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1. I n t r o d u c t i o n  

Consider the space 

S.'=nf, ~ :={ feCP'V(6eA)  fae(~k)16 } (1.1) 

of piecewise polynomial (=.-pp) functions of degree __<k on the triangulation 
a and in C o. We are interested in estimates of the standard form 

dist ( f  S) < const I [A I r 

with 
IA] :=sup diam 6 

~eA 

the meshsize, and with the distance between functions measured in the max-norm 
on some domain G contained in U 6. The exponent r depends on the smoothness 

5cA 

off ,  in general. We are interested in determining its largest possible value under 
the assumption that f is sufficiently smooth. We call this number the approxima- 
tion order of S and denote it (again) by r. 

It is well known that r = k + 1 for p < 0, but it is at present not clear what 
happens when p > 1. Because of results of ZeniSek [Z70], [-Z73], it is believed 
that the polynomial degree k must be at least 4p + 1 to obtain the full approxima- 
tion order r = k +  1. It is the purpose of this paper to show that actually a 
degree of 3 p + 2 suffices. Precisely, we prove the following. 

T h e o r e m .  I f  
k > 3 p + l ,  

then there exists a constant const which depends only on 

a :=smallest angle in A 
and k so that 

dist ( f  S) < const ]pD k+ i f  II [z~lk+ 1 
for all smooth f 
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In addition, we show for small p that this result is sharp; i.e., we show that, 
on a very simple partition (the three-direction mesh), the approximation order 
is no better than k when k = 3 p + 1 (and p = 1, 2, 3). 

Our argument suggests that, for pp functions of d variables, full approxima- 
tion order is obtained as soon as k > ( d +  1)p + d. This is to be compared with 
Le M6haut6's result [M83]  who extends Zeni~ek's argument to the d-variate 
context and proves full approximation order only in case k > 2dp + 1. 

Our argument is unusual in that it uses duality to determine the exact approx- 
imation order (rather than just an upper bound for it). In consequence, we 
obtain the approximation order without exhibiting an approximation scheme 
that attains this order. 

The duality argument requires a description of S • the collection of all linear 
functionals which vanish on the approximating space S. This is, in general, 
a hopeless task. In our case, though, it is sufficient to consider S as a linear 
subspace of 

�9 o ( 1 . 2 )  S0 "~'~" ~k, A" 

This means that S • consists of the smoothness conditions which characterize 
S as S o c~ C o. We are able to obtain a tractable description of these smoothness 
conditions because we employ the B-net representation familiar from Computer- 
Aided Geometric Design for the continuous pp functions, i.e., the elements of 
So. The corresponding description of the smoothness conditions reflects as much 
as possible and as cleanly as possible the geometry of the partition A. 

2. Reduction to S O 

Denote by V~ the vertex set of the triangle 6 e A and by 

V,= U V~ (2.1) 
6cd 

the collection of all meshpoints in the triangulation A. We define the k-refinement 

Vk:={V~: c~eA} 

of V as the collection of all points 

vaV 
with 

and 

(2.2a) 

eeA,  (2.2b) 

A , = A k , ~ : = { ~ e ; g ~ ' l a [ = k ,  supp ~ c  V~for some beA}  

v~V 

(2.2c) 

Then each 6eA contains exactly (k~2)=dim~k points from V k and, for given 
f e C ,  there is exactly one p067c k which agrees with f at these points. Further, 
if 6 shares an edge with some 6'~A, then, since k + 1 points of Vk lie o n  this 
edge, p0 and pa, agree on this edge. This means that the function P f  defined 
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by 
Pf'=Pa on ~, for 5cA, (2.3) 

lies in So and is the unique element of So which agrees with f on V~. Note  
that HPI[ = ]lP6]] for any 6~A, with the norm of the map  P6: C(c5)~ C(5):f~--,pa 
depending only on k. 

Since, for smooth f 

I[/-e~l ~ ~(1 + ]]PI]) constk lID k+ * f rl [AJ k+ 1, (2.4) 

it follows that 

d i s t ( f  S)=O(NDk+ ~f[] ]Alk+ l ) + d i s t ( P f  S). (2.5) 

Since the approximat ion order of S cannot  exceed k +  1, this shows that the 
approximat ion order is determined by how well one can approximate  P f  from 
S, for smooth f 

Since PfeSo ,  the Hahn-Banach Theorem provides the formula 

[2Pfl 
dist (P f  S) = max - -  (2.6) 

with 
S • ,={2eS* : 2(S) = O} (2.7) 

the smoothness conditions which single out the elements of S from those of 
S o . 

3. A "Good"  Basis for S • Ensures Full Approximation Order 

The collection S" of smoothness conditions satisfied by S (as a subspace of 
So) is spanned by the conditions which enforce some part  of that smoothness 
across an edge common to two triangles in A. Thus, S • consists of linear function- 
als of the form 

2= ~ c(z) ~, (3.1) 
r ~ T  

with each r e T  having support  in the union f iw5'  of a pair of neighboring 
triangles in A. This implies that the sum makes sense even when T is infinite. 
Without loss, we assume that each z has been normalized, 

H~II=I, 

Lemma 3. For smooth f 

I,~Pfl < IlClll 
II;ol) = I IEc(~)~ l )  

all z ~ T. (3.2) 

const [rD k+ l f l I [AI k+ 1 

Proof  If peTrk, then P p = p e S ,  hence 

z e f  = v P ( f  -- p) < HzP[I IJ(f - p)l~upp~ell ~. 
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Since (Pg)16 depends only on gla, the support of zP consists of the union of 
two neighboring triangles in A, hence 

~Pf~  lIP[/ sup dist(f, 7Ok)<= IIPI[ const I[Dk+lfl I [A] k+l 
6, ~ ' ed  bw6 '  

Since 2 is of the form (3.1), this finishes the proof. 

