Ergodicity of Anosov Actions

CHARLES P_{UGH} ^{*} (Berkeley) and MICHAEL SHUB^{**} (Waltham)

1. Introduction

In this paper we generalize some ergodicity results of Anosov and Sinai $[1, 2]$ to group actions more general than Z and R. At the same time we provide what we consider to be a more natural proof of the central theorem in [1] concerning the absolute continuity of certain foliations $-$ see (2.1).

Definition [5]. Let G be a Lie group acting differentiably on M, A: $G \rightarrow \text{Diff}(M)$ where M is a compact smooth manifold. We assume that the orbits of G define a differentiable foliation $\mathscr F$, which is the case for instance if the G action is locally free (every isotropy group is discrete), The action is called Anosov if there exists an Anosov element $-\text{an}$ element $g \in G$ such that $A(g) = f$ is hyperbolic at \mathcal{F} [5] and

(1) the G action is locally free, or

(2) G is connected and g is central in G.

We recall that $A(g) = f$ is hyperbolic at $\mathcal F$ means that $Tf: TM \to TM$ leaves invariant a splitting

$$
E^{\mathbf{u}}\bigoplus T\mathscr{F}\bigoplus E^{\mathbf{s}}=TM
$$

contracting E^s more sharply than $T\mathscr{F}$, expanding E^u more sharply than $T\mathscr{F}$. ($T\mathscr{F}$ is the bundle of planes tangent to the leaves of \mathscr{F} .)

For example, if $\{\varphi_t\}$ is an Anosov flow on M then $t \mapsto \varphi_t$ defines an R-action on \overline{M} and gives the foliation of \overline{M} by the trajectories. Any φ_t , $t \neq 0$ is an Anosov element. Similarly, if f is an Anosov diffeomorphism of M then $n \mapsto f^n$ defines a Z-action on M which is Anosov. The leaves of the orbit foliation are the points of M . Further examples are given in [3, 5].

In [5] it was proven that Anosov actions are structurally stable, generalizing another part of the work of Anosov on flows and diffeomorphisms.

Definition. The action $A: G \rightarrow \text{Diff}(M)$ is ergodic iff it is measure preserving and all invariant functions are constant. Precisely, we require

^{*} University of California at Berkeley, supported by NSF GP-14519 and the Sloan Foundation.

^{**} Brandeis University, partially supported by NSF GP-9606 and GP-23117.

I lnventiones math., Vol. 15

2 C. Pugh and M. Shub:

(1) For each $g \in G$, $A(g)$ is measure preserving (respecting some fixed Lebesgue measure on M).

(2) If f: $M \rightarrow R$ is integrable and, for all $g \in G$, $f \circ A(g) = f$ almost everywhere on M then f equals a constant, almost everywhere.

Our main theorem is:

(1.1) Theorem. *Suppose A:* $G \rightarrow \text{Diff}^2(M)$ *is a measure preserving Anosov action with an Anosov element in the centralizer of G. Then A is ergodic.*

In particular, if G is abelian and A a measure preserving C^2 Anosov *action then A is ergodic.*

Theorem (1.1) may be used in conjunction with [6] to give information about the ergodic elements of an Anosov action. We give one example:

(1.2) Theorem. *Suppose A:* $R^k \rightarrow \text{Diff}^2(M)$ *is a measure preserving Anosov action. Then for every g* \in *R^k off a countable family of hyperplanes* in R^k , $A(g)$ is an ergodic diffeomorphism. We recall that a hyperplane is a *translate of a hyperplane through zero.*

The idea of the proof is as follows. Let f be the Anosov element. Then f is hyperbolic at the orbit foliation and so, from [5], we deduce a stable manifold theory for f. By uniqueness and commutativity with f, the stable and unstable manifolds are A -invariant. We prove that any strong stable manifold foliation is absolutely continuous, and so is the center unstable foliation. Then we deduce ergodicity of A as Anosov and Sinai did, via Birkhoff's Theorem [2]. The center unstable case is harder than the strong stable, and it would be tempting to try avoiding it by using [8]. This would require measurability of the center unstable foliation in the sense of Sinai [8]. But measurability seems no easier to prove than absolute continuity, nor is it a consequence of being a foliation in the sense of Anosov $[1, p. 18]$. See 66 for an example of this.

2. Pre-Foliations

It is frequently useful and natural to deal with a localized version of a foliation-we call it a pre-foliation. It amounts to the continuous assignment of a disc through each point of a manifold.

Indeed, let M be a compact smooth Riemann manifold and let D^k be the k-disc. The set of all C', $r \ge 0$, embeddings $D^k \to M$ carrying 0 onto some $p \in M$ forms a metric space

$$
Embk(Dk, 0; M, p).
$$

The C^{r} distance between two embeddings is defined in the usual wayeither via the Riemann metric or a fixed embedding of M into a Euclidean space. It is easy to see that $Emb^r(D^k, M)$ is a C' fiber bundle over M, $\pi(h) = h(0)$ being the projection.

Definition. A pre-foliation of M by C' k-discs is a map $p \mapsto \mathcal{D}_p$ such that \mathcal{D}_n is a C' k-disc in M containing p and depending continuously on p in the following sense: M can be covered by charts, U , in which $p \mapsto \mathscr{D}_p$ is given by

$$
\mathscr{D}_p = \sigma(p)(D^k) \qquad p \in U
$$

and $\sigma: U \to \text{Emb}^r(D^k, U)$ is a continuous section. If, in addition, these sections σ can all be chosen so that the maps $(p, x) \mapsto \sigma(p)(x)$ are of class C^s , $1 \leq s \leq r$, then the pre-foliation is said to be of class C^s .

Example 1. If $\mathcal F$ is a C' k-foliation of M, $r \geq 1$, let

$$
\mathscr{F}_p(\delta) = \{ x \in \mathscr{F}_p : d_{\mathscr{F}}(x, p) \le \delta \}
$$

where $d_{\mathscr{F}}$ is the distance in the leaf measured respecting the Riemann structure in $T\mathscr{F}$ inherited from TM. Then, for small $\delta > 0$,

$$
p \mapsto \mathscr{F}_p(\delta)
$$

gives a C^r pre-foliation of M by C^r k-discs.

Example 2. Let N be a C^r sub-bundle of k-planes in TM. Then, for small δ > 0,

$$
p \mapsto \exp_p(N_p(\delta))
$$

gives a C^{*r*} pre-foliation of M by C^{∞} k-discs.

Example 3. Let W^u be the unstable manifold foliation of M for a C^r Anosov diffeomorphisms. For small δ >0

 $p \mapsto W_p^u(\delta)$ = the δ -local unstable manifold through p

gives a pre-foliation of M by C' k-discs. In general this pre-foliation is *not* of class C^1 [1, § 24].

On the same note, let us emphasize that for us, a "foliation of M by C^r k-leaves" need not be a C^r foliation. The leaves are C^r and they vary locally continuously in the C^r sense (this, for $r=1$, implies that the union of their tangent planes gives a continuous k-sub-bundle of *TM)* but their assembly is not necessarily C^r . Similarly for pre-foliations.

Now we shall explain the idea of Poincaré map along a pre-foliation. This is the usual "notion of translation in the transversal" for foliations. Let $\mathscr G$ be a pre-foliation of M by C' k-discs, $r \ge 1$, let $q \in \text{Int } \mathscr G_p$, $\mathscr G_p$ =the $\mathscr G$ **-disc through p, and let** D_p **,** D_q **be two smooth** $(m-k)$ **-discs embedded** transverse to \mathcal{G}_p at p, q. (See Fig. 1.)

$$
T_p D_p \oplus T_p \mathcal{G}_p = T_p M, \qquad T_q D_q \oplus T_q \mathcal{G}_p = T_q M.
$$

Fig. 1. The Poincaré map

Then there is defined a surjection $H_{p,q}: D_{p,q} \to R_{p,q}$ where $D_{p,q}$ is a neighborhood of p in D_p

$$
D_{p,q} \longrightarrow R_{p,q}
$$

\n
$$
D_p \qquad D_q
$$

\n
$$
H_{p,q}(p) = q \qquad H_{p,q}(y) \in \mathcal{G}_y \cap D_q.
$$

Since \mathscr{G}_y , depends continuously on $y \in D_p$ in the C' sense, $r \ge 1$, and \mathscr{G}_p transversally intersects D_q at q, there is uniquely defined a new point of transversal intersection, $H_{p,q}(y)$, depending continuously on y near p. The range of $H_{p,q}$, $R_{p,q}$, is not in general a neighborhood of q in D_q , nor is $H_{p,q}$ in general a local homeomorphism. On the other hand, $H_{p,q}$ is C^s when $\mathscr G$ is of class C^s and $H_{p,q}$ depends continuously on p, q, D_p , D_q in the C^s sense. Thus, if $\mathscr G$ is C¹ and q is near p then $H_{p,q}$ is a local diffeomorphism.

