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Ergodicity of Anosov Actions 

CHARLES PUGI4* (Berkeley) a n d  MICHAEL SHUB** (Waltham) 

1. Introduction 

In this paper we generalize some ergodicity results of Anosov and 
Sinai [1, 2] to group actions more general than Z and R. At the same 
time we provide what we consider to be a more natural proof of the 
central theorem in [1] concerning the absolute continuity of certain 
fol ia t ions-  see (2.1). 

Definition [5]. Let G be a Lie group acting differentiably on M, 
A: G--,Diff(M) where M is a compact smooth manifold. We assume 
that the orbits of G define a differentiable foliation o~, which is the case 
for instance if the G action is locally free (every isotropy group is discrete), 
The action is called Anosov if there exists an Anosov e l e m e n t - a n  
element g~G such that A ( g ) = f  is hyperbolic at ~ [5] and 

(1) the G action is locally free, or 

(2) G is connected and g is central in G. 

We recall that A(g) = f  is hyperbolic at ~ means that T f :  TM ~ TM 
leaves invariant a splitting 

E"@ TJ~ G E  s= TM 

contracting E S more sharply than T~, expanding E" more sharply 
than T~. ( T ~  is the bundle of planes tangent to the leaves of ~ )  

For example, if {q~t} is an Anosov flow on M then t i-~ q~t defines an 
R-action on M and gives the foliation of M by the trajectories. Any 
~o t, t + 0 is an Anosov element. Similarly, i f f  is an Anosov diffeomorphism 
of M then n w-~f" defines a Z-action on M which is Anosov. The leaves 
of the orbit foliation are the points of M. Further examples are given 
in [3, 5]. 

In [5] it was proven that Anosov actions are structurally stable, 
generalizing another part of the work of Anosov on flows and diffeo- 
morphisms. 

Definition. The action A: G---, Diff(M) is ergodic iff it is measure 
preserving and all invariant functions are constant. Precisely, we require 
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(1) For each g~G, A(g) is measure preserving (respecting some 
fixed Lebesgue measure on M). 

(2) If f :  M - - , R  is integrable and, for all g~G, f o A ( g ) = f  almost 
everywhere on M then f equals a constant, almost everywhere. 

Our main theorem is: 

( l . l )Theorem.  Suppose A: G--~Diff2(M) is a measure preserving 
Anosov action with an Anosov element in the centralizer of G. Then A 
is ergodic. 

In particular, if G is abelian and A a measure preserving C 2 Anosov 
action then A is ergodic. 

Theorem (1.1) may be used in conjunction with [6] to give informa- 
tion about the ergodic elements of an Anosov action. We give one 
example: 

(1.2) Theorem. Suppose A: Rk--~ Diff2(M) is a measure preserving 
Anosov action. Then for every g6 R k off a countable family of hyperplanes 
in R k, A(g) is an ergodic diffeomorphism. We recall that a hyperplane is a 
translate of a hyperplane through zero. 

The idea of the proof is as follows. Let f be the Anosov element. 
Then f is hyperbolic at the orbit foliation and so, from [5], we deduce 
a stable manifold theory for f By uniqueness and commutativity with f, 
the stable and unstable manifolds are A-invariant. We prove that any 
strong stable manifold foliation is absolutely continuous, and so is the 
center unstable foliation. Then we deduce ergodicity of A as Anosov 
and Sinai did, via Birkhoff's Theorem [2]. The center unstable case is 
harder than the strong stable, and it would be tempting to try avoiding 
it by using [8]. This would require measurability of the center unstable 
foliation in the sense of Sinai [8]. But measurability seems no easier to 
prove than absolute continuity, nor is it a consequence of being a 
foliation in the sense of Anosov [1, p. 18]. See w for an example of this. 

2. Pre-Foliations 

It is frequently useful and natural to deal with a localized version 
of a fo l i a t ion-we  call it a pre-foliation. It amounts to the continuous 
assignment of a disc through each point of a manifold. 

Indeed, let M be a compact smooth Riemann manifold and let D k 
be the k-disc. The set of all C r, r>0 ,  embeddings Dk-+M carrying 0 
onto some p ~ M  forms a metric space 

Emb'(D k, 0; M, p). 

The C r distance between two embeddings is defined in the usual w a y -  
either via the Riemann metric or a fixed embedding of M into a Euclidean 
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space. It is easy to see that Emb~(D k, M) is a C ~ fiber bundle over M, 
~(h)= h(0) being the projection. 

Definition. A pre-foliation of M by C r k-discs is a map p ~-, @ such 
that @ is a C r k-disc in M containing p and depending continuously 
on p in the following sense: M can be covered by charts, U, in which 
p w* ~p is given by 

~p=e(p)(D k) pc U 

and a: U ~  Embr(D k, U) is a continuous section. If, in addition, these 
sections a can all be chosen so that the maps (p, x)w+a(p)(x) are of 
class C *, 1 =< s =< r, then the pre-foliation is said to be of class C ~. 

Example 1. If ,~- is a C ~ k-foliation of M, r >  l, let 

~(6)= {xe~: d~(x, p)<=6} 

where d~ is the distance in the leaf measured respecting the Riemann 
structure in T ~  inherited from TM. Then, for small 6 > 0, 

p ~ ( ~ )  

gives a C ~ pre-foliation of M by C ~ k-discs. 

Example 2. Let N be a C ~ sub-bundle of k-planes in TM. Then, for 
small ,5 > 0, 

gives a C ~ pre-foliation of 

Example 3. Let ~/g'" be 
Anosov diffeomorphisms. 

p ~ W~(6)=the 

p ~ expt ,(Np (6)) 

M by C ~ k-discs. 

the unstable manifold foliation of M for a C r 
For  small 6 > 0  

6-1ocal unstable manifold through p 

gives a pre-foliation of M by C' k-discs. In general this pre-foliation is 
not of class C 1 [1, w 

On the same note, let us emphasize that for us, a "foliation of M by 
C r k-leaves" need not be a C r foliation. The leaves are C r and they vary 
locally continuously in the C r sense (this, for r = l ,  implies that the 
union of their tangent planes gives a continuous k-sub-bundle of TM) 
but their assembly is not necessarily CL Similarly for pre-foliations. 

