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Ergodicity of Anosov Actions

CHARLES PugH* (Berkeley) and MICHAEL SHUB** (Waltham)

1. Introduction

In this paper we generalize some ergodicity results of Anosov and
Sinai [1, 2] to group actions more general than Z and R. At the same
time we provide what we consider to be a more natural proof of the
central theorem in [1] concerning the absolute continuity of certain
foliations —see (2.1).

Definition [5]. Let G be a Lie group acting differentiably on M,
A: G— Diff(M) where M is a compact smooth manifold. We assume
that the orbits of G define a differentiable foliation %, which is the case
for instance if the G action is locally free (every isotropy group is discrete).
The action is called Anosov if there exists an Anosov element—an
element ge G such that A(g)=f is hyperbolic at # [5] and

(1) the G action is locally free, or
(2) G is connected and g is central in G.

We recall that 4(g)= f is hyperbolic at # means that Tf: TM - TM
leaves invariant a splitting

E'®TF ®DE=TM
contracting E* more sharply than T#, expanding E* more sharply
than T (T# is the bundle of planes tangent to the leaves of %)

For example, if {¢,} is an Anosov flow on M then t1— ¢, defines an
R-action on M and gives the foliation of M by the trajectories. Any
@,, t+=01s an Anosov element. Similarly, if f is an Anosov diffeomorphism
of M then n+— f" defines a Z-action on M which is Anosov. The leaves
of the orbit foliation are the points of M. Further examples are given
in[3,5].

In [5] it was proven that Anosov actions are structurally stable,

generalizing another part of the work of Anosov on flows and diffeo-
morphisms.

Definition. The action 4: G— Diff(M) is ergodic iff it is measure
preserving and all invariant functions are constant. Precisely, we require
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(1) For each geG, A(g) is measure preserving (respecting some
fixed Lebesgue measure on M).

(2) If f: M—R is integrable and, for all geG, fo A(g)=f almost
everywhere on M then f equals a constant, almost everywhere.

Our main theorem is:

(1.1) Theorem. Suppose A: G— Diff>(M) is a measure preserving
Anosov action with an Anosov element in the centralizer of G. Then A
is ergodic.

In particular, if G is abelian and A a measure preserving C* Anosov
action then A is ergodic.

Theorem (1.1) may be used in conjunction with [6] to give informa-
tion about the ergodic elements of an Anosov action. We give one
example:

(1.2) Theorem. Suppose A: R*— Diff>(M) is a measure preserving
Anosov action. Then for every ge R* off a countable family of hyperplanes
in R*, A(g) is an ergodic diffeomorphism. We recall that a hyperplane is a
translate of a hyperplane through zero.

The idea of the proof is as follows. Let f be the Anosov element.
Then f is hyperbolic at the orbit foliation and so, from (5], we deduce
a stable manifold theory for f. By uniqueness and commutativity with f,
the stable and unstable manifolds are A-invariant. We prove that any
strong stable manifold foliation is absolutely continuous, and so is the
center unstable foliation. Then we deduce ergodicity of 4 as Anosov
and Sinai did, via Birkhoff’s Theorem [2]. The center unstable case is
harder than the strong stable, and it would be tempting to try avoiding
it by using [8]. This would require measurability of the center unstable
foliation in the sense of Sinai [8]. But measurability seems no easier to
prove than absolute continuity, nor is it a consequence of being a
foliation in the sense of Anosov [1, p.18]. See § 6 for an example of this.

2. Pre-Foliations

It is frequently useful and natural to deal with a localized version
of a foliation —we call it a pre-foliation. It amounts to the continuous
assignment of a disc through each point of a manifold.

Indeed, let M be a compact smooth Riemann manifold and let D*
be the k-disc. The set of all C", r=0, embeddings D*—>M carrying 0
onto some pe M forms a metric space

Emb’ (DX, 0; M, p).

The C" distance between two embeddings is defined in the usual way —
either via the Riemann metric or a fixed embedding of M into a Euclidean
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space. It is easy to see that Emb’(D*, M) is a C" fiber bundle over M,
n(h)=h(0) being the projection.

Definition. A pre-foliation of M by C” k-discs is a map p+— &, such
that &, is a C" k-disc in M containing p and depending continuously
on p in the following sense: M can be covered by charts, U, in which
p— 9, 1s given by

’ Z,=a(p)(D")  peU

and ¢: U— Emb"(D* U) is a continuous section. If, in addition, these
sections ¢ can all be chosen so that the maps (p, x)+> o(p)(x) are of
class C*, 1 =s<r, then the pre-foliation is said to be of class C*.

Example 1. If # is a C" k-foliation of M, ¥ > 1, let
Z(6)={xe % d s (x. p)<5)

where d; is the distance in the leaf measured respecting the Riemann
structure in T% inherited from TM. Then, for small § >0,

p—>7,(0)

gives a C" pre-foliation of M by C" k-discs.

Example 2. Let N be a C" sub-bundle of k-planes in TM. Then, for
small 6>0, .
p > exp,(N,(9))

gives a C" pre-foliation of M by C* k-discs.

Example 3. Let #™ be the unstable manifold foliation of M fora C”
Anosov diffeomorphisms. For small >0

p — W,'(d)=the é-local unstable manifold through p

gives a pre-foliation of M by C" k-discs. In general this pre-foliation is
not of class C' [1,§24].

