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of a Definite Matrix-Pair* 
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Summary. Let A and B be Hermitian matrices. The matrix-pair (A,B) is 
called "definite pair" and the corresponding eigenvalue problem A x =2Bx 
is definite if c(A, B ) -  rain {lx'(A + iB)xl} >0. The perturbation bounds for 

Ikxll=l 
eigenspaces of a definite pair on every unitary-invariant matrix norm were 
obtained by imposing additional restrictions on the location of the genera- 
lized eigenvalues. Thus it gives a positive answer for an open question pro- 
posed by Stewart [73. The famous Davis-Kahan sin0 theorems and sin20 
Theorem [2] can also be deduced from the present results. 

Subject Classifications. AMS(MOS): 65F15; CR: 5.14. 

Introduction 

"Definite pair" is a class of important matrix-pairs (see [10]). Some results on 
the stability analysis of the definite generalized eigenvalue problem were ob- 
tained by Crawford [1], Stewart [7] and the author I-9]. Stewart [7] has ob- 
tained perturbation bounds in the Frobenius norm for the eigenspaces of a 
definite pair under certain conditions and has pointed out: "For  the Hermitian 
eigenvalue problem, Davis and Kahan have been able to obtain bounds on the 
spectral norm by imposing additional restrictions on the location of the eigen- 
values. Whether such bounds can be obtained for the definite generalized 
eigenvalue problem is an open question." 

The present work gives a positive answer for this open question. Pertur- 
bation bounds not only on the spectral norm but also on every unitary-in- 
variant matrix norm are obtained (see Theorem2.1, i.e. the sin0 theorem for 
definite pairs). Moreover, under weaker conditions a perturbation bound for 
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the eigenspaces is developed (see Theorem 3.1). Besides, a part of the Davis- 
Kahan sin 20 theorem is generalized to definite pairs. 

The abovementioned definitions and some basic results are given in w 1. The 
sin 0 theorem, the generalized sin 0 theorem, the sin 20 theorem and the streng- 
thened sin20 theorem for definite pairs are proved in w 2-w 5, respectively. The 
last section points out that from our results one can deduce the famous Davis- 
Kahan sin 0 theorems and sin 20 theorem [2] by a limiting procedure. 

Notation. Upper case letters are used for matrices and lower case Greek letters 
for scalars. The symbol q?m ~, denotes the set of complex m x n matrices. / l  and 
A T stand for conjugate and transpose of A, respectively; AU=.4 r. W > is the 
n x n identity matrix, and 0 is the null matrix. For a Hermitian matrix H with 
eigenvalues {e~}, H > 0  (H>0) denotes that H is positive definite (semi-positive 
definite) and 2mln(H)=min{c @ Let 11 It denote the usual Euclidean vector 

norm, II [12 the spectral norm and II tlF the Frobenius matrix norm. The col- 
umn space of A is denoted by ~(A). ~ n ~  and 5 ~ w ~  stand for the intersec- 
tion and union of two sets ~ and ~ ,  respectively, and ~ for the empty set. 
The chordal distance between the points (e, fl) and (8, fl) in the complex pro- 
jective plane ~(1, 1) is 

p ((c~,/~), (~,/~))--I~/~-/~ ~1/1/(I c~l 2 + I/~12)(1~12 + i/~[ =). 

w Preliminaries 

Definition 1.I. Let Hermitian matrices A, BeC "• (A, B) is a "definite pair", if 

c(A,B)-  min {Ixn(A + iB) x]} >O. (1.1) 
14xIl=l 

ID(n) denotes the set of all definite pairs of n x n matrices. The following Theo- 
rem 1.1 and Theorem 1.2 are well known (see [7]). 

Theorem 1.1. Let (A, B)~ID(n). Then there is a nonsingular matrix QE~ n• such 
that 

QnAQ=A, QnBQ=Q, A = diag(~i), f2 = diag(fli). (1.2) 

Theorem 1.2. Let (A, B)elD(n) and 

Ae=cosq)A-sinqoB, Bo=sinq3A+cosq3B, (1.3) 

where q~ is a real number. Then there is a q~e[0,2n] such that B~>0 and 
c(A, B) -~. ~min(B~o). 
Definition 1.2 [3]. Let A, BeC ~• A vector xellY, x # 0  is an eigenvector of 
(A, B) corresponding to the generalized eigenvalues (e, fl), if 

(e, fl):~(0,0) and flax=c~Bx. 

If f l#0, then 2 = B  r is a finite generalized eigenvalue of (A, B), and ~ is called 

the non-homogeneous coordinate of the point (e, fl) in the complex projective 
plane. 
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2(A, B) denotes the set of all generalized eigenvalues of (A, B). 
Eigenspaces of a definite pair, as a generalization of the eigenvector 

concept, have been defined by Stewart as follows. 

Definition 1.3 [7]. Let (A, B)~ID(n). A subspace 5Y is an eigenspace of (A, B) if 

dim(A f + BSY) < dim(X). 

According to [-7] (see [7], 79-80), we can adopt the following decompositions 
in order to study perturbation bounds of any (-dimensional eigenspace for 
(A, B)6ID(n): 

ZI-I AZ= ( ;  1 A02 ), ZH BZ= ( Ba B02), (1.4) 

where Aa, B l o c  e• and 

Z=(Z1,Z2), ZHI Z1 =I(g), zHz2 2--I(n-d), 0 < ( < n .  (1.5) 

Obviously, N(Za) is an E-dimensional eigenspace for (A, B), (AI, B1)~ID(( ) and 
(42,p2)ElO(n--vf). We shall use the same notation for perturbed pairs 
(A, B)sID(n), expect that all quantities will be marked with tildes. Let 

U=(Z1,  W2) , 0 = ( 2 1 ,  I7V2) (1.6) 

be n • n unitary matrices, Z1, ZI~(U "• and let 

01 -= arc cos (z1Hz1 Z1HZI) �89 ~ 0. (1.7) 

Now we discuss the relationship between the matrix Z~ IYV 2 and the rotation of 
~(Z1) to ~(2a)  and explain the geometric significance of the quantity Hsin O a II 
for every unitary-invariant matrix norm. 

Let 

Po=Z1Zf' Qo=I-Po=I-ZaZ~=W2Wff '  (1.8) 

Po=212f, Oo=I-Po=I-212f =W2W~ ". 

