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Abstract. We prove the globat Markov property for the Euclidean measure 
given by weak trigonometric interactions. To obtain this result we first prove a 
uniqueness theorem concerning the set of regular Gibbs measures correspond- 
ing to a given interaction. 

1. Introduction 

The interest in extending the theory of Markov processes to the case where the 
time parameter is more than one dimensional, the so called Markov fields, arises in 
several domains, in particular in connection with problems of statistical me- 
chanics, information theory and quantum field theory. The two main problems in 
the theory of Markov processes, the existence and uniqueness of the limit 
distribution and the question of the global Markov property are also main 
problems in the theory of Markov fields. For instance the question of the existence 
of a limit distribution corresponds in statistical mechanics and quantum field 
theory to the question of the existence of a Gibbs measure, while the uniqueness 
corresponds to the question whether this Gibbs measure defines a pure physical 
phase, non uniqueness indicating phase transitions. 

The global Markov property on the other hand implies in statistical mechanics 
the existence of the transfer operator, and in quantum field theory it implies that 
the field theory is canonical and the zero time fields generate a maximal abelian 
subalgebra. 

In this work we first prove that in the case of.the Euclidean fields on 1R 2 with 
weak trigonometric interaction one has uniqueness and also the global Markov 
property. 

Concerning uniqueness corresponding results were proved in certain lattice and 
continuous models of statistical mechanics first by Dobrushin [13] (for further 
discussions see [14] and [15]). 

* Postal address: Fakult~it fiir Mathematik, Universit~it Bielefeld, D-4800 Bielefetd 1, Federal 
Republic of Germany 

O01 O- 3616/79/0068/0095/$06.80 



96 s. Albeverio and R. Heegh-Krohn 

Concerning the global Markov property this is proved for some lattice models 
by us in cooperation with Olsen [24] utilizing the ideas of the present paper. 

The global Markov property for the Euclidean quantum field ~(x) in IR 2 is the 
following. Let C be any piecewise CX-curve such that IR 2 -  C consists of two 
components O + and O-.  Let f÷ and f_ be any measurable functions of the field 
~(x) which are measurable in f2 + and ~2- respectively. ~ has the global Markov 
property iff 

E ( f  + f_  j C) = E ( f  + l C) E(f_ I C), (1.1) 

where E(fl C) is the conditional expectation of f with respect to the o-algebra 
generated by C ("given all observations on C, observations within O + are 
conditionally independent of those within t?-"). By taking C from the family of 
lines orthogonal to a fixed direction we see that (1.1) implies that ~ generates a 
Markov process in this direction. 

Nelson observed [11 that (1.1) holds for the free Euclidean field as well as the 
nonhomogeneous random fields obtained by using multiplicative functionals of 
the free field. These are the so-called space-time cut-off quantum fields with 
polynomial [2], exponential [31 or trigonometric [4] interactions. The main 
interest in quantum field theory is naturally in the corresponding homogeneous 
(i.e. Euclidean invariant) random fields obtained as limits (the thermodynamical 
limit) of the above models. That these limits are Markov fields in the sense that 
(1.t) is satisfied whenever C is a bounded curve such that IR2-C has two 
components, was first observed by Newman [81, who called this property the 
"local Markov property" (see also e.g. [91, [251). For other properties weaker than 
the global Markov property see [61 and [101-[12 ]. 

Let us now shortly describe the methods by which we prove our results, 
starting with the one about the uniqueness of the Gibbs measures. The measures 
we consider are of the type (Eo(.)-  .I-d/to) 

d #  A = go(e- vA)- x e- V ad#o . (1.2) 

where d#o is the free Euclidean field measure on S'(IR 2) [mean zero and covariance 
( -  A + m2) - 1], and U A is a local space-time cut off interaction, so that A o  5~ is an 
additive map from the bounded Borel subsets of IR 2 into Ll(duo) with 
e-VaELl(d#o) and U A measurable with respect to the a-algebra NA generated by 
the fields with support within A. A Gibbs measure associated with U A is any 
measure which is locally absolutely continuous with respect to #o and such that 
the associated conditional expectation of functions measurable within A with 
respect to the o-algebra -N~A, coincides with those computed with #A instead of it, 
shortly 