Next we explain the idea of absolutely continuous foliations. Recall that a bijection between measure spaces $h: U \rightarrow V$ is absolutely continuous if it is measurable and is a bijection between the zero sets of U and V .

Definition. A pre-foliation of M by C^r k-discs is absolutely continuous if each of its Poincaré maps $H_{p,q}: D_{p,q} \to R_{p,q}$ is absolutely continuous.

Definition. If, in addition, the Radon Nikodym derivative, J, is continuous and positive, $J: D_{p,q} \to R$,

$$
\mu_{D_q}(S) = \int\limits_{H_P, \, {}^1_q(S)} J \, d\mu_{D_p} \qquad S \subset R_{p,\,q}
$$

then the pre-foliation is said to be measurewise $C¹$.

The measures μ_{D_q} , μ_{D_p} are the smooth ones induced by the Riemann structure on *TM*. Joint continuity in p, q, D_p, D_q, y is required. Variation of D_p , D_q is done in Emb¹ (D^{m-k} , *M*). *J* is called the (generalized) Jacobian of H . Existence of such a J implies, of course, absolute continuity.

(2.1)Theorem. *Strong unstable and strong stable foliations are measurewise C¹. (In particular absolutely continuous.) Precisely: Suppose* *f is a C^s diffeomorphism of M, s* \geq 2, Tf leaves $E^u \oplus E^{ps} = TM$ invariant *and*

$$
\sup_{p\in M}||T_p^{ps}f||^j < \inf_{p\in M}m(T_p^uf) \qquad 0 \leq j \leq r \leq s, r \geq 1.
$$

Then there is a unique f-invariant foliation of M by C^r leaves tangent *to* E^u , the strong unstable foliation, W^u . It is measurewise C^1 . Similarly *for strong stable foliations.*

Remarks. m $(T_p^u f)$ is the co-norm (or minimum norm) of $T_p f$ $E_p^u = T_p^u f$; that is, $m(T_p^u f) = ||T_{fp}^u f^{-1}||^{-1}$. Our condition on *Tf* means that all vectors of E^u are expanded more sharply than any vectors in E^{ps} . The existence of a unique *f*-invariant foliation of M with C^r leaves tangent to E^u is proved in [5]. In general, there is no reason to believe E^{ps} can also be integrated. Notice that $||T^{ps}f||$ may be >1 which is why we write $ps-to$ indicate pseudo-stable. A more or less explicit formula for the Jacobian J is developed in the proof of (2.1) given in §3. The inequality in the hypothesis of (2.1) can be weakened to

$$
\inf_{p\in M} m(T_p^u f) \|T_p^{ps} f\|^{-j} > 1 \qquad 0 \le j \le r
$$

but the proof of (2.1) becomes technically harder. If $\sup ||T_n^{ps}f|| \leq 1$, notice that the hypothesis of (2.1) amounts to assuming T^*f is an expansion.

Finally, we wish to point out that our proofs differ substantially from Anosov's [1] only in that they avoid using continuous differential forms, dealing directly with the Poincaré maps instead. In the same way, they differ from those in [8] in that no emphasis is laid on measure theoretic generality.

3. Proof that W^u **Is Measurewise** C^1

Although E^u , E^{ps} need not be smooth (this would imply measurewise $C¹$ at once) they are Hölder.

(3.1) Lemma [c.f. 1]. E^u and E^{ps} are θ -Hölder continuous for some $\theta > 0$.

Proof. Let \tilde{E}^u , \tilde{E}^{ps} be smooth approximations to E^u , E^{ps} and let $\mathscr{D}_x = \{P \in L(\tilde{E}_x^{ps}, \tilde{E}_x^u): ||P|| \leq 1\}$. Then $\mathscr{D} = \bigcup \mathscr{D}_x$ is a smooth disc bundle over M and Tf^{-1} acts on $\mathscr D$ in the natural way

$$
F: P \to (C_x + K_x P) \circ (A_x + B_x P)^{-1}
$$

for

$$
T_x f^{-1} = \begin{pmatrix} A_x & B_x \\ C_x & K_x \end{pmatrix} \quad \text{respecting } \tilde{E}^{ps} \oplus \tilde{E}^u.
$$

6 C. Pugh and M. Shub:

F is a fiber contraction: it preserves fibers of \mathscr{D} , covers f^{-1} : $M \rightarrow M$, and the Lipschitz constant of FQ_{κ} is $\leq k < 1$. In fact k is approximately μ/λ when $\lambda = \inf m(T_x^u f)$, $\mu = \sup ||T_x^{ps} f||$, and E^u, E^{ps} are very near E^u, E^{ps} .

The bundle E^{ps} , represented as the graphs of linear maps $E^{ps} \rightarrow E^{\mu}$, is an F -invariant section of \mathscr{D} . But the Invariant Section Theorem [6.1 of 4] says that the unique *F*-invariant section of \mathscr{D} is θ -Hölder continuous if F is C^1 and $k\hat{L}(f)^{\theta} < 1$. Since f is at least C^2 , this proves that, for some $\theta > 0$, E^{ps} is θ -Hölder. Similarly for E^u .

Following Anosov we write \Rightarrow to denote uniform convergence.

(3.2) Lemma [1, p. 136]. *Suppose h:* $D^k \rightarrow R^k$ *is a topological embedding and* (g_n) is a sequence of C^1 embeddings $D^k \to R^k$ such that

$$
g_n \rightrightarrows h \qquad J(g_n) \rightrightarrows J
$$

where $J(g_n)$ is the Jacobian of g_n . Then h is absolutely continuous and has *Jacobian J.*

Proof [1, p. 136]. We must show

$$
\operatorname{mes}(hA) = \int_A J \, d\mu \qquad A \subset D^k, \quad \text{measurable}
$$

when $d\mu$ is Lebesgue measure on D^k . Since h is continuous, it suffices to prove this equality for $A=$ an arbitrary closed subdisc of D^k . Let $\varepsilon > 0$ be given and choose two other discs A', A'' such that A' is interior to A and A is interior to A'' . They can be chosen so near A that

$$
\int\limits_{A''-A} J\,d\mu < \varepsilon/2
$$

because *J* is continuous. Since g_n is a C¹ embedding, mes $(g_n S) = \int J(g_n) d\mu$ S for any measurable $S \subset D^k$, and since h is a topological embedding

$$
g_n A' \subset h A \subset g_n A''
$$

for large n . Thus

$$
\iint\limits_{A'} J(g_n) d\mu \leq \int\limits_A J(g_n) d\mu \leq \int\limits_{A''} J(g_n) d\mu
$$

$$
\parallel \qquad \qquad \parallel
$$

$$
mes(g_n A') \leq mes(h A) \leq mes(g_n A'')
$$

and so $\left| \text{mes}(hA) - \int_A J(g_n) d\mu \right| < \varepsilon$ for large *n*. Since $\int_A J(g_n) d\mu \rightarrow \int_A J d\mu$, we have shown $|\text{mes}(hA)-|J\,d\mu|\leq \varepsilon$ proving the lemma. A

To state precisely the next lemma, we speak of angles between subspaces of *TM.* The Riemann structure on *TM* lets us define

$$
\angle(A_p, B_p) = \max\{\angle(a, B_p): a \in A_p - 0\} \cup \{\angle(b, A_p): b \in B_p - 0\}
$$

where A_p , B_p are linear subspaces of $T_p M$. This amounts to the Hausdorff metric on the Grassmanian. The angle between two subbundles A, B is the supremum of $\angle (A_n, B_n)$.

(3.3) Lemma. *Suppose* $TM = N \oplus E^{ps} = E^u \oplus E^{ps}$ and N is smooth. *Let* $\mathscr{G}(\delta)$ be the smooth pre-foliation $p \mapsto \mathscr{G}_p(\delta) = \exp_p(N_p(\delta))$. Let β be given, $0 \le \beta < \pi/2$. For small $\delta > 0$, each Poincaré map $G_{p,q}: D_{p,q} \to R_{p,q}$ *along* $\mathcal{G}(\delta)$ *is a smooth immersion if* $\angle(TD_p,(E^q)^{\perp}) \leq \beta$ *and* $\angle(TD_q,(E^q)^{\perp}) \leq \beta$.

Proof. The condition on D_p , D_q is that they be uniformly transverse to E^u . Since $G_{p,q}$ is smooth and its derivative is a continuous function of p, q, it suffices to prove that $T_y G_{p,q}$ is a bijection $T_y D_y \rightarrow T_{y'} D_q$ for $y' = G_{p,q}(y)$. Since $G_{p,q} = G_{y,y'}$ near y, it suffices to verify bijectivity at $y = p$. Clearly when $y = p = q$, this is true. But since the derivative of $G_{p,q}$ depends continuously on *p, q, D_p, D_q and since M and* $\{A_p \subset T_p M\}$ *.* $\angle (A_n, (E^u)^{\perp}) \leq \beta$ are compact, bijectivity on the diagonal $p = q$ propagates to some δ -neighborhood of the diagonal.