Evidently, if there exists a unitary matrix V, such that 

V Po Vn= Po, (1.9) 

then from the relations 

~(21)  = ~ ~." = V Po Vnr = V Po r = V ~(ZI) 

we know that V is indeed a rotation of ~(Za) to ~(21). Now we seek the 
representation of V. 

First, we write 
[ Z~ ] (1.10) V= O(On vu )  Un=(2]l ,  IYV2)T \Wff ]' 

where 

T= ITVn V Z1W2n V W2 ] (RTaz R ' 
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is a unitary matrix. From (1.8) and (1.9) we obtain VP0 =/5o V, V Q o = Q o V  and 
thus Ty T~ = I r T2 u T 2 = I ("-e), consequently R ~ = 0, R 2 = 0. Substituting such T 
into (1.10), we obtain 

r=(Zl Ir rl OT2)[ZH ~ =(21, W2)[Zf ~[~ ~l/r2 ) (01 OT2)[zH 
'  w#l' "  w2! 

(Ca S 1 ) u H  ' C I = Z f 2 1 T 1 , S I _  n - Z 1 ITV2 T 2 . = U $2 C2 

Suppose that the singular values of Z~Z  1 are Yl, .-., 7e, then 01=cos -1 71 (i 
= 1 . . . . .  ~) are exactly the angles between the corresponding base vectors of 
~(Z1) and ~(Z1) by a suitable selecting of their base vectors. Hence from (1.7) 
it follows that 

O 1 =arc  cos(C1 Cln)�89 
and thus 

Then we have 
S~ St n = I -  C 1 Cf  = I -  cos 201  = sin2 O1. 

Ilsin O~ II = IIS~ II = IlZ~ W2 II (1.11) 

for any unitary-invariant matrix norm I[ 11. Therefore Ilsin 0111 is a measure of 
the difference between the subspaces ~(Z1) and N(2~1) (Ref. [2], 9-10; [5], 
733-736). 

In addition tlsin2Otl I is also a measure of the difference between the sub- 
spaces ~(Z1) and N(21) (Ref. [2], 8-11). 

In [8] and [3] the author used the generalized chordal metrics 

dF(Z1,21)  = [tr(I - Z ~ Z  1Zf  Zl)]  ~ 

and 

dz(Zx,  2 t ) =  [Ill-- Z~2~ 2 f Z  1112] �89 

to characterize the distance between the subspaces ~ = ~(Z1) and :~ = ~(2~1); 
here we assume zfz~=2f21=l without loss of generality. Obviously, the 
relations 

dr(Z1,Z1)=l l s inOl l tF ,  da(Z1,Z1)=llsin01112 

are valid. 
Hence, according to [3], if P~ and P~ are the respective projectors onto 5f 

and ~ ,  then 
1 

[[sinOlllF=~lIP~r--P,2lIF , IlsinOlllZ=llesr-P~cllz. (1.12) 

In w 4 and w 5 we shall use the following lemmas. 

Lemma 1.1. Suppose that Z = ( Z ~ , Z z ) e C  "• Z t [ Z I = I  (e) and Z g Z 2 = I  ("-e), 
0< {  <n. Then Z is non-singular iff llZ~Z2112< 1. 

Proof. There exist matrices U, 2; and V such that ZI[z2  = U Z V  n. U S V  n is the 
singular value decomposition (SVD) of Z f Z  2, where U e C  r215 and 
VelE(,-e) • (,-e) are unitary matrices, and S=d iag (a  1, o'2, ...,)ell~ C x  (n-C) in which 
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O'1~0"2~..,~0, And thus we have I d e t Z l 2 = [ I ( 1 - a ~ )  and 
Therefore d e t Z + O  iff I[Z~Z2I[z<I.  [ ]  i 

(i 
L e m m a  1.2. Suppose A= Bn and [IBII2<l. Then 

and 
IIAII2= 1+ IIBIIz 

325 

IIzf  z2112 =~1 < 1. 

(1.13) 

(1.14) 
1 

IlA-1112 - -  
1 -IIBII 2 

Proof. Utilizing the SVD of B: B = UZ V n, U and V are unitary matrices, I; 
= d i a g ( a l , a 2 ,  ...) with a l > a 2 > . . . > 0 ,  we get (1.13) and (1.14) at once. [ ]  

L e m m a  1.3. Suppose A~OI2 =• AzEI~ ~• m<n~ and A I A ~ + A z A f = I  , then 
there exist unitary matrices U, V 1 and V2: U~[~ mxm, VI~[~ . . . .  1 and V2e(I? . . . . .  , 
such that 

AI=U1;1V H, A2--UZ2V2Hn, (1.15) 

where Z 1 =diag(a~,  ~2, ...) and 1;2 =diag(f l l ,  f12, ...) satisfying 

~i>0, fl,=>0, cd+fl~ = 1, i =  1, 2, .... 

Proof. Using Theorem 2 in [11], there are a non-singular matrix U and unitary 
matrices V 1 and V 2 such that (1.15) holds, where 1 ;a=diag(~l ,a2 ,  ...) and Z 2 
=diag(f l l ,  f12, ...) satisfying ei, fli>O, i =  1, 2 . . . . .  F rom A I A t [ + B I B ~ = I  we de- 
duce ~ +f12 = 1 for i=  1, 2, ..., and U U n = l  by a suitable selection of those 
{0~i} and {fli}. [] 

w 2. The sin 0 Theorem 

The following theorem is the main result in this paper. 