On the same note, let us emphasize that for us, a “foliation of M by
C" k-leaves” need not be a C" foliation. The leaves are C" and they vary
locally continuously in the C" sense (this, for r=1, implies that the
union of their tangent planes gives a continuous k-sub-bundle of TM)
but their assembly is not necessarily C". Similarly for pre-foliations.

Now we shall explain the idea of Poincaré map along a pre-foliation.
This is the usual “notion of translation in the transversal” for foliations.
Let % be a pre-foliation of M by C” k-discs, r= 1, let gelnt 4,, 4, =the
%-disc through p, and let D, D, be two smooth (m — k)-discs embedded
transverse to %, at p, q. (See Fig. 1.)

T,0,®T,%=T,M, T,D,®T,

1*
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Fig. 1. The Poincaré map

Then there is defined a surjection H, ,: D, ,—R

where D, , is a
neighborhood of p in D

b, g
p

DPv q Rl’s q
[ )
DP Dq

paP)=q H, ,(y)€%nD,.

Since ¥, depends contmuously on ye D, in the C" sense, r=21, and %,
trcmsversally intersects D, at g, there is uniquely defined a new point of
transversal mtersectlon H ».q(), depending continuously on y near p.
The range of H, ,, R, ,, is not in general a neighborhood of ¢ in D,,
nor is H,, in general a local homeomorphism. On the other hand,
H,,is C° when % is of class C* and H, , depends continuously on
p. 4, D,, D, in the C’ sense. Thus, if ¥ is C1 and q is near p then H, , is
a local diffeomorphism.
Next we explain the idea of absolutely continuous foliations. Recall
that a bijection between measure spaces h: U — Vis absolutely continuous
if it is measurable and is a bijection between the zero sets of U and V.

Definition. A pre-foliation of M by C” k-discs is absolutely continuous
if each of its Poincaré maps H, ,: D, ,— R, , is absolutely continuous.

Definition. If, in addition, the Radon Nikodym derivative, J, is
continuous and positive, J: D, ,— R,

Hp(S)= | Jdp,, S<R

Hp,'g(5)

p.q

then the pre-foliation is said to be measurewise C'.

The measures y;, , ptp, are the smooth ones induced by the Riemann
structure on TM. Joint continuity in p, g, D,,, D,, y is required. Variation
of D,, D, is done in Emb'(D™~*, M). J is called the (generalized) Jacobian
of H. Existence of such a J implies, of course, absolute continuity.

(2.1) Theorem. Strong unstable and strong stable foliations are
measurewise C*. (In particular absolutely continuous.) Precisely: Suppose
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[ is a C* diffeomorphism of M, s22, Tf leaves E*@ EP*=TM invariant
and )

sup [T7°fIP<infm(T}'f)  O=sjsrss,r21.

peM peM

Then there is a unique f-invariant foliation of M by C" leaves tangent
to E*, the strong unstable foliation, W™. It is measurewise C*. Similarly
for strong stable foliations.

Remarks. m(T,' f)is the co-norm (or minimumnorm)of T,, f |E} =T, f;
that is, m(’I"p"f)=||Tf"pf‘1||‘1. Our condition on Tf means that all
vectors of E* are expanded more sharply than any vectors in E?*. The
existence of a unique f-invariant foliation of M with C" leaves tangent
to E* is proved in [5]. In general, there is no reason to believe EF® can
also be integrated. Notice that ||[T?*f] may be >1 which is why we
write ps—to indicate pseudo-stable. A more or less explicit formula
for the Jacobian J is developed in the proof of (2.1) given in §3. The
inequality in the hypothesis of (2.1) can be weakened to

infm(T¢ /) IT7f177>1 05jsr
pe

but the proof of (2.1) becomes technically harder. If sup |7/ f[| <1,
P

notice that the hypothesis of (2.1) amounts to assuming T*f is an
expansion.

Finally, we wish to point out that our proofs differ substantially
from Anosov’s [1] only in that they avoid using continuous differential
forms, dealing directly with the Poincaré maps instead. In the same
way, they differ from those in [8] in that no emphasis is laid on measure
theoretic generality.

3. Proof that #* Is Measurewise C!

Although E*, EP* need not be smooth (this would imply measure-
wise C! at once) they are Holder.

(3.1) Lemma [c.f. 1]. E“ and EP® are 6-Hélder continuous for some
0>0.

Proo/' Let E* EP* be smooth approximations to E¥ E”* and let
={PeL(E®, E" ): |P|=£1}. Then 2= UQ is a smooth disc bundle
over M and Tf ! acts on 2 in the natural way

F:P—(C,+K P)o(A,+B,P)"!
for
A,

Ef‘l:(cx

B LA N
K") respecting EP* @ E™
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F is a fiber contraction: it preserves fibers of %, covers f~': M— M,
and the Lipschitz constant of F|%, is £k< 1. In fact k is approximately
/A when A=inf m(T* f), u=sup || T.7* ||, and E*, EP* are very near E*, EP°.

The bundle EP*, represented as the graphs of linear maps EPS— E*,
is an F-invariant section of %. But the Invariant Section Theorem
[6.1 of 4] says that the unique F-invariant section of & is 6-Holder
continuous if F is C' and kL(f)° < 1. Since f is at least C?, this proves
that, for some 8>0, E?* is 0-Holder. Similarly for E*

Following Anosov we write =3 to denote uniform convergence.