Now we shall explain the idea of Poincar6 map along a pre-foliation. 
This is the usual "notion of translation in the transversal" for foliations. 
Let ff be a pre-foliation of M by C ~ k-discs, r >  1, let q~Int  ff~, (Or=the 
if-disc through p, and let Dp, Dq be two smooth (m-k)-discs  embedded 
transverse to ~, at p, q. (See Fig. 1.) 

TpDp@ Tp %= TpM, TqDqO Tq ~v= TqM. 
1" 
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Fig. 1. The Poincar6 map 

Then there is defined a surjection Hp, q: De, q---,Re, q where De, q is a 
neighborhood of p in D e 

De, q ) Re, q 

D e Dq 

He, q(P)=q ttp, q(Y)e~vC~Dq. 

Since ~, depends continuously on ye  Dp in the C r sense, r >  1, and ~p 
transversally intersects Dq at q, there is uniquely defined a new point of 
transversal intersection, Hp, q(y), depending continuously on y near p. 
The range of Hp, q, Rp, q, is not in general a neighborhood of q in Dq, 
nor is He. q in general a local homeomorphism. On the other hand, 
He, q is C s when f~ is of class C "~ and lip, q depends continuously on 
p, q, D e, Dq in the C ~ sense. Thus, if f~ is C 1 and q is near p then Hp.q is 
a local diffeomorphism. 

Next we explain the idea of absolutely continuous foliations. Recall 
that a bijection between measure spaces h: U-~ V is absolutely continuous 
if it is measurable and is a bijection between the zero sets of U and V. 

Definition. A pre-foliation of M by C r k-discs is absolutely continuous 
if each of its Poincar6 maps He, q: De,~--,Re, q is absolutely continuous. 

Definition. If, in addition, the Radon Nikodym derivative, J, is 
continuous and positive, J:  De, q--~R, 

]ADq(S)= ~ Jdpop S ~ R p ,  q 
H~;, ~ (S) 

then the pre-foliation is said to be measurewise C 1. 

The measures Poq, PD~ are the smooth ones induced by the Riemann 
structure on TM. Joint continuity in p, q, De, Dq, y is required. Variation 
of D e,/)q is done in Emb 1 (D"-R, M). J is called the (generalized) Jacobian 
of H. Existence of such a J implies, of course, absolute continuity. 

(2.1)Theorem. Strong unstable and strong stable foliations are 
measurewise C ~. (In particular absolutely continuous.) Precisely: Suppose 
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f is a C ~ diffeomorphism of M, s>=2, T f  leaves E " O E  p~= TM invariant 
and 

sup [I TpP~f II~/< i n fm(T~ f )  O < j < r < s ,  r > l .  
p~M p~M 

Then there is a unique f-invariant foliation of M by C ~ leaves tangent 
to E ~, the strong unstable foliation, ~r ~. It is measurewise C t. Similarly 
for strong stable Jbliations. 

Remarks. m ( Tp f )  is the co-norm (or minimum norm) of Tp f lEe  = T~ f ; 
that is, m(Tpf )=l lT~p f - l l l  -x. Our condition on T f  means that all 
vectors of E" are expanded more sharply than any vectors in E p~. The 
existence of a unique f-invariant foliation of M with C ~ leaves tangent 
to E" is proved in [5]. In general, there is no reason to believe E ps can 
also be integrated. Notice that H TpSfJI may be > 1 which is why we 
write p s - t o  indicate pseudo-stable. A more or less explicit formula 
for the Jacobian J is developed in the proof of (2.1) given in w 3. The 
inequality in the hypothesis of (2.1) can be weakened to 

in fm(T~f )  {1TpP~J'l[-J> 1 O < j < r  
p~M 

but the proof of (2.1) becomes technically harder. If sup [[TW*fH<I, 
P 

notice that the hypothesis of (2.1) amounts to assuming T " f  is an 
expansion. 

Finally, we wish to point out that our proofs differ substantially 
from Anosov's [1] only in that they avoid using continuous differential 
forms, dealing directly with the Poincar6 maps instead. In the same 
way, they differ from those in [8] in that no emphasis is laid on measure 
theoretic generality. 

3. Proof  that ~t/" Is Measurewise C ~ 

Although E u, E "s need not be smooth (this would imply measure- 
wise C ~ at once) they are H61der. 

(3.1) Lemma [c.f. 1]. E u and E ps are O-H61der continuous for some 
0>0.  

Proof Let E u, E ~'s be smooth approximations to E u, E re and let 
~ =  {P6L(/~Ps,/~]): tlPll__<l}. Then ~ = ~ ) ~ : ,  is a smooth disc bundle 
over M and T f - ~  acts on ~ in the natural way 

F: P - * ( C x +  K~P)o(A~+ BxP) -1 
for 

T~ f _I = ( Ax B~) respecting/~w (~/~,,. 
Cx K~ 
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F is a fiber contraction: it preserves fibers of 9 ,  covers f - l .  M - * M ,  
and the Lipschitz constant of F I ~  is <k  < 1. In fact k is approximately 
/(2 when 2 = inf m (T~ f) ,  p = sup [I T f S f  [[, and/~",/~P~ are very near E u, E p~. 

The bundle E p~, represented as the graphs of linear maps EPS-~E ", 
is an F-invariant section of 9 .  But the Invariant Section Theorem 
[6.1 of 4] says that the unique F-invariant section of ~ is 0-H61der 
continuous if F is C ~ and k L ( f ) ~  1. Since f is at least C 2, this proves 
that, for some 0 > 0, E ps is 0-H61der. Similarly for E ". 

Following Anosov we write ~ to denote uniform convergence. 

(3.2) Lemma [ 1, p. 136]. Suppose h: D k--, R k is a topological embedding 
and (g,) is a sequence of C 1 embeddings D k~-, R k such that 

g._~ h J (g,)_~ J 

where J(g,) is the Jacobian of g,. Then h is absolutely continuous and has 
Jacobian J. 

