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Modular Forms and Root Systems 

A. G. van Asch 
Department of Mathematics, University of Utrecht, Utrecht, Netherlands 

§ 0. Introduction 

The coefficients pa(m) of the formal expansion ~ pd(m)x m of the d-th power of 
r n = O  

~ ( 1 -  x") have been the subjects of many investigations. Macdonald gave in his 

paper [7] a formula for pal(m) if d is the dimension of a simple Lie algebra. These 
identities were obtained by Macdonald, specializing a more general formula 
(see [7], (8.1)) which results from his theory of affine root systems. Since Dedekind's 

I~I __L ~-function, which is equal to (1-x")  up to a factor x 24, is closely connected 
n = l  

with the theory of modular forms, the question arose whether these identities 
could be proved using modular forms. We will give a affirmative answer in the 
first place for formula (8.9) of [7], which is the identity for qd, and thereafter also 
for formula (8.13) of [7] which is another remarkable tpfunction identity ob- 
tained by Macdonald. Basic in our proof are the classical transformation for- 
mulas of theta functions. The theta functions we will consider are functions not 
only of the complex variable r, but they depend on a parameter from some real 
vector space, too. As a new ingredient we study the situation in which there is 
a finite reflection group, in particular a Weyt group, acting on this parameter. 

It became clear that the method used in the proof of the identities mentioned 
above might be pursued to get new identities. On the one hand we are interested 
in spherical functions, on the other we want to consider polynomials that are 
skew-invariant under the action of the Weyl group. Using a theorem of Chevalley 
we determine the dimension of the space of homogeneous skew-invariant spheri- 
cal polynomials in any degree. With this knowledge some new identities are 
obtained. This is done in the last section, where we first give two more or less 
general theorems, involving Eisenstein series besides the q-function. Thereafter 
we consider a few special cases. In particular we get identities for t/39 and q4 5. 
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§ 1. Notations 

V is a finite dimensional real vector space of dimension l, RC V is a root system 
(such that R spans V). R will be irreducible and R will be reduced too, i.e. 
R•2R=0.  Let 2r denote the number of roots in R, and d= 2r+ t is the dimension 
of a compact Lie group having R as its system of roots relative to a maximal torus. 
W(R) is the Weyl group of R. 

( ,  ~: V × V-~]R is a scalar product on V which is invariant under the action 
of W(R). For each o6V let q(o)=½(o,o). LCV is a lattice, i.e. a free g-module 
of rank I. Unless stated otherwise we assume that sL=L for all s6 W(R), and 
q(L)C2L L* is the dual lattice of L (with respect to the bilinear form ( ,  ~), i.e. 
L* = {~  V](o, 2)6Z for all 26L}. ( [ ): V × V-~IR is a scalar product on V which 
is invariant under the action of W(R) and such that (~1~)=2 for any short root 
(when all roots have the same length let us call them all short). 

R v is the dual root system, identified with a subset of V by means of the 

scalar product ( [ ),i.e. RV={~v=(~@~) ~ R } .  

~(R) is the lattice of weights of R. 
~z will be the permutation group on I symbols. 
~'~ will be the complex upper half plane. 
F is the full modular group. 

ForanypositiveintegerpletFo(p)--{( a bd) eF]c=O(modp)},andletF(p) 

denote the congruence subgroup of level p. Let JCd2, denote the space of modular 
forms of weight 2n for F. 

§ 2. Modular Forms, in Particular Theta Functions 

We will use the following kind of theta functions: 

O(z,L, P, ~)= ~ P(2+~)e 2~i~q~+¢) , (2.1) 
g~L 

where ~6 V, and P must be a spherical function with respect to q. The quadratic 
form q is defined by means of the scalar product ( , ) ,  and all scalar products 
on V which are invariant under the action of W(R) are equal up to a positive 
factor (see [1], p. 66, Proposition 1 (ii)). Let ~1 ... . .  el be an orthonormal basis 
of V [with respect to the scalar product ( [ )], and Xlg I -1-.,. "t-XIglU- V. Define the 
second order differential operator A by 

A = ~ + . . .  + ~xT' (2.2) 

Then we have: 
P is a spherical function with respect to q<:>AP=O. 
From now on we take ~ E L*. 



M o d u l a r  F o r m s  a n d  R o o t  S y s t e m s  147 

For the theta functions (2.1) we have the following transformation formulas: 

O(z + I, L, P, ~)=e2~q(°o(z, L, P, ~) , (2.3) 

(1 ) 
0 - - , L , P , ~  

T 

L 
- ( - 0 2  +2a~g(P) rZ+"~gCe)" ~ eZ~i<u,¢>O(z,L,P, tz), (2.4) 

~,(L) u~Z*/L 

where ~.(L) is the measure of V/L with respect to ( , )  and for any z e ~  we take 

• arg (~) 

¢ = ] / ~ ] e  ' 2 , where - n < a r g ( z ) = < n .  

By ~' we indicate that a sum must be extended over a complete set of 
,u~L*/L 

representatives of the (finite) quotient L*/L. Formula (2.3) is an immediate con- 
sequence of q(2+ ~)~q(~) (mode) for all 2 ~ L  As for (2.4) we have 

- -  ( _ _ i ) ~  - ~2deg(P)  l 
z ~+a~g(e) ~ P(p)e 2"*q"°+2"0''~> (2.5) 

v(L) ~,~L* 

(see for example [8], p. VI-14, Theorem 19) 
l 

= ( - - i ) 2 "  + 2 d e g { P ) " ~ 2 + d e g ( P )  E E P(#-}-)')e2ni~:q(g+2)+2rti(u+a'¢) 
I 

v(L) ,~L*/L ;.~Z. 
l 

( _ i )  ~ + 2 dog(P)  

= z£ +aegO')~ ~ e2=i<u'¢>O('c,L,P, la). 
"v (L) u ~L*/L 

For these theta functions we have the following theorem which was proved 
in the case that l is even by Schoeneberg and in the case that I is odd by Pfetzer: 

(2.6) Theorem. For all ~eL* the function O(z, L, P, ~) is a modular form of weight 
l 

+ deg(P)for the subgroup F(N) of F, where N is the level of the quadratic form q, 

i.e. N is the least positive integer with Nq(L*)CZ. 

For a proof see [9] and [10]. 
It should be remarked that, when 1 is odd, modular form means modular form 

with a multiplier system. 
Another function which will play an important role is Dedekind's q-function, 

defined by 

~i~ oo 
= e `q I ]  (1 - e 2 = i ' )  . ( 2 .7 )  

n = l  
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For this function we have the following transformation formulas: 

t/(z + 1)=e f f  ~/(~), (2.8) 

q ( - ~ - )  =(-iz)~r/(~) (see for example [11]). (2.9) 

Another property of r/(T) that will be used is: 

the fi~nction tl(r) vanishes nowhere except at Joy. (2.10) 

Other functions that will be used are the (normalized) Eisenstein series, 
defined for any positive integer n by 

8,(z) = 1 + ( -  1)"4n ~ ,r,eZ~ir ~ 
B-~n--= r = l  O '2n-  I t  ) , 

where the B, are the Bernoulli numbers, and a2,_ a(r)= ~ d z"- t 
air  

The Eisenstein series g, are modular forms of weight 2n for the full modular 
group F (see [6], p. 53). 

