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The Perturbation Bounds for Eigenspaces
of a Definite Matrix-Pair*
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Summary. Let 4 and B be Hermitian matrices. The matrix-pair (4, B) is
called “definite pair” and the corresponding eigenvalue problem Ax=ABx
is definite if ¢(4, B)= min {|x¥(4+iB)x|}>0. The perturbation bounds for
xil=1
eigenspaces of a defin“itg pair on every unitary-invariant matrix norm were
obtained by imposing additional restrictions on the location of the genera-
lized eigenvalues. Thus it gives a positive answer for an open question pro-
posed by Stewart [7]. The famous Davis-Kahan sin 6 theorems and sin26

Theorem [2] can also be deduced from the present results.

Subject Classifications. AMS(MOS): 65F15; CR: 5.14.

Introduction

“Definite pair” is a class of important matrix-pairs (see [10]). Some results on
the stability analysis of the definite generalized eigenvalue problem were ob-
tained by Crawford [1], Stewart [7] and the author [9]. Stewart [7] has ob-
tained perturbation bounds in the Frobenius norm for the eigenspaces of a
definite pair under certain conditions and has pointed out: “For the Hermitian
eigenvalue problem, Davis and Kahan have been able to obtain bounds on the
spectral norm by imposing additional restrictions on the location of the eigen-
values. Whether such bounds can be obtained for the definite generalized
eigenvalue problem is an open question.”

The present work gives a positive answer for this open question. Pertur-
bation bounds not only on the spectral norm but also on every unitary-in-
variant matrix norm are obtained (see Theorem 2.1, i.e. the sinf theorem for
definite pairs). Moreover, under weaker conditions a perturbation bound for
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the eigenspaces is developed (see Theorem 3.1). Besides, a part of the Davis-
Kahan sin 28 theorem is generalized to definite pairs.

The abovementioned definitions and some basic results are given in §1. The
sin # theorem, the generalized sin 6 theorem, the sin 260 theorem and the streng-
thened sin 26 theorem for definite pairs are proved in §2-§ 5, respectively. The
last section points out that from our results one can deduce the famous Davis-
Kahan sin 8 theorems and sin 20 theorem [2] by a limiting procedure.

Notation. Upper case letters are used for matrices and lower case Greek letters
for scalars. The symbol C™*" denotes the set of complex m x n matrices. A and
AT stand for conjugate and transpose of A, respectively; A7=AT. I™ is the
n x n identity matrix, and 0 is the null matrix. For a Hermitian matrix H with
eigenvalues {a;}, H>0 (H z0) denotes that H is positive definite (semi-positive
definite) and A, (H)=min {«;}. Let | || denote the usual Euclidean vector

norm, || ||, the spectral norm and | | the Frobenius matrix norm. The col-
umn space of 4 is denoted by #(A4). ¥ Nn.% and AU Y stand for the intersec-
tion and union of two sets % and ¥, respectively, and @ for the empty set.
The chordal distance between the points («, f) and (&, f) in the complex pro-
jective plane 2(1,1) is

p((@ B). (& B) =l B —Bélfy/ (o + 1817181 +|B17).

min(

§1. Preliminaries

Definition 1.1. Let Hermitian matrices A, BeC"*". (4, B) is a “definite pair”, if

c(4, B)= ‘n‘lin {|x#(A +iB) x|} >0. (1.1)

xjl=1

ID(n) denotes the set of all definite pairs of n x n matrices. The following Theo-
rem 1.1 and Theorem 1.2 are well known (see [7]).

Theorem 1.1. Let (4, B)eID(n). Then there is a nonsingular matrix QeC"*" such
that
Q"4Q=4, QYBQ=Q, A=diag(x), Q=diag(B). (1.2)

Theorem 1.2. Let (A, B)eID(n) and
A,=cospA—sinpB, B,=sinpA+cos¢B, (1.3)

where ¢ is a real number. Then there is a ¢€[0,2n] such that B,>0 and
c(A, B)=1,;.(B,)-

Definition 1.2 [3]. Let A4, BeC"*". A vector xeC", x=+0 is an eigenvector of
(4, B) corresponding to the generalized eigenvalues (o, f), if

(@, B)+(0,0) and BAx=uBx.

If B0, then /1=% is a finite generalized eigenvalue of (4, B), and d is called

B

the non-homogeneous coordinate of the point (a, f) in the complex projective
plane.
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A(A, B) denotes the set of all generalized eigenvalues of (4, B).
Eigenspaces of a definite pair, as a generalization of the eigenvector
concept, have been defined by Stewart as follows.

Definition 1.3 [7]. Let (A4, B)eID(n). A subspace & is an eigenspace of (4, B) if
dim{(AZ +BZ¥)=dim(%).

According to [7] (see [7], 79-80), we can adopt the following decompositions
in order to study perturbation bounds of any /-dimensional eigenspace for
(A4, B)eID(n):

ZHAZ=(1‘:)1 :), ZHBZ = (%1 ;), (1.4)
2 2

where A,, B,eC?*¢, and
Z2=(Z,,2,), ZRZ, =19, ZHZ,=1""9, 0</<n. (1.5)

Obviously, #(Z,) is an /-dimensional eigenspace for (4, B), (4,, B,)eID(¢) and
(4,, B,)eID(n—¢). We shall use the same notation for perturbed pairs
(4, B)eID(n), expect that all quantities will be marked with tildes. Let

U=(Z;,W,), U=(Z,,W,) (1.6)
be n x n unitary matrices, Z,, Z,eC"*’, and let
O, =arccos(ZHZ, 787 * >0. (1.7)

Now we discuss the relationship between the matrix Z¥ W, and the rotation of
R(Z,) to #(Z,) and explain the geometric significance of the quantity |[sin @, ||
for every unitary-invariant matrix norm.