Proof [1, p. 136]. We must show 

rues (h A) = ~ J dp A c D k, measurable 
A 

when dp is Lebesgue measure on D k. Since h is continuous, it suffices 
to prove this equality for A = a n  arbitrary closed subdisc of D ~. Let 
e > 0  be given and choose two other discs A', A" such that A' is interior 
to A and A is interior to A". They can be chosen so near A that 

J d lt < e,/2 
A " - A  

because J is continuous. Since g, is a C 1 embedding, mes (g, S) = ~ J(g,) dl t 
S 

for any measurable S c D k, and since h is a topological embedding 

for large n. Thus 
g.A'  ~ h A ~ g , A "  

J(g,) dp < ~ J(g,) dp < ~ J(g,) dp 
A '  A A "  

mes(g,A' )< mes(hA) <mes(g .A")  

and so l i n e s ( h A ) - ~ J ( g . ) d p l < e  for large n. Since ~ J ( g , ) d p ~  ~Sdt~, 
A A A 

we have show n I mes (h A ) -  S J dPl~ e proving the lemma. 
A 
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To state precisely the next lemma, we speak of angles between sub- 
spaces of TM.  The Riemann structure on T M  lets us define 

~ (Ap, Bp)= max { ~z (a, Bp): ae  A p - O  } u { ~ (b, Ap) : be B p - O }  

where A v, Bp are linear subspaces of T e M. This amounts to the Haus- 
dorff metric on the Grassmanian. The angle between two subbundles 
A, B is the supremum of ,~ (Ae, Bp). 

(3.3) Lemma. Suppose T M = N @ E P S  = E U ~ E  ps and N is smooth. 
Let  fr be the smooth pre-Joliation p~-~fqe(8)=expv(Np(8)). Let  fl be 
given, O < fl < ~z /2. For small 6>0,  each P oincarO map G p, q : D p, q --r R e, o 
along f#(8) is a smooth immersion 0 ~ E(TDe,(EU)• and ~(TDq,(E")• 

Proof  The condition on D e, D u is that they be uniformly transverse 
to E". Since Gp, q is smooth and its derivative is a continuous function of 
p, q, it suffices to prove that ~.Ge, q is a bijection T y D p ~ , ,  Dq for 
y'=Gp, q(y). Since Gp, q=Gy, y, near y, it suffices to verify bijectivity at 
y=p .  Clearly when y = p = q ,  this is true. But since the derivative of Gp, q 
depends continuously on p, q, D e, Dq and since M and {ApcTeM:  

(A v, (EU)• [3} are compact, bijectivity on the diagonal p = q  propa- 
gates to some h-neighborhood of the diagonal. 

Proof of  (2.1). Let N be a smooth approximation to E u. Choose fl 
so that 0 < f l < n / 2  and ~(EW,(E")• ~z(E w, Nl)<f l .  Then choose 
h > 0  according to (3.3). Let 

~: N. = expy(N,.(6)) y e M  

be the resulting smooth pre-foliation. Let f#" be the pre-foliation gotten 
from iteration by f "  f~"" N" = f "  N--y" 

Let f#"(c) be the restriction of f~" to radius e. 

fr %." 0:) = {xe ~,": d~~ y)<~}. 

By [5], N"(c)_~ 1r TN"(t:)~E".  Thus f acts on pre-foliations 
in a natural way and ~/r is the attractive fixed point of this action. 

Consider qe Wp" and discs D e, Dq transverse to E". We must study 
the Poincar6 map Hp, q: De, q ~ R v ,  q for the foliation ~#r.. Because ~/"  is 
a fo l i a t ion -no t  just a pre-foliat ion-Hp, o is a homeomorphism and 
Re, q is a neighborhood of q in Do. 

The relation between lip, o and Hy- .p , y - .  q is expressed by commu- 
tativity of 

f -nDp,  q n • 1 7 6  q 

Is. 
Dp, q Hp, q +Rp,q 
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since ~//'" is f-invariant. Since f is a diffeomorphism existence of a 
continuous positive Jacobian for Hp, q is equivalent to the question for 
HI-,p,j--,  q. Furthermore, as n--,oo, T ( f  -" Op) and T(J .... Dq)~  E p~ 
[5]. Thus it is no loss of generality to assume 

qeW~,(e,/2) r177 r177 (.) 

for all n>0.  Furthermore, we may shrink Dp SO that Dp=Dp,  q and 
Rp.q=range Hp, q is interior to Dq, for existence of J(Hp,,) is a local 
question. 

Since ~"(c)~/r the Poincar6 map Gp,q of Op to Dq along ~"(e.) 
is defined in a unique single valued continuous manner on the domain 
Dp, n = 0, 1, 2 . . . . .  Thus it is clear that 

g , ~ h  

where g, = G"p. o., lOp, Qn =-f~p (g,)(5 Dq, and h = He, q. We show that 

g. is an embedding, (a) 

J(g,) ~ J = unif lim det (f-"[Ty Dp) (b) 
. - n  . ~  det ( j  ]Thy Dq) 

Then, by (3.2), J is the Jacobian of h=Hp, q. Since the limit in (b) is 
uniform, J is continuous, and by symmetry positive. Thus, proof of 
(a), (b) demonstrates (2.1). 

The proof of (a) is topological and thanks are due to R. PalMs. By 
(3.3), (*), the choice of 6, and the naturality of Poincar6 maps, g, is at 
least immersion wherever defined. Moreover, both g, and h are defined 
on a slightly larger disc/)p, say 

gn : L) p ---~ D q , fl : L) p --+ D q 

and ~ , ~ h .  Since ~,, h are locally injective, the theory of mapping 
degrees [7] isapplicable. Let Y be a compact neighborhood of Rp, q = h Dp 
interior to hDp. For any yeY, degree (h, D~ ,̂ y)ff 1 since h is a homeo- 
morphism. For large n, ~, ]•b e is very near h l(~Dp and so 

~, I 0/3p--- h I 0/3~, in Dq-Y .  