Corollary. I f  [Icl[1 

KT:=SUPc I]ZC(z) zll 
T 

[] 

(3.3) 

is finite, then S has full approximation order. 
Note that the finiteness of tc T not only requires that Tbe  linearly independent, 

hence a basis for S l,  but that it be a "good"  basis in the sense that the coordinate 
map c ~ - ~ c ( z )  z is bounded below (a nontrivial requirement when T is infinite). 
Further, we hope to bound ~c r just in terms of the smallest angle in any 6eA, 
independently of any other details of A. This requires a careful study of S • 

4. The B-net Representation for So and S • 

The B-form for p ~ nk with respect to some simplex readily provides information 
about the behavior of p near the boundary of that simplex. This is due to 
the fact that, in this form, the polynomial is described as a linear combination 
of all possible products of k linear polynomials, each of which vanishes on 
some facet of that simplex. This makes it easy to express the smoothness condi- 
tions across the boundary when putting together smooth pp functions on some 
triangulation. For  this reason, this form is widely used in Computer-aided Geo- 
metric Design, where it carries the more detailed name of Bernstein-B&ier-, 
or barycentric form. For  full supporting details of what is to follow, consult 
[F79]  or [B87]. 

Explicitly, the B-form for pEnk with respect to the simplex 6 is 

with 
[~l =k 

~ " =  I-I ~W) (4.1b) 
veV,5 

and iv the linear polynomial satisfying 

v (w) = 6vw, all w e V~. (4.1 c) 

Further, e is meant to be any vector indexed by V o with nonnegative integer 
entries, i.e., a multi-index, for short. The normalizing multinomial coefficients 
serve to have the sum add to 1 in case all the c (~) are 1. 

The normalizing factors also make it possible to write the B-form more 
suggestively as 

p=(~E)k c(O), (4.2a) 
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with E the shift operator, i.e., 

E p c (c 0 = c (c~ + fl), 
hence 

(~E)c(~)= Y~ ~:(~+eo). 
v~V6 

(4.2b) 

(4.2c) 

Here, ev is a unit multi-index; specifically, e~(w)= ~Svw. 
The formula (4.2a) is easily differentiated: For  the directional derivative 

Dy.-= ~ y(j) D:, one gets 

D r p = (~E) k - t  k(Dy ~E) c(0). (4,3) 

This is explicitly the B-form (wrto fi) of the polynomial Drp. It shows that the 
B-form coefficients for Dyp are obtained from those for p by a simple differencing, 
with the weight vector r/.'=~/(y).-=Dy ~ the unique solution to the linear system 

0=Z v. 
v o 

Let F w denote the face of 6 spanned by the vertices in W c  V~. Then ~v 
vanishes on Fw iff vr W. Hence the behavior of p on F w is entirely determined 
by the coefficients c (e) with supp c~ ~ W. In particular, 

p (v) = c (kev). (4.4) 

This suggests the association of the coefficient c(~) with the refined meshpoint 
v, = ~ va(v)/[ej introduced in (2.2), i.e., the introduction of the mesh function 

vEV6 

b,: v~c(~). 

For, if we associate in the same way the coefficient c'(~) in the B-form for 
some q ~ zc k wrto some neighboring 6' with the refined meshpoint v~, - keeping 
in mind that now supp ~ V~,, - then a continuous joining of the two polyno- 
mials at the interface 6 ~ 6 '  is equivalent to having bp and bq agree on the 
points common to their domains. In this way we arrive at the B-net for f~So,  
viz. the mesh function by given by the rule 

bf=b:~o on V kc~6. (4.5) 

The max-norm of f~So and the max-norm of its B-net b: are equivalent, 
hence the map f~-,b: provides a linear homeomorphism between So and l~ (Vk). 
Consequently, we can think of ll(Vk) as a subspace of the continuous dual S~ 
of S O . 

In particular, any linear functional on So with support in finitely many 6*--A 
is (representable as) a finitely supported element of 11 (Vk), hence we may think 
in this way of S • as a linear subspace of ll(Vk). For, a spanning set for S l 
is provided by the union over all pairs 6, 6' of neighboring triangles in A of 
the conditions which enforce CP-continuity across the common edge 6 c~ 6'. These 
conditions take (up to a normalizing factor) the convenient form: 

b:(v~+ .... ) =pp(u'), (4.6) 
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t/; 

u ~ U  t 

t/; I 
Fig. 4.1. Support diamond and actual support (heavy dots) of a smoothness condition of order 4 
(for k = 14) 

for supp 13 c 6 c~ 6', r..=k-1131 < P- Here, u' is the vertex of 5' not  in 6, and 

p~ :=(~ E)k-I~1 c(13) (4.7) 

is the polynomia l  whose B-form coefficients form the subtriangle 

c(13+y), supp y c 6 ,  171=k-1131, 

of the B-form coefficients 
c(~), N = k ,  

for re(x). On compar ing  (4.7) with (4.2), one sees that  pa(x) is generated at  
the (k-1131)-th step of the evaluat ion of fa(x) .  