Proof of (2.1). Let N be a smooth approximation to E^u . Choose β so that $0 < \beta < \pi/2$ and $\angle (E^{ps}, (E^{u})^{\perp}) < \beta$, $\angle (E^{ps}, N^{\perp}) < \beta$. Then choose δ > 0 according to (3.3). Let

$$
\mathscr{G} \colon \mathscr{G}_v = \exp_v(N_v(\delta)) \qquad y \in M
$$

be the resulting smooth pre-foliation. Let \mathcal{G}^n be the pre-foliation gotten from iteration by f^{n} $\qquad \qquad g^{n}$: $g_{n}^{n} = f^{n} g_{f^{n}}$

Let $\mathscr{G}^n(\varepsilon)$ be the restriction of \mathscr{G}^n to radius ε .

$$
\mathscr{G}^n(\varepsilon): \mathscr{G}_v^n(\varepsilon) = \{x \in \mathscr{G}_v^n \colon d_{\mathscr{G}^n}(x, y) \leq \varepsilon\}.
$$

By [5], $\mathscr{G}^n(\varepsilon) \rightrightarrows \mathscr{W}^u(\varepsilon)$ and $T\mathscr{G}^n(\varepsilon) \rightrightarrows E^u$. Thus f acts on pre-foliations in a natural way and \mathscr{W}^u is the attractive fixed point of this action.

Consider $q \in W_p^u$ and discs D_p , D_q transverse to E^u . We must study the Poincaré map $H_{p,q}: D_{p,q} \to R_{p,q}$ for the foliation \mathscr{W}^u . Because \mathscr{W}^u is a foliation-not just a pre-foliation $-H_{p,q}$ is a homeomorphism and $R_{p,q}$ is a neighborhood of q in D_q .

The relation between $H_{p,q}$ and $H_{f^{-n}p,f^{-n}q}$ is expressed by commutativity of

$$
f^{-n} D_{p,q} \xrightarrow{H_f - n_p, f^{-n} q} f^{-n} R_{p,q}
$$

$$
f^n \qquad f^n
$$

$$
D_{p,q} \xrightarrow{H_{p,q} q} R_{p,q}
$$

since \mathscr{W}^u is f-invariant. Since f is a diffeomorphism existence of a continuous positive Jacobian for $H_{p,q}$ is equivalent to the question for $H_{f^{-n}p, f^{-n}q}$. Furthermore, as $n \to \infty$, $T(f^{-n}D_p)$ and $T(f^{-n}D_q) \rightrightarrows E^{ps}$ [5]. Thus it is no loss of generality to assume

$$
q \in W_p^u(\varepsilon/2) \qquad \star (T(f^{-n} D_p), (E^u)^{\perp}) \leq \beta \qquad \star (T(f^{-n} D_q), (E^u)^{\perp}) \leq \beta \qquad (*)
$$

for all $n \ge 0$. Furthermore, we may shrink D_p so that $D_p = D_{p,q}$ and $R_{p,q}$ =range $H_{p,q}$ is interior to D_q , for existence of $J(H_{p,q})$ is a local question.

Since $\mathscr{G}^n(\varepsilon) \rightrightarrows \mathscr{W}^u(\varepsilon)$, the Poincaré map $G_{p,q}^n$ of D_p to D_q along $\mathscr{G}^n(\varepsilon)$ is defined in a unique single valued continuous manner on the domain D_n , $n=0, 1, 2, \ldots$. Thus it is clear that

$$
g_n \rightrightarrows h
$$

where $g_n = G_{p, Q_n}^* | D_p, Q_n = \mathcal{G}_p^n(\varepsilon) \cap D_q$, and $h = H_{p, q}$. We show that

 g_n is an embedding, (a)

$$
J(g_n) \Rightarrow J = \operatorname{unif} \lim_{n \to \infty} \frac{\det(f^{-n} | T_p D_p)}{\det(f^{-n} | T_{hy} D_q)}.
$$
 (b)

Then, by (3.2), *J* is the Jacobian of $h=H_{p,q}$. Since the limit in (b) is uniform, J is continuous, and by symmetry positive. Thus, proof of (a) , (b) demonstrates (2.1) .

The proof of (a) is topological and thanks are due to R. Palais. By (3.3), (*), the choice of δ , and the naturality of Poincaré maps, g_n is at least immersion wherever defined. Moreover, both g_n and h are defined on a slightly larger disc \hat{D}_p , say

$$
\hat{g}_n \colon \hat{D}_p \to D_q, \qquad \hat{h} \colon \hat{D}_p \to D_q
$$

and $\hat{g}_n \rightrightarrows \hat{h}$. Since \hat{g}_n , \hat{h} are locally injective, the theory of mapping degrees [7] is applicable. Let Y be a compact neighborhood of $R_{p,q} = h D_p$ interior to $h D_p$. For any $y \in Y$, degree $(h, D_p, y) = 1$ since h is a homeomorphism. For large *n*, $\hat{g}_n | \partial D_p$ is very near $h | \partial D_p$ and so

$$
\hat{g}_n | \partial \hat{D}_p \simeq \hat{h} | \partial \hat{D}_p
$$
 in $D_q - Y$.

Thus, for large *n*, degree $(\hat{g}_n, \hat{D}_p, y)=1$ for all $y \in Y$, and thus \hat{g}_n embeds \hat{g}_n^{-1} Y. The latter contains D_p , for large n, since $\hat{g}_n \rightrightarrows \hat{h}$ and \hat{h}^{-1} Y contains D_p in its interior. This proves (a).

To prove (b) we express g_n in terms of the Poincaré map along \mathscr{G}_n , acted on by f'' -this is the straightforward thing to do. Consider $g_n: D_p \to D_q$ as

$$
g_n = f^n \circ G_{p_n, q_n}^0 \circ f^{-n}
$$

where $p_n = f^{-n} p$, $q_n = f^{-n} Q_n$. (Recall that Q_n was the point $\mathcal{G}_p^n(\varepsilon) \cap D_q$.) Thus $q_n \in \mathscr{G}_{p_n}$ and so the Poincaré map along $\mathscr{G}, G_{p_n,q_n}^0$, is well defined on *f -" Dp.* Moreover $q_n \in \mathscr{G}_{n-1}(\varepsilon_n), \quad \varepsilon_n \to 0$

as $n \to \infty$. For \mathcal{G}_{p_n} is approximately tangent to E^u and is thus sharply expanded by f'' (see Fig. 2).

Fig. 2. The effect of f''

Using the Chain Rule,

$$
J_{y}(g_{n}) = \det(Tf^{n} | T_{f^{-n}g_{n},y}(f^{-n} D_{q})) \det(TG_{p_{n},q_{n}}^{0} | T_{f^{-n}y}(f^{-n} D_{p}))
$$

$$
\cdot \det(Tf^{-n} | T_{y} D_{p})
$$

for any $y \in D_p$. Since $T(f^{-n}D_p) \rightrightarrows E^{ps}$, $T(f^{-n}D_q) \to E^{ps}$, and $q_n \in \mathscr{G}_{p_n}(\varepsilon_n)$ with $\varepsilon_n \to 0$, the middle factor tends uniformly to 1. (b) is therefore equivalent to

$$
\operatorname{unif} \lim_{n \to \infty} \frac{\det(Tf^{-n} | T_p D_p)}{\det(Tf^{-n} | T_{g_n}, D_q)} = \operatorname{unif} \lim_{n \to \infty} \frac{\det(Tf^{-n} | T_p D_p)}{\det(Tf^{-n} | T_{h}, D_q)}.
$$
 (b')

Although (b') could be proved directly, we first establish the special case (as does Anosov in [1]) $y=p, T_p D_p=E_p^{ps}, T_q D_q=E_q^{ps}$. We prove

$$
\lim_{n \to \infty} \frac{\det(T_p^{ps} f^{-n})}{\det(T_q^{ps} f^{-n})}
$$
 exists uniformly. (c)

 $T^{ps}f^{-n}$ denotes $Tf^{-n}|E^{ps}$. By the Chain Rule (c) is equivalent to the uniform convergence of

$$
\prod_{k=0}^{\infty} \frac{\det(T_{f^{-k}p}^{ps} f^{-1})}{\det(T_{f^{-k}q}^{ps} f^{-1})}
$$

10 C. Pugh and M. Shub:

and this, in turn, is equivalent to the uniform convergence of

$$
\sum_{k=0}^{\infty}|\det(T_{f^{-k}p}^{ps}f^{-1})-\det(T_{f^{-k}q}^{ps}f^{-1})|.
$$

Since E^{ps} is θ -Hölder with $\theta > 0$ by (3.1), and f is C^2 , $T^{ps}f^{-1}$ is θ -Hölder and so

$$
|\det(T_f^{ps}P_{\varepsilon}) - \det(T_f^{ps}P_{\varepsilon})| \leq C d(f^{-k}P, f^{-k}q)^{\theta}
$$

for some constant *C*. Since $q \in W^u p$, $d(f^{-k} p, f^{-k} q) \leq \lambda^{-k} d(p,q)$ where $\lambda = \ln m(T_x^r j) > 1$. Thus $\lambda^{-\nu} < 1$ and our series converges uniformly by comparison with $C\sum (\lambda^{-\theta})^k d(p, q)$. This proves (c).