Thus, for large n, degree (~,, Dp, y)= 1 for all ye  Y, and thus ~:, embeds 
g2 ~ Y. The latter contains Dp, for large n, since ~,, ~ h and h-  1 y contains 
Dp in its interior. This proves (a). 
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To prove (b) we express g, in terms of the Poincar6 map along f~, 
acted on by f " - t h i s  is the straightforward thing to do. Consider 
gn : Dp ~ Dq as 

~ ' n  o I - ' 0  o n g . = j  t.rp., q. f 

where p , = f - " p ,  q , = f - "  Q,. (Recall that Q. was the point f~p"(e)~ Dq.) 
Thus q,e ~, and so the Poincar6 map along .a2, 0 . Gp.,q., is well defined 
on f -" Dp. Moreover 

q,e %.(%), %--+0 

as n - ~ .  For for. is approximately tangent to E" and is thus sharply 
expanded by .['" (see Fig. 2). 

fn "'Y"~ D~I~.. ~ 
D~ . ~ , - , - - . ~  i ~ ~" _ .y 

Fig. 2. The effect off  ~ 

Using the Chain Rule, 

J,~ (g,) = det (7"./'" I T r ,~,~, ( f  -" Dq)) det (TG~ I Ty ,,, ( f  -" D p)) 

. d e t ( T f  -"l~.Dp) 

for any yeDp. Since T(f-"DI,)~EV~' ,  T ( f - " D , )  ~ E I'~, and q,~, , , (%) 
with %--,0, the middle factor tends uniformly to 1. (b) is therefore 
equivalent to 

uniflim det(Tf-"lTyDp) - u n i f l i m  det(Tf-" l~ 'DP) (b') 
. . . .  det(Tf-"lT~,,,Dq) , ~  det(Tf-"lThrDq)" 

Although (b') could be proved directly, we first establish the special 
case (as does Anosov in [1]) y=p ,  TpDp=E~ ~, TqDq=EPL We prove 

lim d e t ( T ~ f - " )  exists uniformly. (c) 
,~ ~ det (T~Wf-") 

TPsf -" denotes T[" "IE p~. By the Chain Rule (c) is equivalent to the 
uniform convergence of 

f l  det (Tf~r . / ' -  1) 

k=O det(TF~q J--~i 
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and this, in turn, is equivalent to the uniform convergence of 

]det(Tf~r f -l)_det(Tje~% f - l ) ] .  
k = 0  

Since E pS is 0-H61der with 0 > 0  by (3.1), and f i s  C z, TpSf -~ is 0-H61der 
and so 

idet (Tf_~ p f - 1 )  _ det (Tf-~q f-1)1 <= C d ( f  -k p, f -k q)O 

d , , ' - k  ~ - k  , < j ~  k for some constant  C. Since q~WUp, ~j p , j  q)= d(p,q) where 
2 = i n f m ( T ~ f ) > l .  Thus 2 - ~  and our  series converges uniformly 
by comparison with C~(2-~  k d(p, q). This proves (c). 

Now we show how (c) implies (b'). Let ~ps be the projection of TM 
onto E ps along E u. Thus rc pS kills E ~ and leaves E ps fixed. Since T f  leaves 
EU@E ps invariant,  T f - "  commutes  with ~PL Thus  

U ' - " I  L Dp = (~vs I T~-.y i f - "  Dv))-' o T"S f -" o (~ps I Z, D,) 

for y6 Dp. Taking determinants  gives 

det ( T f  -"1 "F,,. Dp) = det ( TvVSJ '-")  det (rr, PSl ~. Dr, ) 
det (rcP" I Tj - ,> . l - "  Dr,) 

As n ~ ,  T ( f - " D p ) ~  E p~ and so the denomina tor  in the preceding 
fraction tends uniformly to 1. The same holds when y is replaced by a 
point  of Dq. Thus, we are reduced to proving 

unif l im d e t ( ~ f ~ f - " )  det(nP~] TyDp) 
. ~  det(T~P~, f -")det(nPSlT~.~,Dq) 

(b") 
= unif lim det (~P~f-" )  det (nPsl T.,, Dp) 

.~ ~ det (ThU f -") det (rrP~ ] Thy Dq)" 

Since g. ~ h and D o is C ~, (b") is equivalent to 

unif l im d e t ( ~ " s f - " )  = u n i f l i m  det(~r,~'f ") (b'") 
. ~  det (Tp~, f - " )  .~o~ det (ThP,~f -") ' 

By (c) - applied to y, hy instead of p, q - t h e  second limit exists and is 
uniform. To prove that the first exists and equals the second it suffices 
to show that 

unif lim det(Th~'~f-") �9 - 1 .  ( d )  
. ~ o  det(T~V~,f -") 

(d) is equivalent to 

n--I 

unif l im y '  Idet (Tfe~h, , f -~)-det (Tfe~, . , , f - ' ) l=O (d') 
n ~ m  k = 0  
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by the Chain Rule, as before. Again, this sum is < 

n--1  

C ~ d ( f - k h y ,  f - k g ,  y) ~ 
k = O  

for some constant  C, since E pS is 0-H61der. Let /~=sup  IbTJ'~['ll and 
2=infm(T" f ) .  By hypothesis,  p < 2  and 2 >  1. Choose  

max(if, 1 ) < / ~ < ~ . < 2 .  

Since ' - "  " - "  J hy~W)-%,(~,,), J (g ,y)6f f j  ,,,.(e,,) and ff is approx imate ly  
tangent  to E", 

c, < 2 " for large n. 

Thus,  d ( J - " ( h y ) , f - " ( g , y ) ) < e , < i t  " for large n. On the other  hand, 
d ( f - k ( h y ) , f - k ( g , y ) ) = d ( f "  k ( f - " h y ) , f " - k ( f - " g , y ) ) ,  and for large k, 
f - k  Dq . . . . .  f - "  Dq are nearly tangent  to E p~, so that  

d ( f  - k (hy ) , f  k(g,y))<C'l~"-k ). " 

for some constant  C'. Thus  

n- -1  n - -1  

Zo z ~ 

= C"(t ~~ +.. .  + t~ "~ 2 ,o = C" i~ ~ \~L-_IT] 2 -"~ 

which tends to zero as n - ~  ~ .  This  proves  (d'), hence (d), (b"), (b ') ,  (b'), 
and  ( b ) -  comple t ing  the p roof  of (2.1). 

4. Measurewise Smoothness of  Center Unstable Foliations 

The main  theorem of this section, (4.2), is an analogue of (2.1). 
Recall  that  a d i f feomorphism f of M is normal ly  hyperbol ic  at a folia- 
t ion o~- of M iff 7~]' leaves invariant  a splitting T M = E U | 1 7 4  ~, 
expanding E" more  sharply than U =  T ~ ,  contract ing E ~ more  sharply 
than  U,  and leaving o~--invariant. The following theorem was proved 
in [5]. 