We obtain one such condi t ion for each 13 with supp13cSr  and 1131<k, 
hence will denote  it by 

za, or more  explicitly by z a , ~ , ,  

when we think of it as an element of l~(Vk). No te  that  the suppor t  of rp is 
in a diamond, 

supp zp. ~ ~ ~, c {v~ + ~: supp 7 ~ 5 or 5', 113 + 71 = k} (4.8) 

and that  za does not  vanish at the two tips of this d iamond,  i.e., 

Further ,  

Z~(V~+re,)+0 for v ~ 6 \ 8 '  or 8 ' \ 5 ,  r,=k--[/~[. (4.9) 

all ~ w i t h / / o f  the same length are just  shifts of one another .  Precisely, 

~(V~)=Vl~le~(V,+lPle_~) for any wE V~ r V~,. (4.10) 

To  be sure, Ta=0  for 1131=k, since in this case (4.6) merely restates that  
the B-form coefficients of flz and fl~' agree on v~e6r Hence we will not  
refer to it again. Fo r  r - -  1, (4.6) provides the geometrical ly quite striking condi-  
t ion that,  for any 13 with supp 13 ~ 6 ~ 6' and 1131 = k -  1, the four B-net points 

(v~,bf(v~)), 7 = / ? + e w ,  w ~ S u S '  

must be coplanar.  
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The whole collection {za: supp fi ~ 6 c~ ~' with I/~l < k} is linearly independent 
since, in any total ordering ~ of this set in which 

vp is the first one to have va+,e, in its support. (Here, once again, r:=k-l f l l  
and u ~ 6 \ 6 ' . )  Our difficulty in making up a basis for S z will come from the 
fact that za associated with different edges will interfere, leading to linear depen- 
dence in quite complicated ways. Fortunately, we will not need to untangle 
these dependencies in full detail. But we will need a result concerning the local 
linear independence of certain rp which we now derive. 

Lemma 4.1. Let w, w' be the vertices common to 6 and 6', and assume that 
w' r [u, u']. Then, for any s, the conditions 

T.i=7~(k_i)ew , i=k,  ..., k - - 2 s +  1, (4.11) 

are linearly independent over the point set 

{ , , } 
X:-~-  Uk-s~  . . .7  U k - 2 s + l , l l k - s ,  . . .7  Uk-2s+l 

with 

U i : ~ V ( k - i ) e w + i e u ,  U i : ~ V ( k - i ) e w + i e u , .  

Proof For  the proof, a look at Figure 4.2 might be helpful. The smoothness 
condition ~ we consider has u~ and u'~ as the tips of its support diamond, and 
one of these tips is on the edge [u, w]. 

For  the proof, assume to the contrary that the sequence (4.11) is linearly 
dependent over X. Then, since there are as many points in X as there are 
conditions in the sequence, there exists c: X ~ \ 0  so that 

~j(x)c(x)=O, j = k ,  ..., k - 2 s +  1. 
x6X 

Of all the conditions across the edge 5c~6', those in the sequence (4.11) are 
the only ones with some support in X. Hence, on extending c to all of Vk C~ (5 U 5') 
by setting it to zero off X, we obtain the B-net of some g erc ~ (~, ~'1 which satisfies 
all smoothness conditions across the edge 6 c~ 6', hence must be a polynomial 

~2J 

u u l  
w I 

Fig. 4.2. The tips of the support  diamonds of zl, i=k,  . . . , k - 2 s + l  and the points ui,u~, i= 
k -  s . . . . .  k--  2s + 1 over which they are linearly independent, for the case s = 3, k = 11 
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of degree _< k, and must be nontrivial since c =t = 0. But, since most of its B-net 
values are zero, g must vanish to some order on 6 n 6' as well as on the edges 
l-u, w'] and [u', w'], with w' the other vertex in 6 c~ 6'. Precisely, g must be divisible 
by ~-2~+1 as well as by ~ and (~)~ (with ~' the barycentric coordinates with 
respect to 6'). Hence, if ~ and ~ are linearly independent, then g must be 
divisible by ~ku-2~ + 1 ~ s ( ~ v ) s  which is a polynomial of degree > k, an impossibili- 
ty. [] 

For  the exceptional case, i.e., when w'c [u, u'], we need later the following 
observation. 

Lemma 4.2. I f  w' ~[u, u'], then za,6~o, has support only on the edge of its support 
diamond parallel to [u, u']. Explicitly, 

supp za = {va + re~  -j(e~- ~,~,) : J = 0 . . . . .  r} t..) {I)/~ + . . . .  }" (4.12) 

5. A Bound for tc r 

We now consider the problem of choosing an appropriate basis T for S-- as 
a subset of the smoothness conditions ~ ,  k - I /~ l<p ,  across all the edges of 
the partition A in such a way that 

Ilclbl 
~c r,=supc I[~,c('c) zll 

T 

(3.3) 

is bounded independently of A. Having identified So with l~(~), the norm 
Ll~c(~) ~11 appearing in the definition can be taken to be the / l -norm.  Hence 

T 

~:r = inf ~c(T, U), (5.1) 
U 

with 

K(R, U).'=sup IlcLRIhl (5.2) 
II Y, c(~)~,ul[1 

~:ffR 

and U any subset of Vk. Note that ~c(R, U)= c~ in case R fails to be linearly 
independent over U. On the other hand, if R is maximally linearly independent 
over U, i.e., if the matrix A :=(Z(U)),~V,~R is invertible, then 

~:(R, g ) =  LIA-1111. 