Theorem 2.1. (The sin 0 theorem for definite pairs). Let (A, B), (A,/~)=(A +E,  B 
+ F)MD(n) with the decompositions given in (1.4) and (1.5). Assume that there are 
c~ >= 0 and 5 > 0 satisfying a + 5 < 1, and a real number 7, such that 

P((Y, 1), (~xi, fli))----< oq V(oq, f l i )~2(A,,  B1) (2.1) 
and 

p((~,l),(~j, flj))~O~-]-(~, V(~j, flj)~E ~,(/i 2, J~2) (2.2) 

(or vice-versa). Then for every unitary-invariant matrix norm, 

Ilsin O111 < p(a' 6; 7)II(A, B)II2 H(EZ1, FZOH 
c(A, B) c(.4, B) 6 ' (2.3) 

where 01 is defined by (1-7), 

q(7) [(cx + 8) ~ + or ] /1  - (o~ + 6) 2 ] 
p(cq 8 ;7 )=  2 ~ + 6  ' 

(2.4) 
q(y) = 1/~ for y =t: 0 and q(O) = 1 
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and 

I I ( A , B ) I I 2 = ~ I I 2 ,  II(EZx,FZOII=I/IIEZIII2+IIFZ, II 2. (2.5) 

Proof. This theorem is proved by the following steps 2.1-2.4: 

2.1. The Perturbation Equations 

First, set 

Wt=Z-H=(W1, W2), ~I/'=2--H=(W1, I?V~), W[ and I?V[~tE "• (2.1.1) 

in which Z and 2 were given in (1.4) and (1.5). Moreover, set 

and (2.1.2) 

(WjnWj)~(Aj, Bj)=(A),Bj), (17vy n VVj')�89 (.,~j,/~s) = (fi.),/~)), j = l ,  2. (2.1.3) 

Then (1.4) can be written as 

where Z=(Z1, Z2), W=(W1, Wa) , 2 = ( 2 1 ,  22) and W=(W1, W2) satisfy 

Z~ Zl  = 2"12~ = Wl ~ W~ = W~" W 1 = U ) 

Z2"Z2 = 2 ~ 2 2  = Wy W2 = W2" Vr = i , , - t) ,  (2.1.5) 

ZIB W2 = Z, 1H W2 =0,  zHw1 = 22H ~/]/" 1 =0.  

From (2.1.4) it follows that AZI=WIA'~, BZI=W~B'I, so that we define the 
residuals 

RA=AZ ~ -W1A i, RB=BZ1-W1B i . (2.1.6) 

Obviously, the relations 

RA=EZ~, R s = F Z  ~ (2.1.7) 
are valid. 

Utilizing (2.1.4) and (2.1.I), we know 

Substituting these relations into (2.1.6) and taking the transpose conjugate, we 
get 

Rg = Z"~ (W;.~y w (  + ~v~ ~,:. W~')- Ay  w ( 
(2.1.8) 

Rg=Z~(W;~'f W( + ~V~'f W~)-B;" Wi" 

(2.1.4) 
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Moreover, utilizing (2.1.5), (2.1.2), (2.1.1) and (2.1.8), we obtain 

Rt~ Z 2 = Z~ I?V2 ( ITV~ n lTV~)�89 d'2n (17V~ H I7V~)- ~* - A', n W, n 2, 2 
(2.1.9) 

R'd 22 =z f  G(W " " W( 22. 
Let 

2 - ~ " 2  "2J " '2 t"2  W2)~="2~"2 "2* (2.1.10) 

Then (2.1.9) becomes 

R~22=Z~1~22H a ' H w H 2  2 ~x2 - - ' X l  " ' 1  
(2.1.11) 

2, = zg G  7-Bf' W#22. 
Let 

W ( 2  2 =X,  Z~ I~ 2 = Y, - R ~ Z  2 = C, - R ~ 2  2 =D, (2.1.12) 

then the Eqs. (2.1.11) can be written as 

A ; n X  - Y A ~ =  C, B'InX - Y B ~ = D ,  (2.1.13) 

where A'~, B'~q2 t • A2,/~2 ~r • ("-<), and X, Y ~ <  • <,-e) are the unknowns. 
From (1.11) and (2.1.12) it follows that 

)l Yll = I[sin Oll1 

for every unitary-invariant matrix norm. Hence for the proof of inequality (2.3) 
it is sufficient to establish (2.3) for [[ Y[[. 

2.2. 7he Simplification of  the Perturbation Equations 

Now we give suitable representations for A'I, B'I, A2 and /~2 in the Eqs. (2.1.13) 
and transform the equations into a simpler form. 

Since (A i, Bi) (i = 1, 2) in (1.4) are definite pairs, there are non-singular ma- 
trices P~ and real diagonal matrices A i and O i (i= 1, 2) such that 

( ;1  AO)= diag(ctk), (~1 002) = diag(flk), 

(2.2.1) 
(Ai, B,)=PiU(AiPi,f2iPi), A2 + f2~=I,  i=1,2.  

Let 

evidently Q satisfies 

Q n A Q = A = ( A ,  A02 ), QnBQ=I2=(Oo~ 0), A2q._Q2=I. (2.2.3) 

Substituting Z~=Q~P~ into Z f f Z i = I ,  we get 

P_.P..H--~-(oHo]-I i=1 ,2 .  
t t \#.~i ~.,iJ , 
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Moreover, substituting the unique decompositions P~=Hi Vii (H i > 0  and V~ un- 
itary) into the above relations we have Hi=(Q~QI) -*=, i=  1, 2. Hence 

p~ = (QH Qi)- ~ v~ (2.2.4) 
and 

Zi=Qi(QinQi)-}vi, v/unitary, i=1 ,2 .  (2.2.5) 

Further from (2.1.1) it follows that 

( , z z )i 
W tH W t = ( Z H Z )  -1 = z H Z 1  

[I + Z~ Z 2 (I - Z~ Z 1Z~ Z2)-1 Z H Z1 
\ ( I - Z ~ Z ~ Z ~ Z 2 ) - I )  ' 

combining this relation with (2.2.5) we obtain 

W1 'n W~' = 1 + Z~ n Z 2 (I - Z2 n Z 1Z~ n Z2) -1Z2 n Z1 = (1 - Z~ n Z 2 Z~ Z1)- 1. (2.2.6) 

Therefore using (2.1.3) and (2.2.1) we get 

a' 1 =(w~H w~)�89 P1H A1P D B' 1 =(W~H W~)~ Pln f21P1, (2.2.7) 

where P1 and W~nW~ are given in (2.2.4) and (2.2.6), respectively. 
Similarly, since (Ai,/31) ( i=1,2) are definite pairs, there are non-singular 

matrices ~ and real diagonal matrices Ai and f]~ (i = 1, 2) such that 

( olO o /~2) ----- dlag(~k), (~01 ~2) = diag(flk), 
(2.2.8) 

(~,,/~) = ~H(~, ~, ~, p~), 712+52=1, i=1,2. 