(4.1) Theorem. / f  ,~- is C 1 and f is normally hyperbolic at ,~ then 
there are unique f-invariant Jbliations of M, ~lU c" and ~tU ~, tangent to 
U" = E" �9 U and U ~ = U 0 EL Each of their leaves is a union of ,~-Ieaves 
and W;"= U w,q",w; ~= U Wq. 

qE,~p qE,~p 

Here  we shall prove 

(4.2) Theorem.  If  f is normally hyperbolic' at ,~,, o~ is C 1, and f is C 2 
then ~IU ~", ~.cs are measurewise C 1 
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Proof We shall utilize a notion generalizing "pre-foliation by discs" 
to "pre-foliation by submanifolds'.  However, we shall not make the 
precise general definition of this, but confine ourselves to the case 

U 
yE,~p 

where N is a smooth subbundle of TM approximating E". In w 3, we called 

%: %.-- expy(Nv(6) ) 

the pre-foliation by u-discs. Now we are considering the union of all 
these u-discs as y ranges over the leaf ~ , .  This gives the immersed 
manifold ~ , ,  nearly tangent to E cu. Then let 

U 
n ~ cu ECU We know that ~ _ ~  and T ~ " ~  by [5]. 

Let D r, Dq be s-discs transversal to E "u through p, q with qE Wf~ u. 
We must investigate the Poincar6 map Hp, q along ~/g"u. As in w we 
may assume 

q~ W~(r,/2), p' ~o~p(e/2), Dp=domain  Hp,~, diam(Dp)<e]2 

without loss of generality. Consider the Poincar6 maps H, = H~,~ along 
the Jg" leaves through Dp. As in w 3, we must prove that 

H, is an embedding, H, ~ H = Hp, q, (A) 

J(H,)~J>O. (B) 

The proof of (A) is the same as (a) in w because ,Zg" ~ / / ' " "  and Hp,, is 
a homeomorphism. 

Call D =  ~ ~,~(c). This D is a smooth disc transverse to E". It is 
y~Dp 

smoothly fibered by the leaves of ~. For  each y~Dp, ~ m ~ , "  for all 
n>0 .  Thus, the Poincar6 map along the leaves of ~r y~D., would 
be smooth if the image disc, Dq lay in D. 

For each y~Dp, let y. be the unique point of~ such that 

and let y ,  be the unique point of.~(c) such that 

HyeW~(c). 

Clearly --* y, ~ y ,  and p,  is the point we called p'. 

Choose smooth discs S(y~), X(y,) at y,,  y ,  in D, transverse to E". 
We may assume them chosen so that 

S,(y,) ~ 2(y.), TX(y,) ~ TS(y.). 
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Then we may factor H. as h.o ~,,y. where F,,.y~ Dp-~X(y.) is the Poincar6 
map along .~- in D and h.: 2(y.)--~Dq is the Poincar6 map along the 
leaves of.;r through Dp (see Fig. 3). Note that this factorization depends 
on y. 

Fig. 3. Factorizing the Poincar6 map/4. 

Since 2(y . )~  20'.) and TL ' (y . )~  T2(y.) and .~- is C ~, 

det (~, ~,~,) ~ det (Tv ~. y.)> 0. 

Thus (B) will follows from 

uniflim J,,.(h.)= f i  det(Tf- l lTf  kY*f-ky:(Y*)) (B') 
.~o~ " ~=0 det(Tf-llTf-knyf-kDq) 

when H = Hp, q. 

As in w 3, let/~ = sup t] rcsf ]l, 2 = inf m(r"f), and choose max(l,/~) < 
p < 2 < 2 .  Then, as in w 

f -k H.y~].'Z~,, ff.i.-k) 

J'-k H ye WjU_kny(e J.-k) 

for O<k<n and large n, because fr is nearly tangent to E u and is 
thus expanded by 2 k under fk. We also claim that 

d( f  -k y,, f -k y.) <= 2 -k e 

d( f -kH,  y,f-~Hy)<2-kr,  
(,) 

for O<_k<_n and n large. The proof is by induction on k. Since y . ,  Hy, 
/4. y, y. form a twisted trapezoid of small (<  e) diameter whose nearly 
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I0 q 

Fig. 4. Our twisted trapezoid 

parallel opposite edges in Wy'~, fr have length < c, the other edges - being 
in Y and Dq must also have length < e (see Fig. 4). This proves (*) for k = 0. 

Suppose (*) is valid for k - 1  <n.  Let 7=sup [I TCf-l[I. Then 

d ' - k  '--k d - k + l  - k + l  /] - k + l  ( j  Y., J Y.) =<)' ( f  Y., f Y.) < 7 e 

by the induction assumption. Thus, f - k y , ,  f - k H y  ' f kH.y ' f - k y .  
forms a twisted trapezoid of small (<  i' e) diameter whose nearly parallel 
opposite edges in fCfrf,.., ff~-k have length -<e2 -k. Its other edges, 
being in ~ and f-KDq, must have length <r]2-k; for o~, f-kDq and 
ff . -k  are essentially perpendicular to each other. This proves (.) for k. 
(See Fig. 5.) Note that we used k<n to assure f4 "-k is defined and more 
or less tangent to E". 

g 

Fig. 5. General twisted trapezoid 

l_l_g h_Lspan(l,g) g.(g, w)-~O 

~ l /g  and h/g~O. 

Now we shall prove (B'). By the Chain Rule 

J~, (h.) - det (T s - ,,.v. Hj ~ y., s--n.  ~,) det (TJ' "[ ~,  X (y.)) 
det (TJ'-"[ Tn.y Dq) 

where H ~ . . . . . .  : f -"Z(y.) -~. f -"O.  is the Poincar6 map along the 
leaves of ~,~6 t'h"rough f-"Dp. Since d( f -"y , , , f -"H, ,y)~O and 
TZ(y,)__~ TZ(y,), the first term of the numerator tends uniformly to 1. 
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Thus (B') is equivalent to 

uniflim de t (Tf - " l  ~,X(y,)) 
'--n .~ + det (TJ I Tu.~, Dq) 

- unif lim det ( T f  -"1 ~, .  X (y , ) )  
.++ det (Tf  -"lTm, Dq) 

�9 ( B " )  

As in w 3, we can easily demonstrate 

I ]  det(Tf ~y.f-1) 
k=O det(Tj ~" k H ) ' f  -1 )  

converges uniformly. For TSf ~ is 0-H61der, 0 >0, and 

d ( f - k y , , f - k H y ) < i ,  -k. 

