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Intersection Triangles and Block Intersection Numbers 
of Steiner Systems 

Benedict H. Gross 

A Steiner system S(t, k, v) is a collection of k-subsets, called blocks, of a v-set 
of points with the property that any t-subset of points is contained in a unique 
block. For  any block B of S(t, k, v) and for i in the range 0 < i < t -  1 we let x i denote 
the number of blocks of S meeting B in precisely i points. Mendelsohn [-7] demon- 
strated that the values of the xi depend only on the parameters (t, k, v) of S, and 
not on the particular block B chosen. In this paper we continue an investigation 
begun by Noda [-9] and determine all the possible parameter sets (t, k, v) for a 
Steiner system with the property that Xo=0, that i s - t h a t  any two blocks of 
S(t, k, v) have non-trivial intersection. They are: 

1. (t, k, v) = (2, n + 1, n 2 --~ n ~- 1) and S is a projective plane, 

2. (t, k, v)=(4, 7, 23) and S is the unique system with these parameters first 
discovered by Witt [-11], or 

3. (t, k, v)=(t, t +  1, 2 t+3)  and t + 3  is a prime number. 

We then extend this result slightly to characterize those Steiner systems with 
xi = 0 for any i < t. 

1. Putative Parameter Sets and their Intersection Triangles 

A central question in the study of Steiner systems is this: given a set of integral 
parameters (t, k, v) with the additional stipulation that 2__< t < k < v - 2  (to avoid 
certain trivial configurations), when does a Steiner system S(t, k, v) with such 
parameters exist? The following two lemmas provide us with some strong 

exastence criteria. 

Lemma 1. Let S be a Steiner system with parameters (t, k, v) and let i be an integer 
with O<_i<_t. 7hen the number of  blocks of S containing any i-set of  points is a 
constant depending only on the parameter set (t, k, v) and not on the particular i-set i)F 
of points chosen. I f  we call this constant 2 i we have the formula: 2 i t - i t - i " 

Proof  If X = {vl, v 2 . . . . .  vi} is our specific/-set of points we count the number 
of elements in the set {(Y, B): Yis a t-set containing X and B is a block containing Y} 
in two ways. First we count the number of such t-sets Y containing X and note 

--{V-i) members. But we that each Y is contained in a unique block B. This gives t -  i 
\ / 
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can also start by counting all the blocks B containing X and then make Y up from 

( k - / )  members, where the remaining points in these blocks. This gives 2/(X). t - i  

21(X) is the number of blocks containing X. Equating the two gives the inde- 
pendence of 2 i from the set X and the formula of our lemma. 

Lemma 2. Let S be a Steiner system with parameters (2, k, v) with b=2o = 
the number of blocks of S. Then b>v. Further, b=v if and only if every two blocks 
have a non-trivial intersection. S is then a projective plane with parameters 
(2, n+ l, n2 +n+ l). 

Proof. Take a block B and a point p not contained in B. The k blocks joining 
p to points of B are all distinct and have only the point p in common; hence 
v > k ( k - 1 ) + l .  But using the formula for b=20 given by Lemma 1 shows 
b=v(v -1 ) / k ( k -1 ) ;  thus we see that b>v. If equality holds we must have 
v = k ( k - 1 ) +  1 which is equivalent to the statement that every block through 
p meets B; since p and B were arbitrary this is equivalent to the statement that 
any two blocks meet. 

Note. Lemma 2 is a restricted form of Fisher's inequality which is valid in any 
balanced incomplete block design. This inequality has recently been extended 
by Wilson and Ray-Chaudhuri [10]. But, as I will show a bit later, their .result 
gives no new existence tests for Steiner systems beyond that of Fisher's inequality. 

To use these two lemmas as existence tests on a set (t, k, v) of possible param- 
eters, we note that the first result requires that for 0 <__i< t the rational numbers 

t - i  t - i  must in fact be integers, as they count the number of blocks 

containing a given set of i points. We call the conditions imposed by Lemma 1 the 
"divisibility conditions". To employ the second result we must first define the 
notion of the contraction of a Steiner system. Suppose we have a Steiner system 
with parameters S(t, k, v) on the point set V; if we take any /-set of points, say 
{Vl ,  V 2 . . . . .  Vi} , with O<i<t  and consider the configuration with point set 
V -  {v 1 . . . . .  vi} and blocks the 21 blocks of S(t, k, v) containing {vl . . . . .  v~} we get 
a new Steiner system with parameters S ( t - t ,  k -  i, v - i )  which we call the i-th 
contraction of S with respect to the set {vl . . . . .  v~}. Frequently, the isomorphism 
class of S( t - i ,  k - i ,  v - i )  depends on the particular /-set of points chosen. But 
the set of parameters is clearly the same for any i-th contraction. To use Lemma 2 
we note that if a Steiner system with parameters (t, k, v) exists, then so does its 
( t -2)-nd contraction with parameters (2, k - t  +2, v - t + 2 ) ,  and the contracted 
system must satisfy Fisher's inequality. 

Although there are a few specialized results on the existence of Steiner systems 
with certain parameter sets (see, for example, the theorems of Kantor [6] and 
Dembowski [-3, 4] on extensions of affine planes), Fisher's inequality and the 
divisibility conditions are the most powerful general tests available. So, in this 
paper I will observe the following convention: (t, k, v) will be called a "putative 
parameter set" for a Steiner system if 

1 . 2 < t < k < v - 2 .  
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i)/ k i) 
2. For  0 <  i_< t the numbers t - i  t - i  are rational integers. 

3. The inequality ( v -  t + 1) > (k - t + 1)(k - t + 2) holds. 

We now present a slight extension of Lemma 1 which leads us to the construc- 
tion of an "intersection triangle" for any S(t, k, v). 

Lemma 3. Let S be a Steiner system with parameters (t, k, v) and let Vii and Vj 
be an i-set and a j-set of points respectively, satisfying 

1. vj=z.  
2. There is a block B of S containing V~ va Vj. 