(3.2) Lemma [ 1, p. 136]. Suppose h: D* — R* is a topological embedding
and (g,) is a sequence of C* embeddings D* — R* such that

g.3h Jg)3J

where J(g,) is the Jacobian of g,. Then h is absolutely continuous and has
Jacobian J.

Proof [1, p.136]. We must show

mes(hA)= j Jduy AcD*, measurable

when dy is Lebesgue measure on D*. Since h is continuous, it suffices
to prove this equality for 4=an arbitrary closed subdisc of D* Let
&>0 be given and choose two other discs A’, A” such that A’ is interior
to A and A is interior to A”. They can be chosen so near A that

j Jdu<g/f2

A" —A
because J is continuous. Since g, is a C* embedding, mes(g, S)= [ J(g,)du
S
for any measurable S < D¥ and since & is a topological embedding

g A chAcg, A"
for large n. Thus

fJ(gn)dﬂ< [ dus [ (g, du

" A . ”

mes(g, A)< mes(hA) Smes(g, A”)

and so |mes(hA)— jJ (g,) dp|<e for large n. Since jJ(g,l)dua jjdy,

we have shown ]mes(hA {Jdu|<e proving the lemma
A
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To state precisely the next lemma, we speak of angles between sub-
spaces of TM. The Riemann structure on TM lets us define

¥(A,,B,)=max{x(a, B,): aeA,—0} u{Xx(b, 4,): be B,—0}

where A,, B, are linear subspaces of T, M. This amounts to the Haus-
dorff metric on the Grassmanian. The angle between two subbundles
A, B is the supremum of %(4,, B,).

(3.3) Lemma. Suppose TM=N@®@E"*=FE*@®@E" and N is smooth.
Let %(0) be the smooth pre-foliation p %,(8)=exp,(N,(0)). Let  be
given, 0L f<n/2. For small 6>0, each Poincaré map G, ,: D, ,—R, ,
along %(3) is a smooth immersion if <(TD,,(E*Y")<p and £(TD,,(E“Y)<p.

Proof. The condition on D,, D, is that they be uniformly transverse
to E* Since G, , is smooth and its derivative is a continuous function of
p, g, it suffices to prove that T,G, , is a bijection T,D,— T, D, for
y'=G, (). Since G, ,=G, - near y, it suffices to verify bijectivity at
y=p. Clearly when y=p=gq, this is true. But since the derivative of G, ,
depends continuously on p, g, D,, D, and since M and {4,cT,M:
x(4,, (E*)Y)< B} are compact, bijectivity on the diagonal p=q propa-
gates to some J-neighborhood of the diagonal.

Proof of (2.1). Let N be a smooth approximation to E* Choose j
so that 0<f<n/2 and x(E", (E*)*)<f, ¥(E", N*)<pf. Then choose
0>0 according to (3.3). Let

4: 4 =exp,(N,(9)) yeM

be the resulting smooth pre-foliation. Let ¢” be the pre-foliation gotten
from iteration by f° GG =[G,

Let %"(¢) be the restriction of 4" to radius ¢
G"(e): G (e)={xe % dg.(x, y)S¢}.

By [5], 9"(s) 3 #™¥(¢) and T%"(c) 3 E*. Thus f acts on pre-foliations
in a natural way and #™ is the attractive fixed point of this action.

Consider ge W and discs D, D, transverse to E*. We must study
the Poincaré map H, ,: D, ,— R, , for the foliation #™. Because #™ is
a foliation—not just a pre-foliation—H, , is a homeomorphism and
R, , is a neighborhood of g in D,.

The relation between H, , and H;-.,, ;-n, is expressed by commu-
tativity of . T

fﬁnDp,q*_*f‘lf—i’f_"Rp,q

I~ |

HP»‘I
—
D Rp,q
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since W™ is f-invariant. Since f is a diffeomorphism existence of a
continuous positive Jacobian for H, , is equivalent to the question for
H,-..p,r,.q. .Furthermore, as n—co, T(f™"D,) and T(f™"D)=3 E™
[5]. Thus it is no loss of generality to assume

geWi¢/2)  X(TUT"D)ENNSB (T D) EVISH (¥

for all n20. Furthermore, we may shrink D, so that D,=D, , and
RM=.range H, , is interior to D,, for existence of J(H, ,) is a local
question.

Since %"(¢c) 3 #7(¢), the Poincaré map G}, , of D, to D, along %"(¢)
is defined in a unique single valued contmuous manner on the domain
D,,n=0,1,2,.... Thus it is clear that

g.3h
where g,=G}, o.|1D,, 0,= %, (e)nD,, and h=H, ,. We show that

g, is an embedding, (a)

or. det(f7T,D,)
- —_ —
Jg)3J uriljgm Gt/ T, D) (b)
Then, by (3.2), J is the Jacobian of h=H, ,. Since the limit in (b) is
uniform, J is continuous, and by symmetry positive. Thus, proof of
(a), (b) demonstrates (2.1).