Let
= Zl Zils Qo=1-
=274  Q,=I-

B R=1-Z,Z] =W, W}, (1.8)
R R=1-2,Z{=W,W}.

Evidently, if there exists a unitary matrix ¥, such that
VRVA=B, (1.9)
then from the relations
RZ)=BC"=VRVIC'=VEBC'=VR(Z,)

we know that V is indeed a rotation of #(Z,) to #(Z,). Now we seek the
representation of V.
First, we write 7
V=UUEVU)UR=(Z,,W,) T (W;H)’ (1.10)
where

T— (?{IVZ1 ??VW2)=(T1 Rx)
WiVZ, WiVW, R, T,



324 J. Sun

is a unitary matrix. From (1.8) and (1.9) we obtain VB,=BV, VQ,=0,V and
thus THT, =19, T} T,=I""9, consequently R, =0, R, =0. Substituting such T
into (1.10), we obtain

v (3 ) () () 5 2) (71

=U (;‘ ?) U, C,=ZYZ7,T,,8,=Z8W,T,.
Suppose that the singular values of Z¥Z, are y,,...,7,, then 6,=cos™'y, (i
=1,...,£) are exactly the angles between the corresponding base vectors of
#(Z,) and #(Z,) by a suitable selecting of their base vectors. Hence from (1.7)
it follows that

©,=arccos(C, CHHt =0,
and thus

S, 89=1-C,C¥=1—cos?O@,=sin"0,.

Then we have

Isin®@, || =S, l=1Z} W,]| (1.11)

for any unitary-invariant matrix norm | |. Therefore |sin @, is a measure of
the difference between the subspaces %#(Z,) and #(Z,) (Ref. [2], 9-10; [5],
733-736).

In addition |sin26,]| is also a measure of the difference between the sub-
spaces #(Z,) and #(Z,) (Ref. [2], 8-11).

In [8] and [3] the author used the generalized chordal metrics

dp(Z,, Z1)= [tr(Z —le.lzl 211121)]%
and
dy(2,,2)=[1-2%2,21Z,|,1*

to characterize the distance between the subspaces 2 =%(Z;) and F=RZ));
here we assume Z¥Z =Z%Z =1 without loss of generality. Obviously, the
relations

dF(Zl’ZNI)=HSin@1”F7 dz(Z1’Z~1)=”Sin@1H2
are valid.

Hence, according to [3], if P, and Pj; are the respective projectors onto &
and %, then

[sin & [|p= 12 1P —Pelle,  Isin @[, =Fy—Pell- (1.12)

In §4 and § 5 we shall use the following lemmas.

Lemma 1.1. Suppose that Z=(Z,,Z,)eC"*", Z"Z,=1Y and ZYZ,=1""7,
0<¢ <n. Then Z is non-singular iff |Z¥Z,|,<1.

Proof. There exist matrices U, X and V such that Z#¥Z,=UZXZVH UZV¥ is the
singular value decomposition (SVD) of Z¥Z,, where UeC’*’ and
VeCT~9*"=9 are unitary matrices, and X =diag(s,,0,,...,)eC?*"~9 in which
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0,20,2...20. And thus we have |det Z|*=][(1—0}) and |Z!Z,],=0,<1.

Therefore det Z+0 iff |Z¥Z,],<1. [ i
I B
Lemma 1.2. Suppose A= (BH I) and ||B|,<1. Then

[All,=1+1Bl, (1.13)
and

1A=, = (1.14)

1-|Bl,’
Proof. Utilizing the SVD of B: B=UXV¥ U and V are unitary matrices, X
=diag(s,,0,,...) with 0, 2¢,=... 20, we get (1.13) and (1.14) at once. [

Lemma 1.3. Suppose A,eC™*™, A,eC™ ", m<n, and A A%+ A,AY =1, then
there exist unitary matrices U, V| and V,: UeC™*™ V,eC" ™™ and V,eC"*",
such that

A, =UX,VH, A,=UZ,Vin, (1.15)

where X =diag(a,, o,, ...) and ¥, =diag(B,, B,, ...) satisfying
“i_z_oa ﬁiz(), a12+ﬁ12=1’ 1:1’27

Proof. Using Theorem 2 in [11], there are a non-singular matrix U and unitary
matrices ¥; and V, such that (1.15) holds, where X =diag(a,,a,,...) and X,
=diag(B,, B, ...) satisfying «;, §;=0, i=1,2, .... From A, A¥+B,BY=T1 we de-
duce a?+p?=1 for i=1,2,..., and UU¥ =] by a suitable selection of those
{o;} and {B;}. [J

§ 2. The sin 0 Theorem

The following theorem is the main result in this paper.