Now we show how (c) implies (b'). Let π^{ps} be the projection of *TM* onto E^{ps} along E^u . Thus π^{ps} kills E^u and leaves E^{ps} fixed. Since *Tf* leaves $E^u \oplus E^{ps}$ invariant, Tf^{-n} commutes with π^{ps} . Thus

$$
Tf^{-n}|T_{\mathbf{y}}D_{p} = (\pi^{ps}|T_{f^{-n}\mathbf{y}}(f^{-n}D_{p}))^{-1} \circ T^{ps}f^{-n} \circ (\pi^{ps}|T_{\mathbf{y}}D_{p})
$$

for $y \in D_p$. Taking determinants gives

$$
\det(Tf^{-n}|T_{y}D_{p})=\frac{\det(T_{y}^{ps}f^{-n})\det(\pi^{ps}|T_{y}D_{p})}{\det(\pi^{ps}|T_{f^{-n}y}f^{-n}D_{p})}.
$$

As $n \to \infty$, $T(f^{-n}D_p) \rightrightarrows E^{ps}$ and so the denominator in the preceding fraction tends uniformly to 1. The same holds when y is replaced by a point of *Dq.* Thus, we are reduced to proving

$$
\begin{split} \min_{n\to\infty} \lim_{m\to\infty} \frac{\det(T_{y}^{ps}f^{-n})\det(\pi^{ps}|T_{y}D_{p})}{\det(T_{y}^{ps}f^{-n})\det(\pi^{ps}|T_{y}D_{q})} \\ = \min_{n\to\infty} \lim_{m\to\infty} \frac{\det(T_{y}^{ps}f^{-n})\det(\pi^{ps}|T_{y}D_{p})}{\det(T_{hy}^{ps}f^{-n})\det(\pi^{ps}|T_{hy}D_{q})} . \end{split} \tag{b'}
$$

Since $g_n \rightrightarrows h$ and D_n is C^1 , (b'') is equivalent to

$$
\min_{n \to \infty} \lim \frac{\det(T_y^{ps} f^{-n})}{\det(T_{\text{gny}}^{ps} f^{-n})} = \min_{n \to \infty} \lim \frac{\det(T_y^{ps} f^{-n})}{\det(T_{\text{h}y}^{ps} f^{-n})}.
$$
 (b'')

By (c) - applied to *y*, *hy* instead of *p*, q - the second limit exists and is uniform. To prove that the first exists and equals the second it suffices to show that

$$
\min_{n \to \infty} \lim \frac{\det(T_{h_y}^{ps} f^{-n})}{\det(T_{g_ny}^{ps} f^{-n})} = 1.
$$
 (d)

(d) is equivalent to

$$
\min_{n \to \infty} \lim_{k=0}^{n-1} |\det(T_f^{ps_{k}}_{f+k} f^{-1}) - \det(T_f^{ps}_{f+k} f^{-1})| = 0
$$
 (d')

by the Chain Rule, as before. Again, this sum is \leq

$$
C\sum_{k=0}^{n-1}d(f^{-k}h y,f^{-k}g_n y)^{\theta}
$$

for some constant C, since E^{ps} is 0-Hölder. Let $\mu = \sup \|T^{ps}_x f\|$ and $\lambda = \inf m(T^u f)$. By hypothesis, $\mu < \lambda$ and $\lambda > 1$. Choose

 $\max(u, 1) < u < \lambda < \lambda$.

Since $f^{-n} h y \in W_{f^{-n}y}^u(\varepsilon_n)$, $f^{-n}(g_n y) \in \mathscr{G}_{f^{-n}y}(\varepsilon_n)$ and \mathscr{G} is approximately tangent to E^u ,

$$
\varepsilon_n \leq \lambda^{-n} \qquad \text{for large } n.
$$

Thus, $d(f^{-n}(hy), f^{-n}(g_ny)) \leq \varepsilon_n < \lambda^{-n}$ for large *n*. On the other hand, $d(f^{-k}(hy), f^{-k}(g_ny)) = d(f^{n-k}(f^{-n}hy), f^{n-k}(f^{-n}g_ny))$, and for large k, $f^{-k} D_q, \ldots, f^{-n} D_q$ are nearly tangent to E^{ps} , so that

$$
d(f^{-k}(h y), f^{-k}(g_n y)) \leq C' \mu^{n-k} \lambda^{-n}
$$

for some constant C'. Thus

$$
C\sum_{0}^{n-1} d(f^{-k}(h y), f^{-k}(g_n y))^{\theta} \leq C(C')^{\theta} \left[\sum_{0}^{n-1} (\mu^{\theta})^{n-k}\right] (\lambda^{-\theta})^n
$$

$$
= C''(\mu^{\theta} + \dots + \mu^{n\theta}) \lambda^{-n\theta} = C'' \mu^{\theta} \left(\frac{1 - \mu^{n\theta}}{1 - \mu^{\theta}}\right) \lambda^{-n\theta}
$$

which tends to zero as $n \rightarrow \infty$. This proves (d'), hence (d), (b'''), (b''), (b'), and (b) – completing the proof of (2.1) .

4. Measurewise Smoothness of Center Unstable Foliations

The main theorem of this section, (4.2), is an analogue of (2.1). Recall that a diffeomorphism f of M is normally hyperbolic at a foliation $\mathscr F$ of M iff Tf leaves invariant a splitting $TM = E^u \oplus E^c \oplus E^c$, expanding E^u more sharply than $E^c = T\mathcal{F}$, contracting E^s more sharply than E^c , and leaving $\mathscr F$ -invariant. The following theorem was proved in [5].

(4.1) Theorem. If $\mathcal F$ is C^1 and f is normally hyperbolic at $\mathcal F$ then *there are unique f-invariant foliations of M,* \mathcal{W}^{cu} *and* \mathcal{W}^{cs} *, tangent to* $E^{cu} = E^u \oplus E^c$ and $E^{cs} = E^c \oplus E^s$. Each of their leaves is a union of \mathscr{F} -leaves and $W_p^{\text{cu}} = \bigcup_{q \in \mathscr{F}_p} W_q^{\text{u}}, W_p^{\text{cs}} = \bigcup_{q \in \mathscr{F}_p} W_q^{\text{s}}.$

Here we shall prove

(4.2) Theorem. If f is normally hyperbolic at \mathscr{F}, \mathscr{F} is C^1 , and f is C^2 *then* W^{cu} , W^{cs} are measurewise C^1 .

Proof. We shall utilize a notion generalizing "pre-foliation by discs" to "pre-foliation by submanifolds'. However, we shall not make the precise general definition of this, but confine ourselves to the case

$$
\mathscr{H}:\mathscr{H}_p=\bigcup_{y\in\mathscr{F}_p}\exp_y(N_y(\delta))
$$

where N is a smooth subbundle of TM approximating E^{μ} . In §3, we called

$$
\mathscr{G} \colon \mathscr{G}_y = \exp_y(N_y(\delta))
$$

the pre-foliation by u -discs. Now we are considering the union of all these *u*-discs as *y* ranges over the leaf \mathcal{F}_p . This gives the immersed manifold \mathcal{H}_p , nearly tangent to E^{cu} . Then let

$$
\mathscr{H}^n \colon \mathscr{H}_p^n = \bigcup_{y \in \mathscr{F}} \mathscr{G}_y^n(\delta)
$$

We know that $\mathcal{H}^n \rightrightarrows \mathcal{W}^{cu}$ and $T\mathcal{H}^n \rightrightarrows E^{cu}$ by [5].

Let D_p , D_q be s-discs transversal to E^{cu} through p, q with $q \in W_p^{cu}$. We must investigate the Poincaré map $H_{p,q}$ along \mathscr{W}^{cu} . As in §3, we may assume

$$
q \in W_{p'}^u(\varepsilon/2)
$$
, $p' \in \mathscr{F}_p(\varepsilon/2)$, $D_p = \text{domain } H_{p,q}$, $\text{diam}(D_p) < \varepsilon/2$

without loss of generality. Consider the Poincaré maps $H_n = H_{n,q}^n$ along the \mathcal{H}^n leaves through D_p . As in § 3, we must prove that

$$
H_n \text{ is an embedding}, \quad H_n \rightrightarrows H = H_{p,q}, \tag{A}
$$

$$
J(H_n) \rightrightarrows J > 0. \tag{B}
$$

The proof of (A) is the same as (a) in §3 because $\mathcal{H}^n \rightrightarrows \mathcal{W}^{cu}$ and $H_{p,q}$ is a homeomorphism.