The proof of (a) is topological and thanks are due to R. Palais. By
(3.3), (%), the choice of é, and the naturality of Poincaré maps, g, is at
least immersion wherever defined. Moreover, both g, and h are defined
on a slightly larger disc Dp, say

and §,=3h. Since §,, h are locally injective, the theory of mapping
degrees [7] is appllcable Let Y be a compact nelghborhood of R, ,=hD,
interior to hD For any yey, degree (h, D,,, =1 since f1 is a homeo-
morphism. For large n, £,|0D, is very near hlaD and so

g.léD,~h{0D, in D,—Y.
Thus for large n, degree (g,,,D,,,y)—l for all er and thus 2, embeds

! Y. The latter contains D, for large n, since g, =3 hand h='Y contains
Dp in its interior. This proves (a).
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To prove (b) we express g, in terms of the Poincaré map along ¥,
acted on by f"—this is the straightforward thing to do. Consider

g.D,—D,as , i
gn=J"Gp q4.of

where p,=f""p, q,=f""Q,. (Recall that Q, was the point 4;(¢)nD,.)
Thus g, 9, and so the Poincaré map along %, G is well defined

Pnsdn®
on f =" D,. Moreover

4.€%, (), ¢,—0

Pn

as n—oo. For ¢, is approximately tangent to E* and is thus sharply
expanded by f” (see Fig. 2).

D D,
n \p n q
7 T A Y WY
Y

il
% N
{9a-gnP
i

Fig. 2. The effect of /"

Using the Chain Rule,
I8 =det (TS| Ty (/7" D)) et(TGY, | T;-n,(f D)
~det(Tf "|T,D,)

for any yeD,. Since T(f~"D,)33E”, T(f "D, }E™, and q,€9%, (c,)
with ¢,— 0, the middle factor tends uniformly to 1. (b) is therefore
equivalent to

. e
unif lim det(T/~"1,D,) = ynif lim det(T/ "7, D,)

. - . b’
™ el (1) T, D)~ A det (T T,0) )

Although (b’) could be proved directly, we first establish the special
case (as does Anosov in [1]) y=p, T,D,=E, T, D,=E!*. We prove

det(T7°f ")

im : exists uniformly. c
n—»aodet(’z;pbf _") y ( )

TP f =" denotes Tf "|E™. By the Chain Rule (¢) is equivalent to the
uniform convergence of

keo det(TFs, /1)
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and this, in turn, is equivalent to the uniform convergence of
o0
Y Idet (T, f =) —det(TFs, £ 1)1
k=0

Since E?* is 0-Holder with 6 >0 by (3.1), and f'is C2, T?*f ~! is 0-Holder
and so
|det(Tpfkpf-—l)_det(Tf;vfkq f—1)|§ Cd(j-_kp’ f._kq)s

for some constant C. Since ge W*p, d(f ~*p, f ~*q)<1 *d(p, q) where
A=infm(T!f)>1. Thus A-?<1 and our series converges uniformly
by comparison with C Y (A~°)*d(p, ). This proves (c).

Now we show how (c) implies (b). Let n?° be the projection of TM
onto E”* along E*. Thus n?° kills E* and leaves E?® fixed. Since Tf leaves
E"® EP® invariant, Tf ~" commutes with n?*. Thus

Tf " T, D, =(r"|Ty-n,(f " D,) "o TP "o (n?*| T, D,)
for ye D,. Taking determinants gives

det(TP* £ =" det (™| T, D,)
det(n”*| T,;-., /" D,)

det(Tf~"|T,D,)=

As n—oo, T(f "D, )3 EP* and so the denominator in the preceding
fraction tends uniformly to 1. The same holds when y is replaced by a
point of D,. Thus, we are reduced to proving

oo det(TPsf =" det(n™| T, D,)
fl y yp
W™ det (175, £ ") det(n™| T,,, D,) )
. det(TP*f =" det(n"| T, D,)
=unif lim y :

ne det(TE /") det(n?*|T,,D,)

Since g, 3 hand D, is C', (b”) is equivalent to

or.det(TPsf—m . det(TPef )
L ynif lim et b
uniflim e e o = unif lim det (T2 /") (®")

gny

By (c)—applied to y, hy instead of p, ¢ —the second limit exists and is
uniform. To prove that the first exists and equals the second it suffices

to show that
o show tha et (T
unif lim :

et d
n—s 0 det(E’f, f‘") ( )

(d) is equivalent to

n—1t
unif lim ¥ [det (T2, f ') —det(T2, , £ ~)}=0 (d)
R— 0O k=0
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by the Chain Rule, as before. Again, this sum is <

CZ d(f *hy, [ *g,y)

for some constant C, since E?® is 0-Hélder. Let u=sup |T”*f|| and
A=infm(T*f). By hypothesis, u<A and A>1. Choose

max (4, )<p<d<i.

Since f~"hyeW/.. (&), f ™™g, V€% -n.(c,) and ¥ is approximately
tangent to E¥,
£, 24" forlarge n.

Thus, d(f~"(hy), f ~"(g,y))<e, <A™ " for large n. On the other hand,
d(f 5 hy) f " @a)=d(f" (S " hy) f" (S 7" g,y)), and for large k,
[k D, ..., f "D, are nearly tangent to E"*, so that

d(fHhy). S guy)sCu 4

for some constant C’. Thus
n—1 n—1
CY (0 S ) S CCY | ;w—k] GOy

" noy 5 —nf_ ;0 1_”n0 . ng
=C"(@+-+ ") 4 Cﬂ(v—v)ﬁ"
l—p
which tends to zero as n—oco. This proves (d’). hence (d). (b"), (b}, (b),
and (b)—completing the proof of (2.1).

4. Measurewise Smoothness of Center Unstable Foliations

The main theorem of this section, (4.2), is an analogue of (2.1).
Recall that a diffeomorphism f of M is normally hyperbolic at a folia-
tion & of M iff Tf leaves invariant a splitting TM=E*QE‘®E*,
expanding E' more sharply than E‘=T%, contracting E* more sharply
than E°, and leaving & -invariant. The following theorem was proved

in [5].