Our results rely on the following observation, which allows us to use the 
support structure of the za to subdivide the task of bounding ~(T, U). For  it, 
we use the abbreviation 

#(R, U).'=sup R (5.3) 
c Hclla 
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for 

then 

Lemma 5. I f  U = U' �9 U" and T =  T' �9 T' in such a way that 

a / ~ < l  

a:=2tc(T', U') #(T", U'), fi:=2tc(T", U")#(T' ,  U"), 

~:(T, U)<2  max {(1 +fl) K(T', U'), (1 +~) ~c(T", U")}/(1 --aft). 

Proof We write 

rl Y c(~)~a~lll = PI ~ c(~)~l,:'l[~ + I r Y, c(~)~j~,, II~, 
v~T v e T  v e T  

and bound the first term in the RHS from below: 

with 

(5.4) 

(5.5) 

(5.6) 

II ~ c(~)~lu, II l= I[ ~ c (~)~ iu ,+gl [ l~  II ~ (c+c')(~)~lu, II1/2 
z e T  veT" v e T '  

_-> licit, + c'll 1/(2 ~c(T', U')), 

c(z) ziv, a best approximation to g:= ~, c(z) fly, from span (TI~:,). The 
veT' zeT'"  

coefficient sequence c' of this best approximation satisfies 

1]C'][1=<1r u ' ) u  Z c'('c) -Clv,[[ 1 ~ / r  , U')ZHg][I<~(T', U')2#(T',  U ' ) [ [ C I T , , [ [ 1 ,  
rer '  

i.e., with the abbreviation (5.5), 

flc'111 _-__ a liCiT-Ill. (5.7) 
Analogously, 

II Z c(0  ~lv-II1 >= IIc" + Cir-II 1/( 2 ~c(T", U")), 
veT 

with 
llc"lr 1 -<fi HcmH 1. 

Thus 

IIcl[1 < 2[Iclla 
[I Z c(v) zlvll* = Ilclm' +C'l[1/~c(T', U')+ Irc" +ClT,,lll/~(T" , U")" 

~eT 

Next we write 
Ilcll i = liciT, [11 + IIClT,,H 1 

and observe that, e.g., from (5.7), 

IIC[T'II 1 = 7  Ilqr, H1 +(1 -7 ) I lq r ' [ I  1 

< 7  Ilqr, + c'll, +T rlc'rl i + ( l - T ) I l c m l l l  

<7 liciT, + c'][ 1 +Ta  [Iqr,,ll i +(1-7)[]Clr, l[ 1, 
hence, 

IIcH1 <~ Ilciz,+c'lla +6 lie" + Clr,,ll 1 + ( ~ a +  1 - a )  [Ic,r,,lt ~ + ( 1 - 7  + aft)Ilclr, II 1, 
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with arbitrary positive 7, 6. The requirement that in this last inequality the 
terms involving J]c It, ][ 1 and []c I r,, ][ ~ drop out leads to the choice 

~=(l+fl)l(1--c~fl), 6 = (1 + ~)t(1-- c~fi), 

and these are positive by assumption (5.4). Thus, altogether, with this choice, 

Ilcll~ G2 711cir'+c'll~+611c"+Cir"ll~ 
I[ Y, c(r)rlV][~ - IlclT, + C'N d~c( T', U') + ]Ic" + ClT,,J[ U~:( T", U') 

'c~T 

<2max{TK(T ' ,  U'),Sx(T",  U")}. [] 

Corollary. If, in addition, 

hence 

then 

Proof In this case, 

T ' =  {re T: supp zc~ U' =t=s~}, 

T " =  {re T: supp ~ ~_ U"}, 

~c(T, U ) < 2  max {(1 +2Kr,,) ~c(T', U'), ~cr,,}. 

,<:(T", u")=~:T,,, v(T", u')=o, 

while always (by the normalization II~ll, = 1 for r e  T) 

#(T', U") < 1. 

Therefore, for this case, ~ = 0, and ~ and 6 can be taken to be 

7= 1 +2~r , , ,  6=1 .  []  

Remark. I f  in addition, T" = {z E T: supp r c~ U" 4: j~}, then 

~c(r, U)=max{~(r',  g'), l~(r", U')}. 

The partition T' �9  T" of T =  V k that we have in mind is based on the fact 
that the z~ can be roughly classified by whether they are associated with a 
particular vertex or a particular edge of A. We are going to be precise about 
this eventually. For  the time being, let 

Ev 

denote the collection of edges emanating from the vertex v, and define 

Rv 

to be the collection of all z~ associated with some eeE~ and sharing part of 
its support diamond with that of some z~ associated with another edge in E~. 
Because of the overlapping supports (which form a kind of ring around v), 
the collection Ro is far from linearly independent. For  example, when p = I = k, 
we have 4bR~=4bEv, yet dim s p a n ( R ~ ) = d i m ~ ~  
= #bE~-2, with A~:={6eA : re6}. 
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For general p and k, a formula for dim span(R,) can be given (which involves 
the details of E~), but it is far from trivial to select a basis for span(R~). We 
avoid this difficult task by constructing reduced rings rv so that conditions from 
different reduced rings have disjoint support. This implies that, with T~ any 
basis for span(r~), the set T"..= U T~ is linearly independent. In fact, from the 
above Remark ~ev 

/~T" ~ sup/~T~" 
V 

Further, by a theorem of Auerbach, we can choose the (normalized) basis T~ 
for span(rv) so that 

~:rv < dim span(rv). 

