 149Dy yrast line beyond the $27/2^-$ isomer.

3.2.1. The 13/2⁺ Octupole Excitation. We originally [6] interpreted the 1,073 keV $13/2^+$ level as an $vi_{13/2}$ single particle excitation. In subsequent work, much has been learned about octupole excitations in this region, most notably the correct identification $\lceil 28 \rceil$ of the $146Gd$ 3⁻ state and the determination [17] of its $B(E3)$ value. For the ¹⁴⁹Dy 13/2⁺ level the measured half-life gives

 $B(E3)=(5.9\pm0.7)\times10^4e^2$ fm⁶ or 45 ± 5 W.u.

which is close to the value for the $146Gd$ octupole. Similar E3 strengths have also been determined [1, 2] for low-lying octupole excitations in ^{147}Gd , ^{147}Tb and 148 Tb, and it is now clear that the 1,073 keV state in 149 Dy is predominantly an octupole excitation built on the $vf_{7/2}$ ground state.

A similar interpretation is also indicated for the lowest lying $13/2$ ⁺ levels [29] in other $N=83$ nuclei. As shown in Fig. 11, the energies of the $13/2^+$ states in the $N=83$ isotones closely follow those of the 3 states in the corresponding $N=82$ nuclei; this contrasts with the energy trend observed for the $vh_{9/2}$ levels, which are probably much purer single particle excitations. While a large contribution of $vi_{13/2}$ single

Fig. 11. Energy systematics of 3^- levels in $N=82$, and $(vf_{7/2} \times 3^{-})$ 13/2⁺ and *vh*_{9/2} levels in *N* = 83 isotones

particle character is definitely indicated by the fact that the $13/2$ ⁺ states lie ~0.6 MeV lower than the corresponding $3⁻$ core states, we conclude that the low-lying $13/2^+$ excitations in $N=83$ nuclei are predominantly $v f_{7/2} \times 3^-$.

The situation in the $N = 83$ isotones is basically similar to that observed in the $N=127$ nucleus ²⁰⁹Pb. where the corresponding single particle orbits are $vg_{9/2}$ and $vj_{15/2}$. In ²⁰⁹Pb a quantitative analysis $[30]$ shows that the $15/2^+$ state at 1.42 MeV is mostly of $vj_{15/2}$ single particle character with about 30 % admixture of $vg_{9/2} \times 3^{-}$. In ¹⁴⁷Gd a similar analysis indicates that the unperturbed energy of $vi_{13/2}$ is higher than that of $v f_{7/2} \times 3^-$. The situation is therefore reversed compared to ²⁰⁹Pb, and the physical $13/2^+$ state is mostly of $v f_{7/2} \times 3^-$ character with about 30% admixture of $vi_{13/2}$. The measured gfactor [31] of the $13/2^+$ state in $14/6d$ is consistent with this mixed structure.

Of some interest for the yrast spectroscopy of nuclei in this region is the unperturbed $vi_{13/2}$ single particle energy, which is not directly determined by experiments. The above analysis and other evidence from spectroscopic studies [2, 26, 32] of various Gd and Tb nuclei indicates that it lies more than 2MeV above the $vf_{7/2}$ ground state, and thus higher than the 146 Gd 3⁻ octupole excitation. The energy systematics of Fig. 11 also points towards the same conclusion. In 149 Dy, with two valence protons, residual *np* interactions should cause a significant lowering of the $vi_{13/2}$ energy similar to that observed for the $vh_{9/2}$ single particle state, which drops from $1,398$ keV in 147 Gd to 1,091 keV in 149 Dy. However from the very regular $13/2$ ⁺ energy systematics, we infer that also in the ¹⁴⁹Dy nucleus the $vi_{13/2}$ single particle state should be located above the octupole. That the $vi_{13/2}$ single particle energy at $N=83$ is so high has not previously been clearly recognized. It would explain why $i_{13/2}$ neutrons rarely play a role in the yrast lines of $A \approx 150$ nuclei, whereas the $vh_{9/2}$ single particle excitation frequently contributes to yrast configurations.