Call $D = \bigcup \mathcal{F}_v(\varepsilon)$. This D is a smooth disc transverse to E^u . It is *y~Dp* smoothly fibered by the leaves of \mathscr{F} . For each $y \in D_p$, $\mathscr{F}_y \subset \mathscr{H}_y^n$ for all $n \ge 0$. Thus, the Poincaré map along the leaves of \mathcal{H}_r^n , $y \in D_p$, would be *smooth* if the image disc, *Dq* lay in **D.**

For each $y \in D_p$, let y_n be the unique point of $\mathcal{F}_v(\varepsilon)$ such that

$$
H_n y \in \mathscr{G}_{v_n}^n(\varepsilon)
$$

and let y_* be the unique point of $\mathcal{F}_y(\varepsilon)$ such that

$$
H y \in W^u_{v_*}(\varepsilon).
$$

Clearly $y_n \rightrightarrows y_*$ and p_* is the point we called p'.

Choose smooth discs $\Sigma(y_n)$, $\Sigma(y_*)$ at y_n , y_* in *D*, transverse to *E^c*. We may assume them chosen so that

$$
\Sigma(y_n) \rightrightarrows \Sigma(y_*) , \qquad T\Sigma(y_n) \rightrightarrows T\Sigma(y_*) .
$$

Then we may factor H_n as $h_n \circ F_{v, y_n}$ where F_{v, y_n} : $D_p \to \Sigma(y_n)$ is the Poincaré map along $\mathcal F$ in D and $h_n: \Sigma(y_n) \to D_q$ is the Poincaré map along the leaves of \mathcal{H}^n through D_p (see Fig. 3). Note that this factorization depends on y.

Fig. 3. Factorizing the Poincaré map H_n

Since $\Sigma(y_n) \rightrightarrows \Sigma(y_*)$ and $T\Sigma(y_n) \rightrightarrows T\Sigma(y_*)$ and $\mathscr F$ is C^1 ,

$$
\det(T_v F_{v, v_n}) \rightrightarrows \det(T_v F_{v, v_n}) > 0.
$$

Thus (B) will follows from

$$
\min_{n \to \infty} \lim J_{y_n}(h_n) = \prod_{k=0}^{\infty} \frac{\det(Tf^{-1} | T_{f^{-k}y_k} f^{-k} \Sigma(y_k))}{\det(Tf^{-1} | T_{f^{-k}Hy} f^{-k} D_q)}
$$
(B')

when $H = H_{p,q}$.

As in §3, let $\mu = \sup \| T^{cs} f \|$, $\lambda = \inf m(T^*f)$, and choose max(1, μ) < $\mu < \lambda < \lambda$. Then, as in §3,

$$
f^{-k} H_n y \in \mathcal{G}_{f^{-k}y_n}^{n-k}(\varepsilon \lambda^{-k})
$$

$$
f^{-k} H y \in W_{f^{-k}H y}^{u}(\varepsilon \lambda^{-k})
$$

for $0 \le k \le n$ and large *n*, because \mathcal{G}^{n-k} is nearly tangent to E^u and is thus expanded by λ^k under f^k . We also claim that

$$
d(f^{-k} y_n, f^{-k} y_*) \leq \lambda^{-k} \varepsilon
$$

$$
d(f^{-k} H_n y, f^{-k} H y) \leq \lambda^{-k} \varepsilon
$$
 (*)

for $0 \le k \le n$ and *n* large. The proof is by induction on *k*. Since y_* , H_y , $H_n y$, y_n form a twisted trapezoid of small ($\leq \varepsilon$) diameter whose nearly

parallel opposite edges in $W_{v_{\nu}}^u$, $\mathcal{G}_{v_n}^n$ have length $\leq \varepsilon$, the other edges -- being in $\mathscr F$ and D_q must also have length $\leq \varepsilon$ (see Fig. 4). This proves (*) for $k = 0$.

Suppose (*) is valid for $k-1 < n$. Let $\gamma = \sup ||T^c f^{-1}||$. Then

 $d(f^{-k} y_* , f^{-k} y_n) \leq \gamma d(f^{-k+1} y_* , f^{-k+1} y_n) \leq \gamma \varepsilon \lambda^{-k+1}$

by the induction assumption. Thus, $f^{-k}y_*$, $f^{-k}Hy$, $f^{-k}H_ny$, $f^{-k}y_n$ forms a twisted trapezoid of small $(\leq \gamma \varepsilon)$ diameter whose nearly parallel opposite edges in $\mathscr{G}_{f^{-k}v}^{n-k}$, $\mathscr{G}_{f^{-k}v_n}^{n-k}$ have length $\leq \varepsilon \lambda^{-k}$. Its other edges, being in $\mathscr F$ and $f^{-k}D_q$, must have length $\leq \varepsilon \lambda^{-k}$; for $\mathscr F$, $f^{-k}D_q$ and \mathscr{G}^{n-k} are essentially perpendicular to each other. This proves $(*)$ for k. (See Fig. 5.) Note that we used $k \leq n$ to assure \mathscr{G}^{n-k} is defined and more or less tangent to E^u .

Now we shall prove (B'). By the Chain Rule

$$
J_{y_n}(h_n) = \frac{\det(T_{f^{-n}y_n} H_{f^{-n}y_n, f^{-n}H_n y}^0) \det(Tf^{-n} | T_{y_n} \Sigma(y_n))}{\det(Tf^{-n} | T_{H_n y} D_q)}
$$

where $H^0_{f^{-n}v_n,f^{-n}H_nv}: f^{-n}\Sigma(y_n) \to f^{-n}D_q$ is the Poincaré map along the leaves of \mathcal{H}^0 through $f^{-n}D_p$. Since $d(f^{-n}y_n, f^{-n}H_n y) \rightrightarrows 0$ and $T\Sigma(y_n) \rightrightarrows T\Sigma(y_*)$, the first term of the numerator tends uniformly to 1.

Thus (B') is equivalent to

$$
\underset{n\to\infty}{\text{unif}} \lim_{n\to\infty} \frac{\det\left(Tf^{-n}|T_{y_n}\Sigma(y_n)\right)}{\det\left(Tf^{-n}|T_{H_{n}y}D_q\right)} = \underset{n\to\infty}{\text{unif}} \lim_{n\to\infty} \frac{\det\left(Tf^{-n}|T_{y_n}\Sigma(y_n)\right)}{\det\left(Tf^{-n}|T_{H_y}D_q\right)}.
$$
 (B")

As in $§$ 3, we can easily demonstrate

$$
\prod_{k=0}^{\infty} \frac{\det(T_{f^{-k}y_k}^s f^{-1})}{\det(T_{f^{-k}Hy}^s f^{-1})}
$$
 (C)

converges uniformly. For $T^s f^{-1}$ is θ -Hölder, $\theta > 0$, and

$$
d(f^{-k}y_*, f^{-k}Hy) \leq \lambda^{-k}.
$$

From (C), it follows that the right hand side of (B'') exists. E^s is an exponential attractor, under Tf^{-1} , for any plane in $\overline{T}M$ complementary to E^{cu} . In fact

$$
\times (Tf^{-k} \Sigma(y_*, E^s) \leq (\mu/\lambda)^k
$$

\n
$$
\times (Tf^{-k} \Sigma(y_n), E^s) \leq (\mu/\lambda)^k
$$

\n
$$
\times (Tf^{-k} D_a, E^s) \leq (\mu/\lambda)^k
$$
 (**)

for $k \leq n$ and k large, since $T\Sigma(y_n) \rightrightarrows T\Sigma(y_*)$ and $T\Sigma(y_*)$ is complementary to E^{cu} . Since $det(Tf^{-1}|P)$ is a smooth function of the plane P

$$
\left| \det(Tf^{-1}|T_{f^{-k}y_*}f^{-k}\Sigma(y_*)) - \det(T_{f^{-k}y_*}^s f^{-1}) \right| \leq C(\mu/\lambda)^k
$$

$$
\left| \det(Tf^{-1}|T_{f^{-k}Hy_*}f^{-k}D_q) - \det(T_{f^{-k}Hy_*}^s f^{-1}) \right| \leq C(\mu/\lambda)^k
$$
(***)

for some constant C. By the Chain Rule, the r.h.s. of (B'') converges uniformly iff

$$
\prod_{k=0}^{\infty} \frac{\det(Tf^{-1} | T_{f^{-k}y_*} f^{-k} \Sigma(y_*))}{\det(Tf^{-1} | T_{f^{-k}Hy} f^{-k} D_q)}
$$

does. Convergence of this infinite product follows from comparison with (C) via $(***)$. Similarly, convergence of the l.h.s. of (B'') to the same limit is assured if

$$
0 = \min_{n \to \infty} \lim_{k=0} \sum_{k=0}^{n-1} \left| \det(Tf^{-1} | T_{f^{-k}y_n} f^{-k} \Sigma(y_n)) - \det(Tf^{-1} | T_{f^{-k}y_*} f^{-k} \Sigma(y_*)) \right| \qquad (D: y_n)
$$

$$
0 = \min_{n \to \infty} \lim_{k=0} \sum_{k=0}^{n-1} |\det(Tf^{-1} | T_{f^{-k}H_n y} f^{-k} D_q)|
$$