Then the number of blocks of S which contain Vii and are disjoint form V~ is 
determined solely by the values of i and j and the parameters of the design. I t  is 
independent of the particular i- and j-sets chosen. 

Proof Set 2i, j(V i, Vj) be the number of blocks of S with this property. We prove 
the lemma by induction on j; for j = 0  and O < i < t  we have 2 m well determined 
independent of the set V~ by the results of Lemma 1. For  j - -  0 and t < i < k we 
must, by the definition of S, have 2io = 1. Now let p be a point in Vfi we have the 
recursion 2i, j(Vil, V) = 2i, j_ 1 (Vi, Vj - p) - 2~ + !, J - 1 (Vi + p, Vj - p). Using induction on j, 
we see the right side of this equation is well determined independent of the specific 
sets of points chosen; hence the left side is also. We write this integer just as 2~,j; 
it is clearly non-negative. 

Does Lemma 3 give us any further existence tests on putative parameter sets? 
As the 2i, j are all obtained by successive subtractions from the 2~, o, which by our 
assumptions are integers, they will all have integral values. But it is possible 
that a putative parameter set might yield a negative value for one of the 2~,j; this 
would clearly eliminate it from contention. For  example, a quick glance at Lemma 2 
shows that the non-negativity of j-,_ 2,k-t+2 is equivalent to the contracted system 
S(2, k - t + 2, v - t + 2) satisfying Fisher's inequality. In fact, we will show that any 
putative parameter set has non-negative entries in its entire intersection triangle; 
by this we mean the configuration obtained by setting 

2 { v - i ~ / { k - i ]  
 t-il/ t-il for O<_i<t. 

j-i,o = 1 for t<_i<_k. 

j- i , j=j-i , j_l-j- i+l, j_l  for j=>l, l < i+ j_~k  

and represented visually as a triangle, viz. 

j-O,O 

J'O, 1 j-l, 0 

J-O, 2 21, 1 j-2, 0 
etc. 

j-0, k j-l,k--1 j-k--l , l  j-k, 0 

Although, for any putative parameter set, this triangle will turn out to be non- 
negative, giving us no new existence tests, we may enquire whether any of the 
7* 
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entries are zero. If we consider the properties of the Steiner system our system of 
parameters hopes to represent, we can see immediately that 2~,j=0 whenever 
t+l<_i<k and j > 0 .  But we may also get zero entries in various non-trivial 
places in our intersection triangle; consider the triangle generated by the parameter 
set (5, 8, 24): 

759 

506 253 

330 176 77 

210 120 56 21 

130 80 40 16 5 

78 52 28 12 4 1 

46 32 20 8 4 0 ! 

30 16 16 4 4 0 0 1 

30 0 16 0 4 0 0 0 1 

Notice that 21, k- ~ = 23, k- 3 = 0. Recalling the definition of the block intersection 

numbers xi given in the first paragraph, it is easy to see that xi=2i, k_i (~)- Thus, 

from the vanishing of elements in the intersection triangle of (5, 8, 24) we may 
infer that in any Steiner system with such parameters, blocks may only intersect 
in 0, 2, 4, or 8 points. This is an extremely valuable piece of information; in fact, 
given the existence of an S(5, 8, 24) we can use this result, with very little else, to 
demonstrate its uniqueness. Thus it seems reasonable to ask what other putative 
parameter sets may have vanishing intersection numbers; we answer this question 
in our next section. 

2. Statement of Results 

Let us first note that in investigating the non-negativity of elements in the 
intersection triangle of (t, k, v) we may begin by concentrating our attention on 
the bottom row, where i + j  = k. 

Lemma 4. l.f 2i, k_i>=O for all i, then 2i, j>=O for all i andj. 

Proof We do a backwards induction on i. The lemma is clearly true for i = k. 
If the lemma first fails for 2i, j < 0, then by our recursion 

2~,j+ t =2~,j-2~+~,i<0 as 2~+~,j_=O by induction. 
Similarly, 

~i,j+2 :/~i,j+l --Ai+l,j+l <0. 

Continuing in this manner gives 2~, k-~<0, a contradiction. 

Furthermore, in examining the values of the bottom row we may restrict our 
attention still further to the value of 2o,~ for an arbitrary putative parameter set 
(t, k, v). For  if we are interested in the value of 2i, k_ i we just look a t  *~JO, k - i  of the 
i-th contraction ( t - i , k - i , v - i ) .  Notice that 2o, k = x o = t h e  number of blocks 
disjoint from a given block in an S(t, k, v). Hence, if for a putative parameter set 
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we have Xo =0, then any Steiner system with those parameters must be such that 
every two blocks meet. The following result, and its corollaries, settles the question 
of non-negative and zero entries in the intersection triangle of any putative 
parameter set. 

Theorem 1. Let (t, k, v) be a putative parameter set for a Steiner system, and let 
Xo=2o, k be the value obtained from its intersection triangle by successive sub- 
tractions. Then xo>O. I f  xo=O then 

1. (t,k,v)=(2, n + l ,  nZ+n+l) .  

2. (t, k, v)= (4, 7, 23). 

3. (t, k, v)=(t, t + l ,  2 t+3)  and t + 3  is a prime number. 

Corollary 1. Let (t, k, v) be a putative parameter set for a Steiner system with 

xi=(ki ) 2i, k_i the value of its "block intersection" numbers obtained by successive 

subtractions from its intersection triangle. Then x i >= O. l f  x i =0 then 

1. i= 0 and (t, k, v) as in Theorem 1. 

2. i = 1 and (t, k, v) = (3, 4, 8) 
(3, 6, 22) 
(3, 12, 112) 
(5, 8, 24) 
(t, t + 1, 2 t + 2) and t + 2 is a prime number. 

3. i= 2 and (t, k, v)= (4, 7, 23). 

4. i = 3 and (t, k, v) = (5, 8, 24). 

Proof (of Corollary). If x i<0  then 2i, k_~<0, likewise. But then x;  of the i-th 
contraction is less than zero, which contradicts Theorem 1. 