Let 

~ ~ 1  , 0 =2 ~_, 

evidently (~ satisfies 

In the same way as above we have 

= (Q~ {~i)- �89 ~ (2.2.10) 
and 

2 , , = ( ~ ( ~ ( ~ ) - ~  ~, ~ unitary, i=  1, 2, (2.2.11) 
and 

I7V2, n W,=( I  _ 22n 2 1 2 ~  22)-k  (2.2.12) vr 2 

Hence by (2.1.10) and (2.2.8) we obtain 

A2 = ~n A 2 ~ (17r IYV~) �89 , Bz = ~n ~ :  if2 ( 17r n 17r �89 , (2.2.13) 

where P2 and I2r 17r are given in (2.2.10) and (2.2.12), respectively. 
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Substituting (2.2.7) and (2.2.13) into the Eqs. (2.1.13), we obtain the sim- 
plified perturbation equations 

A 1 X  j - Y1712 = C 1, (2.2.14) 
where 

X, = 1~ ( W f  W;) ~ X ~ - ' ,  (2.2.15) 
and 

C 1 = P1 -H C ~ -  1, (2.2.16) 

~r~l X l  --  Y, ~~2 - D a ,  

111 =P1 -H y(l~ n I~)~ ~ n 

D 1 =PI-nDP2 - ' .  

2.3. The Proof  of  the Inequality (2.3)for 7 = 0  

From (2.1) and 7 <  1 we know that fli#O and 

171//~il < 7  for 1 <i_<(,  (2.3.1) 
1/1 + (7,//~): - 

and thus 

( 7,~2 < 72 
fli ] _ 1 _ 7 2 ,  1< iGE.  

Combining the above inequalities with 7~ +f12 = 1 (see (2.2.1)) we obtain 

1 1 
171[<7, - - < - -  l < i < E ,  

le,I = lCrZv_  ' 
i.e. 

1 
[IA,112=<7, [[f2i- 1112 < - (2.3.2) 

1 / 1 - 7 2 .  

Similarly from (2.2) and 7 + 6 > 0 we know that ~j =t: 0 and 

1 
> 7 + 6  for ( + l < j < n ,  (2.3.3) 

/ 1  + (g/~j) 2 = 
and thus 

2 1 - ( 7 §  
< ? + l < j < n .  \ ~  / = (7 + 6) 2 ' 

-2 + fl} = 1 (see (2.2.8)) we obtain Combining the above inequalities with 7j 

1 1 
I/~j[ < l / 1  - ( 7 +  6) 2 , - - <  ~ + l < j < = n ,  

I~jl = 7 + 6 '  
i.e. 

< 1 
lIAr-112_-7+ 6, 11~2112<]//1-(7+6) 2. (2.3.4) 

Combine (2.3.2) and (2.3.4) with the Eqs. (2.2.14) and remember that every un- 
itary-invariant norm II I1 is compatible with the spectral norm (Ref. [2], 23; 
[6], 638). Then from 

IIYxll < IIY,2211 tIA~-'LI2=7+ 6 IIY, A211 
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a n d  

we get 

and 

so that 

1 
IIX, II =< IlO;-lllz I1~i Xxll _-< 1V,,~S~_~2 IlO~X~ll, 

II C, II > II Y~ A7 ~ II - II A ~ X~ II > (~ + ~s) II Y~ 11 - ~ tl x l  It 

IID~t) > I)s"2~ X ,  I) - )1Y~ tgzt) >1/1 _~2 IIx,. 1I -~ /1  - (~  +6) 2 I1Y~If, 

II c ,  II +c~ IIX,)l l ICll l  +o~(l lDl l l  + l / 1 - ( ~ + c s )  2 II u ~ 2 
II I,.-111 < < 

Therefore 

<(l/1 -or2 II Qtl +~  IIDIlI) [(ct + t~) ]/1 _~2 + ct ]//~_(c~ + 6)2] 
I"111 (~ + 6)2 _ ~2 

<p(~, 6; 0)1/11C~ltZ + IlD~llZ/& 

Observe that (17V~nITVj)-I<I~"-e)(see (2.2.12)); then 
(2.1.12) and (2.1.7) we have 

II YII < IIP~II2 IIP2-1tl 2 II Ylll 
and 

from 

J. Sun 

(2.3.5) 

(2.2.15), (2.2.16), 

(2.3.6) 

1/11 c~112 + IID~tl 2 ~ IIP,-*II211~-~1121/11CPI2-4 - IIDII 2 

< ItP~-1112 IIP2-111a II(EZx, FZ01t. (2.3.7) 

Substituting (2.3.5) and (2.3.7) into (2.3.6) we obtain 

IIYII =<p(e, fi; O)lIP~ll2 tlP~-lII2 I1P2-111~ II(EZI,FZO/& (2.3.8) 

Now we estimate IIP~II2, IIP~-1112 and It~-111~. 
First, it follows from (2.2.4) and (2.2.10) that 

IIP~IIz_- <Ii(Q~Q0-111~2, IIP~-IlI2_ -< II(afQ011~, 
(2.3.9) 

II~ -11122 _- , (0~ 02)1I 2. 

Secondly, by Theorem 1.2, for the definite pair (A, B) there exists a real number 
~o such that B~=sin~oA+cosq)B>O and ,~mln(B~)=c(A,B). Utilizing the de- 
composition (2.2.3) and writing 

O" = sin (P A + c~ ~~ I2 = (g20" O~,) '  

where I2~, is a real diagonal matrix, 0 < O~ < I and Me • e I21~e~ , then we have 

i.e. 
Q~Qx < 12~, < 1 im (2.3.10) 

= c ( A , B ) = c ( A , B )  ' 
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and thus 
I[(Q~ 01)1l~ < 1/t/~(A, B). (2.3.11) 

Similarly we have 

1 OfO.2 < ~ I  ~n-e), Ir0f02112=<l/c(A,~). (2.3.12) 

Thirdly, from (2.2.3), 

(Qf AQ02 + (Q~I BQ1)2 = i~:). (2.3.13) 
Decomposing 

Q1 = V1K1, VI OE"• V( V 1 = I  (/), non-singular KI~IIU • (2.3.14) 

substituting this decomposition into (2.3.13), and writing 

Vxu AV1 =M, V~BV 1 =N, (2.3.15) 
we get 

(K 1 Kf) -~ =MK, K f  M + NKI K f  N. (2.3.16) 
Therefore 

I[(Q~ O~) -a 112 = II(K~KI)- a II 2 = II(Ka K f )  -~ l[2 

=< IIM 2 +N2112 ]I(K~ KX[)]]2. (2.3.17) 

Moreover, it follows from (2.3.14) and (2.3.11) that 

1 
I[(K~ K~)II2 = tt(K~Kx)[]2 = tI(Q~QOII2<c(A, B)' (2.3.18) 

and from (2.3.14) and (2.3.15), 

]lM2+N21]2< [IA2 +B21I 2. (2.3.19) 

Hence from (2.3.17)-(2.3.19) we get 

[I(Q~ Qa)- ~112 < I[A2 + BE [[ 2 (2.3.20) 
c(A, B) 

Fourthly, substituting (2.3.11), (2.3.12) and (2.3.20) into (2.3.9), we get 

< H(A, B)H2, 1 ~ -a  2< 1 
IIP~II2 = ~  I[PI-a 112 _ - < ~ ,  E 2 = C(,~,/~). (2.3.21) 

Finally, substituting (2.3.21) into (2.3.8) we obtain (2.3) for ?=0 .  