For the dimension of the space ~/z, of modular forms for F of weight 2n we 
have the following formulas: 

d imJ/ /2 ,=I6  ] if n - l ( m o d 6 ) ,  

I61 +1 if n ~ l ( m o d 6 )  (see [6],p. 26). (2.1t) 

Apart from F we shall need the subgroups F(2), Fo(2), and Fo(3) in § 5. Now 
-- l"  

F(2) is generated by the two transformations z~-~+2 and ~ 2~-- 1' and Fo(P) 

is generated by 1" ~-~z + 1 and ~ ~--~ for p = 2, 3. We can construct fundamental 
p v -  1 

regions for these groups, and then it is easy to conclude 

(2.12) Lemma. {i~} is a complete set of inequivalent parabolic vertices .for F, 
{0, i ~  } is one for both Fo(2) and Fo(3), and {0, 1, i ~  } is one for F(2). 

Let us now return to the theta functions under consideration. In (2.3) and (2.4) 
we got the behaviour of O(~, L, P, 0 under the two transformations z~+~+ 1 and 

1 
v ~ -  - which generate F. Next we want to consider the effect on O(~, L, P, ~) of 

1" 
the action of W(R) on ~. We suppose that P is a skew-invariant spherical function 
(the existence of such polynomials will be discussed in § 4). 

(2.13) Lemma. (i) O(v, L, P, ~ + 2)= 0(1", L, P, ~) for all 2~ L, 
(ii) O(z, L, P, sO = det(s)O(z, L, P, ~) for all s~ W(R). 

Proof (i) trivial, 
(ii) is an immediate consequence of the fact that s L = L  and the skew- 

invariance of P. 
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Immediately we get the following 

(2.14) Corollary. If there exists se W(R) such that det(s)= - 1  and s~-?,eL, then 
O(z,L,P,~)=O. 

Proof O(z, L, P, {)=O(z,  L, P, s~)= - O(z, L, P, 4)- 

Remark. Of course (2.13) holds not only for ~eL*, but for all ve V. 

In the next two sections we consider some properties of root systems. In 
particular, in view of (2.4) and (2.13) (ii) we are interested in the orbits of W(R) 
in L*/L. 

§ 3. Root Systems 

For any ~6R we denote by s~ the reflection in the hyperplane orthogonat [o ~, 
20Jl ~) 

i.e. s,(v)= v -  ~ ) ~ .  We now choose a Weyl chamber C for R. By doing so we 

get a total ordering on R, in particular we can define positive and negative roots. 
We introduce the following notations: 

~1 .. . . .  ~ is the basis of R corresponding to the chosen Weyl chamber C. 
R+ is the set of positive roots, so R =R+u(-R+).  

Z 
aeR+ ~teR+ 

s o is the highest root of R. 
Since we have identified R v with a subset of V, C is a Weyl chamber for R% 

too, and ~ ..... ~ is the corresponding basis. The lattice in V generated by R, 
respectively R v will be denoted by L(R), respectively L(RV). It is clear that both 
L(R) and L(R v) are invariant under the action of W(R). We will use the following 

(3.1) Lemma. Let L be L(R) or L(RV). For each ve V the subgroup 

{seW(R)lsv-veL} of W(R) 

is generated by the reflections it contains. 

Proof See for example [1], p. 227, ex. 1. 

From this lemma we see that if for some pEL* the acuon of W(R) on its orbit 
in L*/L is not faithful, then there exists seW(R) SUCh mat d e t ( s ) = - I  and 
sp-#eL,  and by (2.14) we find that O(z, L, P , / 4=0 .  So we are looking for the 
orbits in L*/L on which W(R) acts faithfully. 

Let us first consider the lattice L=L(R~). Now for the affine Weyl group 
Wa(R) of R we have W~(R)= W(R).L(RV), the semi-direct product of W(R) and 
the translation group generated by L(R ~) (see [1], p. 173). So if we want to con- 
sider the orbits in L*/L under the action of W(R), we could as well consider the 
orbits in L* under the action of W,(R). From [1], p. 66, Proposition 1 (ii), we 
know that every scalar product on V which is invariant under the action of W(R) 
is equal to ( I ) up to a positive factor. So let us define ( , )  = k( I ), where k is 
some positive integer. Then we get that L* = {~e VI(~, 2)e7Z for all 2eL(RV)}= 
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~ ( R ) .  the the choice of and of course the number So quotient L*/L depends k, o n  

of orbits in L*/L on which W(R) might act faithfully depends on k, too. 

We introduce another notation" 

F(R)= {re Vl(c~i[v)>0, 1 <=i<l, and (%It))< 1}. 

Then 

F(R)= {v6 VI(c~itv)>0, t <i<l ,  and (~olV) < 1 } 

is a fundamental domain for W~(R) (see [1], p. 175). We have 

(3.2) Lemma. By taking 

k=  1 +(%1~) when R is of type A l, Dl, E6, E7, Es ,  

=2  +(%I~) when R is of  type B l, C z, F 4 , 

= 3 + (% [~) when R is of  type G2, 

1 
we find that there is exactly one orbit in L(RV)*= ~:~(R) on which W,(R) acts 

1 
faithfidly, and that is the orbit of  ~ ~. 

Proof Let p~ L* such that I/V~(R) acts faithfully on the orbit of It. We may assume 
that it~F(R). Then we have (Ti[p)>0 and therefore (c~'[kit)>0 for t <<_i<l. From 
this we get (~ ' lO-kit)<(~'[Q)= 1, hence (a7lo-k#)<O because it is an integer. 
On the other hand we have (% lit) < 1 and therefore (% [kp - ~) < k -  1 - (% l 0) 
[(%]kit - Q) must be an integer since ~o e L(RV)]. 

We have a relation a o = n ~  + ... +ntiS', in which nieZ and 

ni> 1 if R is of type A t, Dr, E6, E7, E8, 

n i > 2 if R is of type B z, Cl, F4,  

ni~3  i fR is of type G2. 

This can be checked easily using the "Planches" of [1], or by giving a direct 
general proof. From this relation we get 

(% I k i t -  ~) + n 1(el 1~ - kit) + . . .  + nt(a~' [ Q - kit) = 0.  (3.3) 

Now let k be as stated in (3.2), then it follows from (3.3) that (~ ' l~ -k i t )=0  
for 1 < i < l, hence Q = kit. So with this particular choice of k there is at most one 

1 
orbit on which Wa(R) acts faithfully. But it is clear that ~oeF(R),  which proves 

the lemma. 

These numbers k can also be written as k =  ½(%1%)+(%tQ), and from this we 
see that k depends on the chosen scalar product ( [ ). In Table 1 we list the value 
of k, the Coxeter number h and the degrees d i of basic invariants. 
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Table 1 

Type k h Degrees of basic invariants 

Aft> 1) l+ 1 t+ l 2, 3,...,I+1 
B,(I > 2) 41- 2 21 2, 4 ..... 21 
Cfl>2) 2/+2 21 2, 4 ..... 21 
D~(I> 3) 2l-2 2/-2 2, 4 ..... 2/-2, l 
E o 12 12 2, 5, 6, 8, 9, 12 
E~ 18 18 2, 6, 8, 10, 12, 14, 18 
E s 30 30 2, 8, 12, 14, 18, 20, 24, 30 
F, 18 12 2, 6, 8, 12 
G 2 12 6 2, 6 

Remark. The quadrat ic  form q is defined by q(v)=½@,@=½k(v{t~). N o w  it is 
easy to check that q(L(RV))C~. 