Eu(fl OA) = Ev~(fIOA). (1.3) 

Such measures are also said to satisfy the DLR-equations, see [13, 20, t61. In 
particular any weak limit point of measures of the form/~A is a Gibbs measure and 
one sees that any Gibbs measure has the local Markov property. A Gibbs measure 
is defined to be pure if there is no other Gibbs measure absolutely continuous with 
respect to it. We show, using the local Markov property and the reverse martingale 
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theorem, that purity of # is equivalent with Eu(ftSA)~E(f) ~-atmost surely as 
ATIR 2. These concepts and the results are given in Sect. 3. The actual proof of the 
convergence 

E,(flaA)--,E(f) 

uses the following basic idea. By (1.3) and the definition of #A we have 

E~,(f[ 8A) = E~ ~(J] 8A) = E°(fe- vA[SA) (1.4) 
E o ( e -  vA) 

On the other hand one obtains a more explicit expression for the right hand side in 
the following way. 

Let C ~ 8A and let Pc(x, z) be the Poisson kernel associated with the Dirichlet 
problem 

( - A  +m2)~pC(x) = 0, xe lR2-C 

and the boundary condition 

wo%) = o(x), x C. 

Then for ge C0(IR 2) we have that tpC(x)= 5 Pc(x, z)g(z)dz. On the other hand we 
c 

prove that, for xE1R2-C, {~tp~(x) is a po-measurable linear function and in 
fact with the help of the Gaussian random field x ~ { ( x ) ,  where { is the free 
Euclidean field, it is possible to give an explicit formula for E0(. [C) by 

E0(f[ C)(t/) = Eug(f(~ + v,c)) (1.5) 

for #o-almost all r/, where #~ is the free (Gaussian) measure with Dirichlet boundary 
conditions on C. That is #c is the Gaussian measure of mean zero and covariance 
(_  Ac +m2) - 1, where A c is the Laptacian with Dirichlet boundary conditions on 
C. 

Introducing then (1.5) into (1.4) we get 

Eu(fISA) (tl) = Eu~;,(f") (1.6) 

with 

oa = " c - - ~  - 1  - ~ ( ¢ )  c d#, (~)-E,o(e ) e d#o(~) , (1.7) 

where for any function g({) on S'(IR 2) we use the notation g"(¢)---0(~+ ~p~A). For 
the family of functions f ( ~ ) = d  <e'~°), q~eS(IR2), we have then 

EF,(e i<¢'°>[8A) (t/) = e < ¢&~,~'> ~ d <¢,~'> d#e, tA(~). (t.8) 

Thus the proof of E~,(flad)--+E(f) as A J'IR 2 amounts to the proof of 
A) (~a,(p)--+0 for #-a.e.r/,  
B) #~a _+#, weakly as ATIR 2, for #-a.e.r/.  
The proof of A) is obtained under the condition that # be a Gibbs measure 

satisfying a suitable regularity condition (second moments bounded by those of 
some free Euclidean field: this condition is verified in all applications), by using 
Le(d#)-estimates on the field ~C(x). This is done in Sect. 2, where we prove in fact 
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that, for p-a.e.q,  %C(x) goes to zero uniformly in x exponentially fast as the 
distance from x to C tends to infinity. 

The proof of B) is obtained for the choice of interaction 

UA(~ ) = 2 ~ : cos(e~(x) + 0): dx (1.9) 
A 

with ), e, 0 real, ea < 27c, 0 _-< 0 < 2~ and 2 sufficiently small (depending on e and m). 
The method of the proof is an adaption of the duster expansion method first 
introduced by Glimm, Jaffe and Spencer [2] for the polynomial interaction and 
developed by Fr6hlich and Seiler [4] for the trigonometric interaction (1.9). We 
need, in order to prove B), to extend the method by Fr6hlich and Seiler to cover the 
case of the interaction U~(~) for p-almost all t/, rather then of the UA(~ ) interaction 
(1.9), where we recall that U2(¢)-= b~(~+ ~c). The technical estimates required for 
this extension are all given in Sect. 4, which is the most technical section of this 
paper. For the reader's convenience we have tried to keep the notations in this 
section and the proofs as close as possible to the corresponding one in [4]. 