Theorem 2.1. ( The sin 6 theorem for definite pairs). Let (A, B), (4, B)=(4+E, B
+ F)elD(n) with the decompositions given in (1.4) and (1.5). Assume that there are
220 and 6>0 satisfying a+90=1, and a real number v, such that

oy, Dy (o, B S, Vo, BeA(A,, By) 2.1

p((ya 1)9 (&ja EJ));G‘F(S, V(&ja Ej)e’{(/127 EZ) (22)

(or vice-versa). Then for every unitary-invariant matrix norm,

and

p(@ 0; V) I(4, B)l, I(EZ,,FZ,)|

Isin ) == By (A B) 5 ; (23)
where @ | is defined by (1-7),
(0, 5: ) = L F Y1~ +o}/1~(@+9)]
P& 059= 20040 ’ 2.4)

a(y)=V2 for y+0 and g(0)=1
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and

1A, Bl .=V 14>+ B*,, WEZ,,FZ)I=VIEZ,|I*+|FZ,|*>. (25
Proof. This theorem is proved by the following steps 2.1-2.4:

2.1. The Perturbation Equations

First, set
W=ZH=(W,W,;), W=ZH=(W,,W,;, W, and WeC"** 2.1.1)
in which Z and Z were given in (1.4) and (1.5). Moreover, set
0 ) e ((Wf” w0 )
(W Ew)~t) 0 (W7 w4
(2.1.2)

e (0
0

and
(W5 W) (4, B)=(4, B), (W W), B)=(4;, By, j=1,2. (213
Then (1.4) can be written as

(5 9).(5 8) zsn-n((5 2 (5 )

where Z=(Z,,Z,), W=(W,, W,), Z=(Z,,Z,) and W=(W,, W,) satisfy
ZHZ, =232, =WEW, =WIW, =19
Z82,=78Z7,=WAW,=WHIW,=1"-9, (2.1.5)
ZiwW,=22W,=0, Ziw,=ZiW,=0.

From (2.1.4) it follows that AZ, =W, A, BZ, =W, B;, so that we define the
residuals

R,=AZ,~W,A;,, R,=BZ —W,B;. (2.1.6)

Obviously, the relations

R,=EZ,, Ry=FZ, (2.1.7)
are valid.
Utilizing (2.1.4) and (2.1.1), we know

A=W, A, WH £ W, A WE  B=W, B, WH+W,B, WA
Substituting these relations into (2.1.6) and taking the transpose conjugate, we
get

R =Z (W, AE W+ Wy A W) — A7 W

o o (2.1.8)
Rl =ZH(W, BEWE-+ Wy BH Wi~ B W
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Moreover, utilizing (2.1.5), (2.1.2), (2.1.1) and (2.1.8), we obtain

RYZ,=ZIW,(W R W AF (W R W)t~ A Wi Z, 2.19)
Ry Z,=Z{ W,(W;" Wy B (W, " W)t —B Wi Z,
Let
A, =W W)= Ay W Wt = A, (W3 Wiyt 2110
B, =(W; Wy) 2 By (W3 Wi)% = B, (W3 Wy
Then (2.1.9) becomes
RZIZNZ=Z¥W2,4I‘;’—A’1HW1HZ~2 2.1.11)

REZ,=ZYW,BY —BHWEZ,.
Let
WHEZ,=X, ZiW,=Y, —RHZ,=C, —R¥Z,=D, (2112
then the Egs. (2.1.11) can be written as
AFX-YA¥=C, BEX-YBY=D, (2.1.13)

where A, BjeT’*’, 4,, B,eC"~"*®-9 and X, YeC’*"~9 are the unknowns.
From (1.11) and (2.1.12) it follows that

1 Y]|=sin &, ]

for every unitary-invariant matrix norm. Hence for the proof of inequality (2.3)
it is sufficient to establish (2.3) for || Y.

2.2. The Simplification of the Perturbation Equations
Now we give suitable representations for A}, B, A, and B, in the Egs. (2.1.13)
and transform the equations into a simpler form.

Since (4;, B;) {(i=1,2) in (1.4) are definite pairs, there are non-singular ma-
trices P. and real diagonal matrices A; and ©, (i=1, 2) such that

(/2)1 /(1)2)=diag(°‘k)’ (%1 ng>=diag(ﬁk),

2.2.1
(Ai9 Bi)ZIJiH(Ai‘Pi’QiPi)’ A12+Q:2=Ia l= 1’ 2 ( )
Let ,
P10
Q=Z(1 _1)=(QI,Q2), Q,eC""; (22.2)
0 B
evidently Q satisfies
A, 0 Q0
H 4 =A=( ! ) Hp =Q=( ! ) A2+Q%=1. (223
0ndg=a=(\' /). e"Bo=0=( o). A4+ 223)

Substituting Z,=Q, P, into Z¥ Z;=1, we get
RET=(QFQ)", i=12.
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Moreover, substituting the unique decompositions F=H;V; (H;>0 and V, un-
itary) into the above relations we have H,=(Qf Q,)~%, i=1, 2. Hence
P=QfQ) Y, (2.2.4)
and
Z,=0,07 Q) *V, V unitary, i=1,2. (22.5)
Further from (2.1.1) it follows that
I ZEzZ N\
W/HW/Z ZHZ —1=( 1 2)
D" =gz
_(I+Z§’ZZ(I—ZQIZIZ’l’Zz)‘lz’Z’Z1 * )
- * (1_22{212{{22)‘1 ’

combining this relation with (2.2.5) we obtain
WHW, =1+Z8Z,01-282,Z2 )" Z8Z, =(1-2Z%Z,Z%Z)~". (2.2.6)
Therefore using (2.1.3) and (2.2.1) we get
A, =(W" W, PY AR, B,=(W{"W)B"Q,P, (227)

where P, and W/¥ w; are given in (2.2.4) and (2.2.6), respectively.
Similarly, since (4;, B;) (i=1,2) are definite pairs, there are non-singular
matrices P and real diagonal matrices A, and @, (i=1, 2) such that