In all cases but one the estimates of  the n i given in the p roof  of (3.2) are best 
possible, i.e. equality holds for at least one n i. The only exception occurs when R 
is of type E s. Then we even have n~ => 2 for all i. So we get 

(3.4) Lemma.  Let R be of type E 8. The only orbit in t ~(R)  on which W~(R) acts 

l 
faithfully is the orbit of  ~ O. 

(3.5) Lemma.  The numbers k defined by (3.2) are such that 1 ( [ ) is the canonical 

bilinear form @R on V. 

(For the definition of  ~R see [1], p. 1720 

Proof. We have (c~[~)=0 or t for all positive roots c~=~ o (see [1], p. 165, Propo-  
sition 25 (iv)). Let n be the sum of the positive roots  not or thogonal  to ~o. Then  
we have 

a ~ O t O  

On the other hand we have n=O-s~oo--(Olao)~. So 

~" (~[a~)e=(0lao)e ~ + e o = k a ~ .  
• ~ R + 

Hence ~ (c~1=~,)2=k(=31~). 
~t~ R + 

2 
By [1], p. 172, formula (17) we can write ~ (~1~)2_  4~R(ao, ao) so that 

aeR+ 

(c%t~o) which proves the lemma. q s R ( e ° ' % ) -  2k ' 

In Section 5 we will consider, besides the functions O(~, L(RV), P, ~), the theta 
functions O(~, L, P, ~) where L=L(R) .  There we will be interested in the orbits 
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of W(R) in L*/L(RV), instead of L*/L, and again the question arises whether we 
can choose the scalar product ( , )  such that there is exactly one orbit in L*/L(R~3 
on which W(R) acts faithfully. We have 

(3.6) Lemma. The only orbit in 1 ~(RV ) on which W,(R) acts faithfully is the orbit 

1 
of ~o. 

This lemma can be proved analogous to (3.2), using the relation so = m~cq +. . .  
... +m~e~ such that m~ +... +mr=h- 1 (see [1], p. 169, Proposition 31). 

Remark. Again it is easy to check that for q(o)=½h(vLv) we have q(L(R))C;g. 

(3.7) Lemma. Let ~eF(R). Then for all 2eL(RV), ;o+0, we have 

(~+,~1~+,~)>(~I~). 
Proof. Take 2e L(R ~) such that (~ + 2i~ + 2) is minimal. There exists s e W(R) such 
that s(~+2)eC. Now (s(~+2)l~0)>l is impossible since then by applying the 
reflection w in the hyperplane {oe rl(ol~0)= 1} we would get 

411 -(s(~ + 2)leo)] 
(ws(~ + X)lws(~ + ,~)) = (s(~ + ;~)Ks(~ + ~)) + 

<(~+~.I~+~.), 

which contradicts the minimality of (~+21~+2) (we recall that ws(~+2) is ex- 
pressible in the form s'(~+2') for some s'e W(R), ,t'eL(R~)). So (s(~+2)]C¢o)<1, 
and therefore s(~+2)eF(R). Since F(R) is a fundamental domain for W,,(R), and 
~eF(R), this implies 2=0 ,  proving the lemma. 

1 1 
(3.8) Lemma. (i) -kOeF(R), (ii) ~oeF(R~). 

Proof. (i)Was already mentioned in the proof of (3.2), and (ii) follows immediately 
from (3.6) if we replace R by R v. 

t 
In Section 5 we will consider in particular the cases that L=L(RV), ~=~ C 

1 
and L = L(R), ~ = ~ 0. 

Then we see by (3.7) and (3.8) that the first term in the series O(z, L, P, ~) is 
P(~)e 2~i~q(¢) provided that P(~)~0;  in particular e 2~q(¢) determines the behaviour 
of O(z, L, P, ~) at r = ion. In these special cases q(0 can be expressed in terms of k 
and h by some "strange formulas". The first one is 

d 
~R (~' ~)= 24 (see [5], p. 243). (3.9) 

Another one, which was proved by Macdonald, is 

= h+_ 1 ~ (~t~lcti) (see [7], p. 120) (3.10) 
2h 24 2 j = l  
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and as an immediate consequence of (3.10) we get 

(o-ta)_ h+l  @ 2 
(3.11) 

2h 24 J'=z~t (~j[~)" 

In (3.2) and (3.6) we found that by taking ( ,  }=k(  [ ), or ( ,  }=h(  I ) respec- 
tively, there is exactly one orbit in L(RV) * or L(R)* respectively on which W~(R) 
acts faithfully. We will give now one example (which will be used in Section 5 to 
prove formula 6(a) on p. 138 of [7]) in which there are more orbits. We consider 
the case that R is of type B~(I>2). Different from our normalisation of ( ] ) so 
far, we suppose in this particular case that the root lengths are 1 and 2. We can 
use the description given in [1], Planches. 

(3.12) Lemma. Let R be of type Bl(l>2 ), and ( ,  }=(2 l+  1)( ] ). Then the only 
1 

orbits in L(R)*- :~(R v) on which W~(R) acts faithfully are the orbits of 
2l+ 1 

2 l+~ a and (~ +o) 0 where ~1 is the fundamental weight corresponding to ~ .  

Proof. From eo = cq + 2~ 2 + . . .  + 2c~ t (see [I], Planches) it is clear that for #eF(R) we 
must have ((2l + t)~[c~i) = 1, t __< i __< I, which implies (2l + 1)/~ = ~r, or ((2l + 1)/~tc~ ) = 2 
and ((2l+l)glei)=l  for 2<_i<l, which implies ( 2 t + l ) / ~ = a + e h  (since e~=cq). 

Remark. The fact that there are two orbits in this case does not depend on the 
chosen normalisation of ( I ). However, we did so in order to get 

(a]a)=_(a+u)lla+~oO(mod(21+ 1)), (3.13) 

which will be used in Section 5. 

§4. Skew-lnvariant Spherical Polynomials 

In this section all polynomials will be homogeneous. First we will consider some 
properties of skew-invariant polynomials and then we will determine for what 
degrees there are skew-invariant spherical polynomials. A crucial role is played 
by the polynomial I ]  (~1~) which will be denoted shortly by H. We have 

0t~ R + 

(4.1) Theorem. Every skew-invariant polynomial is divisible by II. 

For a proof see for example [1], p. 185, Proposition 2(ii). 
Now we shall give a proof of formula (2.5) in the special case that P=H. The 

reason for doing so is that there is a kind of an analogue to the method used by 
Schoeneberg and Pfetzer. They proved formula (2.5) by applying one differential 
operator a number of times (see [9] and [10]), and we will prove it by applying 
several differential operators. For any indefinitely differentiable function f :  V ~  
and for any ~ R  let 

f(~ + t~) -  f(~) ~o f(~) = lim ' 
t~O t 

For all ~,fleR we have A°~ACp = LZa5¢ ,, 
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Now let 52 be the differential operator defined by 

o¢~R + 

(4.2) I~mma. I f  f :  V ~(F is an indefinitely d~ferentiable function, invariant under 
the action of W(R), then 52 f(s~)= det(s)Sff(~) Jbr all se W(R). 

Proof. Let e e R  be a simple root. Then 

52~ f(s,4) = lira f (s ,~ + t f l ) -  f(s,~) = lim f (4  + ts,[3) - f(~) 
t-~O t t ~ O  t 

= 52~,a f(~) " 

Hence 

because s,:(= - e ,  and s~ permutes the other positive roots (see [1], p. 157, Corol- 
lary 1). This proves the lemma since W(R) is generated by the s, where ~ is a 
simple root. 