Since dim span(rv)< 4~r~, and this number can be bounded in terms of k,p, 
and 4~E~, while :~E~ can be bounded in terms of a (the smallest angle in 
any triangle in A), this provides a A-independent bound on 1Or,,. 

The set T' is also put together of groups with disjoint supports, viz. a group 
T~ for each edge e. We identify these T~ in the next section. 

6. Disentangling the Rings 

As we now show, it is possible to disentangle neighboring rings as soon as 
there is a smoothness condition of maximal order, i.e., of order p, which belongs 
to no ring. This happens as soon as k > 3p + 1. The construction is based on 
selecting a subset T~ from the collection 

Se.'={zp,e: supp f l ee ,  [fl[ > k - p }  

of all smoothness conditions of order Np connected with the edge e. 

Proposition 6. I f  k= 3p+2 ,  then there exists, for each edge e..=6 n6 '= :  [w, w'], 
a set 

U e c ~ n ( 6 w 6  ') 

with the following properties: 

(i) U e lies in the support of the unique z~S e of order p which belongs to 
no ring. 

(ii) The set 
T~.'={z~Se: supp zc~ Ue :~ ~} 

is linearly independent over U e. 
(iii) The remaining conditions in Se fall into two classes, 

Re, x,-={z~ES~ T~: fl(x)>fl(x')}, with (x, x')--(w, w') or (w', w), 

and conditions from different classes have disjoint supports. 
(iv) T~ and Ue depend continuously on 6 and 6' except when w or w' lies 

on the segment [u, u'] spanned by the vertices of 6 and 6' not in e. 
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Proof While it would be possible to take for Te the collection of all conditions 
belonging either to both rings R~ and Rw, or to neither, it seems more efficient 
to be satisfied with a subset of these which is big enough to disentangle the 
rings. 

We begin by looking more closely at the ring Rw. Note that z~ = z~. e belongs 
to R~, iff its tip v~+reu is in the first p bands parallel to [w, u], i.e., iff (fl+re,)(w') 
__<p, i.e., iff ~(w')<__p. Since /~ only has support in [w, w'] and It~[=k-r, hence 
fl(w) + ~(w') = k -  r, this says that zp belongs to neither ring iff p </~(w) < k -  r - p. 
In particular, there are no such conditions of maximal order r = p  when 
k < 3 p + 2 .  For  k = 3 p + 2  and r = p ,  this leaves just one choice, viz. 
f i (w)=~(w')=p+ 1. Further, if k =  3 p + 2 ,  then no condition can belong to both 
rings. Thus, the only difficulty we have to overcome is to deal with conditions 
which belong to one ring, yet have some common support with some condition 
belonging to the other ring. 

The general construction is based on Lemma 4.1, hence breaks down in 
case [u, u'] contains w or w'. In this latter case, though, the proposition is 
almost obvious since the smoothness conditions across the edge then have small 
support according to Lemma 4.2. 

We consider the special case we [u, u'] first. In this case, according to Lem- 
ma 4.2, each -cp has support only on the edge of its support diamond parallel 
to [u, u']. Thus the choice 

Ue = {/)(p + 1 , p + i , p +  1 - i ) :  i= 1, ..., p} 

(i.e., the part of the support diamond strictly inside 6 of the pth order condition 
in neither ring) does the job in this case. 

The idea in the contrary case is to construct both Te and Ue step by step 
as a sequence in such a way that the resulting matrix Ae:=('c(U))uE v . . . .  re is block 
triangular with invertible diagonal blocks. More than that, for a sequence of 
integers m, the first m of the conditions in T~ are the only conditions (of order 
< p and belonging to e) which have some support at the first m points in Ue. 
While the first condition put into Te is that condition of maximal order belonging 
to neither ring, subsequent conditions may well belong to one ring or the other. 
Their removal into Te reduces the number of conditions which are in one ring, 
yet share some support with a condition from the other ring. The process stops 
when there are no such conditions left. In the discussion to follow, Figure 6 
may be of help. 

We find it convenient to label the conditions in Te and the points in Ue 
each by a number pair, and the ordering is the lexicographic one with respect 
to these labels. 

The first condition is the sole condition of order p not belonging to either 
ring, and we give it the label (0, i): 

"L'O, 1 :~T(p + 1,p4- i)" 

The corresponding first point in Ue is its support tip in 6: 

UO, 1 :~----U(p+ 1 ,p+  1,p, 0)" 
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I ~ ~ '~ 
�9 " o~  * , < 5 ~ .  �9 

�9 �9 ~ �9 , ~ -  o r  
�9 �9 , �9 

/ . o  ! 