(c) 

From (C), it follows that the right hand side of (B") exists. E S is an 
exponential attractor, under 7"./" -1, for any plane in TM complementary 
to E"". In fact 

.~ ( : r f  -k z (y,), E ~) __< (t~/'~)k 
.f. ( r  f -k X (y,), E ~) <= (~/ )~)k (**) 

(7"["-k Dq, E ~) <= (1~/,~) k 

for k<=n and k large, since TX(y , )~  TX(y,) and TX(y,) is complemen- 
tary to E c". Since de t (Tf  liP ) is a smooth function of the plane P 

Idet (Tf - '  I T+.-~,., f - ~  X(y.))-det(TjL.,, .  f - ' )1  < C(lu/2) k 

I det (7"./ -~ I Tf ~ H,, f k Do ) _ det (T]-~ u,, f - ~)1 < C (t~/~.) k 
***) 

for some constant C. By the Chain Rule, the r.h.s, of (B") converges 
uniformly iff 

~1 det( Tj-~[ Tf =k),, f -k X(y,)) 
k=oll det (T f  - l lTf  knyf -kDq) 

does. Convergence of this infinite product follows from comparison 
with (C) via (***). Similarly, convergence of the 1. h. s. of (B") to the same 
limit is assured if 

rt--I 
0=uni f l im • Ide t (Tf  -1 I~- ~,.~ f-k~(y,)) 

" ~  k=O (D: y,) 
- d e t  (T/-11Z+_~, f -k Z(y,))l 

n - I  
0 = unif lim Z I det (Tf-11Tf-~u,,~ f -k Dq) 

,~o~ k=0 (D: H,y) 
- det (TJ'-ll Tf-~uy f - k  Dq)l" 
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Express the k-th term in (D: y.) as 

Idet (Tf-~l  Ts ~,,. f -k S ( y . ) ) _ d e t ( T f  -tjTj. ~,,. f -k S(y,))[ 

<= ]det(Tf-l lTf_ky.  f - k  S(y . ) ) -de t  (T~ kr. f-1)1 

+ Idet (T~- ~y. f - 1 ) -  det (Tj~ y, f-1)1 

+ idet (T~_ ~y * f - l ) _ d e t ( T f - l l T y _ ~ y  * f - k  _r (y,))l 

= I + I I + I I I .  

By H61der continuity of TSf  -~, 

II < C' d ( f  -k y,, f -k y,)O = C' d ( f ' - k  f -" y,, f " - k  f -" y,)O 

C' lll (n-k)O d ( f  -"y, ,  f -.y.)O < C,[llln-ka~-ng,]O 

for some constant C'. Thus, the sum in (D: y.), is 

n--1 K n - 1  

__<y + Z (I+II+IH) 
k = 0  k = 0  k = K + l  

K ~ ,  n - 1  
Z -[-26 (z-ll.l)k-}-fta~-nO21~(n-k)O 

k=O k = K + I  k = 0  

for any K, O < K < n - 1 .  We used (***) to estimate I, III. This gives a 
n- - I  

bound for the lim sup ~ in (D: y,), which can be made arbitrarily small 
n~oO k = 0  

by taking K large, fixing K, and then letting n tend to ~ .  Thus (D:y,) 
is proved. The proof of (D: H, y) is the same. This completes the proof 
of (D), (B"), (B'), (B) and hence of (4.2). 

5. Ergodicity 
We now proceed to prove (1.1)-ergodicity of an Anosov action 

,4: G-~ Diff 2(M) with Anosov element f in the centralizer of the Lie 
group G. 

The foliation ~ of M by the components of the A-orbits is C z. (In 
fact, we only need ~ C 1 ; it is f which must be C2.) We shall adopt the 
usual, confusing notation that g~G is also considered as the diffeo- 
morphism A(g). This is all right if A is the only action considered. 

Let 

7=sup  l[ TSf[I q=infm(TCf)  p = s u p  II TCf II 2=infm(TUf)  

and choose 
? < y <  tl<min(1, r/) max(l,  p ) < p < 2 < 2 .  

Since f is normally hyperbolic at ,~,, we get the f-invariant foliations 
~/r ~/f S. They are also G-invariant because of their exponential charac- 
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terization [5] 

W~= { x e M  : d ( f  -"x,  f -" p) 2"-~O as n -*  Qo} 

(J . , J  p)~ 0 a s n - * o o }  W1;~={xeM:d ""x " -"-~ 

For gcG commutes with f and so 

d ( f  -" g x, f -"g p) 2"=d(g f -"x,  g f  -"p) 2"< L(g )d ( f  -"x,  f -" p) 2"-,O 

i f fxc Wp". (As usual, L(g) is the Lipschitz constant ofg.) Thus, g Wp = W~p. 
Similarly, g Wb ~ = W~p. 

Since the ]:invariant foliations ~r ~t/~c~ are defined by 

w;s=Uw; 
qE,~p q~ff'p 

w.c"= ~" w ~  . . . . . .  it is clear that g p W~p, g - W~p. 

By (2.1), (4.2) the foliations ~/r #~,s, ~U"", ~r are absolutely con- 
tinuous, in fact measurewise C ~. This will let us use the following 
Fubini-type lemmas, 

(5.1) Lemma. Let ,~ be an absolutely continuous Joliation of M. A set 
Z ~ M has measure zero iff almost all leaves of ~ meet Z inessentially. 
I f  the essential maximum of a function cb: M---~ R on almost every ,~-leaf 
is <=c then the essential maximum oJ q) is <=c. 

(5.2) Lemma. / f  ~1 ,  ,~ '-2 a r e  absolutely continuous, complementary 
Joliations of M and q): M--*R is a function that is essentially constant 
on almost every leaf of ~1 and ,~2 then qb is essentially constant. 

Remarks. By "almost all ~- leaves"  we mean all ~ leaves not lying 
in a set composed of whole ~-leaves and having measure zero. An 
intersection is essential if it has positive or infinite measure, inessential 
if it has zero leaf-measure. The essential maximum of a function 
eb: M ~ R  is inf{sup q~I(M-Z):  rues Z=0} ,  and the essential minimum 
is sup{infq~[(m-Z): rues Z=0} .  Since a countable number of zero sets 
forms a zero set, inf{ } and sup { } can be replaced by rain { } and max { }. 