(4.1) Theorem. If F is C' and f is normally hyperbolic at F then
there are unique f-invariant foliations of M, W and WS, tangent to
E'=E'®E‘ and E*=E‘@E*. Each of their leaves is a union of F -leaves
and W= ) wWe, wee= ) we,

qeFp qeFp

Here we shall prove

(4.2) Theorem. If f is normally hyperbolic at . F is C!, and f is C?
then W, W are measurewise C'.
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Proof. We shall utilize a notion generalizing “ pre-foliation by discs”
o “pre-foliation by submanifolds”. However, we shall not make the
precise general definition of this, but confine ourselves to the case

H :Hy= | exp, (N, (9))

veF,
where N is a smooth subbundle of TM approximating E*. In § 3, we called
%:9. =exp,(N,(9))

the pre-foliation by u-discs. Now we are considering the union of all
these u-discs as y ranges over the leaf %,. This gives the immersed
manifold 5, nearly tangent to E*. Then let

A A=) 41 (5)

YeF

We know that #" =3 %% and T#" =3 E** by [5].

Let D,, D, be s-discs transversal to E® through p, g with ge W;*.
We must investigate the Poincar¢ map H, , along #™*. As in §3, we
may assume

qeWy (e/2), pe#(/2), D,=domainH,,, diam(D,)<e/2

without loss of generality. Consider the Poincaré maps H,=H,, , along
the " leaves through D,. As in § 3, we must prove that

H,is an embedding, H,3H=H,,, (A)
J(H,)33J>0. (B)

The proof of (A) is the same as (a) in §3 because #" 3% “ and H, , is
a homeomorphism
Call D= U ). This D is a smooth disc transverse to E". It is

smoothly flbered by the leaves of # For each yeD,, % c#," for all
nz0. Thus, the Poincar¢ map along the leaves of ", yeD would
be smooth if the image disc, D, lay in D.

For each yeD,, let y, be the unique point of % (¢) such that
H,ye9, (c)
and let y, be the unique point of % () such that
Hye W/ (s).

Clearly y, 3y, and p, is the point we called p".
Choose smooth discs X(y,), Z(y,) at y,, y, in D, transverse to E°.
We may assume them chosen so that

)32y, TZ)3TE(yy)-
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Then we may factor H, as h,o F, , where F, , : D,— Z(y,) is the Poincaré
map along % in D and h,: X(y,)— D, is the Pomcare map along the

leaves of J#” through D, (see Fig. 3). Note that this factorization depends
on y.

™
\%

] e/ Y £
zef re/

Fig. 3. Factorizing the Poincaré map H,

Since X(y,) 3 2(y,) and T2 (y,) 3 TZ(y,) and F is C,
det(T, F, , ) 3 det(T, F, ,)>0.

Thus (B) will follows from

oy = det(Tf " HTrw, f 52
uniflim J, (h,)= [] —— ot et S ¥ (B)
noowo ka det(Tf il‘Tf"‘Hy f*qu)
when H=H, ,

As in §3, let u=sup | T**f||, A=inf m{(T* /), and choose max(1, )<
n<Ai<A Then,asin§3,
S H, ye gk (6475
SEHye Wy, (€479

for 0<k<n and large n, because %"~* is nearly tangent to E* and is
thus expanded by 4* under f* We also claim that

d(f *yu, f v =A
<

d(f 4 Hyy. [~ Hy) <A )

for 0<k<n and n large. The proof is by induction on k. Since y,, H,,
H,y, y, form a twisted trapezoid of small (<¢) diameter whose nearly
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Fig. 4. Our twisted trapezoid

parallel opposite edges in W), 4" have length <¢, the other edges — being
in # and D, must also have length <¢ (see Fig. 4). This proves () for k=0.
Suppose (*) is valid for k—1<n. Let y=sup | T°f ~!|. Then

d(f ™ ye TRy Syd(f Ty Sy ) SyedH !

by the induction assumption. Thus, f ~*y., f*Hy, f *H,y, /%,
forms a twisted trapezoid of small (<y¢) diameter whose nearly paraliel
opposite edges in ¥/, ¥k, have length <ei~* Its other edges,
being in # and f~*D,, must have length <¢i~%; for # f~*D, and
@"—* are essentially perpendicular to each other. This proves (x) for k.
(See Fig. 5.) Note that we used k<n to assure ¥"~* is defined and more

or less tangent to E*.

g
Fig. 5. General twisted trapezoid

ILg hlspan(Lg x(g,w)—0
=l/g and h/g—0.

Now we shall prove (B). By the Chain Rule

det(Ty-ny, HP-ny, p-ny) det(TSF "I T, Z (1))
det(Tf~"|Ty,,D,)

Jyn (hn) =

where H})’"yn,g’"H,,y: f"Z(y,)—f "D, is the Poincaré map along the
leaves of #° through f~"D,. Since d(f~ "y, f "H,y)=30 and
TZ(y,)3 TZ(y,), the first term of the numerator tends uniformly to 1.