Ii t 

Fig. 6. The tips of the support diamonds of zeT~ and the set Ue (heavy dots), for p -4 ,  hence k=3p 
+2=14. The four heavily marked smoothness conditions are the only ones having support on 
the circled points and not already included in Te 

No te  that  ~o, l(u0,1) =~ 0, by (4.9). Here and below, we use the ordering 

W~ W r, U, d 

when describing the relevant par t  of  meshfunct ions on Vk. 
The next condit ions are the two of  order  __>p-1 on the w-side of  %,1, 

and we label them (I, 1) and (1, 2): 

T1,  1 : ~ ' ~ ( p +  2 ,p)~  "/71, 2 : ~ ' g ( p  + 2,  p + 1) .  

The cor responding  next two points  are the two on which these two condi t ions  
are linearly independent  by L e m m a  4.1 : 

Ul, l :~V(p+2,p+l ,p-- l ,O)~ Ul,2:~-U(p+2,p+l,O,p--1) - 

Next  come the two condit ions of  order  > p - 1  on the w'-side of  %, 1, and 
we label them (2, 1) and (2, 2): 

"C2,1:z'12(p,p+2)~ ~'2, 2 : ~ ' C ( p  + 1, p + 2). 

The cor responding  next two points  are the two on which these two condi t ions  
are linearly independent  by L e m m a  4.1 : 

U2,1:zV(p+l,p+2,p--l ,O)~ bl2 ,2:~l) (p+l ,p+2,0,p-1)  �9 

We conclude this step by taking 

U2,  3 : ~ 1 ) ( p +  2 , p +  2 , p - 2 ,  0) 

for our  next point  in U~, and  taking as our  next condi t ion  the only  one in 
Se with some suppor t  at u2, 3 not  yet included in T~ and labeling it (2, 3): 

Z2,  3 :~'lT(p + 2 , p  + 2)" 
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In general, at step 2s - -1  of this procedure, we adjoin the next conditions 
of order > = p - ( 2 s -  1) on the w-side and label them ( 2 s -  1,j): 

"C2s-l,j:="C(o+l+s,p_s+j), j = l ,  ..., 2s. 

The corresponding next 2s points are those on which these conditions were 
shown to be linearly independent in Lemma 4.1 : 

U2s-l,j:~U(p+l+s,p+j,p+l_s-j,O)~ U2s_l,s+j:~-l)(p-kl+s,p+j,O.p-kl_s_j)~ j = l ,  ..., S. 

In the general step 2s of this procedure, we first adjoin the next conditions 
of order > p -  (2 s - 1 )  on the w'-side and label them (2 s, j): 

T, 2s, j:zT,(p_s-kj,  p-k l +s)~ j ~  17 . . . ,  2S. 

The corresponding next 2s points are those on which these conditions were 
shown to be linearly independent in Lemma 4.1 : 

U2s, j:=--V(p+j,p-kl+s,p+l_s_j,O),  U2s, s+j:~U(p-kj , ,o+l+s,O,p-kl--s-j)~ j ~  17 . . . ,  S. 

Figure 6 shows the situation at this point, with s--2.  We conclude this step 
by taking 

U2s, 2 s +  1 :~V(p  + 1 + s , p +  1 +s,  p - - 2 s ,  O) 

for our next point in Ue, and taking as our next condition the only one in 
S~ with some support  at U2s, 2,-k 1 not yet included in T e and labeling it (2s, 2s + 1): 

372s, 2 s +  1 :~'/7(p + 1 + s , p +  1 -ks)" 

Note  that ZEs,2s+ a(u2s,2,+ 1)q=0, by (4.9). 
With each step, the set U e grows toward the edge e. We stop the process 

as soon as it would call for inclusion into Ue of a point on the edge, i.e., either 
in the middle of step p in case p is even, or else after step p - 1 .  Since Te 
contains all the conditions in Se whose support  d iamond intersects Ue, this 
implies that the only conditions from Se not included in Te are those with 
support  d iamond either entirely to the w-side or else entirely to the w'-side 
of Ue, which proves (iii). 

The remaining assertions follow from teh following 

Claim. The conditions Zm, i, i = 1 . . . . .  m + 1 are linearly independent over the points 
urn.i, i=  1, . . . ,  m + 1. Further, except  for  conditions appearing earlier in Te, they 
are the only conditions in S~ having support at these points. 

verified during the construction process. []  

7. The Main Result 

We are now prepared to prove the following 

Theorem. Let  

S:=n~, a ..= {fe  CP: g ( 6 e A )  fae(rck)la} 
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be the space of piecewise polynomial CP-functions of degree < k on the triangula- 
tion A of some domain G in IR 2. I f  

k > 3 p + l ,  

then there exists a constant const which depends only on 

a:=smallest angle in A 

and k so that 

dist ( f  S) __< const 1[ D k + i f  [] [A [k + 1 

for all smooth f, with 

IA] .'=sup diam (5. 
a ~ A  

Proof By (2.5) and Lemma 3, 

dist ( f  S) < constk IID k + i f  II/Or [A ] k + 1, 

with T a (normalized) basis for S • and 

Iic111 
Xr:=Sup~ II~c(t) zll" 

T 

By Proposition 6, we can find a suitable basis T for S • as follows. For  
each edge e=ac~a'=[w,w'] in the partition, we can write the collection of 
all smoothness conditions of order < p across that edge as the disjoint union 

Re, w�9 Te�9 w,, (7.1) 

with T~ maximally linearly independent over a certain subset Ue of Vk, and 
each condition in Re, x having its support diamond entirely to the x-side of 
Ue~ X ~ W ,  W ' .  