(4.3) Lemma. For any z ~  we have 52(eZ~i~q~)=(2niz) ~ 1~ (~-, a) e2~i~"~). 
o~R+ 

Proof 52(eZ=i~q(¢))= t I(2aiz)',~a+l~ ({, a)+g({}] e 2~i~{¢), where g(~)is a polynomial 

function of degree <r. Both CS(e2=i~q(¢)) and l~ (~ ,a )  are skew-invariant under 
~ a R  + 

the action of W(R), and therefore g(~) must be skew-invariant too. By (4.1) g(4) 
must be divisible by H, which is of degree r, and therefore g(4)= 0, which proves 
the lemma. 

Remark. [ I  (~, ~) is equal to H up to a positive constant. 
a ~  R + 

Now consider the function O(z,L, 4)= ~ e 2"i~qtx+¢), where z ~  "~ and ~a K 
).~L 

This function O is analytic in J f  and periodic on V, i.e. O(~, L, ~ + 2)--- O(z, L, ~_) 
for all 2~L. Therefore we obtain its Fourier series and we have (see [8], p. VI- t0 ,  
Proposition 23) 

/ 

O (v, L, 4)= ~{Lj / i )  Z e ~ (4.4) 
t t e L *  

By applying the differential operator 52 to both sides of (4.4) we obtain 

(2niz) ~ ~ I~ ()~-}-~'a)ez~i*qO~+¢) 
2~L a~R,~ 

l 
i ~ I 21ri + . 

= ~ - 2 ( 2 n i ) '  Z 1--[ (la,~)e ~ q(u) z i<u,~>, 
tteL* a e R +  

from which (2.5) (with P = / / )  follows immediately. 
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We now return to the problem of finding skew-invariant spherical polyno- 
mials. Let S be the G-algebra of homogeneous invariant polynomials, We have 
the following theorem, due originally to Chevalley (see [2]): 

(4.5)Theorem. S is a polynomial ring, i.e. S=~F[I~ . . . . .  It], where I1 , . , . , I  J are 
algebraic independent invariant polynomials. 

For a proof see also [1], Chapter V, § 5. 
We remark that the number of invariants in a basic set is equal to the rank 

of the root system R. Now the set 11 .. . . .  I I of basic polynomial invariants is not 
uniquely determined. However, their degrees d, . . . . .  d~ are uniquely determined 
(see [1], p. 103, corollaire). The degrees dl are listed in Table 1. 

Let S, be the space of polynomials in S of degree n. From Table 1 it is very 
easy to determine the dimension of S,, since this dimension is equal to the number 
of solutions (a 1 . . . . .  at)s N q of aid1 + . . .  + afi~ = n. 

Now let P be a skew-invariant polynomial, then by (4.1) P is of the form 
P = J 1 1  where J~Sn for some n. If we apply the differential operator A from (2.2) 
on P the result will again be a skew-invariant homogeneous polynomial (APe, s= 
A(Pos) for any isometry s of V), so AP=J '11  for some J ' e S , _  2, provided n>2.  
The case n=  1 is not very interesting because $1 = {0}, and for the case n = 0  we 
get, since A l l  must be skew-invariant, A11=0 (so H is the most simple example 
of a non-trivial skew-invariant spherical function). 

We are now going to determine the dimension of the kernel of A :S,11---,S,_ 2 H, 
n>2.  

For  all types there is a basic invariant of degree 2 (uniquely determined up 
to a constant multiple), and we denote 

J,(~)=(~l~), i.e. J , ( ~ ) = x 2 + . . . + x  2, 

whenever el ..... e l is an orthonormal basis of V and d=x~e, 1 + ... +xte~. 
Now it is clear that for any homogeneous polynomial P we have 

(~ LDP) = deg (P)P ,  (4.6) 

where D P =  \ & ,  .... cT~x~ is the gradient of P in the usual sense of calculus. Since 

DJ 1 = 2~ we get immediately for any polynomial P 
A(J~ P) = [2l + 4 deg (P)] P + J,(A P). (4.7) 

If A P = O  then it is easy to prove by induction that for all n > 1 we have 

A J'~ P = [2nl + 4n(n - 1) + 4n deg (P)] J~- ' P .  (4.8) 

We now prove 

(4.9) Proposition. The map A : S , H  ~ S,_ 211 is surjective for all n >2. 

Proof. Whenever S,-2 = {0} there is nothing to prove. Suppose now that we can 
find a basis PI .. . . .  P~ of S,_2 such that A J 1 P J I = c ~ P J I ,  1 < iNs ,  and ci>0.  

Then we can find such a basis for S, too, For first of all J , P ,  . . . . .  J 1 P ~ S ,  are 
linearly independent. Furthermore let Q~ 11 . . . . .  Qt11 be a basis of ker (S ,H-+S,_ 2II), 
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so Q1 . . . . .  QteS,. Since (J1PIII  . . . . .  J1PsH)c~ker(S, l l ~ S , _ 2 1 l ) =  {O} and 
A:S, I I~S ,_2H is surjective, J1P1 ..... J~P,, Q~ ..... Qt must be a basis of S,. For 
this basis we have 

AJi(J1Pill)=[21+4deg(JiPfl l)+cJJ1PiH, l <_i<_s, 

by (4.7), where 21 + 4 deg (J t Pi//) + cl > O, and 

AJ~(Q~H)=[21+4deg(Q,H)]Q~H, l <_i<_t, 

by (4.8), where 21 +4 deg(Q~H) >0. 
For n = 2  we can find such a basis since A Ji l l=(21+4 deg(H))//. When all d i 

are even we are ready by induction. Otherwise, let d~ be the lowest odd degree 
and let J~ be a basis of Sd, (it is easy to see from Table 1 that dimSd, = 1). Then 
we must have A J~H = 0, and therefore A(J1 Ji//)= [2l + 4 deg (J~//)] Jill, so in this 
case we are ready by induction too. 

As an immediate consequence of (4.9) we get 

(4.10) Corollary. The dimension of the space of skew-invariant spherical functions 
of degree r +n is equal to (dimS.-dimS, , -2)-  

§ 5. M a c d o n a l d ' s  Identit ies  

In this section proofs are given of the formulas (8.9) and (8.13) of [9], and of one 
other identity, mentioned in Appendix I of [7]. First we take L=L(RV), ( , )  = k( I ) 

where k is defined by (3.2), and 4 = -~ 0. We are going to compare O(z, L, H, 4) 

with r/(z) ~. We have 

O(~+ 1, L, H, 4)= e2~iq~°o(r, L, H, 4) 
hid 

=e~ZO(z,L,H, 4) by (3.9). (5.1) 

Furthermore it follows from (2.14) and (3.2) that for all #eL*/L which do not 
belong to the orbit of ~ in L*/L we have O(z,L,/ / ,~0=0, and therefore we get 

0 - - , L ,  II, =czZO(~,L, ll, 4), 
~C 

1 

i-~ 
where c =  - ~ ( - i )  a ~ det(s)e 2~i<~'~>. 

s ~ W ( R )  

Now from (3.7) and (3.8) it is easy to see that 

O(z, L, H, 4) 
lim = H(~)  =1= 0 • ~ ; ~  ~(~)d 

we even know that / / (4)= 

(5.3) 

I--I (4Le) >0, since (Qle)>0 for any positive root e. 
~tER+ 
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In particular (5.3) implies that O(r, L, H, {) does not vanish identically, hence 
we can choose ro~ ~f( such that O(z o, L, H, ~)4~0. Then we have 

o - - - ,  L, r/, ~ = c ~ O ( % ,  L , / / ,  O ,  
~O 

and 

0(~o, L, H, ~) = ( -  i ) -%ro2 0 - - - ,  L, H, ~ , 
TO 

and therefore c 2 = ( - i )  e. Then we get 

( ; 0 - 1 , L , H , ~  = ( - i r ) d O ( r , L , H , ~ )  2 

and with (2.8), (2.9), (2.10), and (5.1) this shows that 
~/(0 2a 

function, invariant under the action of the full modular group F. By (5.3) this 
quotient is bounded, hence constant, and again by (5.3) wc must have 

o(~, L, n, 0 
,7(~)~ = I ]  (~1~). 