-
$$
\det(Tf^{-1} | T_{f^{-k}H y} f^{-k} D_q)|.
$$
 (D: H_n y)

Express the k-th term in $(D: y_n)$ as

$$
\begin{aligned}\n\left[\det \left(Tf^{-1} | T_{f^{-k}y_n} f^{-k} \Sigma(y_n) \right) - \det \left(Tf^{-1} | T_{f^{-k}y_*} f^{-k} \Sigma(y_*) \right) \right] \\
&\leq \left[\det \left(Tf^{-1} | T_{f^{-k}y_n} f^{-k} \Sigma(y_n) \right) - \det \left(T_{f^{-k}y_n}^s f^{-1} \right) \right] \\
&\quad + \left[\det \left(T_{f^{-k}y_n}^s f^{-1} \right) - \det \left(T_{f^{-k}y_*}^s f^{-1} \right) \right] \\
&\quad + \left[\det \left(T_{f^{-k}y_*}^s f^{-1} \right) - \det \left(Tf^{-1} | T_{f^{-k}y_*} f^{-k} \Sigma(y_*) \right) \right] \\
&= I + II + III.\n\end{aligned}
$$

By Hölder continuity of $T^s f^{-1}$,

$$
\begin{aligned} \n\Pi &\leq C' \, d(f^{-k} \, y_n, f^{-k} \, y_* \big)^\theta = C' \, d(f^{n-k} f^{-n} \, y_n, f^{n-k} f^{-n} \, y_* \big)^\theta \\ \n&\leq C' \, \mu^{(n-k)\theta} \, d(f^{-n} \, y_n, f^{-n} \, y_* \big)^\theta \leq C' \, \big[\mu^{n-k} \, \lambda^{-n} \, \varepsilon \big]^\theta \n\end{aligned}
$$

for some constant C'. Thus, the sum in $(D: y_n)$, is

$$
\sum_{k=0}^{n-1} \leq \sum_{k=0}^{K} + \sum_{k=K+1}^{n-1} (I + II + III)
$$
\n
$$
\leq \sum_{k=0}^{K} + 2C \sum_{k=K+1}^{\infty} (\lambda^{-1} \mu)^{k} + C' \lambda^{-n} \sum_{k=0}^{n-1} \mu^{(n-k)\theta}
$$

for any *K*, $0 \le K \le n-1$. We used (***) to estimate I, III. This gives a bound for the $\limsup_{n\to\infty}\sum_{k=0}^{\infty}$ in (D: y_n), which can be made arbitrarily small by taking K large, fixing K, and then letting n tend to ∞ . Thus (D: y_n) is proved. The proof of $(D: H_n y)$ is the same. This completes the proof of (D), (B'') , (B') , (B) and hence of (4.2).

5. Ergodicity

We now proceed to prove (1.1) -ergodicity of an Anosov action $A: G \to \text{Diff}^2(M)$ with Anosov element f in the centralizer of the Lie group G.

The foliation $\mathcal F$ of M by the components of the A-orbits is C^2 . (In fact, we only need $\mathcal{F} \in C^1$; it is f which must be C^2 .) We shall adopt the usual, confusing notation that $g \in G$ is also considered as the diffeomorphism $A(g)$. This is all right if A is the only action considered.

Let

$$
\gamma = \sup \|T^s f\| \qquad \eta = \inf m(T^c f) \qquad \mu = \sup \|T^c f\| \qquad \lambda = \inf m(T^u f)
$$

and choose

 $\gamma < \gamma < \eta < \min(1, \eta)$ max(1, μ) < $\mu < \lambda < \lambda$.

Since f is normally hyperbolic at \mathcal{F} , we get the f-invariant foliations \mathscr{W}^u . \mathscr{W}^s . They are also G-invariant because of their exponential characterization [5]

$$
W_p^u = \{x \in M : d(f^{-n}x, f^{-n}p) \lambda^n \to 0 \text{ as } n \to \infty\}
$$

$$
W_p^s = \{x \in M : d(f^n x, f^n p) \gamma^{-n} \to 0 \text{ as } n \to \infty\}.
$$

For $g \in G$ commutes with f and so

 $d(f^{-n} g x, f^{-n} g p) \lambda^n = d(g f^{-n} x, g f^{-n} p) \lambda^n \leq L(g) d(f^{-n} x, f^{-n} p) \lambda^n \to 0$ iff $x \in W_n^u$. (As usual, $L(g)$ is the Lipschitz constant of g.) Thus, $g W_p^u = W_{g,p}^u$. Similarly, $g W_p^s = W_{\nu p}^s$.

Since the *f*-invariant foliations W^{cu} , W^{cs} are defined by

$$
W_p^{cu} = \bigcup_{q \in \mathscr{F}_p} W_q^u \qquad W_p^{cs} = \bigcup_{q \in \mathscr{F}_p} W_q^s
$$

it is clear that $g W_p^{cu} = W_{gp}^{cu}, g W_p^{cs} = W_{gp}^{cs}.$

By (2.1), (4.2) the foliations \mathscr{W}^u , \mathscr{W}^s , \mathscr{W}^{cu} , \mathscr{W}^{cs} are absolutely continuous, in fact measurewise $C¹$. This will let us use the following Fubini-type lemmas,

(5.1) Lemma. Let $\mathcal F$ be an absolutely continuous foliation of M, A set $Z \subseteq M$ has measure zero iff almost all leaves of $\mathscr F$ meet Z inessentially. *If the essential maximum of a function* $\Phi: M \rightarrow R$ *on almost every* \mathcal{F} *-leaf is* \leq *c* then the essential maximum of Φ is \leq *c*.

(5.2) Lemma. *If* \mathcal{F}^1 , \mathcal{F}^2 *are absolutely continuous, complementary foliations of M and* Φ *:* $M \rightarrow R$ *is a function that is essentially constant on almost every leaf of* \mathcal{F}^1 and \mathcal{F}^2 then Φ is essentially constant.

Remarks. By "almost all $\mathscr F$ -leaves" we mean all $\mathscr F$ leaves not lying in a set composed of whole \mathscr{F} -leaves and having measure zero. An intersection is essential if it has positive or infinite measure, inessential if it has zero leaf-measure. The essential maximum of a function Φ : $M \rightarrow R$ is inf{sup Φ |($M-Z$): mes $Z=0$ }, and the essential minimum is sup {inf Φ [(m-Z): mes Z=0}. Since a countable number of zero sets forms a zero set, inf $\}$ and sup $\}$ can be replaced by min $\}$ and max $\}$.

Proof of (5.1). For completeness, we reproduce part of [1, pp. 156–157]. It is obviously no loss of generality to restrict our attention to a neighborhood U of $p \in M$, where the components of the leaves of $\mathscr F$ are discs, \mathcal{F}_{a}^{U} , and where there is a smooth foliation \mathcal{G} by discs complementary to $\mathscr F$. Thus, there is a local product structure

$$
\pi\colon D^k\times D^{m-k}\to U
$$

sending horizontal discs to $\mathscr F$ -leaves, vertical discs to $\mathscr G$ -leaves, and being smooth on $D^k \times 0$, $0 \times D^{m-k}$. The measure on the \mathscr{F} -leaves and $\mathscr G$ -leaves is the Riemann measure induced by the Riemann structure on *TM*. The measures on D^k , D^{m-k} are the pull-backs via

$$
D^k \leftrightarrow D^k \times 0 \xrightarrow{\pi} \mathcal{F}_p^U \qquad D^{m-k} \leftrightarrow 0 \times D^{m-k} \xrightarrow{\pi} \mathcal{G}_p
$$

2 Inventiones math., Vol. 15

and the measure on $D^k \times D^{m-k}$ is the product measure. Thus,

$$
\pi^{-1}|\mathscr{F}_p^U \colon \mathscr{F}_p^U \to D^I
$$

is absolutely continuous, in fact measure preserving.