3.2.2. The $17/2^+$, $21/2^+$ and $27/2^-$ States. In our earlier study [6, 7] we interpreted the $27/2^-$ isomeric state as $(\pi h_{11/2})_{10} \times v_{7/2}$, but at that time the nature of the $17/2$ ⁺ and $21/2$ ⁺ levels remained unclear. We now identify them as states arising from the coupling of the $f_{7/2}$ neutron with the 5⁻ and 7⁻ states of 148 Dy, with the three-particle configurations $(\pi h_{11/2}s_{1/2}vf_{7/2})$ 17/2⁺ and $(\pi h_{11/2}d_{3/2}vf_{7/2})$ 21/2⁺ as dominant amplitudes. However, the $\pi h_{11/2} \rightarrow d_{3/2}$ single particle jump implied for the $27/2^- \rightarrow 21/2^+ E3$ transition is forbidden. In this region the most likely allowed E3 transition is $\pi h_{11/2} \rightarrow d_{5/2}^{-1}$, and its transition rate is known [33] from 145 Eu to be

$$
B(E3, h_{11/2} \rightarrow d_{5/2}^{-1}, ^{145}Eu) = 0.4 \times 10^4 e^2
$$
 fm⁶.

From the much slower transition rate observed **in** $149Dy$

$$
B(E3, 110.8 \text{ keV}, ^{149}\text{Dy}) = 0.04 \times 10^4 e^2 \text{ fm}^6
$$

we conclude that the $(\pi h_{11/2}^3 d_{5/2}^{-1} v f_{7/2})$ configuration contributes of the order of 10% to the $21/2$ ⁺ state in ¹⁴⁹Dy. The small $B(E3)$ value of the 111 keV transition thus supports the $(\pi h_{11/2}d_{3/2}vf_{7/2})$ assignment for the $21/2$ ⁺ state and indicates also that the $(\pi h_{11/2}^3 d_{5/2}^{-1})$ configuration contributes little to the composition of the 148 Dy $7-$ state.

As will be shown in [10], the measured excitation energy of the $27/2^-$ state provides useful information for estimating the ground state masses of nuclei in this region.

3.2.3. High-lying Particle plus Octupole Excitation. We interpret the $3,645 \text{ keV } 29/2^+$ level, which deexcites by the 984 keV E1 transition to the $27/2^$ isomer, as the counterpart of the $(\pi h_{11/2}^2 \times 3^{-}) 11^{-}$ level at 3,980 keV in 148 Dy. Its configuration is thus $(\pi h_{11/2}^2 \, v_{7/2} \times 3^{-})$ 29/2⁺. Again, the spin of the lowest octupole multiplet member is two units less than the highest possible spin because of Pauli interference with the two aligned $h_{11/2}$ protons. Whether other multiplet members are populated in the yrast decay is at present not clear; in analogy to the isotone 148fb , one would expect that levels of $\pi h_{11/2}^2 v_{13/2}$ nature migth also occur in this region of the 149 Dy yrast line.

It is noteworthy that similar $\Delta I = 1$ transitions from octupole states also occur in the yrast lines of heavier Dy nuclei. For example, in 15^{0} Dy a 742 keV E1 transition de-excites [34] the 5,813 keV 19⁻ octupole state to the $(\pi h_{11/2}^2 v_{7/2}h_{9/2})18^+$ level, and in ¹⁵¹Dy the $(\pi h_{11/2}^2 v h_{9/2} f_{7/2}^2)$ 41/2⁻ state is fed [14, 35] by an 839 keV E1 from the $(41/2^{-} \times 3^{-})$ 43/2⁺ yrast state at 5,743 keV. In all cases these octupole excitations are built on yrast states in which all available $\pi h_{11/2}$, $vf_{7/2}$ and $vh_{9/2}$ valence spins are fully aligned. The fact that octupole core excitation competes successfully with lifting of a neutron into the $vi_{13/2}$ orbital reemphasizes the rather high single particle energy of that orbital discussed above.