Similarly, if x i -  0 we have x; of the i-th contraction equal to zero also, so it 
must be one of the cases of Theorem 1. It remains to see how far the putative 
parameter sets of Theorem 1 may be extended. In the first case, when (t, k, v)= 
(2, n + 1, n 2 +n  + 1), it is well known that the first extension fails the divisibility 
conditions unless n =2, 4, or 10. Only the (2, 5, 21) set may be extended more than 
once; it may be extended to (5, 8, 24) before it fails the divisibility conditions. 
In the case when (t, k, v)=(t, t + l ,  2t+3),  it is also easy to check that we may 
extend precisely once before the divisibility conditions fail (because t +  3 is a 
prime). This completes the proof of the corollary. 

Note. The existence of Steiner systems with parameters S(t, k, v) where 
(t, k, v) is one of the putative parameter sets of the previous corollary is a difficult 
question and is still far from being solved. Here we review some of the knowledge 
to date. Projective planes S(2, n + l ,  n2+n+l )  are known to exist when n is a 
prime power; they do not exist when n -= 1 or 2 (mod 4) but n is not the sum of two 
squares, Bruck and Ryser [2]. None are known to exist when n is not a prime 
power. The (3, 4, 8) and (3, 6, 22) systems exist and are unique up to isomorphism; 
Witt [11] demonstrated that the same was true for the (4, 7, 23) and the (5, 8, 24) 
extensions. Although we have a certain amount of information about possible 
systems with parameters (t, t+ 1, 2 t+3)  it is not known whether any exist for 
t > 4. Mendlesohn and Hung [8] have ruled out the next case, t--8, by an extensive 



92 B.H. Gross 

computer search. Alltopp [1] demonstrated, in a more general theorem, that an 
S(t, t + 1, 2 t + 3) system exists if and only if its first extension, an S(t + 1, t + 2, 2 t + 4) 
also exists, and that  the extension is unique. It is not difficult to show that the 
extended system cannot have a block transitive automorphism group for t >4,  
though such transitivity was hardly to be expected. 

Of course, there is the highly suggestive point that the only Steiner systems 
we know to exist with t > 4  all have some zero intersection numbers. 

Corollary 2. I f  a Steiner system S(t, k, v) has two (non-trivial) zero intersection 
numbers it is S(4, 7, 23) or S(5, 8, 24). No Steiner system has three or more (non- 
trivial) zero intersection numbers. 

Corollary 3. The intersection triangle for any putative parameter set is always 
non-negative. I t  is always strictly positive (except for the trivial zero places) above 
the bottom row. 

Proof The first statement follows directly from Corollary 1 and Lemma 4. 
To demonstrate the positivity of the non-trivial entries above the bot tom row, 
i.e. when 0 <  i + j < k  and i<  t - 1 ,  we argue as in Lemma 4 using a backwards 
induction on i. Clearly 2t_t ,~>0 for all j. It is easy to see that if 21,~ is the f'~rst 
case where, with our assumptions, we get a zero entry, then we must havej  = k -  i + 1 
and )~i.k_i=2i+t,k_i+t=0. This gives us two consecutive zeroes in non-trivial 
places of the bot tom row. By Corollary 2 this is impossible. 

In the course of the proof  of Theorem 1 we make use of a lemma which is 
concerned with putative parameter sets which have v<4k.  Since this seemed 
to be an interesting enough result on its own, we have elevated it to the status of: 

Theorem 2. Let (t, k, v) be a putative parameter set for a Steiner system. Then: 

1. I f v < 2 k + t + l  t h e n k = t + l .  

2. I f  v <= 3 k + t + 2 then k < t + 2 unless (t, k, v) = (3, 6, 22), (4, 7, 23) or (5, 8, 24). 

I will defer the proof  of this theorem, like that of Theorem 1, to a later section 
of this paper. Here I will simply state and prove some of its useful corollaries. 

Corollary 4. Let (t, k, v) be a putative parameter set with v < 3 k. Then k = t + 1. 

Proof. Using part  2 of Theorem 2 we see that k__< t + 2. But if k = t + 2 then we 
have v_-< 3 k - 1 = 2 k + (k - 1) = 2 k + t + 1 and we may apply part  1 of the theorem. 

Corollary 5. Let (t,k,v) be a putative parameter set. Then v~2 k .  I f  v = 2 k  
then k+ 1 is a prime number. 

Proof By the theorem we must have k = t + l  if v<2k.  By the divisibility 
conditions we know that ( v -  i ) ( v -  i -  1) . . . (v-  k + 2) / (k -  i ) ( k -  i -  1)...2 is an 
integer for all i in the range O<_i<_t-1. Hence, no prime numbers from 2 to k 
can divide ( v - k +  1). In particular, ( v - k +  1 ) > k + l  and so v>2k.  If  v = 2 k  then 
v -  k + 1 = k + 1 must be prime. 

Corol lary& Let (t,k,v) be a putative parameter set with v<=(ll/3)k and 
t > 3 (k - t ) .  Then k<_<t + 2. 

Proof As t > 3 ( k - t )  we have (4/3)t>k. Hence v<=(ll/3)k<_(8/3)k+(4/3)t 
< 3 k + t  as t<k.  



Intersection Triangles and Block Intersection Numbers of Steiner Systems 93 

Hence we may apply part two of Theorem 2. 

Finally, I would like to prove a result which is not directly in the line of argument 
of this paper, but which reinforces its contention that for Steiner systems Fisher's 
inequality and the divisibility conditions are the strongest existence tests we may 
apply to any general set of putative parameters. As I mentioned earlier, Wilson 
and Ray Chaudhuri [10] have generalized Fisher's inequality to apply to any 
S~(t, k, v) design where t was even. They demonstrated that if b is the number of 

blocks in such a design and t=2s,  then b > ( ~ ) .  Now if we take any S~(t,k,v) 

design and apply this inequality to the 2s-design we obtain by taking the ( t -  2s)-th 
contraction, we obtain the following inequality for s=0 ,  1 . . . . .  [�89 

- 2 s  ] o 2 s  ] " " " 

Let us call this inequality Is and the right side of it f(s). It is natural to inquire 
which of the inequalities is the strongest, for a given parameter set (t, k, v). The 
following demonstration is due to P. Cameron. 