2.4. The Proof of the Inequality (2.3) for ~ 4= 0 

Let c=1 /1 /1+72 ,  s = ~ / 1 ~  2, 

and 
Alo = diag(aio) = c AI - s O  I, 

A 2o = diag(ajo) = c A 2 - s (22, 

(21 o = diag (tim) = s A 1 + c (21 

I]2o = diag(fljo ) = s -/]2 + c t] 2. 
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We have 

and 

which satisfy 

a i - ~ f  fl i 7 ai + fli 
a'~ = ~ '  /3i~ =1/1  + 7  ~ 

for l ~ i ~ c  ~ 

for [ + l < j < n  

p((0, 1), (a/o , flio))<a 1 <i<[ 
and 

p((O, 1), (~jo, fljo))__> ~ + 6 f+ l< j<n .  

At the same time the Eqs. (2.2.14) become 

AloX1-Y~A2o=Clo, f2~oX1-Yl(22o=Dlo, 
where 

Clo=cCx-sD1, Dlo=sCl +cD1. 

According to the proof  in 2.3 (see (2.3.5) and (2.3.6)) we have 

H Y]I <p(a ,  6; O)]IP~ ll2 tiP2 - I  Ilz ( I l l  - c d  11Clo[1 + a  11Oxo 1t)/,5 

for every unitary-invariant norm. However,  

1 / 1 - a  = II Clo1[ + a  IIDloll 51/11C1o112 + IIDloll 2 

<1/2(11C1112 + 1101 II 2), (2.4.1) 

hence the perturbat ion bound in Theorem 2.1 contains the factor ] /~ for 7+0.  
The proof  is complete. 

w 3. The Generalized sin 0 Theorem 

We notice that for the norm 1[ [IF the inequalities (2.4.1) become 

/,/1 - a  2 II C~01[F+ a IlDlollv <1/11C1o113 + 110~o 113 --1/11 e l  113+ lID1112, 

and thus q(y)= 1 in (2.4). Hence from (2.3) we obtain 

II(Z, B)]l z I](EZ1, FZ~)tIF (3.1) 
IlsinOlllF<c(a,B)c(~,J�) 6 ' 

where 
II(EZ~, fZ l ) l lv  = 1/IIEZ1113 + IIFZx II 2 �9 

In this section we prove that under weaker conditions the inequality (3.1) is 
also valid. 
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Theorem 3.1. (The generalized sin 0 theorem for definite pairs.) Let (A, B), (/1,/1), 
Z and Z be the same as in Theorem 2.1. Set 

6 - m i n  {p((a,, fl), (~j, flj)): (a,, fl,)e2(Aa, B~), (Sj, fij)e2(.42,/32)}. 
i , j  

/ f  6>0 ,  then the inequality (3.1) is valid. 

Proof. We associate the matrices X 1 and Y~sff2 e• with the ~(n- ( ) -vec tors  x 
and y which are the direct sums of the column vectors of X a and Y1, re- 
spectively. Similarly, C a and DaOI2 e• with the t '(n-t~ c and d, so 
that the Eqs. (2.2.14) take the form 

(I|  x - ( f l 2 |  y=c  
(3.2) 

(I |  x -  (f22| Y = d, 

where | is the Kronecker  product  symbol (see [-4], 8-9). 
From (3.2) we obtain 

( A 2 |  -- ( ] 2 |  Y = - ( I |  e +(I|  d 
and 

i.e. 

min I~zfij-/~i~j[ IlYll =V~iIelI2+ Ildll 2 
l < i < d  

d + l < j < n  

liE <Vbl C11k2+ IIDx I12 
II Yl 

= 6 
(3.3) 

Moreover,  according to (2.2.16), (2.1.12) and (2.1.7) we have 

V'II c1 II 2 + 1tol II 2 = ~llPa- H RA H 22 ~ -  '112 + IIPx-n R~ 22 ~ -  1112 

< IlP~-ll[g liP2-' t12 ]/IIRaIL2 + IIR,[Iv z 

< IIP~ -1 [12 liP2 -a  112 LI(EZ.  fZl)llF, 

and so it follows from (2.2.15) and (3.3) that 

1[ Y Ilv --< HP~ [I 2IIP~ - 1 l[21J/~2- IH 2 iI(gZl ' FZ1)bIF/6. (3.4) 

Substituting (2.3.21) into (3.4), we obtain (3.1). The proof is complete. 

w 4. The sin 2 0 Theorem 

In this section we hypothesize a gap between 2(.41,/~1) and 2(42,/~2), and thus 
obtain the sin 20 theorem for definite pairs. 

Theorem 4.1. (The s in20 theorem for definite pairs). Let (A,B), (A,/~)=(A 
+E,B+F)~ID(n)  with decompositions given in (1.4) and (1.5), 2(A1,/31) 
--{(~/,fll)}f=l and ,~,(.,42,B2):{(~I,/~i)}7=~'+1" Assume that there are ct>O and 
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3 > 0 satisfying ~ + 6 < 1, and 7 a real number, such that 

p((y, 1), (~i, fil)) { < ~ V (~i' fll)~ 2(d l ' B1) 

(or vice-versa). Then for every unitary-invariant matrix norm, 

[I sin 2 O 1 II - ~ II sin O 1 H 2 < r 1[ (E, F)H 

where 691 is defined by (1.7) and ][(E, F)H by (2.5), 

1+4  
1 - ~  

and 
r =r(A,/~; ~, 6; 7; r/)= p(a' 3; 7) r/2(q + 1)II(A,/3)112. 