4. Conclusion

This investigation has established the yrast level spectra of the $N=82$ and 83 nuclei ¹⁴⁸Dy and ¹⁴⁹Dy to about 4 MeV excitation energy. A complete $\pi h_{11/2}^2$

spectrum in 148 Dy has been identified, providing the relative residual interaction matrix elements for two $h_{11/2}$ protons. The determination of the $\pi h_{11/2}E2$ effective charge gives valuable information about the polarizability of the $146Gd$ core nucleus. Of particular interest is the first observation of particle phonon exchange coupling involving two particles, and its successful description using an empirical interaction strength extracted from the simpler coupling in the one valence particle nucleus 147 Tb. The 148 Dy and ¹⁴⁹Dy yrast lines are particularly favourable for the observation of such particle-phonon exchange phenomena because the high-j $h_{11/2}$ protons, which are here valence particles, are also involved in the dominant component of the $146Gd$ core octupole. Similar octupole excitations also occur in heavier Dy nuclei, and related coupling phenomena should also play an important role in the yrast spectra of nuclei above dysprosium.

We thank L. Richter, Y. Nagai, M. Ogawa, M. Piiparinen and A. Stefanini for their assistance in some of the measurements, and R. Wagner for preparing the enriched target materials, especially the thin 136Ce targets vital for the conversion electron measurements. Fruitful discussions with O.Schult are also gratefully acknowledged.