Proof of(5.1). For completeness, we reproduce part of [ l ,  pp. 156-157]. 
It is obviously no loss of generality to restrict our attention to a neigh- 
borhood U of pc M, where the components of the leaves of ~ are discs, 
,~v, and where there is a smooth foliation ff by discs complementary 
to ~.  Thus, there is a local product structure 

~z" D k • D " - k - ~  U 

sending horizontal discs to ~-leaves, vertical discs to ~-leaves, and 
being smooth on Dk• 0, 0 x D m-k. The measure on the ,~'-leaves and 
fq-leaves is the Riemann measure induced by the Riemann structure 
on TM. The measures on D k, D "-k are the pull-backs via 

Dk~--~Dk• ~+o~ U D " - k . - - ~ O •  

2 InventJones math.,Vol. 15 
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and the measure on D k • D m-k is the product measure. Thus, 

is absolutely continuous, in fact measure preserving. 
Let Z be the set of ~V-leaves intersecting Z essentially. We must 

show rues Z = 0 iff mes ,~ = O. 

mes Z - O  

l [smoothness ~q] o f  

mes(ffxnZ)=0 fora.e, x~vv v 
l [x x D ' -k  rc , ~x is absolutely continuous 

because ~ is absolutely continuous] 
m e s ( x  X o m - k n T ~ - l Z ) = O  for a.e. x ~ D  k 

l [Fubini Theorem for a product] 

rues (~- 1 Z )  = 0 

l [Same] 

m e s ( D k x y c ~ r c - l Z ) = O  fora.e, y e O  " - k  

I " , o~ v is absolutely continuous, [D k x y y 
in fact smooth, because fq is smooth] 

m e s ( ~ V n Z ) = 0  for a.e. y e ~ ,  

l [absolute continuity of ~ ]  

mes ( ,~vnZ)=0  for a.e. Y~x  ( V x ~ v  v) 

I [mes v n Z) = 0 ~  mes (~v n Z) = 0] ( 4  

m e s ( ~ n 2 ) = 0  for a.e. Yefqx (Vxe,~ t') 

l [obvious] 

mes(2 n fix)=0 forall x ~  v 

~ [ 2 ,  is composed of whole ~V-leaves] 

[~ is smooth] 

rues(Z)=0-- >mes(Znfqx)=0 fora.e, x ~  v 

[fr is smooth] 

Thus, mes Z = 0 iff mes Z = 0, proving the first half of (5.1). 
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Now suppose q~: M ~ R  has essential maximum < c  on almost all 
~ - l e a v e s - t h a t  is, for each .N-leaf ~p, there is a set Z e C~p such that 
sup q)](@-Zp)<C, and for all ~pp not lying in a zero set of ~-leaves, 
~,  mes Zp=O. Then Z = ~ u  [_)Zp is a zero set by the first half of (5.1), 

P 
and sup 4J](M - Z) < c, completing the proof of (5.1). 

Proof of (5.2). For  any ceR, let m ~ = ~ - l ( ( - ~ , c ] )  and let m ~ be 
the set of o~a-leaves essentially contained in M ~. Then Z=M~AM~= 
(M c -  M ~) w (M ~-  M ~) has measure zero. Almost every ~-2 leaf meets Z 
inessentially by (5.1). Therefore, almost every YZ-leaf meets M ~ essen- 
tially iff it meets M r essentially. 

Let e > 0  be small enough so that 2e-local product structure for 
~ l ,  ~ 2  holds for all p~M: 

XlGo~pl(~:) X2e~z(g) ~o~xx~(Zg) n~z(zg , )  is a unique point. 

Let Mp(e) be this product neighborhood of p in M. For small r,>0, we 
also have 

~1~2 ,/~'/~;--,, ~,~2 (g/2) c Mp (~) 

for all xl ~ ~e 1 frO, x2 ~ ~ z  (e)(see Fig. 6). 

x 2 

P 

/~,%J 
Fig. 6. Local product structure 

Let p be a point of M and s u p p o s e  O,~p 2 (g,) meets M c essentially. By 
absolute continuity of ~ every other ~pZ(2e) meets M C essentially for 
qe@l(e). Thus, m o s t  ~p2 meet M c essentially for qe.~l(e,), and on most 
~p2, ~ is essentially constant. Therefore, the essential maximum of 
on most ~p2, q~0~l(~:), is <c. By (5.1), the essential maximum of 4~ on 
Me(e ) is also <c.  

On the other hand, suppose @2(~:) meets M c inessentially, By the 
absolute continuity of ~1,  every other ~qZ(r,/2) meets M C inessentially 
for q e ~pl (e,). Thus, most o~2 (e,/2) meet M c inessentially for q e ~1  (e) and 
2* 
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on most ~ z ,  4) is essentially constant. Therefore, the essential minimum 
of �9 on most ~q2, q ~ l ( ~ . )  is >c. By (5.1), the essential minimum of ~b 
on Mr(e ) is also >c. 

Consequently, for every c~ R, 

ess max(dPlMp(~))<=c or ess min(q~lMp(e))>c. 

Hence ~b is essentially constant on Mp(e), and so is essentially constant 
on each component of M. 

Suppose cb: M-~  R is an A-invariant integrable function. Ergodicity 
of A means q~ must be constant almost everywhere. Let lnv(g)=all  
integrable g-invariant functions M - *  R for g~ G. We are trying to show 

Inv(g) is the set of constant functions. 
g~G 

According to [2, p. 144], we may define a projection I~: L 1 (M) ~ Inv(g) 
by n 

1 ~ q~ (gk x) g ~ G. I~ ~o(x)=,~lim 2 n + l  k=- 

That is, the limit exists almost everywhere, is integrable, and q~ ~ I~ q~ 
is a continuous linear map onto the fixed points of I~, Inv(g). Moreover, 
the limits n 

I~ q~(x)= lim 1 ~=oCp(gkx) g~G 
,~-+~ [n[+l  k= 

exist almost everywhere and I~ ~o (x)= lg ~o (x) for almost all x. That is, 
I + = I~- = lg as maps L 1 (M) ~ Inv (g). 

Since the continuous functions are dense in LI(M), their Ir 
are dense in Inv(g). Therefore, it is useful to prove 

I f  r is continuous then Ij. q9 is essentially constant along ~r and ~/r (*) 

For any x, y~ W~ and any continuous q~: M - ~ R  it is clear that either 
both I/~o(x), I f  ~o(y) are defined, or neither, and if defined they are 
equal. Since I/q~ is defined almost everywhere I f  ~p is defined and 
constant on almost all ~"-leaves.  Since ~q~" is absolutely continuous 
and lj7 ~o = I I q~ almost everywhere, ly q~ is essentially constant on almost 
every ~W" leaf by (5.1). Similarly for ~#F~, proving (.). 