In Sect. 5 we combine in the described way, the results of the Sect. 2, Sect. 3 and 
Sect. 4 to yield the uniqueness result for a Gibbs measure associated with the 
interactions (1.9). 

In Sect.6 we prove the global Markov property for the trigonometric 
interactions. The ideas of this proof are the following. Let C be a fixed piecewise 
Ca-curve and p a Gibbs measure for the trigonometric interaction. We assume that 
IR z - C consists of two components f~+ and g2-. Let A be a bounded subset and f± 
be measurable in A c~? ± respectively. By the definition of a Gibbs measure we then 
have 

E,( f  + f_ I CubA) = EuA(f ~ f_l CuOA) (1.10) 

and by the global Markov property of PA we have that (1.10) is equal to 

E~,A(f +IC,uOA)EvA(f_ICuOA ) = Eu(f +lCu aA)Eu(f_lCw~3A ). (1.11) 

c is the measure p conditioned by ~ = r / o n  C then (1.11) is equal to If now p, 

Eu~(f +IOA) E~,g(f_I~A ) . (1.12) 

c is in fact a Gibbs measure corresponding to the interaction [y~(~ + ~vc). Now p. 
Hence we know that 

E~%(f± I (3A)-~ E~(f±) = Eu(f+_lC)(r/) (1.13) 

if and only if pc is a pure Gibbs measure for the interaction bA(~ + ~vc) - 

c is pure by extending the We now proceed to prove that, for p-almost all t/, p, 
estimates and techniques for establishing uniqueness developed in Sect. 5 to cover 
also this situation. Hence we have the convergence (1.13) which by the equality of 
(1.10) and (1.12) proves that 

E,( f  + f _lC) = E~(f +lC)E,(f_lC) (1.14) 

i.e. the global Markov property. 
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Let us now add some remarks on our results and relations to other works. 
Concerning the uniqueness we show that there is a unique Gibbs measure within 
the class of regular random fields (i.e. fields with two point functions dominated by 
some free two point functions). We also show for the same trigonometric 
interaction that with boundary condition ~ = t /on ~A, where t/is any fixed element 
in S '0R 2) such that ~p~a(x) exists for N~]R 2 - - a A  and converges locally uniformly to 
zero as A~IR 2, the corresponding measures converge weakly to this Gibbs 
measure, which is thus independent of boundary conditions. Results on inde- 
pendence of some particular boundary conditions were obtained for the poly- 
nomial interactions in [26] [28]. 

Concerning the global Markov property we remark that consequences of it 
have been discussed in several papers, based on postulates i.e. assuming it to hold 
together with some general properties, see e.g. [7, 16, 6a] ([5] contains further 
references). In the present case all assumptions hold, hence all conclusions are now 
proven for the trigonometric interactions. In particular we have that the corre- 
sponding quantum fields are canonical ones and the time zero fields generate the 
physical Hilbert space, i.e. the weakly closed algebra generated by the time zero 
fields is a maximal abelian algebra ("cyclicity of the time zero fields"). From the 
global Markov property it follows also, as pointed out by us in previous work ([5, 
17, 19], to which we refer for more details) that the physical Hamiltonian is a 
second order elliptic variational operator, i.e. an infinite dimensional analog of the 
Schr6dinger operator of quantum mechanics. In fact the whole "Schr6dinger 
representation" of this theory holds, which completely justifies the ideas of the 
canonical formalism [18] for this field theory. Let us finally remark that the 
essential ideas for proving the global Markov property have been applied by us, in 
collaboration with Olsen, to the case of the lattice model of statistical mechanics, 
yielding the first proof of the existence of a transfer matrix in this case [24]. 