~eR + 

So we have proved 

(5.4) Theorem (Macdonald). 

O(z, L, H, 0 2 is a holomorphic 

From (2.9) we can now determine the constant c, and we get c = ( - i )  5. Hence 

2~i (so J 5) l 

(5.5) Corollary. ~ det(s)e k =irk 2(det((a~l~))) ~}. 
s e W ( R )  

Next we take L=L(R) ,  ( , ) - - h (  I ), where h is the Coxeter number of R, and 

h "We want to prove formula (8.13) of [7], so we want to compare O(r,L,H, 0 

with r/ z ; let us call this last function Z(z). 
i 

(fltfl) Let p denote ~ where fl is a long root and e a short one, so p = 1 if R is of 

type Al, Dr, E6, Ev or E 8, p = 2 if R is of type B t, C~ or F4 and p = 3 if R is of type G 2. 
From our normalisation of ( ] ) (which was suggested by W. L. J. van der Kallen) 
it follows that 

pL(R v) C L = L(R) C L(RV). (5.6) 

Moreover it is easy to check that h is divisible by p. When p = 1, i.e. when all 
the roots of R have the same length, we have L(R)= L(RV), k=  h, Z(0 = q(r) d, and 
in this case we get (5.4) again. In the cases that p = 2  or 3 the function Z(z) is a 
product of powers of r/(z) and q(2z), or r/(z) and r/(3z) respectively and in those 

l~ (k)~+¢[~) e2~,,~lk~+~,k~+o)=~7(r)~" 
~eLisv~ ~eR+ (¢1~) 

d 
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cases we should not consider the transformations from the full modular group. 
Instead, we are going to consider the subgroup Fo(p). First of all we have 

O(z + 1, L, 11, {)=e2'~iq~¢) O(z, L, 11, ~)=e 2=i (oto) } 2h O(z, L, 11, O,  (5.7) 
2~i (OI O) 

X(~+l)--e gh X(z) by (2.8) and (3.10). 
- - ' C  

As for the transformation z ~ pz - ]- we have 

l d 

o - ~  , L , U , 4  = ~ ( - 0  ~ Z lq 
t d 

# ~ L * / L ( R  v) .;teL(R v) ~ R +  

2~i 
- - - -  q(It+ A)+ 2rci[pq(l t+ 2 ) +  (t~+ )~,~)] 

e ~ ( 5 . 8 )  

Now we have pq(p + 2) = pq(p) + pq(2) + p(#, 2) 

1 ~(p21pa)+(~,p)~) =Pq(#) + ~ 

-pq(p) (mod~)  by (5.6). 

Besides ( # + 2 ,  4) -= (/~, 4) (mod 7T) for all 2eL(RV), since ~eL(R~) *. 
Therefore (5.8) takes the following form 

l d 

Then by (2.13), (2.14), and (3.6) we get 

l d 

i 2 . . . .  2rci ('s 1~ ""~)) 

d 1 
--  2rHpq - - e  

= (_ i)d~z_ 1)2e (h)O(z, L, H, ~). (5.9) 

On the other hand we have 

rl p-z-Z1 =( - i ) (pz -1 )  ~e2'* " . ' l ~ ' s ) . l ~ z ) ,  
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by (2.8) and (2.9), and therefore 

- -  T, -~ 2~tipq(v-e*) 

z = ( -  i ) a (p~ -  1) ~ e ~ ?~(~), (5.10) 

by (3.11) and the fact that  l(h+ 1)=d.  

From (5.7), (5.9), and (5.10) we see that O(r, L, H, 4) is invariant under all z(T) 
transformations from l~(p). Again we have to take care of the parabolic vertices, 
which were determined in (2.12). From the definition of O(r, L, H, ~), (3.7) and 
(3.8) we get easily that 

lim O(z, L, H, 4) _ [-I (~1~)- (5.11) 

Furthermore we can write 

li. O(z,. ,  L, H, ~) lira 
~ o  )~(r) ~ i ~  Z - 

and since O - - t , L , H , {  =cz~O z,L(RV),H, Ta for some constant c, and g 

Z - = c ' r 5  ]7I Y/ ............... r for constant  c'+O, get by (3.7), (3.8), \ j= l  l(O~j[2j ) J] some we 

O(z, L, II, ~) [ ..la~F(R)] and (3.11) that )~(z) is regular at T=O too as for (3.8) (ii): ~ 

Hence this quotient must be constant  and by (5.11) equal to I1 ({l~). So we have 

proved 

(5.12) Theorem (Macdonald). 

1~ (hR-t-O'°O 2"i~(hX+elha+e) (j__I~I 1 ( ~ ) ) h + l  
aeL(R) ot~R + (Of 0~) e 2n = ~/ r 

1 
For the transformation z~---  - w e  get -g 

On the other hand we have 

=cz2 [-I al ~v t/ z by (5.12) 
~R + j= 1 

~t~R + 
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Hence c' 1~ (~,~)=c 1-I ( l a ' a v )  • 
~R+ ~t~R+ 

l h+l  

Now c=  ~ ( - i )  ~ ~ det(s)e , and  c ' = ( - i )  ~ 2 
s ~  W ( R )  

Therefore we get the following 

(5.13) Corollary. 
h+I 

det(s) e2~i(s~lQ) ' (  1-I 1([] ~ )  2 h =i,h ~ (01c0 2 
~w~g) \,~R+ ~ ]  ~-~ (det((~il~J)))~" 

If p = 1 this is just (5.5) again. 
Now let R be of type Bt(l>2 ) and let ( ) be normalized as in (3.12). 

1 
Let ( , ) = ( 2 / +  1)( t ), 0=½ ~ c~, o=½ y" c~", 4=  2l--~-[~. We take L=L(R). 

( .(.~)2I+3~/ 
We want to compare O(z, L, H, 4) with )~(z)= q(2r)2 j . In this special case 

the situation is different from the one considered so far. Besides the fact that the 
normalisation of ( J ) is not the same as before, we have neither q(L)C~ nor 
~eL*. However, we still can use formula (2.5), and since 2q(L)C~ as well as 
2~EL*, we will consider what happens under the transformations ~t-~T+2 and 

~ 2 r - ~  which generate F(2). 

It can be easily seen that both O(r, L, H, 3) and Z(z) are transformed in the 
same way under zF-,r + 2. 