Choose 
v':=U <, T',=Ure. 

e~E eeE  

Both of these unions are disjoint, hence 

tc(T', U ' )=sup  tc(T~, Ue). (7.2) 
e 

For  each vertex v of A, let Tv be a basis for the linear span of the reduced 
ring 

rv:= U Re, v 
e~E v 
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of smoothness conditions for that vertex, with E~ the collection of edges emanat-  
ing from v. By a theorem of Auerbach, we can choose Tv so that 

~CTo < dim span(G ). 

This bound, in turn, is bounded by # r  v, hence can be bounded in terms of 
# Ev and k, hence ultimately in terms of a and k. Since conditions from different 
reduced rings have disjoint support, it follows that the condition ~CT,, of 

T".-= U T ~ 
v e V  

is bounded in terms of a and k. Further,  

T , = T ' w T "  

spans S • and this union is disjoint, and 

T '={z~T:  supp ~ c~ U'=t= 0}. 

We can therefore conclude, by the Corollary to Lemma 5, that 

KT<COnSta, k sup tr  Ue). 
e~E 

(7.3) 

The determination of sup ~c(T~, Ue) is a local problem. By construction, 
e 

~c(T~, Ue)= ]IA~- 1111, 

with the matrix -,4e:~-('C(V))ve ~ . . . .  T~ depending, continuously for the most  part, 
on the four vertices w, w', u, u' of the quadrilateral ~ w ~5'. The exception occurs 
when one of the endpoints, w or w', of e is contained in the segment [u, u'], 
i.e., when the other two edges emanating from w (or w') are parallel. 

Since A e is invariant under rigid motions of the plane and under scaling, 
we may assume that w and w' are fixed, e.g., w = 0  and w'=(0,  1). Then u,u' 
can be bounded in terms of the lower bound a on all angles in all triangles. 
Thus it is sufficient to bound the map  

(u, u')~--~ IIAe 1111 (7.4) 

over a closed and bounded set. 
Suppose to begin with that the exceptional case is excluded, e.g., suppose 

that all angles in the quadrilateral (w,u,w',u') are < r c - b  for some positive 
b. Then the function (7.4) is continuous on its domain, therefore bounded, and 
we are done. 

We are similarly done if we restrict the angle 

bw.e,= / uwu' 

at w to be > ~ + b  for some positive b. Thus the final problem we have to 
settle concerns a A-independent bound on ~c(T e, Ue) when bw, e~n .  
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Fig.  7. The  t ips of  the  s u p p o r t  d i a m o n d s  of  v~T~ a n d  o f  its subse t  T~,,~ (heavi ly m a r k e d ) ,  a n d  the  
set U~ (heavy  dots) ,  fo r  p = 4, h e n c e  k = 3 p + 2 = 14 

As bw, e approaches ~, ~(T~, U~) approaches infinity for the simple reason 
that, for a certain nonempty  subset Te,,~ of T~ (and in terms of the definition 
(5.3)), 

#(T~, ~, G) - - '  0. 

To be precise, these are the conditions on the w-side whose support  tips are 
not in Ue, i.e., the conditions z2~- ~,j,j = 1 . . . . .  s; s = 1 . . . .  , l_pJ (see Figure), which, 
by Lemma 4.2, have no support  in U~ when bw,~ = re. This is the reason why, 
in Proposit ion 6, we had to switch to a different construction when bw,~ (or 
b~,, ~) equals ~. 

On the other hand, this means that, by adjoining these conditions to the 
reduced ring r~ instead, #(rw, Ue), while not guaranteed to be zero anymore, 
would be small for b~, ~ ~ ~z, hence a suitable bound is available from Lemma 5. 
The only difficulty still to be overcome stems from the fact that Lemma 5 does 
not require /~(r~, Ue) to be small, but #(T~, U~) with T~ the basis for span(r~) 
chosen by Auerbach 's  theorem. Since this (normalized) basis is constructed only 
with regard to its condition ~Crw, the best that we can offhand say about  #(Tw, Ue) 
is that it is __< 1, and that is not good enough for an application of Lemma 5. 

We deal with this final difficulty as follows. With a positive 

to be chosen shortly, we modify our definition of Te in Proposit ion 6 in case 
Ibw, e-~[<=b to exclude the conditions Te, w. Note  that this, correspondingly, 
modifies R . . . .  hence ultimately r,~, to include T~,w. With this modification, T e 
stays linearly independent over U~ as long as b < a since 

27c-2a>=bw.e+bw,,e, 

hence zc -bw , , e>2a-b>a ,  i.e., bw, e must stay away from zc when b~, e is close 
to zc. Consequently, ~C(Te, Ue) is bounded in terms of a (and k). 

Since now the elements of rw may have some support  in U', we need to 
be more careful in the choice of the basis Tw for span(rw). Among  the many  
possible bases Tw for span(rw) with ~cr,< #~rw (of which there is at least one 
by Auerbach's  theorem), we choose one that minimizes kt(Tw, U'). Since 



360 C. de Boor and K. H611ig 

#(R, Ue)=0 for an arbitrary basis R of span(rw) in case bw,~=~z, there exists, 
for given e>0,  a positive b = b(e) so that 

tt(Tw, U')<e. (7.5) 

Choose now a positive b so that (7.5) holds with 

e..= 1/(8 sup ~c(Te, Ue) max ~G). (7.6) 
e v 

Then Lemma 5 provides a bound for ~c(T, U) in terms of SUpex(T~, Ue) and 
max~ ~ rv, hence, ultimately, in terms of a and k. []  

8. Sharpness 

In this final section,w e show that, already on the three-direction mesh A = A3, 
the approximation order from ~,a3 is no better than k when k < 3p + 2  (and 
p =  1,2,3). 