First we put 

g(s)= f ( s  + 1)If(s)= ( k - t  + 2s + 2 ) ( k - t  + 2s + 1)/(s + 1 ) ( v - t  + s + 1). 

For  non-negative s, g(s) is greater than or less than unity according as s lies 
outside or between the roots of the quadratic equation 

Q(s):=3s 2 - ( v - 4 k + 3 t - 4 )  s + ( ( k -  t + 2 ) ( k - t +  1 ) - ( v -  t + 1)) = 0. 

Q(s)=0 has real roots  iff v > 4 k - 3 t - 2 + ( 1 2 ( k - t ) ( k - t - l ) )  ~. 

Assume this is so and that, in fact, v -  4k + 3 t - 4 > 0 ,  which will certainly then 
be true if k > t + 2 but even in the case when k < t + 2 will be true so long as v > k + 7. 
Let sl be the smaller root of the equation and s 2 the larger. Then 

SlY0 iff v < ( t - 1 ) + ( k - t + 2 ) ( k - t + l ) = : K 1  

s2<=�89 iff v < � 8 9  

K ~ < K  2 iff k < t + � 8 9 1 8 9  ~. 

If we compare the sign of Q(s), i . e . - t ha t  of g(s) -1 ,  with the behavior of the 
consecutive f (s)  we have the following: 

L e m m a S .  f f  v < = 4 k - 3 t - 2 + ( 1 2 ( k - t ) ( k - t - 1 ) )  ~ then Ii~tl is the strongest 
of the inequalities. Otherwise assume either k > t + 2 or v > k + 7: 

1. ifv__<min {K 1, K2}, then either Ii +~s I or It~t~ is the strongest; 
2. if K2<=v<=K1, then k ~ t + � 8 9  ~, v>=(5/2) t+3+2(6t+l)  �89 and 

I1+[sl] is the strongest; 
3. if KI~v<=K2, then k<=t+�89189 ~, v<=(5/2) t+3+2(6t+l)  ~, and 

either I o or It~tj is the strongest; 

4. if v ~ m a x  {K1,K2),  then I o is the strongest. 
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Fortunately, the situation greatly simplifies in the case where our t-design 
is a Steiner system. For  there the inequality lo, which says simply that 2 >  1, 
is actually attained. Thus it must certainly be the strongest of the inequalities. 
But which then is the next strongest? We clearly must have v > K  1 = ( t - l ) +  
( k - t + 2 ) ( k - t + l )  as this is just I~, or Fisher's inequality! If v > K  z we are in 
case 4 of the lemma and, as a quick examination of the behavior of g ( s ) -1  will 
show, 11 must be the next strongest inequality. Thus we have established that 
Fisher's inequality is the strongest of all the Wilson-Ray Chaudhuri inequalities 
for a Steiner system unless v<<_K2. The following corollary to Theorem 2 shows 
that, except for two exceptional cases, Fisher's inequality is always the strongest 
we can apply to any putative parameter set (t, k, v). 

Corollary 7. Let (t, k, v) be a putative parameter set for a Steiner system. Then, 
using the notation of the previous lemma, we have f (1 )>  f(s)  for s=2,  3 . . . . .  [�89 
except in the cases: 

1. (t, k, v) =(4, 5, 11), (5, 6, 12) wheref (2)>f(1):  

2. (t, k, v)=(4, 7, 23), (5, 8, 24) where f ( 2 ) = f ( 1 ) = f ( 0 ) .  

Hence whenever a parameter set satisfies the divisibility conditions and Fisher's 
inequality, it satisfies all of the I441son-Ray Chaudhuri inequalities. 

Proof By the previous lemma, we need only consider the case when v < K 2 and 
thus v < (5/2) t + 3 + 2(6 t + 1) ~. But if t > 7 then we obtain 

v < _ 4 t + 5 < 3 k + t + 2 .  

Theorem 2 now gives us k < t + 2  for t>7 .  For  t < 7  a check through the putative 
parameter sets of Ganter's catalogue [53 indicated that v-< (5/2) t + 3 + 2 (6 t + 1) -~ 
always forced k < t + 2  except for the Witt designs (4,7,23) and (5,8,24). We 
can check that for those designs f ( 2 ) = f ( 1 ) = f ( O )  and then proceed with the 
assumption that k < t + 2. 

W.l.o.g. we now assume that our parameter set has even t, say t=2r.  To 
show that f (1 )>f ( s )  for all s = 2 , 3  . . . . .  r, it is sufficient to demonstrate that 
f (1)>f(r) .  If k = t + l  then f ( 1 ) = 6 / ( v - t + l )  and 

f (r)  = k ! (v - 2 r)!/r ! (v - r)! 

= (r + 1)(r + 2 ) / ( v -  t + 1)- k ( k -  1) . . . (r  + 3)/(v - r ) (v -  r -  1) . . . (v  - t + 2). 

The second fraction on the right of this equation has ( r -  1) terms in its numerator 
and in its denominator. If we pair them up consecutively, the largest of the ratios 
( k - i ) / ( v - r - i )  is the first: k/(v-r) .  By Corollary 5 we know that v>2k;  hence 
k / (v - r )<=k/ (2k-r )=(2r  + 1)/(3r+2)<2/3 and so 

f (r)  < (r + 1)(r + 2)/(v - t + 1). (2/3) r- ~. 

When r >  10 we obtain (2/3) r - l ( r+2 ) ( r  + I ) < 6  which gives f ( r ) < f ( 1 ) a s  desired. 
For r < 9 we may check the situation out easily by hand. The only putative param- 
eter set which arises yielding f ( r ) > f ( 1 )  is the system (4, 5, 11) and hence its 
extension (5, 6, 12). Both have f(2)>f(1) .  