- -T  
So let us consider z~- . . . .  We have 

2 r -  1" 

I d 
i ~ z 2 h i  [ ~ ]  q~tO+ 2rri(t~,¢) 

= ~(L)(-i)" E [I (llie)e 
~ L *  e ~ R  + 

1 d 

( ) - v~)(-i)a 2z~..!~ Z eZ"q<"'">+<"'¢>lO - 1,L(RV), II,p • 
# e L , / L ( R  v ) "C 

1 
By (3.12) we need only to consider the orbits of kt I - 21+ 1 - - -  a and 

1 
#2 = 2-T~(a +~h) .  
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We have e2~i<u~'u~)=e 2~i<u2'"2) by (3.13), and therefore we get 

O ~ - ,  L, H, ~ = ( 2 z -  24 O(r, L , / / ,  ¢), (5.14) 

X =(2z 24 X(~). 

We conclude that O(z' L,/-/, 3) is invariant under all transformations from 
z(~) 

F(2). We have to take care of the parabolic vertices of/'(2) which were determined 
in (2.12). It is obvious that ~F(R~), and therefore we get by (3.7): 

lim O(r,L, I I ,~)_  1~ (¢te)- (5.15) 

o(~, I~, rt, ~) 
As before we can write lim = lim 

~o Z(~) ~-.ioo 

We have 

o(  IL° 

1 ) a a 
0 - - ,  L, H, ~ =clr-iO(z, L(RV), 171,/~1)+c2z20(~, L(RV), lI, P2), "C 

for some constants Cl, c2. Since #1,/t2~F(R) we find by (3.7) that both 

d d 

r2 0(r, L(RV), 11, lq) and z~O(z, L(RV), ll, #2) 

are regular at r =  i~ ,  and therefore -O(z' L , / / ,  3) is regular at r=0 .  
ze) 

o(r, L, H, ~) 
In the same way we get that is regular at r = 1 too. Hence this 

quotient must be constant, and by (5.15) equal to l-I (~lc0. So we have proved: 
a~R + 

(5.16) Theorem (Macdonald). I f  R is of type B,(/>2) then 

((2l+ 1)2+01~) 2r~i~:((21+l);L+Oli2t+l);~+O) {t](1;)2/+ 3~ / 
Y, H e = ~L(R) ~R+ (¢1~) \ t/(2z) 2 / " 

Finally we consider the case that R is of type E s again. We take L =  L(RV), 

( , )  =31( t ) and ¢ = 3-i 0. We know by (3.9) that , hence 2x31(010) _ 10. 

So we get O(z+ 1, L, H, {)=O(z, L, H, ¢). By (3.4) we find that 
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t ~ .{seIQ) 

where c =  v(L~ ~ det(s)e ~ '~-K-.  By a calculation as used in the proof of 
s~W(R) 

(5.4) we get the following formula 

(312+0[~) 2~i~ (312+0t312+0) 
Z 1~ e 62 =.(z)2 4og2(z). (5.17) 

§ 6, Some Other Identities 

In this section we will study O(z, L, P, ~) where L=L(R~), q(v)= ½k(vlv) where k 

is the number defined in (3.2), and ~ = k p" The polynomial P is a 
4 

skew-invariant 

spherical function, and as we have seen, P can be written as P = J H  for some 
invariant polynomial J. We define 

• (z, J)= O(z, L, P, ~) q(~)a (~ and the lattice L are fixed). 

Then we have the following transformation formulas for this function ~(z, J): 

q)(z+ 1, J )=  4~(z, J) ,  (6.1) 

by (2.3) and (3.9), and 

qa ( -  l ' J ) =(-1)deg{1)zdeg~J) ~(z' J) (6.2) 

This last formula is an immediate consequence of (2.4), (3.2), and (5.5). The 
function tO(z, J) is holomorphic; it is holomorphic at z=ioe too; by (3.7), (3.8), 
and (3.9) we have 

lim q~(z, J)=J(~)/ / (~) .  (6.3) 

From (6.2) it is easy to see that whenever deg(J) is odd, which can only occur 
ifR is of type At(l> 2), Oz(l odd) or E 6, we must have tb(z, J )=0,  and so we get 

(6.4) Lemma. I f  P = JH is a skew-invariant spherical function such that deg(J) is 
odd, then we have O(r, L, P, 4)=0. 

From now on we assume that deg(J) is even. It follows from (6.1), (6.2), and 
(6.3) that 4~(r, Jyis a modular form for F of weight deg(J). 

We conclude from (2.11) that for low degrees of J, i.e. deg(J)=4,6 ,8  or 10, 
• (z, J) must be a multiple of an Eisenstein series. We will consider the cases 
deg(J)=4 or 6 and after that we will deal with a few special cases where J is of 
higher degree. We will make explicit calculations and to that end we will use the 
following descriptions of the various root systems. 

Let IE l be a Euclidean space of dimension l, and let e 1 . . . . .  ~t be an orthonormal 
basis of El. For all root systems we take J l(Xl . . . . .  x~) = x~ +.. .  + x z as in Section 4, 
the basic invariant of degree 2. 
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l + 1  

(6.5) Type &(l>= 1). Let VClEI+ 1 be the subspace of vectors ~ x f j  such that 
j = l  

1+1 

xj = 0. Then a set of positive roots is given by {ei-ejl 1 <i<j<l+ 1 }. A set of 
j = l  

algebraically independent invariant polynomials is given by J1, J2 ..... J~ where Ji 
1 

is defined by Ji(xl ..... xt)= ( l - i+l ) ! i !  ~ x¢,,)...x,~o for 2<i<l, and where 

x~+~=-(x~+...+x~). We write the elements of V as X l e l + . . . + x z l h +  

( "  ,=ti x,)gl+ l = xl(~l-e'~+ ,)+'.. + x,(~,-~t+ *)" 

The Gramian matrix of the basis g, -g~+ 1 ..... e l-s t+ 1 of g is 

~2 1 112 \ ) 1 - 1 - 1 ) 1 2 - t  l \ 

1 
. Its inverse is ~ -  

- 1 /  
,1 1 ~-1 - 1  1/ 

and therefore A takes the form 
l ~ 02 2 

2 2., A -  /+1 i=1 0x2 1+1 l<i<j<=l ~Xi~X j 

(6.6) Type B~(l>2). V=IEI, and a set of positive roots is given by 

{]/2(e~ + ej)l 1 <i<j<l}to{~/-2e~ll<i<l} 

(we recall our normalisation). A set of basic polynomial invariants is given by 

1 2 2 J~,J2 ..... J,, where Ji is defined by J~(x~ ..... x~)= (1-i+l)[i! 4,~_, xeet~)'''x°") 

for 2<i<1. We write the elements of V as Xlgl+. . .  +xtet and then A is 

32 02 
2 + +  e -7 

(6.7) Type Ct(l>2 ). V=IE v In this case we have as a set of positive roots 
{e~+__e.j[l<i<j<l}w{2e.ill<iNl}. We take as a set of polynomial invariants 
J1 ..... Jr, defined in (6.6), and A takes the same form as in (6.6) too. 

(6.8) Type Dr(l>3). V=IE~, and a set of positive roots is given by 

{ei +_ej[ 1 < i <j<=l} . 