References

- 1. Kleinheinz, P., Broda, R., Daly, P.J., Lunardi, S., Ogawa, M., Blomqvist, J.: Z. Phys. A290, 279 (1979)
- 2. Broda, R., Behar, M., Kleinheinz, P,, Daly, P.J., Blomqvist, J.: Z. Phys. A293, 135 (1979)
- 3. Haenni, D.R., Beuscher, H., Lieder, R.M., Miiller-Veggian, M., Neskakis, A., Mayer-Böricke, C.: Proceedings of the International Conference on Structure of Medium-Heavy Nuclei, Rhodos. p. 133. (1979)
- 4. Haenni, D.R., Beuscher, H., Lieder, R.M., Müller-Veggian, M., Neskakis, A., Mayer-B6ricke, C.: NucI. Phys. A331, 141 (1979)
- 5. Bazzacco, D., Hague, A.M.I., Zell, K.O., yon Brentano, P., Protop, C.: Phys. Rev. C21, 222 (1980)
- 6. Stefanini, A.M., Daly, P.J., Kleinheinz, P., Maier, M.R., Wagner, R.: Nucl. Phys. A258, 34 (1976)
- 7. Stefanini, A.M., Kleinheinz, P., Maier, M.R.: Phys. Lett. 62B, 405 (1976)
- 8. Hiiusser, O., Alexander, T.K., Beene, J.R., Earle, E.D., Mc Donald, A.B., Khanna, F.C., Towner, I.S.: Nucl. Phys. A273, 253 (1976)
- 9. Daly, P.J., Kleinheinz, P., Broda, R., Stefanini, A.M., Lunardi, S., Backe, H., Richter, L., Willwater, R., Weik, F.: Z. Phys. A288, t03 (1978)
- 10. Blomqvist, J., Kleinheinz, P., Broda, R., Daly, P.J.: Z. Phys. (to be published)
- 11. Gromov, K.Ya., Zuber, K., Latuszynski, A., Penev, I., Potempa, A.V., Zeliuski, A., Zuk, V.: Acta Phys. Pol. B6, 421 (1975)
- 12. Toth, K.S., Newman, E., Bingham, C.R., Rainis, A.E., Schmidt-Ott, W.-D.: Phys. Rev. Cll, 1370 (1975)
- 13. Backe, H., Richter, L., Willwater, R., Kankeleit, E., Kuphal, E., Nakayama, Y., Martin, B.: Z. Phys. A285, 159 (1978)
- P.J. Daly et al.: $\pi h_{11/2}^2$ and Octupole Excitations in $^{1.48}_{66}Dy_{82}$ and $^{1.49}_{66}Dy_{83}$ 185
- 14. Khoo, T.L.: Proceedings of the symposium on High Spin Phenomena in Nuclei. Argonne, 1979 ANL/PHY-79-4, p. 95 (197~)
- 15. Hagemann, D.C.J.M., de Voigt, M.J.A., Jansen, J.F.W.: Phys. Lett. 84B, 301 (1979)
- 16. Andr6, S., Genevey, J., Gizon, A., Gizon, J., Jastrzebski, J., Lukasiak, J., Mosynski, M., Preibisz, Z.: Proceedings of the International Conference on Nuclear Behaviour at High Angular Momentum, Strasbourg. p. 59 (1980)
- 17. Kleinheinz, P., Ogawa, M., Broda, R., Daly, P.J., Haenni, D., Beuscher, H., Kleinrahm, A.: Z. Phys. A286, 27 (1978)
- 18. Kownacki, J., Ryde, H., Sergejev, V.O., Sujkowski, Z.: Nucl. Phys. A 196, 498 (1972)
- 19. Schiffer, J.P., True, W.W.: Rev. Mod. Phys. 48, 191 (1976)
- 20. Cares, M., Ball, J.B., Newman, E.: Phys. Rev. 187, 1682 (1969)
- 21. Kisslinger, L.S., Sorenson, R.A.: Rev. Mod. Phys. 35, 853 (1963)
- 22. Ogawa, M., Broda, R., Zell, K., Daly, P.J., Kleinheinz, P.: Phys. Rev. Lett. 41, 289 (1978)
- 23. Bj6rnstad, T., DeGeer, L.-E., Ewan, G.T., Hansen, P.G., Jonson, B., Kawade, K., Kerek, A., Lauppe, W.-D., Lawin, H., Mattson, S., Sistemich, K.: Phys. Lett. 91B, 35 (1980)
- 24. Blomqvist, J., Borg, S., Kerek, A., Rensfelt, K.-G., Sztarkier, J.: Phys. Scr. 9, 321 (1974)
- 25. Astner, G., Bergström, I., Blomqvist, J., Fant, B., Wikström, K.: Nucl. Phys. A182, 219 (1972)
- 26. Kleinheinz, P.: Proc. Symp. on High Spin Phenomena in Nuclei. Argonne, 1979. ANL/PHY-79-4, p. 125 (1979)
- 27. Lunardi, S.: Proceedings of XVIIIth Winter School on Nuclear Structure, Bielsko-Biala (1980)
- 28. Kleinheinz, P., Lunardi, S., Ogawa, M., Maier, M.R.: Z. Phys. A284, 315 (1978)
- 29. Kleinheinz, P., Maier, M.R., Diamond, R.M., Stephens, F.S., Sheline, R.K.: Phys. Lett. 53B, 442 (1975)
- 30. Bohr, A., Mottelson, B.: Nuclear structure. Vol. II, p. 564. New York: W.A. Benjamin 1975
- 31. Häusser, O., Taras, P., Trautmann, W., Ward, D., Alexander, T.K., Andrews, H.R., Haas, B., Horn, D.: Phys. Rev. Lett. 42, 1451 (1979)
- 32. Lunardi, S., Ogawa, M., Maier, M., Kleinheinz, P.: Proc. Symp. on High Spin Phenomena in Nuclei. Argonne, 1979. ANL/PHY-79-4, p. 393 (1979)
- 33. Fromm, W.D., Funke, L., Schilling, K.D.: Phys. Scr. 12, 91 (1975)
- 34. Lunardi, S., Ogawa, M., Backe, H., Piiparinen, M., Nagai, Y., Kleinheinz, P.: Proc. Symp. on High Spin Phenomena in Nuclei. Argonne, 1979. ANL/PHY-79-4, p. 403 (1979)
- 35. Piiparinen, M., Lunardi, S., Kleinheinz, P., Backe, H., Blomqvist, J.: Z. Phys. A290, 337 (1979). (Our recent conversion electron measurements confirm the 839 keV E 1 multipolarity of [14].)

P.J. Daly

Institut für Kernphysik Kernforschungsanlage Jülich GmbH Postfach 1913 D-5170 Jülich 1 Federal Republic of Germany

and Chemistry Department Purdue University W. Lafayette, IN 47907 USA

P. Kleinheinz R. Broda S. Lunardi Institut für Kernphysik

Kernforschungsanlage Jiilich GmbH Postfach 1913 D-5170 Jülich 1 Federal Republic of Germany

H. Backe Institut für Kernphysik Technische Hochschule Darmstadt Schloßgartenstraße 9 D-6100 Darmstadt Federal Republic of Germany

J. Blomqvist Research Institute of Physics S-10405 Stockholm 50 Sweden