The case k=  t + 2  is handled similarly, but here no exceptions arise for small 
values of r. This completes the proof of the corollary. 
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3. Proof of Theorem 1 

To  demons t ra te  the non-negat ivi ty  of  e lements  in the intersection triangle 
we clearly need a manageab le  formula  for 2~, ;. The mos t  natural  is that  suggested 
by the sieve method:  

),i,j=)~i--(~) )ci+l + (~) ),i+2 . . . .  +(-- l)J2i+j 

where the 2i=21, o are defined in L e m m a  1. But for the purpose  of testing the 
non-negat ivi ty  of the 21, ~ this formula  is practical ly useless. Instead,  we will use: 

L e m m a  6. Let (t, k, v) be a putative parameter set with 2~,~ the entries in its 
intersection triangle. Then 

i';= / t k - t ] ' l [  k - i  ) + ( -  Z q 

Proof Entirely technical:  as usual we use the recurrence relat ion on our  
intersection triangle and  per form an induct ion on j. For  j = 0  and  i__< t the formula  
yields: 

o-(;_:)/(;:;)-(::i)/(,-i) 
which is correct  by our  very definition of the intersection triangle. Fo r  j = 0  and  
t < i N  k we mus t  show our  formula  yields 2i, o = 1, or that:  

v -  t _ 1)t+i+ 1 z ( k - t )  v - i  i - ' - l ( t - i - l + q ) ( v - i + q ]  
q=o \ q \ k - t  ! 

when i_> t 

v - t  = v - i  + ( _ 1 ) , + i + 1  Z ( - 1 )  q i - t  
k - t  k - i  q \ k - t  } q=O 

( ; ~ : )  ( v - i )  k - i  + ~ ( - 1 , ' ( i - t ) ( v - t - l - r )  
r=o r + l  k - t  

setting r = (i - t -  1 ) -  q. 

The last equality, however,  is easily p roved  strictly as a b inomial  identity under  
the condi t ions that  v>_k>_i>_t>_2; it is vacuously  true when v=k and  then follows 
by a simple induct ion a rgument  on v. So our formula is correct  for 2~, o for all i = k. 

We now complete  the p roo f  of  the l emma with an induction on j. Say the 
formula holds for 2~,;_1; it is then easy to check, using our recurrence:  

"~i,j= ~i,j--i--  ~i + l,j--1 

and a few binomial  identities, that  the formula  also holds for 2~,;. 
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In our proof  of Theorem I we really only need the formula for 2o.k=Xo. We 
simplify matters slightly by setting 

n = ( v - k )  

m = ( k - t ) .  

Furthermore,  we note that in the formula of Lemma 6 all of the 2i, ~ have a leading 

factor of 1 k - t ; since this will not affect the sign of the entries in the intersection 

triangle, we may, by a pseudo-Littlewood convention, assume 

This gives: 
/~k- t]  

("m+q) q=o q ! 
(,) 

The usefulness of this formula becomes apparent  as we have the immediate result, 
which was suggested in Noda 's  work [9]: 

I .emma 7. I f  (t, k, v) is a putative parameter set and t is odd, then Xo > O. 

Proof Looking at our formula (,) we see that as t + 1 is even, Xo is a sum of 

non-negative terms. But the first term of the sum is (~)  = ( v ;  k) .  By Corollary 5, 
v>2k. Thus this term is >1  and Xo>0. 

To finish the proof  of Theorem 1 we treat the case when t is even in several 
stages. If t = 2  we have already seen (Lemma 2) that Xo>0 was equivalent with 
Fisher's inequality and if Xo = 0  then (t, k, v) were the parameters of a projective 
plane. We may thus assume t>4 .  

I f k = t +  1 then by our formula (,): 

By Corollary 5, v > 2k. If v > 2k + 2 then clearly Xo > 0. If v = 2k then by Corollary 5 
again, k + 1 = t + 2 is a prime number. Hence t is odd and we may apply Lemma 7 
to conclude that x o > 0. If v = 2k + 1 we indeed get Xo = 0  as claimed in Theorem 1. 

If k = t + 2 our formula (*) yields: 

§ 

( 2 2k+1) 
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I will show, for a putative parameter  set, that: 

o r :  

( v - k - l )  ( v - k - 2 )  ( v - 2 k + 2 )  ( v - 2 k + l ) > k ( k - 1 ) . ( v _ k + l ) . = _ _  
1 2 (k-2) (k-  1) 2 

As k = t + 2  we may assume, by Corollary4,  that v>3k. Thus all the fractions 
on the left are greater than or equal to 1. But as t_>_4 implies k > 6  we have the 
following inequalities holding for the first four fractions: 

( v - k - 2 )  > ( k - l ) ;  ( v - k - 3 )  > ( 2 / 3 ) k _ l > t k ;  ( v - k - 4 )  _>_�89 
2 3 4 

Hence, the product  on the left is greater than ( v - k - 1 ) ( k - 1 ) ( � 8 9 1 8 9  which 
is certainly greater than ( v - k  + 1)(k-1)(�89 as k => 6. So for k = t  + 2  we always 
have x0 > 0. 

We now assume that m =  (k- t)_> 3. To handle small values of t we prove a 
short result which, in most cases, allows us to strengthen Fisher's inequality: 

Lemma 8. I f  (2, k, v) are putative parameters of a Steiner system which is 
neither a projective plane (2, n + 1, n 2 + n  + 1) nor an affine plane (2, n, n2), then we 
have (v - 1) > (k - 1) (k + k~). 

Proof By the divisibility conditions we know that ( v - 1 ) / ( k -  1)= k + m, where 
m is a non-negative integer by Fisher's inequality. But it is easy to check that m = 0  
implies the parameters are those of a projective plane; similarly m =  1 gives us an 
affine plane. So we may assume m > 2. By the second divisibility condition: 

((k- 1)(k + m)- l)(k + m) 
k 

is an integer. Hence k divides r e ( m - l ) ;  as m > 2  we must have k < m ( m - 1 ) a n d  
thus m > k ~. 