As a set of polynomial invariants we take a~,-/2 ..... ,/~, where Ja ..... J~_ ~ are the 
02 02 

polynomials defined in (6.6), and 4(xl ..... x0=  x~... xl. Again A = ~ +. . .  + Ox--7" 

1/~(6.9) Type F4. V = lE4, and a set of positive roots is given by [/~i,  1 N i_< 4, 
(ei + e j), 1 < i < j  N 4, 2*- ~/2(~1 -+ ~2 + g3 -+ e~). In this case we do not know a c o m -  
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ptete set of basic polynomial invariants 1, but since we will consider polynomials 
of degree 6 only in this case we tried to find a basic invariant of degree 6. We did 
so following a method of Flatto (see [3]). We got 

.]2(X1, X2, X 3, X4)= 16(X 6 +X 6 +X~ + X6)+ 5(X 2 +X2 z +X 2 +X2) 3 

__ 2 0 ( X  2 + X 2 2 2 4 4 q- X 3 q'- X4) (X 1 + X2 "~ X~ -'}- X4) .  

C-32. ('~2 
(J2 is constructed such that J2 is invariant, and A J2=0) A = ~  + . . . +  &2- 

(6.10) Type E 6. In this case we use a rather unusual description, given by 
Frame (see [4]; it may be readily seen that the reflection group considered there 
is the Weyl group of type E6). We take V = IE 6. A full set of roots is given by 

1 r- / 2~a . 2zra 2~zb 2~zb 
+_ ~ [/6 ~cos ~ -  e I + sm -j--  g2 "t- COS T E:3 -/" sin ~ -  e 4 

21tc . 2~zc \ 
+ COS - ~  g5 -I- sln T E6) , l<=a,b,c<=3, 

[ . 2rca 2rta 
+ + cos 1__a_<3,  

[ . 2 r c b  7 )  +-- 1 - sm-~-- g3 -}" COS ~4 ' 1 < b < 3, 

{ . 2~c 2rcc 
+ l-smT- 5+cosT o), 1_<c__3. 

We take as positive roots those roots whose scalar product with the vector 
6el + 5e2 +4e 3 + 3e4 +2e5 +g6 is positive. We write the elements of V as xlgl + 
Y192-{-X2g,3q-Y294-t-X395q-Y386, and furthermore pi=xi2 q'-yi,2 1<i<3,_ _ qi=3_Xil 3 _ 
xlY~, t _<i_< 3. Then a complete set of basic invariants in terms ofp~ and q; is given 
by Frame. We will only use J1 and J2: 

Jl=pl+p2+P3 • 
J2 =P2(p2 +P3) +p22(p1 + P3)+ PZ(Pl + P2)- 3plP2P3 + q2 + q2 + q2 

- 5 {q~(qz + q3) + q2(q~ + q3) + q3(ql + q2)}- ±(: :) A= + 

8 
(6.11) Type E7. Let VcIE 8 be the subspace of vectors ~ x:~ such that 

i = l  
xv+x8=O. A set of positive roots is given by -+ei+gj, l<i<j<6, e8-e7, 

e8 -eT+  ~ (-1)~1%~ with ~ v(i)odd. Again we do not know a complete set 
i=1 i=1 

of basic invariants, but we only need an invariant of degree 6. If we put J2(~) = 

t Quite recently Professor Coxeter informed me that  a complete set can be found on p. 179 of his 
Regular Complex Polytopes (Cambridge, t974) 
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3al + 2~2 

/ 
Fig. 1 

O~ 1+0(,2 
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(~[~)6 we get an invariant of degree 6, which appears to be linearly inde- 
ntER+ 
pendent of J~, and so it must be algebraically independent of J t  too, so J2 is a 
basic invariant of degree 6. We write the elements of V as 

XI81 -]-...-]-X7C.7~-(--X7)e8=XI'gl "Jv . . .  "~- X6£6 -~ X7(E 7 --/:~8) " 

The Gramian matrix of the basis E 1 ..... ~6,,~7-~;8 o f  V is 

' t, 1/ 
\ 2 

and its inverse is 

0 2 0 2 ± _ _  
and therefore A takes the form A = ~ + . . .  + c~,c~ + 2 &~.  

(6.12) Type G 2. Let V=IE 2. A set of positive roots is given in Figure 1. 

Here ~1=] /2e l  and ~ 2 = - 3 ] / ~ e l + ½ ] / 6 e 2 .  As in (6.9) we can construct a 
basic invariant of degree 6, and we get J z ( x l ,  X2)= X16__X2__6 15(X4X 2 --  X1X2).2 4 

0 2 ~2 
In this case A = ~ + 0x~  

The case that R is of type E8 is omitted since deg(J )=4  or 6 cannot occur 
when R is of this type. 

Let us now consider the functions q~(r, J) where deg(J)=4,  By (4.10) we know 
that k e r ( S 4 H - - , S z F l ) # : 0  if and only if 4 is degree of a basic invariant. We get the 
following 
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(6.13) Theorem. I f  R is of type Al(l>3), B~l~2), Cl(/>2) or Dt(t>__5), there exists 
an invariant polynomial J of degree 4 such that 

(i) Jl I  is a spherical function, 

~uR°~ 2(0//(0 

In detail: 

8(1+ 1)(l 2 + 2l+2) 
J=J~ -  (t-  ~)(t-2)(1+2) 

412+2l+4 

(2 l -  1)(l-  1) 

4l 2 - 21 + 4 
=J~ J2 

( l -  1 ) ( 2 l -  3) 

(ii) ~ J (2+~)H(2+~)  e2~i~c~.~k;~+Q,k;~+o)=rl(z)a82(z). 

J3 if R is of type At(l>3), 

if R is qf type B t or Cl(l_>_2), 

if R is of type Dt(l >_ 5). 

Proof First of all we have A J 2 H = (4l + 8 + 8 deg (H))J~H by (4.8). Then we know 
that we must have AJ3l I=aJ l l l  ifR is of type Al and AJ2H=aJ1H in the other 
cases, for some constant a. By using the description of A given in (6.5), (6.6), (6.7), 
and (6.8), a straigthforward calculation (for instance by looking at the highest 
powers of x~ that can occur) shows that 

a=½(l-  1)(1-2)(1+2)/(I+ 1) i fR is of type A t , 

= 2(2l-  1)(l-  1) if R is of type B I or C~, 

= 2 ( l -  1)(2l- 3) if R is of type D~. 

From this it is easy to see that the polynomials J, stated in (6.13), are such that 
JH generates ker(S4H~S21l ). Then from (6.1), (6.2), and (6.3) we see that 
~('r, J)=J(~)ll(~)~2(z ). So it only remains to be checked that J(~)~0. By calcu- 
lation we find 

1 
J(Q) = - ~ l(l + 1)2 (l + 3) (l + 4) 

1 
-- 90 l(2/+ 1)(l+ 1)(2/- 7)(2/+3) 

1 
- 180 l(l+ 1)(2/+ 1)(2/+3)(l+4) 

1 
- 180 1(21-1)(l-4)(21+1)(l+1) 

if R is of type At, 

if R is of type B,, 

if R is of type Cz, 

if R is of type D z . 

So we see that J(o)4:0 (we assumed />4  if R is of type Dr), hence J(~)+0 
because J is a homogeneous polynomial, which proves the theorem. 

Remark. IfR is of type D4, the polynomial J constructed above is such that J(~)= 0. 
However, in this case ker(S4lI-~S211) is 2-dimensional; we have AJ411=O 
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[we recall that J4(xx, x2, x3, X4)=X1X2X3X4], and so J J l  is another generator of 
ker(S4l l~SEll ) .  But we also have J4(~)=0, and therefore we get O(z,L, J l l ,¢)=O 
for all J H e k e r ( S J l ~ S 2 I I ) .  