2. Regular Random Fields on •2 

0 2 0 2 

Let A = 0x~ + 0x~Zx2 2 be the self-adjoint Laplacian on L2(IR 2) and let Gm (x -y )  be the 

kernel of the operator ( - A  + m2) - 1, where m >0. Let ~ be a positive bounded 
Borel measure of bounded support in IR 2 and set 

e=(o)=S6=(x-y)d~(x)do(y). (2.1) 

Since Gm(x ) is a positive continuous function for x4=0 and Gm(x)-~O as [x[--+oo, 
Gm(x - y) is Borel-measurable and therefore Era(O) is well defined with values in the 
extended positive half line. We say that ~ has bounded energy if E,,(0) < oo. Since 0 
has bounded support, we see that if Emo(Q ) < oo for some positive number m 0 than 
E,,(O) < oo for all m >0. We denote the set of positive bounded Borel measures on 
IR 2 with bounded support and bounded energy by M;- and we denote its linear 
span by M b. We see that M~ and hence M b do not depend on the positive number 
m. 

Let S'(IR 2) be the space of tempered distributions o n  IR 2 and let S(lR 2) be its 
dual. Let # be a Borel probability measure on S'(IR2), where S'(IR 2) is given the 
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Borel o-algebra B generated by the open sets in S'(IR2). The corresponding St(IR2) - 
valued random variable ¢(x) is called a tempered random field on 11l 2. We say that a 
tempered random field ~(x) is regular if there exist a number m > 0 and a constant c 
such that for any ~o~S(IR 2) we have 

j<q~, ~>12 d#(~) <= cEm((p ) , (2.2) 

where (~o, 4) is the duatization between S(IR 2) and S'0R:). Note that if m >m o > 0 

then E,,(q~)< Emo(q))<= Em(q~), so that the condition (2.2) is independent of m. 

Let now ~(x) be a fixed regular random field on 11t 2 and let g be the 
corresponding probability measure on S'(IR2). It follows then from (2.2) that 
~--+(0,~) for OeMb(lR 2) is in L2(#)=-L2(S'(IR2),#). Hence for any 0EMb(IR 2) we 
may take (0, 4) to be Borel measurable by modifying it at some set of #-measure 
zero. For any Borel set A c I R  2 we define Mb(A ) to be the subspace of Mb(IR 2) 
consisting of measures 0eMb(lR 2) with supp QCA. Moreover let B a be the o- 
algebra of subsets of S'(IR 2) generated by the linear functions ~--+(Q,~) with 
O~Mb(A ). The map A ~ B  A is then a monotone map from the o-algebra of Borel 
subsets of IR 2 into the ordered set of o-subalgebras of B = B~. Therefore if E(. [A) 
is the conditional expectation with respect to the o-algebra BA, then A-+E a is a 
monotone map from Borel subsets of IR 2 into the ordered set of orthogonal 
projections on L2(#). Hence if A, is a monotone (increasing or decreasing) 
sequence of Borel subsets of IR 2, then E(, [A,) is a monotone hence strongly 
convergent sequence of orthogonal projections in L2(#). Since A, is monotone we 
have in fact that E(f[A,) for feLl(#)  is a uniformly integrable martingale and 
therefore by the martingale convergence theorem E(f[ A,) converges almost surely 
and also strongly in LI(g ). For the martingale convergence theorem see e.g. [29]. 
Hence we have the following Lemma. 

Lemma 2.1. Let A, be a monotone (increasing or decreasing) sequence of Borel 
subsets of 11t 2. Then for any f ~ LI(#) we have that E(f I An) converges p-almost surely 
and also strongly in LI(#). [] 

Let now C be a piecewise Cl-curve in IR z, and let ge  Co~2) ,  where Co(IR 2) 
denotes the continuous functions with compact support on IR z. Let ~,C(x) be the 
unique solution of 

(-A+m2)lpCo(x)=O for xEIR2-C, (2.3) 

with 

~Ca(z)=g(z ) for z~C, 

where m is the positive number occurring in (2.2). 