Now to see when we may apply the stronger equality of Lemma 8 we need 
only determine all possible extensions of projective or affine planes. If a projective 
plane can be extended once, the divisibility conditions give us n + 2[ 12 and hence 
n = 2, 4, or 10. If  an affme plane can be extended twice the divisibility conditions 
give n+2[60  so n = 3 ,  4, 8, 10, 13, 18, 28 or 58. We then examine the intersection 
triangles of the maximal possible extensions in each case; the only parameter  
sets yielding x o = 0  are (4, 5, 11) and (4, 7, 23), all others give Xo >0. This completes 
the cases where Xo = 0  as stated in Theorem 1. We now show that if(t, k, v) is not a 
symmetric or affine extension and m = ( k -  t )> 3, we have Xo > 0  for all even t > 4. 
We may then use Lemma 8, which says if(t, k, v) is such a parameter  set, then: 

v - t  + l > ( k - t  + l ) ( k - t  + 2 + ( k - t  + 2)~), 

or in our simpler notation: 

n > ( m +  1) 2 + ( m +  1) 3/2 which is slightly weaker. (**) 

We are now ready to treat the values t = 4, 6, 8 . . . . .  20 by hand. 
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For example, if t = 4  our formula (*) yields: 

n m-1 

But because we assume that (4, k, v) is a putative parameter set, the 2nd contraction 
must satisfy Fisher's inequality; equivalently, we must have 

•2'k--2 = m + 2  q=o 

We compare the ratio of the positive terms in xo and 22,k_ 2 with the ratio of their 
negative terms: i.e., let 

R+=( n ) / (  n ) = ( n - m - e ) ( n - m - 3 )  
m + 4  m + 2  (m+4)(m+3)  ' 

I will show that R + > R -  which will clearly imply that Xo>0. We observe that 
R-  is certainly less than or equal to the largest of the individual ratios 

here the largest among these ratios occurs when q = m -  1. Hence: 

R /m+2 m (m+2) (m+l )  
- -<tm-1) / (m-l )  = 6 

To show that R § > R -  I need only show that, 

6 ( n - m - 2 ) ( n - m - 3 ) > ( m + 4 ) ( m + 3 ) ( m + 2 ) ( m +  1). 

But by the "strong Fisher's inequality" (**) we know 

6(n -m-2 ) (n -m-3 )>6(m  2 + m -  1 + ( m +  1)3/2)(m 2 + m - 2 + ( m +  1) 3/2) 
> 6 (m 2 + (5/2) m)(m 2 + (5/2) m -  1) 

>(m+4)(m+3)(m+2)(m+l) for m>2 .  

As we are assuming m > 3, we have the last inequality and hence x o > 0. 

A similar method works for t=6 ,  8 . . . . .  20: we proceed by comparing the 
positive and negative terms of x 0 with those of 2,_2,k_,+z which we know to be 
positive by Fisher's inequality. We then show that R-  is less than or equal to the 
ratio of the last terms of the sums, this gives us a simple inequality to prove in 
order to demonstrate that R + > R - .  For example, in the case t =6  we must show: 

5! (n -m-2 ) (n -m-3 )  ... ( n - m - 5 )  

> (m + 6) (m + 5) (m + 4) 2 (m + 3) 2 (rr/q- 2) (m + 1). 
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As we m a y  apply  the "s t rong Fisher 's  inequal i ty"  we know n > (m + 1) 2 "+- (m + 1) 3/2 

and the above  inequali ty thus holds for m > 3 .  In the case t =  10 we mus t  do a bit  
more  work ;  our  task reduces to showing:  

9 ! (n -- m- -  2) . . .  (n -- m -- 9) 

> ( m +  lO)(m+9)(m+8)Z(m+7) 2 ... (rn+ 3)2 (m +2 ) ( rn+  1). 

Using the s t rong Fisher 's  this holds for m > 4 ;  it also holds for m = 3  as long as 
n > 27 - the inequali ty (**) just gives n > 24. However  if 24__< n < 26 our pa rame te r  
set must  be one of (10, 13, 37), (10, 13, 38), (10, 13, 39); none of these are putat ive 
as they all fail the divisibility conditions.  Similar methods  show X o > 0  for all 
putat ive pa ramete r  sets (t, k, v) with m = ( k - t ) > 3  and  t<20 .  

We split the final stage of the p roof  (t > 22) into two cases. First  let us assume 
that t < 3rn. Here  we proceed as above;  to show R + >  R -  we must  show: 

( t -  1)! (n--m-2)(n - m - 3 )  ... (n - m - - t +  1) 

>(m+t)(m+ t -  1 ) ( r e + t - 2 )  2 ... (m+3)2(m+2)(m+ 1). 

Since we are assuming  t<3m, all the terms on the left of this expression are  
greater  than  n - 4 m +  1, which, by the s t rong Fisher 's,  is greater  than  m 2 (as t > 2 0  
implies m > 7). Hence the left side is greater  than ( t -  1)! rn 2 (t-2~. On the right side, 
however,  the largest te rm is less than  4m, and  at least half  the terms are less than  
(5/2)m. Hence  the product  on the right is less than 

(5/2),-2(4),-2m2(t-2) l O t - 2 m ~ ( ~ - 2 1  

To make  the left side larger than the right we only need ( t -  1)! > 10 t -2  ; this is true 
for t > 2 2  as desired. Thus  we have shown X o > 0  when t<3m. 