(3 1)-ameay. (3 g)-dueti

0 A, 9]
T (2.2.8)
(A, B)=FM(AB,QF), AF+0i=l, =12
Let -
S (B0 )
0=2("y 4)=0100. giec

evidently O satisfies

Q”EQ=/T=(/Z)1 AO) QHBQ=Q=(QI 0), Be@?=1 (229

In the same way as above we have

B=(07'0)7 %V, (2.2.10)
and .
Z,=0,080)"*V, V, unitary, i=1,2, (2.2.11)
and
WiR Wy =(1-25Z, 2 Z,)". (22.12)

Hence by (2.1.10) and (2.2.8) we obtain
A, =B A, B(WA W), B,=BIQ,B(W" W), (22.13)
where B, and W, ¥ W, are given in (2.2.10) and (2.2.12), respectively.
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Substituting (2.2.7) and (2.2.13) into the Egs. (2.1.13), we obtain the sim-
plified perturbation equations

A X =Y, A,=C,, Q, X, -Y,9,=D,, (2.2.14)
where
X\ =RW"W)PrXE, Y, =R "YW " W) B! (22.15)
and
C,=P%CE™', D,=P DB (2.2.16)

2.3. The Proof of the Inequality (2.3) for y=0

From (2.1) and a<1 we know that §,+0 and
foui/ Bil

WP o for 1<i<y, 23.1)
1+(°‘i/ﬁi)2
and thus
) s s
%) < . 1<ig/.
Bl =12 ==
Combining the above inequalities with a? + 2 =1 (see (2.2.1)) we obtain
fa | o L < ! 1gig/
BN Y= T T
Le.
i
14,0, =0, Q7ML S = (23.2)
—a

Similarly from (2.2) and «+6>0 we know that &,+0 and

1
——————2>a+é for {+1Zj<n, (2.3.3)
V1+(B/a)’?

By -ty

& (x+6)%

and thus
{+1Zj5n.

Combining the above inequalities with &7+ ff7 =1 (see (2.2.8)) we obtain

1
BiSV1—(a+6)?, —=— (+15jSn,

& ~a+o

19,1, SV 1 —(a+5)2. (2.3.4)

Combine {2.3.2) and (2.3.4) with the Egs. (2.2.14) and remember that every un-
itary-invariant norm || || is compatible with the spectral norm (Ref. [2], 23;
[6], 638). Then from

- - 1 -
1Y =1Y,4,] ”Az_lnzém 1Y A,

[

ie.

Al s—,
135125
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and
1
IX =17, 1192, X, Il<m|191X|I
we get
ICHZ Y A, =114, X [ 2 (2 +8) | Yyl —a | X,

and

ID 2R, X, =Y, Q1 2V 1—o? | X, | =1 1—(a+8) | Y],
so that

”Y”<I\C1\|+aI\X1H [Cill +a(iD, || +1/1=(240)* | Y, )y 1 —o?

! a+d o+0 '

Therefore

W/ T=a2 |Gl +a D, ) e+ 8) Y 1—o2 +a)/T—(a+0)7]
(a+6)> —a?

<p( ;0 VIC, 12+ 1D, 11%/5. (2.3.5)

Il =

Observe that (W;HW;)~'<I"~9 (see (2.2.12)); then from (2.2.15), (2.2.16),
{2.1.12) and (2.1.7) we have

. NY IS HBI 1B, 1Y) (2.3.6)
an
VICH2+ID 2 S IR L 157 L VICT + D)2
IR 1B L KEZ,, FZ)I 23.7)

Substituting (2.3.5) and (2.3.7) into (2.3.6) we obtain
1Y <pe &;0) B I, IR 153 I(EZ,y, FZ,))6. (2.3.8)

Now we estimate |, B[, and |B1]3.
First, it follows from (2.2.4) and (2.2.10} that

(P PP (2 e E A s P9 (0 Y]

1B 3= 1@% @l

Secondly, by Theorem 1.2, for the definite pair (A, B) there exists a real number
@ such that B, =sinp A+cospB>0 and 4,,(B,)=c(4, B). Utilizing the de-
composition (2. 2 3) and writing

(23.9)

Q, O
Q,= A+ Q= )
sin@ A+cos @ ( 0 @,

where Q, is a real diagonal matrix, 0<Q <] and Q, «,e(E’ *¢ then we have

c(4, B) Q?Ql £0{B,0,=0Q

e o
4 B4 B)

ie.
19, (2.3.10)

QHQI-—
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and thus
QY QIE<1/e(4, B). 23.11)
Similarly we have
079,< (Al’ 5 179, 194 0,1,21/c(4, B). (2.3.12)
Thirdly, from (2.2.3),
Q7 AQ,)* +(Qf BQ,)*=1Y. (2.3.13)

Decomposing
0,=V,K,, VeC™, VEV,=I9 non-singular K,eC’*’, (23.14)
substituting this decomposition into (2.3.13), and writing

VlHAV1=M, VIHBV1=N, (2.3.15)
we get
(K, K¥)"'=MK,K¥M+NK,KIN. (2.3.16)
Therefore
“(Q?Ql)_l ||2= |!(K¥K1)_1 ||2 = ||(K1 Ki!)_l Hz
SIM2+ N2, 1K KD, (2.3.17)

Moreover, it follows from (2.3.14) and (2.3.11) that

1
K KDL= IKT K )l = H(Q?Ql)llzéc(—A—B-), (2.3.18)
and from (2.3.14) and (2.3.15),
IM?*+N?|,<|A%+B?|,. (2.3.19)
Hence from (2.3.17)-(2.3.19) we get
_1y AP +B?,
QY 2,) lllzé—c—(—m (2.3.20)
Fourthly, substituting (2.3.11), (2.3.12) and (2.3.20) into (2.3.9), we get
(4, Bl _1 1 5142 1
P, P, <—, P S—s. (2321
“ 1“2—ma ” i HZ_MB‘)“ ” 2 “2 C(A,B) ( )

Finally, substituting (2.3.21) into (2.3.8) we obtain (2.3) for y=0.