Next let us consider the functions ~(r , J )  where deg(J)=6. Analogous to 
(6.t3) we can prove 

(6.14) Theorem. I f  R is of type At(l ~ 2), B~(l > 3), C~(l>= 3), Dt(l > 4), E6, ET, F 4 or 
G2, there exists an invariant polynomial o f  degree 6 such that 

(i) J l l  is a spherical function, 

J ( 2 + ~) H ( )~ + ~) e 2 n i ~ a ( k 2  + Q, k,~ + O) = r/(-C)d~3(,C) . 
(ii) ~ J(~)H(~) 

2~L(R v) 

In detail: 

J = j 3 - 2 1 6 j 2  if R is of  type A 2 , 

6(1 + 1)(l 2 + 21 + 4)(I 2 + 21 + 8) j2 _ 24(l + 1)(F + 21 + 4) 
= j 3 _  l ( l -  1)(31+ 2) l ( l -  1)(31+2) 

if R is of  type At(l > 3), 

3(21 z + l+ 4) 3(212 + 1 + 4)(212 + 1 + 8) 
= J~ ( l -  1)(2l- 1) JIJ2 + ( l -  1)(l-  2)(2l-  1)(2l- 3) J3 

if R is of type B~ or Cx(/>3), 

(6/2 - 31 + 12)(2/2 - 1 + 8) 
J3 

6l 2 - 31 + 12 
-- J~ J1Ja + 

( l -  1)(2l- 3) ( l -  1)(l- 2)(2/-  3)(2/- 5) 

if R is of type Dr(l>4), 

137 
_ j 3  1512J2 if R is of  type E7 , 

= j 3 _  ~5 Ja if R is of type E 6 , 

= J2 if R is of type F4, 

= Ja if R is of type G 2 . 

J tJ3 

Remark. Whenever R is not of type Aft>=5) or D 6, the polynomial J is uniquely 
determined up to a constant factor. If R is of type Az(l>= 5) or D 6, then 

ker(S j I - ~  S JT~ 

is 2-dimensional. We can choose J ' l l e k e r ( S 6 H ~ S J l ) ,  J' linearly independent of 
J, such that J'(Q)=0, and consequently O(z, L, J ' l l ,  4)=0, so to get the identity 
(6.14) (ii), we can add to J any multiple of J'. 

The space J/12 is the first one in which there appear two linearly inde- 
pendent modular forms for F [see (2.11)]. Now we will first consider the functions 
• (r, J), where deg(J)= 12, in the cases that R is of rank 2. By (4.10) it is easy to 
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see that  ker(S1211-+Sloll) is 1-dimensional. As generators  we find JH, where 

6 3 2 J =  J~ - 648Jx J2 + 46656J~ if R is of type A 2 ,  

=j6-40J'~J2+384j2j~- 1024J~ i fR  is of type B2,  

= d 6 _ 4 j 2  if R is of type G 2 . 

Now a basis for ~/g12 is given by g6 and t/24, and one might hope that J (~)=0 ,  
for in that case (b(z, J) would be a multiple of  q24. However,  J(~) turns out  to be 
non-zero,  and therefore ~b(z, J) must  be a linear combinat ion of ~6 and /~24, It 
appears  that there is exactly one ).~ L(R ~) such that q(2 + 4)= 1 + q(~); we find that 

2 =  - -  e 1 " ~ E 2  if R is of type A 2 , 

= - ~- l f2e ,  - ½ ] ~ e 2  if R is of type B 2 , 

= - ~1//6e2 i fR  is of  type G 2 . 

Then we get respectively 
2 rti*. I 4 

J(). + ~)H(,~ + ~) e2~i~Rtk~.+~.k~+O=e _ 32768e2~i~. 5 + ... 
~Ll~v~ J(~)//(~) 

2~i,.~2 7286170 2rWc'} 7 
= e  + - - e  + . . . .  

527 

=e2~i~" + t 7824702. e2r~i~- ---12 _{_ . . . .  

703 

65520e2~i,+. ."  (see [6], p. 53, where the wrong number  Now g6(r)= 1 + 

54600 must be replaced by 65520, as can easily be seen from the short  table on 
p. 52), and by a simple calculation we find that  

y ,  Y(2+ ~ )H(2+  ~) e2,m~R~k;,+e,~+O)=rt(r)d(E6(r)+arf(r)24) ' (6.15) 
~L~v~ J(~)//(~) 

where 

22702680 
a-= 691 ' d = 8  if R is of type A 2, 

5003856000 
d = 10 if R is of  type B 2 , 

364157 ' 

12277609344 

485773 
, d = 14 if R is of type G2 • 

Of  course, whenever dim ker(S12H~SloH)>2 we can choose a spherical 
function JH, where d e g ( J ) =  12, and such that J (~)=0 ,  and then ~(z, J) must be 
a multiple of q(z) 24. We consider the cases that R is of type A 3 o r  B a. First  let R 
be of type A 3. The  7-dimensional space $12 is generated by J~, J4J3, J13 J2,2 Jl2 J3,2 
J,J~J3, J~, J~. 
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N o w  it is easy to de te rmine  genera to r s  for the 2 -d imens iona l  kernel,  but  we 
even want  to have J ( ~ ) =  0, and  then we must  t ake  

J = 207J~ 6 + 2 7 5 2 j 4 J 3  - 131080J~ j2  _ 886016J~ j2  + 4599936 j t j2  J3 

+ 8186640J~ + 15769600J33 . 

It depends  on the second te rm in the series 0(~, L, JH, 4) whether  or  no t  this 
function vanishes identically.  It appea r s  that  there  is exactly one 2EL(R v) such 
that  q ( 2 + ( ) =  l +q ( ( ) ;  it is easy to see that  2 =  - e i  +e~, and  J ( 2 + ( ) H ( 2 + ¢ ) + 0 ,  
so we get 

- -1  
214 .33 .5 .11 .863  ~ J(4)~+o)ll(4)~+o)ee~i~'~R(4;'+e'4~+Q~=q(z)39 (6.t6) 

~ L ( R  v) 

If R is of type B 3 we can de te rmine  JH~ker(S12H-,S x o H) such that  J ( ~ ) = 0  in 
the same way. Here  we get 

J =  578995 J~ - I0769307 J~ J 2 + 32305340J~ J3 + 58782790J~J~ 

- 238404790 J~ J2 J 3 -- 92 t 39125 J~ + 1309160489 j 2 .  

Again  there is exact ly  one ) ,~L(R ~) such tha t  q ( 2 + ~ ) =  1 +q(~), in this case 
2 = - ½ ] / 2 ( ~ I  +e2), and  again J()o+~)H(2+~)+O, so we get in this case 

- 1  
221 33 54 112 13.172.887 ~ J(lO)~+o)ll(lO2+o)e 2~i~R~l°a+°'l°a+o~ 

. . . .  2 e L ( R  v) 

= q(z)45. (6.17) 

Remark 1. An ident i ty  for q(z) 45 appea r s  in ano the r  way too, when we take R of  
type D 5 in (5.4). 

Remark 2. If d im ker  ($12 H--+S1 o / / )  > 2, which happens  if R is of type A t(l ~ 3), 
Bl(l > 3), Ct(l > 3), Dl(l ~ 3), E6, E7, F4, we can find J ~  S t 2 such that  O(z, L, JH, ¢)= 
c.r/(z) a+24. The  p r o b l e m  is that  we do  not  know whether  or  not  c=O.  

I feel indebted to Professor F. van der Blij, my thesis advisor, for suggesting the problem dealt 
with in this paper, and for his help and concouragement during the period of preparation. I wish to 
thank also Professor T. A. Springer and Wilberd van der Kallen for their help and stimulating interest. 
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