Finally, we assume that  t > 2 0  and  t>3m with m > 3 .  Here  slightly different 
methods  are called for. We recall our  formula  (*): 

F/ m - - 1  

= \ q ] 

We are going to show that  the negative sum is bounded  by a certain geometr ic  
progression.  Consider  the rat ios of  its successive terms:  

q - t h t e r m  _(n+mq ) ( t + q - l ] / ( n + q + l )  (t+q`~ ( n + q + l - m )  ( q + l )  
(q + 1)-st te rm \ q / / \  m \ q + l !  ( n + q + l )  (q+t) 

This rat io  is always less than 1; it is largest when q = m - 2. In that  case the ratio is: 

n - 1  m - 1  m - I  1 
< < as we assume t>3m. 

n + m - 1  t + r n - -  1 t+rn-1  4 



100 B.H. Gross 

So all the successive ratios are less than (1/4), and we have: 

n ~-1 [ t + q - l ~  

( n ) (n+m-1){t+m-2~(l+(1/4)+(1/4)2+.. .+(1/4), . -1)  
> m+t -- m \ t--1 t, 

n 

\ t - l ]  

I will show that the last expression is greater than zero; we use induction on t -  
always assuming that (t,k,v) is a putative parameter  set with m=(k- t )>3  
and t >=3m. 

First assume that t :  3m. We must show that: 

Since (t, k, v) is a putative parameter set, its contracted 2-design satisfies Fisher's 
inequality. Hence 

2, 2k ,+2=- m+2 - -q~  +m q q _  , _ = q >0. 
In particular: 

(.)  
m + 2  > m m, 

as this is just the last term of the negative sum. 

We now set 

R+=( n ) / (  n ) = ( n - m - 2 ) ( n - m - 3 ) . . . ( n - 4 m + l )  
4m m + 2  (4m)(4m-  1) ... (m+ 3) 

( m -  ) �9 . . .  )m=4  (4m-2)(4m-3)  (3re+l )  n+ 1 [ 4 m - 2 ~ / [ n + m - 1  ... 
R -  =(4/3) 

\ m - 1  ] / \  m ( m - 1 ) ( m - 2 ) . . .  (2) 

and notice that if we establish R + > R -  we will have the inequality proved for 
t = 3m. By the strong Fisher's inequality: 

n - 4 m + t > m 2 - 2 m + ( m + l ) 3 / Z + l > m  2 as m>=3. 

So all the terms in the numerator  of R + are greater than m ~. In the denominator,  
( m - 2 )  terms are >2m, m terms are between 2m and 3m, and m terms are between 
3m and 4m. Hence: 

m 2 m-2 m 2 m(m2]rn  -- ( m 2 ] m  

But clearly 
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If m > 6 we then have R + > R - ;  if m = 3, 4, or 5 we may check our original inequality 
out by hand. So we have established it for t =3m. 

We now finish the proof by using an induction on t, suppose the inequality 
holds for all parameter sets (t,k,v) with 3m<t<t' .  Now ( t ' - l , k - l , v - 1 )  is a 
putative parameter set with the same values of n and m as the set (t', k, v). We 
have the inequality there, viz. 

( m + ~ ' - l ) > ( n + m - 1 )  ( t ' + m - 3 )  t ' - 2  

Again we just compare the ratios of the relevant terms: 

r = 
m+t' m + t ' - i  k 

\ t ' - i  ) ( 4 ) / ( n + m - 1 ) \  t ' -2( t '+  3) ( 4 ) _  t'+m-2t,_l 

If T + >  T-  we will have established the inequality for (t', k, v). But as we have 
t' > 3 m and m > 3, we have, by Corollary 6 of Theorem 2, that v__> (11/3) k. Thus 
T + >(5/3). But as t'>3m we must have T -  <(5/3). This completes the induction 
and hence the proof of the last case of Theorem 1. 

4. Proof of Theorem 2 

We begin with a number-theoretic result: 

Lemma 9. I f  (t, k, v) is a putative parameter set for a Steiner system and we let 
S=  {(v-t), ( v -  t -  1) . . . . .  ( v - k +  1)}, then no prime or prime power occurring 
between ( k -  t + 1) and k divides any member of S. 

Proof Suppose that ( k -  t + 1)<p'_< k; by the divisibility conditions we know 
that 

(p~ + v-k)(p~ + v - k  - 1) ... ( v - t +  1) 
is an integer. 

(p~)( f -1)  ... ( k - t  + 1) 

But then I claim p" must divide one of the terms in the numerator. To see this 
let p( be the highest power of p dividing any term in the numerator, and suppose 
pPl(f  + v - k  - i) where 0_<i< (p" + t - k -  1). 

The exponent ofp dividing the denominator, which we call p (den.), is: 

~l [p~-k+t-1 1 r=, L "~ ] +0~. 

Similarly, the exponent of p dividing the numerator of this expression, p(num.) 
is precisely: 

E pr + +ft. 
r ~ l  
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But we always have the inequa'ity: [q l [c ] = ~-  . As our quotient is 

integral, we know that p(num.)>p(den.).  This clearly forces //>c~ and hence 
p~l(f + v - k - i )  with O<_i<(p~+t-k - 1). 

But then p~ does not divide any member of the set 

{(p~+ v - k - i -  1), ( f + v - k - i - 2 )  . . . . .  ( v - k - i +  1)}. 

Taking the "worst"  possible value of i at each end, we still have established that p" 
divides no member of S. 

We now proceed to the proof  of part  1 of Theorem2.  Set v=2k+j where 
j__< t + 1 and put a = (k - t + 1). We assume, to force a contradiction, that a >__ 3. 

First we note that 2a<k. For by the first divisibility conditions we know 
a [ (v - t + 1) = (k + j  + a), so a I(k +j). By Fisher's inequality: 

(v- t+l)>=(k- t+l)(k- t+2) ,  or (k-j)>=a 2. 

As we are assuming that a > 3  we either have k+j>4a or else a- -3 ,  k + j = 9 ;  as 
the divisibility conditions fail for (t, k, v)=(3, 5, 14) the latter case does not arise. 
Hence 4a<k+j<2k, as j__<t+ 1, and 2a<k as claimed. 