2.4. The Proof of the Inequality (2.3) for y+0

Let c=1//14+92, s=y/)/1+7?,

Ajp=diaglag)=cA;—sQ,, Q ,=diag(B)=sA,+c,
and
Ay =diag(@;,)=c A, —s92,, Q,0=diag(B;0) =54, +cQ,.
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We have
. LN W Al Y
Y ey
and
§.—v 8. N 5.4 8.
Bo=ill  fo=T0 Bi for 41<j<n

:

1+7y2
which satisfy

p((o’ 1)5 (aiO’ ﬁiO))—_<-a 1§l§f
and
p((0, 1), (@0, Bio))Za+d  ¢+1<j<n.

At the same time the Egs. {2.2.14) become
AloXx“Y1/Izo=C10’ Q1oX1“Y1Q20:D10a
where
Co=cC,—sD,, D;,=sC;+cD,.
According to the proof in 2.3 (see (2.3.5) and (2.3.6)) we have
1Y <ple 3; 0 1B, 1B, (Y 1—a? [ Coll + 2D yol)/S
for every unitary-invariant norm. However,

V1= [Cioll+a|Dol SVICiol* +1D;0ll

<V2(IC,|*+1D,]?), (2.4.1)

hence the perturbation bound in Theorem 2.1 contains the factor /2 for y=0.
The proof is complete.

§ 3. The Generalized sin 6 Theorem
We notice that for the norm || ||, the inequalities (2.4.1) become

V1= [Ciollr+2lDyol e SV IC 03+ D10l 2=VIC, 12+ 1D, 112,
and thus g(y)=1 in (2.4). Hence from (2.3) we obtain

4, B)l, IEZ,, FZ))||¢
4, B)c(4, B) s ’

Isin®; 1= (3.1)

where

EZ,, FZ)lle=VIEZ, |3+ |FZ|%.

In this section we prove that under weaker conditions the inequality (3.1) is
also valid.
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Theorem 3.1. (The generalized sin 0 theorem for definite pairs.) Let (A, B), (4, B),
Z and Z be the same as in Theorem 2.1. Set

o= mm{p (o, Bo), (B3, BY): (o, BIEA(A,, BY), (&, BeA(A,, By}

If 6>0, then the inequality (3.1) is valid.

Proof. We associate the matrices X, and Y,eC?*"~9 with the /(n—£)-vectors x
and y which are the direct sums of the column vectors of X, and Y|, re-
spectively. Similarly, C, and D,eC?*®~? with the £(n—¢)-vectors ¢ and d, so
that the Egs. (2.2.14) take the form

(I®A1)x—(/12®1)y=c
(I®Ql)x——(§§2®1)y=d,

where ® is the Kronecker product symbol (see [4], 8-9).
From (3.2) we obtain

(14,009, -3,®4,)y=—-(1I®Q,)c+(I®1,)d

min Iaﬂ =Bl Iyl =V e+ 1d]?

=
J

(3.2)

and

i
_ <j
ie.

IC IF+ 1D, 117

AR

(3.3)

Moreover, according to (2.2.16), (2.1.12) and (2.1.7) we have

VIC 13 +ID i =VIR "REZ, B 13+ IR R Z, B
<IB Mo 1B L VIR 43+ IR
<IB L 1B, WEZy, FZ ),
and so it follows from (2.2.15) and (3.3) that
IY IS IR I0R B 13 EZ,, FZ,)il /0. (3.4)

Substituting (2.3.21) into (3.4), we obtain (3.1). The proof is complete.

§ 4. The sin 20 Theorem

In this section we hypothesize a gap between A(4,, B,) and 1(4,, B,), and thus
obtain the sin 26 theorem for definite pairs.

Theorem 4.1. (The sin26 theorem for definite pairs). Let (A,B), (4, B)=(4
+E,B+F)elD(n) with decompositions given in (1.4) and (1.5), A(A4,,B,)
={(&, f)}_, and A(A,, By)={(&, B)}'_,, . Assume that there are 020 and
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0>0 satisfying a+5<1, and y a real number, such that

&, B)ei(4,,B))
% S 4.1
P ) (a,,ﬁ»{> s v(a”ﬁ) B (.
(or vice-versa). Then for every unitary-invariant matrix norm,
2 E F
Isin 20, | ——= Isin @, )2 s N 42)
1-¢ )
where O, is defined by (1.7) and ||(E, F)|| by (2.5),
1+¢&
E=1Z1Z,,, n=1"¢ (4.3)
and , s
. o~ ; 1) (4, B
rEr(A,B; a,é;'y;r’)=p(a’5’y)rl (’z+~ )”( 3 )HZ; (4.4)
(c(4, B)?
here p(a, &; y) is given in (2.4) and (A, E)H; is defined by (2.5).
Proof. 1. Let
W=ZH=(W,W,), W=ZH=(W,,W,), W and WeC"*‘ (4.5)
and
X=Wz%-w,Zz4. 4.6)
The matrix X satisfies
X2=1I, 4.7

and from the Lemmas 1.1-1.2 and (1.5) we get

I(” 0
X1t = ”W —I) z" 2§||W||2||Z||2=1/H(Z"Z)‘11|2||Z”Z1i2
1+Z2¥Z,],
iz, 4o
Writing
E, pPH F, oH