It is well known, see for instance [30], that %C(x) exists and, for fixed x~IR 2 - C, 
that g ~ C ( x )  is a positive continuous linear function on Co(IR2). The correspond- 
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ing measure is absolutely continuous with respect to the natural measure dz on C 
i.e. 

pC(x) = ~ Pc(x, z)9(z)dz, (2.4) 
c 

where the Poisson kernel Pc(x, z) is a measurable function on IR 2 x C. For x¢C we 
call p~(x) the linear function ~-~p~(x)of the random field given by (2.4) i.e. 

p (x) = j Pc(x, z) (z)dz. 
C 

We then find 

j p~(x)p~(y)d#(~) = ~ ~ Pc(x, zi)S2(z 1, z2)Pc(y, z2)dz 1 dz 2 , (2.5) 
Sr(IR 2) C C 

where 

S2(x, y) = ~ ~(x)~(y)dp(~) (2.6) 

is the second moment of #. From (2.2) we have that, for f~S(IR2), 

~ S2(x, y) f(x) f(y) dx dy < cEm(f). (2.7) 

Therefore if tp~(~0)= ~ p~(x)qo(x)dx for q)~ S(]R 2) and if suppcp C ]1t 2 -  C, then by 

(2.5) and (2.7) we have that 

]p~((p)l 2 d#(~) <= c ~ ~ Kc(x, y)(p(x)~o(y)dx dy (2.8) 
S'(IR ~) 

with 

Kc(X, Y) = ~ ~ Pc(  x, zl)G,, ,(zl  - z2)Pc(y, z2)dzl dz2 . 
C C  

Since Gin(x-z), z~ C is a solution of (2.3) with boundary condition g(w) 
= G,,(w-z),  we get from (2.4) that for x and y in IR 2 -  C 

(2.9) 

Kc(x, y) = [. G,,,(x- z)Pc(y, z)dz. (2.10) 
C 

We have from (2.9) that Kc(x, y)= Kc(y, x) and ( - A  x + m2)Kc(x, y)= 0 on IR 2 -  C 
-{y}.  Moreover from (2.10) and (2.4) we see that if x ~ I R 2 - C  then 
Kc(x,z)= G, , (x-z)  for zeC. This however implies that 

Kc(x ' y) = Gm(x c - -  y )  - -  G m ( X  , y )  (2.11) 

where c G,,(x, y) is the kernel of the operator ( - A  c + m2) - 1, Ac being the Laplacian 
with Dirichlet boundary conditions on the curve C. It is well known that Kc(x, y) is 
a bounded continuous function of x an y in IR 2 - C. This follows from the fact that 

Gm(x - y) and GC(x, y) are both of the form - 2~ In Ix - y] +f(x,  y), where f (x,  y) is a 

bounded continuous function. Especially we get from (2.8) that if x¢C then 

E(lp~(x)12) < cKc(x, x), (2.12) 
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where E stands for the expectation with respect to the random field 4. From the 
known behavior of Gm(X- y) and GC(x, y) we have that there is a constant b such 
that 

IKc(x, x)l ~ bllnd(x, C)t" e- ma(x,c) (2.13) 

where d(x, C) is the distance from x to C. Therefore 

E(Iw~(x)[ 2) < a[lnd(x, C)[. e-ma(~'c) (2.14) 

where a = b. c. 
Let now A be a compact subset of IR 2 - C ,  such that d(A, C)~ 1. From (2.14) we 

then get 

E (! I1p~(x)l 2 dx)<a'lAle -m'a(a'c) (2.15) 

where [A[ is the volume of A and m' <m. Hence we have the following lemma. 

Lemma 2.2. Let ~(x) be a regular random field on 11t 2 so that 

e(I (o, 4)12 ) -5 eCru(o) 
for any o~M b. Let C be a piecewise Cl-curve in IR 2 and let ~pCo(x) be the solution of 
the Dirichlet problem (2.3). Then, for any x~IR 2 -  C, ¢ - ~ ( x )  is in Lz(~), where # is 
the probability measure on S'(IR 2) given by 4, and there is a constant a such that 

E(I~(x)I 2) < alln(d(x, C))I e- ma(x,c). 