Let \overline{Z} be the set of \mathscr{F}^{ν} -leaves intersecting Z essentially. We must show mes $Z = 0$ iff mes $\overline{Z} = 0$.

mes $Z=0$ [smoothness of \mathscr{G}] $mes(\mathscr{G}_x \cap Z)=0$ for a.e. $x \in \mathscr{F}_p^{\circ}$ $[x \times D^{m-k} \longrightarrow \mathscr{G}_x$ is absolutely continuous because $\mathscr F$ is absolutely continuous] $mes(x \times D^{m-k} \cap \pi^{-1}Z)=0$ for a.e. $x \in D^k$ [Fubini Theorem for a product] $\text{mes}(\pi^{-1} Z) = 0$ $\[\]$ [Same] $mes(D^k \times \gamma \cap \pi^{-1}Z)=0$ for a.e. $\gamma \in D^{m-k}$ $[D^k \times y \xrightarrow{\pi} \mathscr{F}_y^U$ is absolutely continuous, in fact smooth, because $\mathscr G$ is smooth] $mes(\mathcal{F}_y^U \cap Z) = 0$ for a.e. $y \in \mathcal{G}_p$ [absolute continuity of \mathscr{F}] $mes({\mathscr{F}}_v^U \cap Z)=0$ for a.e. $y \in {\mathscr{G}}_x$ ($\forall x \in {\mathscr{F}}_v^U$) $\left[\text{mes} (\mathcal{F}_v^U \cap Z) = 0 \Leftrightarrow \text{mes} (\mathcal{F}_v^U \cap Z) = 0 \right]$ $mes(\mathscr{F}_v \cap Z)=0$ for a.e. $y \in \mathscr{G}_x$ ($\forall x \in \mathscr{F}_p^{\vee}$) \parallel [obvious] $mes(\overline{Z} \cap \mathscr{G}_x)=0$ for all $x \in \mathscr{F}_p^U$ $[\overline{Z}]$ is composed of whole \mathscr{F}^{ν} -leaves] $[$ $\mathscr G$ is smooth] $mes(\overrightarrow{Z})=0 \Longrightarrow mes(\overrightarrow{Z}\cap\mathscr{G}_x)=0$ for a.e. $x\in\mathscr{F}_n^U$ $\lceil \mathcal{G} \rceil$ is smooth]

Thus, mes $Z = 0$ iff mes $\overline{Z} = 0$, proving the first half of (5.1).

Now suppose $\Phi: M \rightarrow R$ has essential maximum $\leq c$ on almost all \mathscr{F} -leaves-that is, for each \mathscr{F} -leaf \mathscr{F}_p , there is a set $Z_p \subset \mathscr{F}_p$ such that $\sup \Phi | (\mathscr{F}_p - Z_p) \leqq c$, and for all \mathscr{F}_p not lying in a zero set of \mathscr{F} -leaves, \mathscr{Z} , mes Z_p =0. Then $Z = \mathscr{Z} \cup \bigcup Z_p$ is a zero set by the first half of (5.1), and sup $\Phi|(M - Z) \leq c$, completing the proof of (5.1).

Proof of (5.2). For any $c \in R$, let $M^c = \Phi^{-1}((-\infty, c])$ and let \overline{M}^c be the set of \mathscr{F}^1 -leaves essentially contained in M^c. Then $Z = M^c \Lambda \overline{M^c} =$ $(M^c - \overline{M}^c) \cup (\overline{M}^c - M^c)$ has measure zero. Almost every \mathscr{F}^2 leaf meets Z inessentially by (5.1). Therefore, almost every \mathscr{F}^2 -leaf meets M^c essentially iff it meets \overline{M}^c essentially.

Let $\epsilon > 0$ be small enough so that 2ϵ -local product structure for \mathscr{F}^1 , \mathscr{F}^2 holds for all $p \in M$:

$$
x_1 \in \mathscr{F}_p^1(\varepsilon) \qquad x_2 \in \mathscr{F}_p^2(\varepsilon) \Rightarrow \mathscr{F}_{x_2}^1(2\varepsilon) \cap \mathscr{F}_{x_1}^2(2\varepsilon) \qquad \text{is a unique point.}
$$

Let $M_p(\varepsilon)$ be this product neighborhood of p in M. For small $\varepsilon > 0$, we also have

$$
\mathscr{F}^1_{x_2}(\varepsilon/2), \qquad \mathscr{F}^2_{x_1}(\varepsilon/2) \subset M_p(\varepsilon)
$$

for all $x_1 \in \mathcal{F}_p^1(\varepsilon), x_2 \in \mathcal{F}_p^2(\varepsilon)$ (see Fig. 6).

Fig. 6. Local product structure

Let p be a point of M and suppose $\mathcal{F}_{p}^2(\varepsilon)$ meets M^c essentially. By absolute continuity of \mathscr{F}^1 , every other $\mathscr{F}^2(\mathfrak{2}\varepsilon)$ meets M^c essentially for $q \in \mathcal{F}_p^1(\varepsilon)$. Thus, most \mathcal{F}_p^2 meet M^c essentially for $q \in \mathcal{F}_p^1(\varepsilon)$, and on most \mathscr{F}_{p}^2 , Φ is essentially constant. Therefore, the essential maximum of on most \mathscr{F}_p^2 , $q \in \mathscr{F}_p^1(c)$, is $\leq c$. By (5.1), the essential maximum of Φ on $M_n(\varepsilon)$ is also $\leq c$.

On the other hand, suppose $\mathscr{F}_n^2(\varepsilon)$ meets M^c inessentially. By the absolute continuity of \mathscr{F}^1 , every other $\mathscr{F}^2(\varepsilon/2)$ meets M^c inessentially for $q \in \mathcal{F}_n^1(\varepsilon)$. Thus, most $\mathcal{F}_n^2(\varepsilon/2)$ meet M^c inessentially for $q \in \mathcal{F}_n^1(\varepsilon)$ and 2*

on most \mathcal{F}_a^2 , Φ is essentially constant. Therefore, the essential minimum of Φ on most \mathcal{F}_a^2 , $q \in \mathcal{F}_b^1(\varepsilon)$ is > c. By (5.1), the essential minimum of Φ on $M_p(\varepsilon)$ is also $>c$.

Consequently, for every $c \in R$,

ess max(
$$
\Phi
$$
| $M_p(\varepsilon)$) $\leq c$ or ess min(Φ | $M_p(\varepsilon)$)> c .

Hence Φ is essentially constant on $M_p(\varepsilon)$, and so is essentially constant on each component of M.

Suppose $\Phi: M \rightarrow R$ is an A-invariant integrable function. Ergodicity of A means Φ must be constant almost everywhere. Let $Inv(g)=all$ integrable g-invariant functions $M \rightarrow R$ for $g \in G$. We are trying to show \bigcap Inv(g) is the set of constant functions. $g \in G$

According to [2, p. 144], we may define a projection $I_{\sigma}: L^1(M) \to Inv(g)$ by 1^{n}

$$
I_g \varphi(x) = \lim_{n \to \infty} \frac{1}{2n+1} \sum_{k=-n}^{n} \varphi(g^k x) \qquad g \in G.
$$

That is, the limit exists almost everywhere, is integrable, and $\varphi \mapsto I_{\varrho} \varphi$ is a continuous linear map onto the fixed points of I_{ϵ} , Inv(g). Moreover, the limits

$$
I_g^{\pm} \varphi(x) = \lim_{n \to \pm \infty} \frac{1}{|n|+1} \sum_{k=0}^{n} \varphi(g^k x) \qquad g \in G
$$

exist almost everywhere and $I_g^{\pm} \varphi(x) = I_g \varphi(x)$ for almost all x. That is, $I_{\sigma}^{+} = I_{\sigma}^{-} = I_{\sigma}$ as maps $L^{1}(M) \rightarrow \text{Inv}(g)$.

Since the continuous functions are dense in $L^1(M)$, their I_e -images are dense in $Inv(g)$. Therefore, it is useful to prove

If φ *is continuous then I_f* φ *is essentially constant along* \mathcal{W}^u *and* \mathcal{W}^s *.* (*)

For any $x, y \in W_p^u$ and any continuous $\varphi: M \to R$ it is clear that either both $I_f^- \varphi(x)$, $I_f^- \varphi(y)$ are defined, or neither, and if defined they are equal. Since $I_f^{\perp} \varphi$ is defined almost everywhere $I_f^{\perp} \varphi$ is defined and constant on almost all \mathscr{W}^u -leaves. Since \mathscr{W}^u is absolutely continuous and $I_f^- \varphi = I_f \varphi$ almost everywhere, $I_f \varphi$ is essentially constant on almost every \mathscr{W}^u leaf by (5.1). Similarly for \mathscr{W}^s , proving (*).

By density Φ is the limit, almost everywhere of $I_f \varphi$ with φ continuous. Therefore, on almost every \mathscr{W}^u leaf and \mathscr{W}^s leaf, Φ is the pointwise limit, almost everywhere on the leaf, of essentially constant functions. Hence Φ is essentially constant along \mathscr{W}^u , \mathscr{W}^s and \mathscr{F} : say Φ is essentially constant on all \mathscr{W}^u leaves, \mathscr{W}^s leaves, and \mathscr{F} -leaves, not essentially intersecting Z, mes $Z=0$.