Hp7_ ("1 Hpz7 ("1 9
Z"EZ (P Ez)’ Z'FZ (Q Fz)’ 4.9)

then it follows from (1.2), (4.5) and (4.6) that

A, O E, PH

A+ XEX"= W’(O1 AZ)W’”+(W{Zi"—Wz’Zé’)W'(P1 EZ)W’(ZIW;”-ZZWZ’”)
, (A, +E, PH )( wiH )

"(Wl”WZ)( P  A,+E,)/\-wH

A,+E, PH )W’"XH

=XW/( 1
P A,+E,

5 . (A, O\ .
= XAXA=XW (Al . )W’”XH. (4.10)
0 4,
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Similarly,
< (B 0\
B+XFX"=XBX"= XW’((;E)W’HXH. 4.11)
Let . - i
A=A+ XEX® B=B+XFXH¥ 4.12)
and

Z,=XUZ (ZEXX"Z)t, Z,=XHZ,ZHXXY"Z,%
Z=(Z,,Z,). (4.13)
It is observed that
(WHXH"1=XHZ, (4.14)
then we can write (4.10) and (4.11) as

S

VAW

N)

4,0 snas (B O
Z”BZ=( ' ) 4.15
(OAz), ’ ( )
where ZH 2, =19, 787, ="~ and
A=HAH, B=HBH, H=@ZIXX"Z)" i=12 (416

From (4.14), (4.12) and (4.10) we have

(4. B)= inf FXAXHx)2+(xHXBXHx)2 %
R xHx
g JOT AV 07 By

yHXXH

y*+0

— (4, B)y=—=c(4, B)>0, 4.17)

1
“HXHz

f

which shows that the Hermitian matrix-pair (4, B) is in ID(n). Moreover, from
(4.16) we have

MA,, By)=4(4,, B,). (4.18)

Therefore the decompositions (4.15) and the location of the generalized eigen-
values of the definite pairs (4, B) and (4, B) satisfy the hypotheses in Theorem
2.1, hence for
O, =arccos(ZHZ, 787 * 20 (4.19)
and
f=A—-A=E—~XEXY F=B—-B=F-XFX¥ (4.20)

and for every unitary-invariant norm we have

<P®8;7) (4, mliz WEZ, FZ)|
c(d,B)c(4,B) s '

Isin @, || < (4.21)
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2. Let W,~W be defined by (2.1.1) and (2.1.2). Then obviously Z=(Z,,Z,), W
=W, W,), Z=(2,,2,) gnd W=(W,, W,) satisfy (2.1.5).
By the definition of &, (see (4.19)) we have (Ref. {1.11))

Isin @, 1| =1 Z¥ W, |l = |(ZY X X" Z,)~* Z{ X W, |,
and thus
|12 XW, | < W(Z¥ XXT Z,)H], lIsin 6, . (4.22)

Utilizing (4.6) we get
ZUXW, =20 W, ZY W, - Z8 W, Z¥ W,
but from (4.5) and (2.1.5) it follows that
ZUYW, ZE W, + 2w ZE W, =20 (W' Z¥) W, =Z% W, =0,

therefore N . 3 N
Z’I’XWZ=ZZ{’ Wy Z’l’ W,. (4.23)

Moreover, observe that the matrix (Z,, W,) is unitary, and Z¥ W’'=1; therefore
we obtain
W, =(Z,Z0+ W, W W/ =Z,+ W, WE W,

Substituting the above relation into (4.23), we get

ZEXW,=2Z0Z ZUW,+ 278w, WE W, ZE2W,.
Then combining this equality with (4.22) we obtain

2\ ZH 2, ZE W, | =2 |W Wi, | ZE Wy | 1 ZH Wl

SWZTXXHZ ), Isin . (4.24)

3. Now we deduce the inequation (4.2) from (4.21) and (4.24). First, from
(2.1.5) we know that the matrix

. ZRZ, Z%W.
H Z. W)= ( 1 ~1 1 ~2)

(Zb WZ) ( 1s 2) WZH Zl WZH WZ

is unitary. By Lemma 1.3 there are unitary matrices U, V;, V,, V, U; and U,

such that

ZHZ =UrvE ZEW,=UzvH Z%z =vrTuf, Ziw,=VETUJ, (425

where
r'=diag(yy, ¥3, ..-), 2 =diag(c,0,,...),

y;=co0s8f, og,=sinf, i=12 ..,

and gg 0,20,=...20. From (4.25) we get

VAR AR PIE VAR AN
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But according to the definition of @, (see (1.7)) we have the relation (1.11),
therefore

IZY W, || = isin ©, . (4.26)
Further, from (4.25) we get

2128z, Z8 W, =2||V,TZVEH|

=|diag(sin 20,)|| = ||sin 26, |. (4.27)
Secondly, it follows from (2.1.2) that
(R A PP 29 i Y 7l A P (4.28)
Utilizing
W/HW/__(ZHz)-l__( 1 ZIILIZ2>_1
- “\zi#z, 1