Moreover ~ A is a compact subset of  IR 2 - C such that d(A, C) >= 1 then 

E(S I~p~(x)[ 2dx I < a'lAI e -m'a'A'c,, m' <m. [] 
\a / 

Let now ~ satisfy the equation ( - A + m 2 ) ~ = 0  for ]x]<R. Let ~Po be the 
function obtained from ~ by averaging with respect to rotations i.e. 

tpo(X)= S ~,(c;x)da. (2.16) 
SO(2) 

Since - A  + m z is invariant with respect to SO(2) we have that ( - A  +mZ)~p0 = 0. 
By rotational invariance we have ~P0(x)= ~0(Ixl) and ( - A  + m2)~0 =0  gives us the 
equation 

~o"(r) + ~ q¢(r) = m 2 cp(r). (2.17) 
r 

(2.17) has a regular singularity at r = 0  and there is therefore a unique solution 
q~o(r) of (2.17) defined for r > 0  such that q%(0)=t. But then we have that 
tPo(X ) =~Po(0). ~oo([xl) i.e., by the definition of lp o, 

1 
ix~:= ~o(x)dx = ~Oo(r ). 90(0). (2.18) 

2rcr 
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Now we observe that ~Oo(r)>0 for all r>0 .  (This is so because if we would like 
(Po(a)=0 for a > 0  then this would imply that ~o(X)=~Oo([Xl) is a solution of 
( - A  + m2)~o = 0 such that ~Po = 0 for [x[ = a. By partial integration we then would 
get that 

]V~o[Z dx= - m  2 ~ [~pol2dx, (2.19) 
Ixl <=a Ixl <=a 

which is a contradiction.) Using now the translational invariance of - A  + m 2 we 
have the following lemma 

Lemma 2,3. Let c%(r)=(po(r) -1 where q)o(r) is the unique solution for r>=O of the 

equation q)~(r) + ~ q)~(r) = m 2 ~0(r) such that (Po(0) = 1. Then if ~ is a solution of 
4 

the 

equation ( -  A + m 2 ) ~ = 0  for ly-  xl < R then 

~(r) 
lp(x) = 2nr ~ ~(y)dy 

Ix-y] =r 

for rNR.  [] 

It follows from the fact that ~Oo(r ) is a solution of 

(p~(r) + 1 (po(r) = meqoo(r) (2.20) 
r 

which remains bounded at r = 0  that (p~(0) =0.  From (2.20) we then get q)o(0)=m2 
hence % (r)> 0 for re  (0, e) for some e > 0. Now since (Po(r)> 0 for all r > 0 we see 
that at any point r 0 where q)o fro)= 0 one has (p;(ro)> 0 so that the function q)o(r) 
has no local maximum and is therefore monotone increasing i.e. (p~(r)>0 for all 
r>0 .  Therefore %(r) is monotone decreasing and thus from Lemma 2.3 we get, 
with 0 < r :  

t,#(x)?_-< ~"(r)~ "'~(e)~ 2nr Y [~o(y)[Z dy N S Itp(y)[2 dy. 
[x-xl=r 2n0 ]x-yl =r 

Now since ~ dx=rc(o+l)2-~zQ2=2rc(O+½)>2~zO we get by integrating 
o__<l~r__<o+l 

the right hand side with respect to r, between 0 and 0 + 1 : 

lip(X)] 2 <~ /gm(O)t 2 ~ Ilp(y)lZdy. (2.21) 
= \ 2nO ] ~<-_[x-y]<~+l 

From this we have the following lemma. 

Lemma 2.4. Let am(r ) be as in Lemma 2.3 and set 

tim(r) = (a,~(r)/2nr)2 . 

Then if ~(x) is a solution of the equation ( - A  + m2)~p=0 in some open set A filR 2 
then for any x ~ A  such that d(x, 8A)> 1 we have 

]~(x)] 2 Nflm(d(x, 8 A ) -  1) S ltP(Y)12 dy . 
A 
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Moreover tim(r) is a monotone decreasing function of r such that 

1 
tim(r) ~ ~ e- 2,.~ 

as r ~ o©. [] 

Let now ~_(x) be a regular random field on 11t 2, and let C. be a sequence of 
piecewise C~-curves in IR 2 which tends to infinity in the sense that 

d(O,C,)--+oo. (2.22) 