We now recall the set S =  {(v-t) ,  ( v - t - 1 )  . . . . .  ( v - k  + 1)} of the last lemma. 
Suppose 2r is an even element of S, I will show all the prime power factors of 2r 
are less than a = ( k - t  + 1). For if p=12r and p=>a, then by Lemma 9 we know 
f >  k. If p is odd this gives: 

2r>=2f> 2(k + 1). 

However, the largest member of S is ( v - t )  which is <(2k + 1), a contradiction. 
The same method works for p = 2 except when 2r = 2 p. But as we know 2a < k we 
must have at least one power of 2 between a and k; say 27 is the smallest power 
of 2 greater than a. I f / / >  7 then 2r is divisible by a prime power between a and k, 
a contradiction. Hence 1~ < 7 and 2~< a as claimed. 

As we are assuming a=>3 the set S has, at the very least, the two members: 
(v - t ) ,  ( v - t - 1 ) .  One of these must be even. Suppose it is (v - t ) ,  then by the 
previous paragraph all the prime power factors of this number are less than a. Say 
p=l(v- t), we know that p= divides one of the consecutive numbers 

a,a+l ..... a + f  -1 .  

But as p~ < a we have a + p = -  1 < 2a __< k; thus we may use the divisibility conditions 
to show that i f f l a+ i  with i < f - 1 ,  then 

(v - t  +i+ l)(v--t +i)... ( v - t + l )  
is an integer. 

(a+i)(a+i-- 1)... a 

By arguments similar to Lemma 9 this implies that p~ divides one of 

(v - t  +i+ 1 ) , ( v - t + i )  ..... ( v - t  + l) 

where i < f -  1. But by assumption p~[(v- t), so we must have i = f -  1 and hence 
p~[a+f -  1 or f l a -  1. As this holds for all prime power factors o f ( v - t )  we must 
have (v-t)[(a- 1). But then (v-t)<=(a- 1 ) = ( k - t )  and so v<k, a contradiction. 
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Thus we must have ( v -  t) odd and hence ( v -  t -  1) even. A similar argument 
to the above shows then that (v-t-1)](a-1)(a-2), so we write: 

re(v- t-  1)=m(v-t + 1 - 2 ) = ( a -  1 ) (a -2) .  

By the first divisibility condition, a [ (v -  t + 1). Hence a 1(2m + 2) and so a - 2 < 2m. 
But then 

(a - 1 ) ( a -  2) 
(v- t  + l)= + 2 < 2 ( a - 1 ) + 2 = 2 a .  

m 

This contradicts Fisher's inequality and gives us our final contradiction. 

To prove part 2 of Theorem 2 we use exactly the same methods, but must 
deal with a few more exceptional cases along the way. We begin by showing that, 
with the same notation, 3a<k except in the cases (t,k, v)=(3,6,22), (4, 7,23), 
and (5, 8, 24). We then consider the members of the set S and demonstrate that if 3 r 
is a member of S, then all its prime power factors are less than a (This does not 
hold in the exceptional cases). Since we are assuming, to force the contradiction, 
that a=k- t+l>4,  we have at least 3 elements in S: (v- t ) , (v- t -1) , (v- t -2) .  
One must be divisible by 3; if it is ( v -  t) or ( v -  t -  1) we get a contradiction exactly 
as we did previously. So we must have 3 ] ( v - t - 2 )  and from that it follows that 
(v-t-2)l(a-1)(a-2)(a-3). We write m(v-t-2)=(a-1)(a-2)(a-3). By the 
first divisibility condition we know al(v-t+l), so a[3(m-2) .  We consider 
several cases: 

I. m =  1.Then al - 3  and a < 3  is claimed. 

1I. m=2.Then  a(a 2 - 6 a +  11) 
v - t + l =  

2 

By the first divisibility condition, (v-t+ 1)/a is an integer, so a must be odd; 
similarly Fisher's inequality forces a > 7. By the second divisibility condition: 

a(a - 6 a +  11) a 2 - 6 a +  11 

is an integer! 
(a+ 1) 

This yields (a + 1)125 32; with all these restrictions we see 

a6{7, 11, 15, 17, 23, 35, 47, 71, 143, 287}. 

From these values we may calculate ( v -  t + 1) and test the divisibility conditions 
for t > 3; all cases fail before v < 4k and hence do not satisfy the hypotheses of the 
Theorem. 

III. m > 2  and so a <  3(m-2) .  

If a = 3 ( m - 2 )  the second divisibility condition gives us (a + 6) 122 327; Fisher's 
inequality gives a >  11. So ae{12, 15, 22, 30, 36, 57, 78, 120, 246}. Again we may 
calculate (v- t+ 1) and notice that in all cases the divisibility conditions fail 
before v___ 4k. 

If a=(3/2)(m-2) the second divisibility condition yields (a+3)1120 and 
Fisher's implies that a > 25. Hence a e {27, 37, 57, 117}, none of which yield putative 
parameter sets satisfying the hypotheses. 

8 Math. Z., Bd, 139 
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So we m a y  safely a s s u m e  tha t  a < ( m - 2 )  a n d  so ( a -  1 ) < m .  But :  

(a - 1)(a - 2)(a - 3) 
( v -  t - 2) = < (a - 2)(a - 3), 

m 

so ( v - t  + 1 ) < a  2 which  con t r ad ic t s  F i she r ' s  i nequa l i t y  a n d  com ple t e s  the p r o o f  
of  pa r t  2 of  the T h e o r e m .  

Note. P e r h a p s  this T h e o r e m  has  a gene ra l i za t ion  to a resul t  of  the  fo rm:  

v < m k + t + ( m - 1 )  impl ies  k < t + ( m - 1 )  f o r a l l m  

with a few (listable) except ions.  G a n t e r ' s  tables  [5] seem to s u p p o r t  this  con -  
jecture ,  t h o u g h  there  are  some v io l a t i ons  like (17,26,236) ,  where  m = 9 .  The  
m e t h o d  of p r o o f  used ab o v e  shows we get on ly  finitely m a n y  excep t ions  for each 
va lue  of m, b u t  the i r  n u m b e r  seems to get o u t  of  hand .  
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