* *
=(*(I—Zgzlz¥zz)—12§z1 (I—Zgzlefzz)ﬁl)
and |Z¥Z,|,<1 (see Lemma 1.1), we get

[i(WZ'HVVZ’)‘lﬂzz||I—ZngszZ|{2§1
and
1Z5Z,), _ ¢
—-1z5z,1; 1-¢*

H WZ,H W1’”2= H(I—ZZIZI Z¥Zz)~12gz1“2§1

Substituting the above inequalities into (4.28), we obtain

WS (4.29)
Thirdly, from Z2Z =1 and (4.8),
WZEX XHZ, ), < IX ), SV (4.30)
Substituting (1.11), (4.26), (4.27), (4.29) and (4.30) into (4.24), we obtain
. 2 .
Isin28, | -5 Isin @, 1> </7 |sin &, ||. (4.31)
Finally, from (4.10)-(4.12) and (4.8) we get
|A*+B*|,<n* |A%+ B?|,, (4.32)
and from [|Y; ], =1, (4.20) and (4.8) we get
IEZ IS+ IEl, |EZ, (| S(1+n)|F]. (4.33)

Substituting (4.17), (4.32) and (4.33) into (4.21), and combining with (4.31),
we obtain the inequation (4.2). The proof is complete.
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Corollary 4.1. To the hypotheses of Theorem 2.1 add this: Z is a unitary matrix.
Then for every unitary-invariant matrix norm || |, we have

2p(, 8;9) |4, B)ll, I(E, F)|

i < KAl .
[sin2@ || = A B) 5

§5. The Strengthened sin28 Theorem

In this section we give some conditions under which @, and sin2@, will be
small, and we obtain explicit expressions of the perturbation bounds for eigen-
spaces of a definite pair on the spectral norm.

Theorem 5.1. To the hypotheses of Theorem 4.1 add these:

& 5
W= @D 5 (5.1)
é
p((y’ 1)5 (ai’ ﬁ;))é(x—l'i V(ai’ ﬁi)ej(Ala Bl) (52)
and
14 re 2¢
where
@ =arctan (1_—552), e=|(E, F)|,. 5.4
Then beside (4.2) we also have
7
0,< (Z—fg—) I. (5.5)
Proof. 1. We consider the family of definite pairs
(A(t), B(t) =(A—tE,B—tF), 0=<t=<l1 (5.6)

(on account of the continuity of the function c(4, B) [7] and the condition (5.1)
the Hermitian pairs (A4(t), B(t)) are definite pairs). Let (4, B)={(&,, f)}"_, and
A(A(2), B(t))={(oi(t), B;(¢)}!_ ;. According to Stewart’s inequality ([7], Theorem
3.2) and (5.1) we have

Pl B NS S 0<s,  1Sisn
for a suitable numbering of {(a,(t), 8;(t))}. And thus we obtain

U, 1), (o,(0), BN o0, 1), (B, B+ £ (G, B, ((2), Bi(2))

)
§a+w<a+5, 1gig/
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and

(. 1, (o0, BM Z P, D, @, B — (G, B)s (2:(0), B (0))

0
ga+5—w>a+§, £+1Zisn.

But p((y, 1), (w;, ) =a+w and p{(y, 1), {1;,))=0+ 36— for i=1,2. Therefore
A(A(2), B(1)) is disjoint from Jt;, ,[ and from Jw,, 1,[.
2. Let Z{t)=(Z /(t), Z,(t)) be non-singular matrices satisfying
Z,"Z, (=19, Z,("Z,()=1""",
Aty O
A Z(t ( ) ZtHBtZt=(
Z(t)" AW Z(t)= 0 A0 (" B(t) Z()

MA, (1) By ) ={(e, fle2(1, 1): p(y, 1), (& B Sa+w)

B.(t) O )
0 B,/

and
AMA, (1), B(0) = {(e, Be2 (1, 1): p((y, 1), (o By 2 ¢+ 6 — w}.
A(A,(), B ())J ) (Al(t)gBl(t))} {l(Az(t),Bz(t))
T C‘;1 UI’ W, T2

We consider the family of projectors
Py=z,(0Z,(0", Ost=sL. ()

For an arbitrary constant te[0, 1] and a small real number 4¢ which satisfies
0<t+A4t<1, on account of the location of the generalized eigenvalues of
(A,(t), B, (1)) and (A4,({t + A¢), B,(t+ 4t)) we can use Theorem 2.1 for

8,(t)=arccos(Z, () Z,(t+ A Z, (t+ At)* Z (1))* 2 0.
It is observed that (see (1.12))
Isin &, (1)l = | P(t) — P(t+ A1) 53

then according to Theorem 2.1 we get

s V2V TA®IZ+ [BO)I3
2= (A1), B(t)) c(A(t + At), B(t + 41))
_1/I|A(r+At)—A(t)llz+IIB(t+At)—B(t)ll§
(@+0—w)—(a+w)

V2V Al + IEL) + (1Bl + | FlI)?

= (c(d, B)—¢)* (6 —2w)

| B(t)— P(t + At)

|4d =0 (|4t —-0).