The argument is that of [BH83] where this was shown for k =3 ,  p =  1, 
and runs in general as follows. Recall from Sect. 2 that 

dist ( f  S) = 0 (]A I k+ x) + dist (P f, S) (2.5) 

and that I,~Pfl 
dist (Pf S) = max - -  (2.6) 

Thus it is sufficient to exhibit a smooth function f and a linear functional 
2 = 2 ~ S  • for which 

]2Pfl >_ constf [A ik (8.1) 
Ir ,~ f l  - 

for some positive const I. 
We pick the domain G on which we want to approximate to be a square, 

G = [0, m ]  2 

say. We choose A =A3, with A3 the three-direction mesh, i.e., the partition of 
IR 2 provided by the three meshline families 

x(1)=n,  x(2)= n, x(1)-x(2)=n, for all n~Z. 

Further, we pick some v ~ S •  0 with the following three properties: 
(i) supp v c [ -  1, 1 ]  2. 

(ii) For  some homogeneous polynomial g of degree k + 1, v g + 0. 
(iii) ~ vE"=O. 

n~Z 2 
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Set 

with 

Here, E denotes the shift, i.e., 

EZf (x) ,=f (x + z). 

~:= 2 yen 
n ~ N  

N :={n~7Z2 : supp (vE") c G}. 

Then, since (1--EZ) rCk+I~__ZCk, and P is the identity on ~k, and v vanishes on 
S and therefore on ~k, 

2 P g =  ~ vE"Pg= #Nvg~M2v f  
n e N  

On the other hand, from Property (iii), 2 has support only near the boundary 
of G, hence 

[r2l[ 1 ~ perimeter (G) ~ 4 M  Irv rl 1. 
Consequently, 

[2Pg[/[12]11 ~ const M 

for some positive const. Finally, a re-scaling of the plane by 1/M carries G 
to the unit square [-0, 1] 2 and carries g to g/M k+ 1 hence provides the sought-for 
inequality 

[2P g[/[[21] l >= const [A[ k. 

For  p = 1, i.e., k = 4, a suitable choice for v is the sum 

Y ~--- ~(2,  1), 1 - -  "L'(2, 1) ,2  +27(2 ,  1) ,3  --27(2,  1), 4 "~ "C(2, 1), 5 - -  "C(2, 1) ,6  -~ "C(3, 0), 4 - -  "C(3, 0), 1 ,  

in which the various smoothness conditions z~,e are described in shorthand, 
as follows. The vertices of A involved are enumerated as 

c .-=0, v 1 .'=(1, 0), v2 .'=(1, 1), v3 :=(0, 1), 

v3 +/-'= --vj, allj. 

These are the center and the six corners of a regular hexagon. The edge e = [c, vj] 
is specified by the number j, and only the two possibly non-zero entries of 
fl are given, with the first one always specifying fl(c). One checks that, with the 
normalization 

{11, f~ v=O, vJ 4, 
z(3, o),j(v)= , for v=vj+l/4, 

otherwise, 

the linear functional v takes the simple form 

v(v) = f  ( -  1) j, if V=vj/2; 
t o  otherwise, 

j=l ,  ...,6, 
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/ 

Fig. 8.1. A suitable linear functional v as the sum of Cl-smoothness conditions zp,~ for p = 1, k =4. 
The actual support of v is indicated by circles (weight - 1 )  and crosses (weight 1). The typical 
z~, e is shown to the right in the same way 

Fig. 8.2. A suitable linear functional v as the sum of certain ag, e when p = 2 ,  k=7.  The actual support 
of v is indicated by circles (weight - 1 )  and crosses (weight 1). The typical ap, e is shown to the 
right in the same way 

and that  therefore vg4:0  for the monomia l  g..=()(3,2), and also that  Proper ty  
(iii) holds. This case was earlier t reated in [J 84]. 

Fo r  p - -2 ,  i.e., k = 7, the const ruct ion  is almost  as simple. Using the same 
nota t ion  for the details of the A 3 parti t ion, we consider here the element a~,j 
,='C~,j--'Cp+ee,j--"CB+evj,j in S l ,  which, for f l=(5,  0), is of the following form: 

10 if v = (2/7) v j_ 1, vj + 1/7, (vj + 1 + v y 7 ,  

or(5, o), j (v) = 1, if v = (2/7) vj + 1, vj_ 1/7, (vj_ 1 + @/7, 

otherwise. 

With this definition, a suitable v takes the following simple form: 

6 

v =  Y 
j = l  j - - l ,  3,5 
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One verifies that 

v ( v ) = f +  1, if v=(3vj+vj+l) /7  , 

to otherwise. 

This makes it easy to verify that Property (iii) holds and that vg4=O for all 
the 8-th degree monomials g = ()~' 8-j) with j 4= 0, 4, 8. 

For  p = 3, i.e., k = 10, the construction becomes complicated enough to make 
us desist writing it down here. We have not yet obtained a construction for 
general p. 
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