(e(d, ~))~ 

here p(~, 6; 7) is given in (2.4) and I[(A,/3)[12 is defined by (2.5). 

Proof 1. Let 

W'= Z - " = ( W ; ,  W~), 
and 

The matrix X satisfies 

J. Sun 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

and from the Lemmas 1.1-1.2 and (1.5) we get 

__ (io, 112112 W' <IIW'II2 IlZllz=V']l(znz)-l]12 II/n/][2 
1 = 

/ 1  + II z~ z2 II 2 14. < 1_ HZ~Z211= 
(4.8) 

Writing 
pn Q~ ZnEZ=(Epa E2), ZnFz=(F~ F2),  (4.9) 

then it follows from (1.2), (4.5) and (4.6) that 

A + X E X " = W '  0 w , , l + ( w ; z , l _ N z f ) w ,  w ' ( G w ; " - z ~ w ; " )  
A2 E2 

A z + E  2) k - W ~  n] ~ ' ( W l ~  w~) 

A2 + E2! 
~ 

X 2 =I ,  (4.7) 

- t  ~ - - H  " t - t t W = Z  =(IV;, W~), W~ and I~;~r  "• (4.5) 

x =  w; z ' i ' -  ' " W~Z z . (4.6) 
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Similarly, 

(B0* 0 )  l~m Xn" (4.11) B + X F X n = X B X U = X f f "  BE 
Let 

4 = A + X E X  n, B= B + X F X  n (4.12) 
and 

2 1 = x ~ 2 , ( 2 ~ x x ~ 2 1 )  -~, 22=X~22(2RzXXH22)-*~ , 

2=(21,  22). (4.13) 

It is observed that 

(17r Xn) - 1 = XU 2,  (4.14) 

then we can write (4.10) and (4.11) as 

z H 4 2 =  Ix41k 0 A 210~' 2H~,~ = ( ~  1 /02) ' (4.15) 

where 2~ 2~ =I (e), 2~ 22 =I  ('-r and 

4~=H~4,H~, B,=H,~H,, H~=(2~ XXn2,) -~, i=1,2. (4.16) 

From (4.14), (4.12) and (4.10) we have 

,~ ~ . ~ f ( x ~  X 2 X ' ~ )  ~ +(~I~ x ~ x €  
,C[A, lJ) = lnI~- - H77.. ~" 

x*o{. x x ) 

= inf ~'(yn 4 y)2 + (y~/~ y)2~} 
r*0~ y l t X X H y  3 

> c(A,/~)> c(A,/3)>0, (4.17) 
=NxN2 

which shows that the Hermitian matrix-pair (4, ~ is in 1D(n). Moreover, from 
(4.16) we have 

2(42, B2) = 2(42,/~e). (4.18) 

Therefore the decompositions (4.15) and the location of the generalized eigen- 
values of the definite pairs (4, ~ and (4,/~) satisfy the hypotheses in Theorem 
2.1, hence for 

01 -- arc cos (Zf 21 Z1 n 21)~ > 0 (4.19) 
and 

ff~=4 - A = E - X E X  n, ff = B - B = F - X F X  n, (4.20) 

and for every unitary-invariant norm we have 

<p(~, & ~,) 11(4, B"}H2 I[(/~Zt, ffZ1)l[ (4.21) 
Ilsin01 = c(4, B)c(4,B) a 
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2. Let W, i f ' be  defined by (2.1.1) and (2.1.2). Then obviously Z = ( Z 1 , Z 2 )  , W 

z", 21 = u r  v ( ,  

where 
F =diag(71, 72, �9 ..), Z = diag(al,  02, "")' 

Yi = cos Oi, 0-i = sin 0i, i = 1, 2, ..., 

and 2 > 01 > 02 >. . .  >__0. From (4.25) we get 

IlZf #211 = IISII = [12~ W211. 

= ( w l ,  w2), 2=(21,22) and I~=(W1, I4/2) satisfy (2.1.5). 
By the definition of 81 (see (4.19)) we have (Ref. ( lAD) 

Ilsin 01 [I = 112~ IYr tl = 11(2~[XXn21)-~2~[XW211, 
and thus 

II Z f  X 17r z II < II ( Z f  X X  u Z 1)-~ II 2 II sin 631 II. (4.22) 

Utilizing (4.6) we get 

27 x~v2 =21 w; z f  ~v2 -2': N z f  r 

but  from (4.5) and (2.1.5) it follows that 

2f w; z~' w: + 2? w~z~ I w~ =2? (w,z") w2 =27 ~ =0, 
therefore 

2~  X 17~2= 22~  W~ Z f  ~TI/r 2 . (4.23) 

Moreover,  observe that the matrix (Z1, I4/2) is unitary, and Z u W ' = I ;  therefore 
we obtain 

H t w;=(zl z? + w~ w~) w;=z~ + w~ w~ w;. 

Substituting the above relation into (4.23), we get 

] ,]  X ITV 2 = 2 Z f  Z 1 Z f  ITV 2 + 272z[ W 2 W2 n W[ Z~[ ITV 2. 

Then combining this equality with (4.22) we obtain 

2 IlZlnZ1 z f  17r II w~ w;]12112~ wzll IIZ~ r 
< ll(2~nXXn21)~l12 Hsin 0111. (4.24) 

3. Now we deduce the inequation (4.2) from (4.21) and (4.24). First, from 
(2.1.5) we know that the matrix 

(ZI, W2)H ('ZI' W2)= (W~ 21 WH VI/2] 

is unitary. By Lemma 1.3 there are unitary matrices U, 1/1, V2, V, U1 and Uz, 
such that 

Z ]  tTV 2 = U Z  V2 n, ~x[ Z1 = VF  r U~, 2~ t W 2 = VZ  r U2 n, (4.25) 
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But according to the definition of 01 (see (1.7)) we have the relation (1.11), 
therefore 

IL2~ w2 II = ILsin O1 I1. (4.26) 

Further, from (4.25) we get 

2 tl;~nZ1Z~ #211--2 II Vl r ~ x  V~ll 

= Ildiag(sin 20~)11 = tlsin 201 t[. (4.27) 

Secondly, it follows from (2.1.2) that 

II W~ W/II 2 --< II( W~ H W~)-I II ~ II W~ tt W; II 2. (4.28) 