The foliations $\mathscr{F}|W_p^{cu}, \mathscr{W}^u|W_p^{cu}$ are both (!) smooth. \mathscr{F} is smooth on M so it is certainly smooth on W_p^{cu} ; $\mathscr{W}^u | W_p^{cu}$ is smooth because W_p^u is smooth and all the other $W_q^u, q \in \mathcal{F}_p$, are gotten from W_p^u as $g W_p^u = W_q^u$ for g in the identity component of G.

By absolute continuity of \mathscr{W}^{cu} and (5.1), almost every W^{cu}_p meets Z inessentially; by (5.1) on such a W_p^{cu} , almost every \mathscr{F}_v , W_q^u in W_p^{cu} meet $Z \cap W_p^{cu}$ inessentially. Therefore, by (5.2) on W_p^{cu} , Φ is essentially constant on W_p^{cu} . Thus Φ is essentially constant along \mathscr{W}^{cu} .

By (5.2) on M and the absolute continuity of \mathcal{W}^{cu} , \mathcal{W}^{s} , Φ is essentially constant on M.

6. A Pathological Foliation

Here we give an example to show that there are foliations by smooth discs which are not measurable in the sense of Sinai [8]. It seems to us that verification of a foliation's measurability is generally no easier than verification of its measurewise smoothness. A conversation with N. Kopell was helpful in cooking up our example.

Let $I = [0, 1]$ and $h: I \times I \rightarrow I$ be continuous with

(i) $h_t = h(t, \cdot): I \rightarrow I$ is a homeomorphism, $0 \le t \le 1$.

(ii) $h_t =$ identity for $t \leq \frac{1}{3}$, $h_t = h_1$ for $t \geq \frac{2}{3}$.

(iii) h_1 is not absolutely continuous.

(iv) $h_t | U$ is a C^{∞} embedding for some open dense $U \subset I$, $0 \le t \le 1$.

(v) dh/dt is continuous.

It is easy to construct such an h – we do it at the end of this section.

Consider the foliation \mathscr{F} of $I \times I$ whose leaves are the graphs

$$
\beta(y) = \{t, h, y\} : t \in I\} \quad y \in I.
$$

By (v), the foliation has a continuous tangent bundle. Since *dh,/dt* is smooth on the dense strips $\{(t, h, y): t \in I, y \in U\}$ there is no curve everywhere tangent to leaves but not contained in a leaf. Thus, we have a foliation in the sense of Anosov $\lceil 1, p. 18 \rceil$.

Let μ be the usual measure on R^2 . Let $d\sigma_\beta$ be the smooth induced Riemann measure on the leaf β . Let $d\mu_{\beta}$ be the quotient measure on the space of leaves, \mathcal{B} . If B is a collection of (whole) leaves, then $\mu_{\mathcal{B}}(B)=$ $\mu(\bigcup_{\beta \in B} \beta)$. Suppose that $\mathscr F$ were measurable in the sense of Sinai. Then there would be a measurable function $K: I \times I \rightarrow R$ such that

(1) K is positive almost everywhere on $I \times I$.

(2) K is integrable on every leaf β not belonging to a set $\mathscr X$ of leaves having $\mu(\mathscr{Z})=0$ and, for $\beta \notin \mathscr{Z}$, $\int K d\sigma_{\beta}=1$.

 β (3) $\mu(A,\beta) \stackrel{\text{def}}{=} \int K d\sigma_{\beta}$ is an integrable function of $\beta \in \mathscr{B}$ if $\beta \in \mathscr{C}$ $A\cap\beta$ and if A is measurable in $I \times I$.

(4) $\mu(A \cap B) = \int \mu(A, \beta) d\mu_{\mathcal{B}}$ for any measurable set $A \subset I \times I$ and any measurable $B \subset \mathscr{B}$.

Let N be the set where K is not defined or is not positive, $\mu(N)=0$. By (4) with $B = I \times I$

$$
\mu(N) = \int_{B} \mu(N, \beta) d\mu_{\mathscr{B}}
$$

and so, for a set of leaves \mathscr{L}_1 such that $\mu(\mathscr{L}_1) = 0$,

$$
\beta \! \in \! \mathscr{Z}_1 \Rightarrow \mu(N, \beta) \! = \! 0.
$$

Let Z be a zero set of I such that $h_1 Z$ has positive linear measure and let $B_z = \bigcup \beta(y)$. Then $\mu(B_z) > 0$ because $[\frac{2}{3}, 1] \times h_1(Z) \subset B_z$. Also $\mu(B_{Z'})>0$ for $\bigvee^{\gamma\in Z}$ $Z' = \{v \in Z: \beta(v) \notin \mathscr{Z} \cup \mathscr{Z}_1\}$

$$
B_{Z'} = \bigcup_{y \in Z'} \beta(y) = B_{Z} - (\mathscr{Z} \cup \mathscr{Z}_1).
$$

Now let $A = [0, \frac{1}{3}] \times I$, $B = B_{Z'}$. Then $A \cap B = [0, \frac{1}{3}] \times Z'$ so $\mu(A \cap B) = 0$. Since each $\beta \subset B_{\mathbb{Z}}$ lies outside \mathscr{L}_1 , $K|\beta$ is almost everywhere positive on β . In particular, $K|A \cap \beta$ is almost everywhere positive, $\beta \subset B_{Z}$. That is

 $\mu(A, \beta) > 0$ for all $\beta \subset B_{z'}$.

Since $\mu_{\mathscr{B}}(B_{z}) > 0$, this proves that

$$
\int\limits_{B_{Z'}} \mu(A,\beta) \, d\mu_{\mathscr{B}} > 0
$$

contradicting (4) for this A and B .

Now we construct the homotopy h used to find the foliation. Let U be an open dense subset of I with measure $\frac{1}{2}$ and let

$$
u(x) = \int_{0}^{x} \left[1 - \chi_{U}(s)\right] ds
$$

where χ_U is the characteristic function of U. This map $u: I \rightarrow [0, \frac{1}{2}]$ collapses U onto a countable set $C \subset [0, \frac{1}{2}], u | (I - U)$ preserves measure, and $u^{-1}(uU) = U$. Let $g: [0, \frac{1}{2}] \rightarrow [0, \frac{1}{2}]$ be a homeomorphism with $g(0)=0$, $g(\frac{1}{2})=\frac{1}{2}$, that is not absolutely continuous. Find an open set $V \subset I$, $\mu V = \frac{1}{2}$, and a collapsing map $v: I \to [0, \frac{1}{2}]$ with $vV = gC$, $v/(I - V)$ measure preserving, and $v^{-1}(v V) = V$. Then define $h_1: I \rightarrow I$ so that

$$
\begin{bmatrix}\nI & \xrightarrow{h_1} I \\
u & v \\
I_0 & \xrightarrow{+} [0, \frac{1}{2}] \n\end{bmatrix}
$$
\n
$$
[0, \frac{1}{2}] \xrightarrow{-g} [0, \frac{1}{2}]
$$

commutes and h_1 carries $u^{-1}(c)$ onto $v^{-1}(g c)$ diffeomorphically for all $c \in C$. Finally, put

$$
h_t(y) = [1 - \varphi(t)] y + \varphi(t) h_1(y)
$$

for *t*, yeI and φ a C^{∞} function R \rightarrow [0, 1] with $\varphi=0$ for $t \leq \frac{1}{3}$, $\varphi=1$ for $t \geq \frac{2}{3}$. Clearly h, is a homeomorphism for all $t \in I$ and h, is smooth in t. That is, (i) - (v) are verified.

Post Script. It seems likely that these method apply to metric transitivity questions for Anosov Actions if such questions make any sense.

References

- 1. Anosov, D.V.: Geodesic flows on closed Riemann manifolds with negative curvature. Proc. of the Steklov Inst. of Math., No. 90 (1967); English translation A. M. S., Providence, R.I., 1969.
- 2. Sinai, Ja. G.: Some smooth ergodic systems. Upseki Mat. Nauk 22, No. 5, 107-172 (1967)=Russian Math. Surveys 22, No. 5, 103-167 (1967).
- 3. Hirsch, M.W.: Foliations and non-compact transformation groups (to appear).
- 4. Pugh, C.C.: Stable manifolds and hyperbolic sets. Proc. of Symposia in Pure Math., Vol. XIV, A. M. S., Providence, R. I., 1970.
- $5. -$ Shub, M.: Invariant manifolds (to appear).
- 6. Pugh, C.C., Shub, M.: Ergodic elements of ergodic actions. Compositio Mathematica, Dec., 1970.
- 7. Schwartz, J.T.: Differential geometry and topology. New York: Gordon and Breach 1968.
- 8. Sinai, Ja. G.: Dynamical systems with countably multiple Lebesque spectrum II. Izv. Akad. Nauk SSR, Set. Mat. 30, 15-68 (1966)=A.M.S. Trans. 68, Ser. 2, 34-88.

Charles Pugh Mathematics Department University of California Berkeley, Calif. 94720 USA

Michael Shub Mathematics Department Brandeis University Waltham, Mass. USA

(Received December 10, 1970)