This shows that P(t) is continuous in the spectral norm topology. Now we
define
0(t)=sin~" | P(t)— P(O)l,, O=t<t. (5.8)
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Obviously 6(t) is also a continuous function on [0, 1] with 6(0)=0, and it fol-
lows from (1.12) that

0t)=sin~! |lsin®,(t)|,, O,(t)=arccos(Z,("Z,ZXZ,()*=0. (5.9)
Since the hypothesis (5.2) implies P(1)=Z, Z, we have

6(1)=sin~! |Z,Z8-Z ZH||,=sin"! [sin @[, =[O, |,

and thus
6 Iz0,. (5.10)
3. Now we prove
T
o()y<———. .
( )<4 5 (5.11)

Because of the continuity of 6(t) and 6(0)=0, there is a number te[0, 1), such

that H(t)g%——%. Using Theorem 4.1 for @,(t) (see (5.9)), we obtain

sin20(t) < [sin 20, (1),

28 . re
S Isin 0,013+
&, re . & re
= D5 47
& sin H(t)+5 =1~52+ 5

and thus

syt (Za5)s] (Zas)
T

(1 2«))_2 (2
) 4 2

Utilizing the continuity of 6(¢) we obtain (5.11). The proof is complete.

Theorem 5.2. Assume that the hypotheses in Theorem 4.1 and Theorem 5.1 are
valid, and let 6, =0 ,||, (i.e. 8(1)). Then

sin(20, +@)=r cos<p§+sin(p. (5.12)
Proof. Let M(@,)={6,}. According to Theorem 5.1 we have

2

v

_.‘§_>91 0,26,=...20,

¥
4

3

and thus

§>sin(ilgsin92;..g0, 1>sin26,2sin26,2...

v
e
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Therefore

Isin 20, |, —— |lsin @, |2 =2sin 0, (cos()l—i-«_é—éisinﬂl)

=sec ¢[sin(20, + ¢)—sin ¢].

2¢
—e|

Substituting this relation into (4.2) (on the spectral norm), we obtain (5.12) at
once. The proof is complete.

§6. Final Remarks

6.1. In our notation we can state the famous Davis-Kahan sinf Theorem [2]
as follows:

Suppose that A and A=A+E are nxn Hermitian matrices, Z=(Z,,Z,)
and Z=(Z,,Z,) are nx n unitary matrices such that

H _A10) ~H~~_(A10)
z AZ—(O a,) ZHAZ= 0 A,) (6.1.1)
where Z, and Z,eC"*’, 0</<n, A, and A,eC’*’ Let MA4,)={o;}{_, and
MA,)={a,;}_,,, be the eigenvalues of 4, and A, respectively. Assume that
there is an interval [8,, @] and a number d,>0 such that A(4,)<[f,,2,] and
MA)S(— 0, Bo—B8o] g+ g, +00) (or vice-versa). Then for every unitary-
invariant norm,

ECNEL

0

(6.1.2)

where @, is defined by (1.7).
Without loss of generality we can assume that 0<La,=—pf, in the hy-
potheses of the sin0 theorem, because the translation of the spectrum of A,

- + P +
and 4, (by translating A—»A—%z—ﬂol and AAA—% 1 ) do not effect
EZ,.
It is worth-while to point out that the above mentioned sinf theorem can
be deduced from Theorem 2.1. We consider (4, rI) and (A4, rI)eID(n) for r>0, A
=A+E and F=0. Obviously

(ZHAZ,ZH(rI)Z)=((A1 0 ) (’I 0)),

0 4,/°\0 rI
ar o N A, 0 rl 0
zazzen2=((g 4 ) (5 1)
(Z7AZ,27(r]) Z) 0 4, \o 1)

AA,, rD)={(a;,r)}_, and A(A4,,r])= {(&,7)}i_s41- According to the hypotheses
we have

p((0, 1), (o, 7))= < , l=gige
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and
%o+ 04
1
p((0, 1), (&, 1) = > ’ , t1sisn;
r\? oo +80\2
BV
&; r
here
%o oy + 0 o
=qa and r — ! =d

N e N )

satisfy the hypotheses of Theorem 2.1: 220, >0 and «+6 < 1. Hence if we set

Lor=)/1+ () no= L (02), - 1+(”—"!“—2)2

r

HA A
S, ()= inf {l/ x } S,()= inf ﬂ/u(" Ax) }
Hxli=1 ixll=1 r

then from (2.3) and after some calculations, for every unitary-invariant matrix
norm, we have

(Rag+00) t,(r) £,(r) 13(r) |1 EZ, |
S3(r) So(r) [(atg + 8) 11 (1) + 00 15(r)] [(otg + 80) £, (r) — o ()]’

Isin®,|| =

which gives the inequality (6.1.2) when r— + co.

6.2. Similarly, from Theorem 3.1 and Corollary 4.1 by a limiting procedure, we
can derive the generalized sin # theorem (see (6.2.1)) and the sin 26 theorem (see
(6.2.2)) for Hermitian matrices which are due to Davis and Kahan [2]:
. 0
Suppose that A4, (f;‘ :2), A4, (/(1) Az> Z and Z are the same as in 6.1. If
d=min|A(4,)~A(4,) >0,

then we have

Isin, i, CLE, (6:2.1)

Moreover, if there is an interval [$, «] and a 6>0 such that A(4,)<=[B, o] and
MA,)=(— o0, B~6]ue+d, + ) (or vice-versa), then for every unitary-in-
variant matrix norm we have

2|E
jsin20,1 <2171, (62.2)

6.3. Finally we notice that the upper bound in (3.1) is independent of the dim-
ension £ of the subspace %#(Z,), but the upper bound obtained by G.W. Ste-

wart (see [7], Theorem 4.4 and Corollary 4.5) contains a factor 1/2
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