Utilizing 

W'H Wt=(zH z) -  I = (z2ffZ1 ZIZ2 )- I 

( , 
= --(I --Z~Z 1 Z1HZ2) -1 ZIffz1 

and IIZ~[Z2[Iz<l (see Lemma 1.1), we get 

and 

( I - z f z ~ z ~ z 9  -1) 

[i(W~ H W~) -~ I[ 2 = [ 1 I - z H z 1  Z f Z 2 l l  2 "~ 1 

<. IIZ']Zlll~_ r 
Iq w ~ "  W;ll 2 = II(1-m']mx m~z2)-lz~z, II2 = 1 - I I Z ~ Z l l l  ~ - 1 _ r  

Substituting the above inequalities into (4.28), we obtain 

II w~ W;lI2 <) r (4.29) 

Thirdly, from 2f2, =I and (4.8), 

11(2f XXH21)~I I  2 < ILXII 2 < 1/-~. (4.30) 

Substituting (1.11), (4.26), (4.27), (4.29) and (4.30) into (4.24), we obtain 

- 1  2 ~ 2  [{sin O 11[ 2 <]//q ]tsin 611[. (4.31) tlsin201 

Finally, from (4.10)-(4.12) and (4.8) we get 

ll.4z +B2112 <r/2 IlA2 +/~2112, (4.32) 

and from }l Y1112 = 1, (4.20) and (4.8) we get 

II/~z111 __<(1 +n)IIEll, II/~Z1 l[ <(1 + it)[IFll. (4.33) 

Substituting (4.17), (4.32) and (4.33) into (4.21), and combining with (4.31), 
we obtain the inequation (4.2). The proof is complete. 
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Corollary 4.1. To the hypotheses of Theorem 2.1 add this: Z is a unitary matrix. 
Then for every unitary-invariant matrix norm [L H, we have 

Usin 201  [I <2p(~,  6; 7)1t4, B)II2 I](E, F)II 
= (c(4, ~))~ 6 

w 5. The Strengthened sin 20 Theorem 

In this section we give some conditions under which O~ and sin 201  will be 
small, and we obtain explicit expressions of the perturbat ion bounds for eigen- 
spaces of a definite pair on the spectral norm. 

Theorem 5.1. To the hypotheses of Theorem 4.1 add these: 

E 6 
co - c ( A ,  B) <2' (5.1) 

P((7, 1), (al, fl,)) < ~ +~ V(a,, fli)e2(A1, B,) (5.2) 

and 
re 2q~ 

1_~2 ~-<1--- ,~ (5.31 
where 

 =arctan 

Then beside (4.2) we also have 

e = II(E, F)I[2. (5.4) 

q~ 
O1 < ( 4 - ~ - )  1. (5.5) 

Proof 1. We consider the family of definite pairs 

(A(t),B(t))=(,4-tE, B - t F ) ,  0 < t _ < l  (5.6) 

(on account  of the continuity of the function e(A, B) [7] and the condition (5.1) 
the Hermit ian pairs (A(t), B(t)) are definite pairs). Let 2 (4 , /} )=  {(~i, - " fli)}i= 1 and 
2(A(t), B(t))= {(ai(t), fli(t))}7= 1. According to Stewart's inequality ([7], Theorem 
3.2) and (5.1) we have 

te 6 
p((o~i, f l i ) , ( ~ i ( t ) , f l i ( t ) ) ) ~ ~ ( O < ~ ,  l <_i<_n 

for a suitable numbering of {(~i(t), fli(t))}. And thus we obtain 

p((y, 1), (ai(t), ill(t))< p((y, 1), (~i, fli))+ P((ai, fli), (~i(t), fli(t)) 

6 
< a + ~ o < c r  1 < i < (  
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and 
p((>', 1), (~,(t),/~,(t))) > P((7, 1), (~i,/~3)- ((6,,/~,), (~(t), 3~(t))) 

6 
>c t+  6 - o 9 > c ~ + ~ ,  [ + l < i < n .  

But p((~,, I), (%, 1))=c~+o9 and p((~, 1), (% 1) )=c~+6-o9  for i=1,2. Therefore 
2(A(t), B(t)) is disjoint from ]z l ,  o91 [ and from ]o2 ,  z2[. 

2. Let Z(t)=(Z~(t), Z~(t)) be non-singular matrices satisfying 

Zl( t )nZl( t )=I ~0, Z2(t)nZ2(t)=l ("-r 

Z(t)~rA(t)Z(t)=(A; (t) A20(t)), Z(t) t tB(t)Z(t)=(B; (t) B:O(t)), 

2(A~(t), B,(t))~ {(~ , /~)~( I ,  1): p((% 1), (~, fl))< c~ + o9} 
and 

2(A2(t), Bz(t))___ {(~, /~)~(1,  1): p((7, 1), (~, 3)) > ~ + 6 -o9}. 

2(A2(t)' B2(t)) ] [ 2(A1 (t~, B,(t)) ] t 2(A2(t)' B2(t)) 

"(71 o91 '~ 0)2 "C2 

We consider the family of projectors 

P(t)=Z,(t)Za(t) n, 0 < t < l .  (5.7) 

For  an arbitrary constant t~[0, 1] and a small real number  At which satisfies 
O < t + A t < l ,  on account of the location of the generalized eigenvalues of 
(A~(t), B~(t)) and (A2(t+At), Bz(t+At)) we can use Theorem 2.1 for 

6) t (t) - arccos (Z1 (t) n Z1 (t -}- A t) Z 1 (t -~- A t) H Z I  (t)) ~ ~ 0, 

It is observed that (see (1.12)) 

II sin ~ a (t)II 2 = II 15(0 - P(t + A t)II 2; 

then according to Theorem 2.1 we get 

iiP(t)_P(t+At)ll2< 1/2l/llA(t)ll~ + IIB(t)ll~ 
= c(A(t), B(t)) c(A(t + A t), B(t + A t)) 

l/II A(t + A t) - A(t)[[ 2 + 11B(t + A t) - B(t)I[ 2 
(~+~-o9)-(~+o9) 

<l /2e l / ( t lAI I z+  IIEIt2)2+(IIBIIz + tlr[]2) 2 .IAtl ~ 0  (IAtl-,0). 
= (c(.~,/~)-- e) z ( 6 -  2o9) 

This shows that P(t) is continuous in the spectral norm topology. N o w  we 
define 