By density cb is the limit, almost everywhere o f / r  q9 with ~0 continuous. 
Therefore, on almost every ~/r leaf and ~/U ~ leaf, cb is the pointwise limit, 
almost everywhere on the leaf, of essentially constant functions. Hence ~b 
is essentially constant along ~/r ~W ~ and ~ :  say �9 is essentially constant 
on all ~r leaves, ~ leaves, and ~-leaves, not essentially intersecting Z, 
mes Z = 0. 

The foliations ~lWp",  ~r W~" are both (!) smooth. ~ is smooth 
on M so it is certainly smooth on W~"; ~r Wp TM is smooth because W~' 
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is smooth  and all the other  Wq", q e ~ ,  are gotten from W~ as g W/; = Wq" 
for g in the identity componen t  of  G. 

By absolute  continuity of ~/C c" and (5.1), a lmost  every W~" meets Z 
inessentially; by (5.1) on such a W~", a lmost  every ~ ,  Wq" in W~'" meet 
Z c~ W~'" inessentiatly. Therefore,  by (5.2) on W~ u, 4) is essentially con- 
stant on Wr "u. Thus  4) is essentially constant  a long ~//-c,. 

By (5.2) on M and the absolute  continuity o f f " " ,  ~-~, 4) is essentially 
constant  on M. 

6. A Pathological Foliation 

Here we give an example  to show that  there are foliations by smooth  
discs which are not measurable  in the sense of Sinai [8]. It seems to us 
that  verification of a foliation's measurabi l i ty  is generally no easier than 
verification of its measurewise smoothness.  A conversa t ion with N. Kopel l  
was helpful in cooking up our  example.  

Let I =  [0, 1] and h: I x I -~I  be cont inuous  with 

(i) h, = h (t, �9 ): I -~ I is a h o m e o m o r p h i s m ,  0-< t_< 1. 

<! ht=hl for t=> 2. (ii) h, = identity for t = 3, 

(iii) hi is not absolutely continuous.  

(iv) h, I U is a C ~ embedding  for some open dense U c I, 0 < t <1 .  

(v) dh]dt is continuous.  

It is easy to construct  such an h - w e  do it at the end of this section. 

Consider  the foliation ,~- of  I x I whose leaves are the graphs  

fl(y)={t,h,y):tel} ye l .  

By (v), the foliation has a cont inuous  tangent  bundle. Since dh,/dt is 
smooth  on the dense strips {(t, hty): tel, y e  U} there is no curve every- 
where tangent to leaves but not contained in a leaf. Thus,  we have a 
foliation in the sense of  Anosov  [1, p. 18], 

Let/~ be the usual measure  on R 2. Let da, be the smoo th  induced 
Riemann  measure  on the leaf/3. Let d/~, be the quotient  measure  on the 
space of leaves, N'. If B is a collection of (whole) leaves, then ~t~(B)= 
~( U/3)- Suppose that  ~ were measurable  in the sense of Sinai. Then 

limB 
there would be a measurab le  function K : I • I--* R such that  

(1) K is posit ive a lmost  everywhere  on I • I. 

(2) K is integrable on every leaf/3 not belonging to a set ~ of leaves 
h a v i n g / ~ ( ~ ) = 0  and, f o r / 3 ~ .  ~ Kd~a= 1. 

P 

(3) /~(A,/3)~ f ~ Kdaa is an integrable function of /3~.~ if / 3 r  
Anp  

and if A is measurable  in I • I. 
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(4) Ix(AmB)=~lx(A, fl)dl~ for any measurable set A c I •  and 
B 

any measurable B c ~ .  

Let N be the set where K is not defined or is not positive, p (N)=0 .  
By (4) with B = I • 1 

/~ (N) = ~ p (N, fl) d / ~  
B 

and so, for a set of leaves ~1 such that/~ ( ~ )  = 0, 

f l r  ~ / J ( N ,  fl)=O. 

Let Z be a zero set of I such that h 1 Z has positive linear measure 
and let Bz = U fl(y). Then /x(Bz)>O because [2, l]  x hl(Z)~B z. Also 

yeZ 

/~(Bz,) > 0  for Z'= {ye Z: fl(y)r ~ u ~ } 

B~,= U/~(y)=Bz-(~u~O. 
y~Z' 

0 1 Now let A = [ , 3] • I, B = Bz,. Then A c~ B = [0, �89 • Z '  so p (Am B) = 0. 
Since each f l~B  z, lies outside ~1, Klfl is almost everywhere positive 
on ft. In particular, KIAc~fl is almost everywhere positive, f l~Bz,.  
That is 

/t(A, fl)> 0 for all f lcBz, .  

Since/t~ (Bz,) > 0, this proves that 

II(A, fl) dlx~>O 
Bz, 

contradicting (4) for this A and B. 

Now we construct the homotopy  h used to find the foliation. Let U 
be an open dense subset of I with measure �89 and let 

x 

u(x)= j" [1 -zu(s)] ds 
0 

where Zv is the characteristic function of U. This map u: I - - ,  [0,�89 
collapses U onto a countable set C c [0, �89 u](I - U) preserves measure, 
and u-l(uU)=U. Let g: [0 , �89 �89 be a homeomorphism with 
g(0)=0,  g())=�89 that is not absolutely continuous. Find an open set 
V c I ,  pV=�89 and a collapsing map v: I---, [0,�89 with vV=gC,  v l ( l -  V) 
measure preserving, and v-~(v V)= V. Then define hi: I-+I so that 

1 ~ - ,  I 

1. 1 
[0, �89 - ~  [0, �89 
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commutes  and hi carries /,/-I(c) onto v- l (gc )  diffeomorphically for all 
c~ C. Finally, put 

h t (y) = [1 - qo (t)] y + (p (t) h 1 (y) 

for t, y e I  and tp a C oo function R - ~ [ O , I ]  with tp=O for t<�89 q~=l 
for t >  2. Clearly h, is a homeomorph i sm for all t e l  and h, is smooth 
in t. That  is, (i)-(v) are verified. 

Post Script. It seems likely that these method apply to metric 
transitivity questions for Anosov Actions if such questions make any 
sense.  
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