Ergodicity of Anosov Actions 15
Thus (B') is equivalent to

det(Tf "I T,, Z(3) det(T/~"IT;, 2 (»,)

unif lim : = unif lim . (B”
now  det(Tf~"{Ty D, neoo  det(Tf " Ty, D,) (B
As in § 3, we can easily demonstrate
w0 —1
H Tf Ky, j ) (C)

et(Tf kHy I~ )

converges uniformly. For T°f ! is 0-Hélder, 0>0, and
d(f *ye, fTEHY)SATE

From (C), it follows that the right hand side of (B”) exists. E® is an
exponential attractor, under T/ !, for any plane in TM complementary
to E*. In fact

(TS Z () E)S(u/W)
K(Tf 2y, E)S(pu/A) (%)
X(Tf7*D,, E<(u/a}

for k<n and k large, since T2 (y,) 3 T2(y,) and TZ(y,) is complemen-
tary to E“ Since det(Tf ~*|P) is a smooth function of the plane P

|det(TS Ty -xy, [T Z(1,)) —det (T}, f S Clu/a)

et (TS Ty, £ D)= et (T, [ Cluit

for some constant C. By the Chain Rule, the r.h.s. of (B”) converges
uniformly iff

< det(Tf M Trowy, £ 75 Z(1,)
k=0 det(Tf—1|Tf*"Hy.f—qu)

does. Convergence of this infinite product follows from comparison
with (C) via (#*x). Similarly, convergence of the 1.h.s. of (B") to the same
limit is assured if

n—1

O=uniflim ) |det(Tf " Ty« f~*Z(vy)
nsow T
adet(Tf‘1|Tf-ky* _kaZ(y*))l

n—1
O=uniflim ) [det(Tf ~*|T;-xy,, f *D,)
R 0O k=0

(D:y,)

(D: H,y)
—det(Tf " Ty-ig, /¥ D,)|
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Express the k-th term in (D: y,) as

[det(Tf =Y Tj-x,, S ¥ Z(3,) —det(Tf Ty, f 74 Z(1,))]
<|det(Tf Ty, f 5 E () —det(T} «,, £ V)|
+|det (T}, f~Y)—det(TE -, f )
+|det(Tsuy f ) —det(Tf " Ty-xy, £ 7+ Z(3,)|
=T+ I+1I1.
By Holder continuity of T°f 1,

Hé C/d(f—kyn’ f—ky*)9= C/d(fn—kf»nymfn—kf~ny*)9
SC PR T [T S C TR AT

for some constant C’. Thus, the sum in(D: y,), is

n—1

<y 4+ Y RN

K
éz Z (}. ” -f-C/}» n()z”(n k)o

k=0 k=K+1 =0

for any K, 0 K<n~1. We used (¥=%) to estimate I, [Il. This gives a

n—1

bound for the lim sup Z in (D: y,), which can be made arbitrarily small

oo k-0

by taking K large, fixing K, and then letting n tend to oo. Thus (D: y,)
is proved. The proof of (D: H, y) is the same. This completes the proof
of (D), (B"), (B, (B) and hence of (4.2).

5. Ergodicity

We now proceed to prove (1.1)—ergodicity of an Anosov action
A: G— Diff*(M) with Anosov element f in the centralizer of the Lie
group G.

The foliation # of M by the components of the A-orbits is C2. (In
fact, we only need & e C'; it is f which must be C2.) We shall adopt the
usual, confusing notation that geG is also considered as the diffeo-
morphism A(g). This is all right if A is the only action considered.

Let

y=sup |T*fl| n=infm(Tf) p=sup|T°f| A=infm(T"f)

and choose
y<y<g<min(l,n) max(l,y)<p<i<i.

Since f is normally hyperbolic at %, we get the f-invariant foliations
W, %> They are also G-invariant because of their exponential charac-
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terization [5]
W)={xeM:d(f~"x, f~"p)A"—>0asn— o0}
WS={xeM:d(f"x, f"p)y "—>0asn—aw}.
For ge G commutes with f and so

dif~"gx, [T"gp)A"=d(gf "x, g fT"p)A"SLE)d(f " x, f"p) A" 0
iff xe W'. (As usual, L(g) is the Lipschitz constant of g.) Thus, g W= W2,
Slmllarly, gWy=W,,.
Since the f-invariant foliations #7“, #°* are defined by
Wcu U Wu Wcs U W.\
qeFp qeFp

it is clear that g W, "= WS, e W' =W,

gp?
By (2.1), {4.2) the foliations #™, #, #™“, #™°° are absolutely con-
tinuous, in fact measurewise C'. This will let us use the following
Fubini-type lemmas.

(5.1) Lemma. Let & be an absolutely continuous foliation of M. A set
Z <=M has measure zero iff almost all leaves of F meet Z messentlally
If the essential maximum of a function @: M — R on almost every F-leaf
is Zc then the essential maximum of @ is Zc.

(5.2) Lemma. If #!, #? are absolutely continuous, complementary
foliations of M and &: M — R is a function that is essentially constant
on almost every leaf of F' and F* then @ is essentially constant.

Remarks. By “almost all #-leaves” we mean all # leaves not lying
in a set composed of whole #-leaves and having measure zero. An
intersection is essential if it has positive or infinite measure, inessential
if it has zero leaf-measure. The essential maximum of a function
@: M — R is inf{sup @|(M — Z): mes Z=0}, and the essential minimum
is sup {inf @|(m— Z): mes Z =0}. Since a countable number of zero sets
forms a zero set, inf{ } and sup{ } can be replaced by min{ } and max{ }.