0( t )=sin  -~ IIP(t)-P(O)ll2, 0_<t_<l. (5.8) 
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Obviously O(t) is also a continuous function on [0, 1] with 0(0)=0, and it fol- 
lows from (1.12) that 

0(t) =sin -1 [tsin O1(t)112 , (01(t)=-arccos(Zl(t)ttZlZlitZl(t))�89 (5.9) 

Since the hypothesis (5.2) implies P(1)=Z1Z~, we have 

0(1) = s i n  -1  H z I Z H - - z I Z f I ] 2  =sin -1 Ilsin O 1112 = liO1112, 

and thus 
0(1) I > 01 . (5.10) 

3. Now we prove 

7r r (5.11) 
0(1)<4 2'  

Because of the continuity of O(t) and 0(0)=0, there is a number te[0, 1), such 

that 0(t)< ~ - - ~  Using Theorem 4.1 for Ol(t ) (see (5.9)), we obtain 
=4  2" 

sin 20(t)_-< [lsin 2 01 (t)112 

< 1@~2 Hsin 01(t)H~ + ~  

24 2 re< ~ re 
= l - { ~ s i n  O(t)+~ = l _ { 2  + ~ ,  

and thus 

O(t)__<~sin- t l~:~2+~-)---~ - t l ~ 2 + ~ - )  

<~- 1 -  = 4  2" 

Utilizing the continuity of O(t) we obtain (5.11). The proof is complete. 

Theorem 5.2. Assume that the hypotheses in Theorem 4.1 and Theorem 5.1 are 
valid, and let 01 = 1101112 (i.e. 0(1)). Then 

g 
sin(201 + q~) < r cos q~ .~+sin  q~. (5.12) 

Proof. Let 2(O1) = {Oi}. According to Theorem 5.1 we have 

4- ~---4---2- > [ffl ~-~ 02 ~-~ 02 ~-~ "'' ~>0, 

and thus 

2~-2 > sin 01> sin 02 > ... ~ O, 1 >s in2Ol>s in  202 >. . .  >0.  
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Therefore 

Ilsin 2 0 1 1 1 2 - - -  o1) 2~ IlsinOlll2=2sin01 (cos01 1_~2 sin 1 __~2 
= sec ~o [sin(201 + q~) - sin go]. 

Substituting this relation into (4.2) (on the spectral norm), we obtain (5.12) at 
once. The proof is complete. 

w Final Remarks 

6.1. In our notation we can state the famous Davis-Kahan sin0 Theorem [2] 
as follows: 

Suppose that A and .A=A+E are nxn Hermitian matrices, Z=(Z1,Z2) 
and Z=(21 ,  Zz) are n x n unitary matrices such that 

ZnAZ=( A1 A02 ), ZHAZ,= (A0l A02), (6.1.1) 

where Z 1 and Zleq~ "• 0 < f < n ,  A 1 and AI~r e• Let 2(A1)={c~i}i =e 1 and 
2(A2)={~j}~.=t+l be the eigenvalues of A 1 and 4 z respectively. Assume that 
there is an interval [rio, %] and a number 6o>0 such that ,~-(A1)-- [ t o , % ]  and 
2(42) c__(_ 0% t o -  bo] u [% + 60, + oo) (or vice-versa). Then for every unitary- 
invariant norm, 

Ilsin O1 [I < --,IIEZ1 II (6.1.2) 
= bo 

where O 1 is defined by (1.7). 
Without loss of generality we can assume that 0 < % = - r i o  in the hy- 

potheses of the sin0 theorem, because the translation of the spectrum of A 1 

(by translating A --, A % + ro I and $ --, 4 % + ro I~ do not effect and 42 
EZ1. U 2 2 ] 

It is worth-while to point out that the above mentioned sin 0 theorem can 
be deduced from Theorem 2.1. We consider (A, rl) and (4, rI)elD(n) for r>O, 
= A + E and F = 0. Obviously 

(Zn AZ, Zn(rI) Z)= ( (Ao I A02), ( ;  / rOe)) , 

2(A1, rI)= {(a~, r)}f= 1 and 2(4 2, rI)= {(~3, r)}~=e+ t- According to the hypotheses 
we have 

r 
P((O' 1)' (0~i' r)) ~'~" / ' ~  V 1 ~'- (~) 2~<~1+ ( ~ ) z '  1-< i-< t~ 
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and 

here 

So + 60 
I r 

p((o, 1), (~j, r ) ) -  > 
- [ /1+  (~jj) 2 ~-~1~1+ ( ~ ) 2 '  

d + l ~ j ~ n ;  

So So + 60 So 
?" g r 

= s and - 6  

satisfy the hypotheses of Theorem 2.1 : s > 0, 6 > 0 and s + 6 < 1. Hence if we set 

and 

2' t2(r)=Vl+[~176176 r ] ' 2 

then from (2.3) and after some calculations, for every unitary-invariant matrix 
norm, we have 

(2s 0 + 6o) g(r) t2(r ) t3(r ) IlEZ 111 
II sin O 1 II < S 1 (r) S2(r) E(So + 60) t ~ (r) + So t i ( r ) l  [(So + 60) t x (r) - So t 2(r)1 ' 

which gives the inequality (6.1.2) when r ~ + ~ .  

6.2. Similarly, from Theorem 3.1 and Corollary 4.1 by a limiting procedure, we 
can derive the generalized sin 0 theorem (see (6.2.1)) and the sin 20 theorem (see 
(6.2.2)) for Hermitian matrices which are due to Davis and Kahan [21: 

( A1 0 ) , . ~ , ( ~  1 0 ), Z and Z are the same as in 6.1. If Suppose that A, A2 4z 

6 - m i n  12(A 0 --)L(A 2) [ >0,  
then we have 

I]EZIIIv (6.2.1) l[sin 01tle <-- ~ ; 

Moreover, if there is an interval [fl, s] and a 6 > 0  such that 2(A1)c[fl, s] and 
2(42) ~ ( -  oo, f l -  61 w Is + 5, + oo) (or vice-versa), then for every unitary-in- 
variant matrix norm we have 

[Isin 201 II < 2 lIE II (6.2.2) 
= 6 

6.3. Finally we notice that the upper bound in (3.1) is independent of the dim- 
ension d of the subspace ~(Z1), but the upper bound obtained by G.W. Ste- 
wart (see [71, Theorem 4.4 and Corollary 4.5) contains a factor 1/~. 
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