Proof of (5.1). For completeness, we reproduce part of [ 1, pp. 156-157].
It is obviously no loss of generality to restrict our attention to a neigh-
borhood U of pe M, where the components of the leaves of & are discs,
ZY, and where there is a smooth foliation % by discs complementary
o % Thus, there is a local product structure

n:D*x D" U
sending horizontal discs to #-leaves, vertical discs to %-leaves, and
being smooth on D*x0, 0x D™ * The measure on the #-leaves and
%-leaves is the Riemann measure induced by the Riemann structure
on TM. The measures on D*, D"~* are the pull-backs via
DkHDkXO n ger DmrkHOXDmﬁk T gp

2 Inventiones math,, Vol. 15
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and the measure on D* x D™ ~* is the product measure. Thus,
n—II%U: %U—"Dk
is absolutely continuous, in fact measure preserving.

Let Z be the set of # U.leaves intersecting Z essentially. We must
show mes Z=0 iff mes Z =0.

mes Z=0
[smoothness of %]

mes(9,NZ)=0 fora.e. xe&Y

[xx D" *-2 >4 is absolutely continuous
J because & is absolutely continuous]

mes(xx D" *~n-1Z)=0 fora.e. xeD*

[Fubini Theorem for a product]

mes(n 1 Z)=0
i

[Same]

mes(D*xynn='Z)=0 fora.e. yeD"*

ﬂ [D*x y—2> £V is absolutely continuous,
in fact smooth, because % is smooth]

mes(£YNZ)=0 fora.e. ye%,
U [absolute continuity of %]
mes(ZYNZ)=0 fora.e. ye¥%, (Vxe£")

[mes(#Y N Z)=0<mes(%" n Z)=0]

[

mes(% NZ)=0 fora.e. ye%, (VxeZY)

ﬂ

Z
[obvious]
mes(Zn%,)=0 forall xe &Y

[Z is composed of whole # V-leaves]
[# is smooth]
mes(Z)=0=——mes(Zn%,)=0 forae xe#Y

[# is smooth]
Thus, mes Z =0 iff mes Z =0, proving the first half of (5.1).
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Now suppose @: M — R has essential maximum =£c on almost all
Z -leaves —that is, for each #-leaf %, there is a set Z,c %, such that
sup @|(#,—Z,)<c, and for all % not lying in a zero set of #-leaves,
%, mesZ,=0. Then Z=ZF u U Z, is a zero set by the first half of (5.1),

P
and sup @|(M — Z)=<c, completing the proof of (5.1).

Proof of (5.2). For any ceR, let M*=®~((— o0, c]) and let M be
the set of #'-leaves essentially contained in M*. Then Z=M‘AM‘=
(M€ — M°yu (M — M) has measure zero. Almost every %2 leaf meets Z
inessentially by (5.1). Therefore, almost every % *-leaf meets M® essen-
tially iff it meets M essentially.

Let ¢>0 be small enough so that 2e-local product structure for
F', #? holds for all pe M:

x €FNe)  x,€F7(e)=>F.(2e)nF2(2¢) s a unique point.

Let M, (g) be this product neighborhood of p in M. For small ¢>0, we
also have
Fae/2),  FLE/DM, ()

for all x,e £ (¢), x,€ %2 (¢) (see Fig. 6).

1 re)

st

X, % te)

F 1el2)

D
Ehe)
2
\’r;, 7€)

Fig. 6. Local product structure

Let p be a point of M and suppose %2 (¢) meets Azf essentially. By
absolute continuity of #', every other %2(2¢) meets M essentially for
ge %! (¢). Thus, most %> meet M essentially for ge %' (¢), and on most
Z,Z, @ is essentially constant. Therefore, the essential maximum of @
on most %2, ge %' (c), is <c. By (5.1), the essential maximum of @ on
M,(e)is also <c. o

On the other hand, suppose %2(¢) meets M* inessentially. By the
absolute continuity of #', every other %?(¢/2) meets M inessentially
for ge Z'(¢). Thus, most %2 (¢/2) meet M inessentially for g %' () and
o
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on most Z?, ¢ is essentially constant. Therefore, the essential minimum
of @& on most 9';2, ge %} (g) is >c. By (5.1), the essential minimum of @
on M, () is also >c.

Consequently, for every ce R,
ess max (@M, (¢))<c or essmin(P|M,(c)>c.

Hence @ is essentially constant on M, (¢), and so is essentially constant
on each component of M.

Suppose &: M -— R is an A-invariant integrable function. Ergodicity
of A means @ must be constant almost everywhere. Let Inv(g)=all
integrable g-invariant functions M — R for ge G. We are trying to show

() Inv(g) is the set of constant functions.
geG

According to [2, p. 144], we may define a projection I,: L' (M) — Inv(g)
by

“ k
2n+1k;n¢(g x) geG.

L o(x)=1im
That is, the limit exists almost everywhere, is integrable, and ¢ 1, ¢
is a continuous linear map onto the fixed points of I, Inv(g). Moreover,
the limits 1 n

I p(x)= lim ——— kx eG

¢ o(x)= lim |n|+1k§o(p(g ) ¢
exist almost everywhere and Igi @ (x)=1, ¢(x) for almost all x. That is,
I} =17 =1, as maps I'(M)— Inv(g).

Since the continuous functions are dense in L' (M), their I,-images

are dense in Inv(g). Therefore, it is useful to prove

If ¢ is continuous then I, ¢ is essentially constant along W™ and W™. (%)

For any x, ye W) and any continuous ¢: M — R it is clear that either
both I ¢(x), I @(y) are defined, or neither, and if defined they are
equal. Since I; ¢ is defined almost everywhere I ¢ is defined and
constant on almost all #™¥-leaves. Since #™ is absolutely continuous
and I ¢ =1, ¢ almost everywhere, I, ¢ is essentially constant on almost
every #* leaf by (5.1). Similarly for #7%, proving ().

By density @ is the limit, almost everywhere of I, ¢ with ¢ continuous.
Therefore, on almost every #7™ leaf and #7 leaf, @ is the pointwise limit,
almost everywhere on the leaf, of essentially constant functions. Hence @
is essentially constant along #™, #™° and & : say @ is essentially constant
on all #™ leaves, #° leaves, and # -leaves, not essentially intersecting Z,
mes Z=0.

The foliations F|W;*, #™|W," are both (!) smooth. # is smooth
on M so it is certainly smooth on W;*; #™[W;* is smooth because W}’
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is smooth and all the other W), ge %, are gotten from W' as g Wy'=W"
for g in the identity component of G.

By absolute continuity of #™* and (5.1), almost every W,* meets Z
inessentially; by (5.1) on such a W,*, almost every %, W' in W;" meet
Z N W;* inessentially. Therefore, by (5.2) on W;*, & is essentially con-
stant on W;*. Thus @ is essentially constant along #".

By (5.2) on M and the absolute continuity of #* #7%, ¢ is essentially
constant on M.

6. A Pathological Foliation

Here we give an example to show that there are foliations by smooth
discs which are not measurable in the sense of Sinai [8]. It seems to us
that verification of a foliation’s measurability is generally no easier than
verification of its measurewise smoothness. A conversation with N. Kopell
was helpful in cooking up our example.

Let I=[0,1] and h: I x I — I be continuous with

(i) h,=h(t,-): I—1is a homeomorphism, 0=<t<1.

(ii) h,=identity for t<%, h,=h, for t=%.

(iii) h, is not absolutely continuous.

(iv) h,|U is a C* embedding for some open dense Uc /[, 0<t<1.

(v) dh,/dt 1s continuous.
It is easy to construct such an h—we do it at the end of this section.

Consider the foliation .# of I x I whose leaves are the graphs

Byy={thy):tel} yel.

By (v), the foliation has a continuous tangent bundle. Since dh,/dt is
smooth on the dense strips {(t, h, y): tel, ye U} there is no curve every-
where tangent to leaves but not contained in a leaf. Thus, we have a
foliation in the sense of Anosov [1, p.18].

Let u be the usual measure on R% Let dg, be the smooth induced
Riemann measure on the leaf f. Let dyu, be the quotient measure on the
space of leaves, #. If B is a collection of (whole) leaves, then fi,(B)=
©({J ). Suppose that # were measurable in the sense of Sinai. Then

p<=B

there would be a measurable function K: I x I — R such that

(1) K is positive almost everywhere on I x I.

(2) K is integrable on every leaf  not belonging to a set 2 of leaves
having u(Z)=0and, for ¢ Z, | Kdo,=1.
B

3) ;1(%1,[)’)‘11;f j Kday is an integrable function of fe# if f&2Z
Anp
and if 4 is measurable in I x I.
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4) p(AnB)= j,u(A, P)dug for any measurable set AclxI and

B
any measurable Bc 4.
Let N be the set where K is not defined or is not positive, u(N)=0.

By (@) with B=1Ix1
y &) wi * HN)= (N, B

and so, for a set of leaves Z| such that u(Z;)=0,

B¢ 2, = u(N, p)=0.

Let Z be a zero set of I such that h, Z has positive linear measure
and let B,= () B(y). Then u(B;)>0 because [3,1]xh(Z)=B,. Also

veZ

1(B;)>0 for Z'={yeZ: BNEZ v Z,}
By = g,ﬁ(J’):Bz_(g)Ugl)'

Now let A=[0,4]x I, B=B,..Then AnB=[0,1] x Z' so (A" B)=0.
Since each f< B, lies outside 2. K|f is almost everywhere positive
on B. In particular, K|Anf is almost everywhere positive, fc<B,..

That is
u(4,B)>0 forall fcB,.
Since pg(B;) >0, this proves that
[ 1A, B dpg>0
Bz

contradicting (4) for this 4 and B.

Now we construct the homotopy / used to find the foliation. Let U
be an open dense subset of I with measure  and let

u(x)= g [1 = (] ds

where y, is the characteristic function of U. This map u: I—[0,3]
collapses U onto a countable set C=[0, 4], u|(I — U) preserves measure,
and u~'(uwU)=U. Let g: [0,3] >[0,4] be a homeomorphism with
2(0)=0, g(})=4%, that is not absolutely continuous. Find an open set
Vel, pV=4% and a collapsing map v: I — [0,3] withv V=g C, v[(I-V)
measure preserving, and v~ (v V)= V. Then define h,: I —1I so that

Ny

oL

[0,4]—#-[0, 4]
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commutes and h, carries u~'(c) onto v~*(gc) diffeomorphically for all
ce C. Finally, put

h(=[1—-@O)]y+o(t) h(y)

for t,yel and @ a C* function R — [0, 1] with =0 for t<i, @=1

for t>%. Clearly h, is a homeomorphism for all tel and h, is smooth
in t. That is, (i)—(v) are verified.

Post Script. It seems likely that these method apply to metric
transitivity questions for Anosov Actions if such questions make any
sense.
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