Then d(A,C,)~oo for any bounded A<IR 2. Let A, be a sequence of bounded 
subsets of IR 2 such that A, is contained in the interior of C,. From Lemma 2.2 we 
have for any e < m that 

ectd(An'Cn)E(~An[lp~n(x)[2dx)-+O (2.23) 

as n~oo  if d(A.,C.)~oo. Thus the sequence of functions 

converges to zero in L2(/~ ) and therefore there is a subsequence that converges to 
zero p-almost everywhere. Let n' be this subsequence, then 

e~a(A""c"') f lv/~"'(x)l 2dx-~O (2.25) 
An, 

as n ' - ,  o% #-almost everywhere. Let A,3A,  such that d(A,, ~A,)>2 and /], is 
contained in the interior of Q.  

By Lemma 2.4 we then have for x ~ A .  that 

I~0~°(x)l 2-_</~m(1) S I ~ " ( Y ) [ 2 d Y  . 
& 

We may obviously take z]. so that d(/]., C.) 
d(a,, C,) 

have that 

e ~/2a(A"''c'') sup i~"'(x)l--'O 
xEAn, 

for #-almost all ~. 
We have proved the following theorem. 

(2.26) 

1 and from (2.25) and (2.26) we then 

(2.27) 

Theorem 2.1. Let ~(x) be a regular random field on 11t 2, so that there is a constant c 
such that .for all (p~ S(IR 2) 

e(l(~o, ~ )t 2) =< ce~( ~o) - c ~ ~ ~m(X - y) ~o(x) ~o(y) ax dy .  

I f  C is a piecewise C J-curve let 1pC(x) be the solution o f ( -  A +m2)=0 in 1112 - C with 
C ~ C the boundary condition ~pg(z)=9(z) for zsC.  Then for x¢C, 9--+~o(x) is a linear 
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functional on Co(IR 2) which extends to a #-measurable linear function ~7o~(x)  
which is in L2(#), where # is the probability measure on S'(IR 2) given by the regular 
random field ~(x). 

Moreover if C n is any sequence of piecewise Cl-curves in 1R z which tends to 
infinity in the sense that d(O, Cn)--+ oe, and A n any sequence of bounded sets in IR 2 such 
that A n is contained in tR 2 - C ,  and d(A~, C~)~ o~ as n ~  oo, then for any ~ < m there 
is a subsequence n' such that 

e c~/2a(A'~''c"') sup tTO~"'(X)t-+0 
x~An" 

for almost all 3. [] 

Let us now consider two piecewise Cl-curves C O and C such that ComC-O. 
Then for g~ C(IR 2) 

C,Co C•Co Co 7O9 (x) = 7oo (x ) -  7o9 (x) (2.28) 

is a solution of the equation 

( -- A + m2)7o = 0 (2.29) 

in lR z -  CwC o such that 

7oc'C°(z)=0 for zeCo, Toc'C°(z)=g(z)-ToC°(z) for z e C .  (2.30) 

Thus 

7oc'c°(x) = S Pc~co( x, z)(g(z)-  7oC°(z))dz. (2.31) 
C 

Therefore for x¢C<oC o 

7o~'C°(x)= S Pcuco(X, z)~(z)dz- ~ Pc,~co(X, z)To~°(z)dz, (2.32) 
C C 

and by (2.2) and (2.8) 

[To~'C°(x)l 2 d#(~) < 2c ~ ~ Pc'~, Co( x, z) G,,(z - ~)Pc,~ co( x, ~)dz d~ 
CC 

+ 2c ~ ~ Pc~,co(X, z)Kco(Z, ~)Pc,oco(X, ~)dzd~. (2.33) 
CC 

It follows from (2.33) that if d(x, C)> 1 then 

E(lTo~,Co(x)l 2) < ae- m'a(~, c) m' < m, (2.34) 

for some constant a. 
Hence we get the following lemma. 

Lemma 2.5. Let ~(x) be a regular random field on IR 2 so that 

E(l(cp, ¢)IZ)<c ~ .[ q~(x)(p(y)G,,(x-y)dxdy 

for peS(IR2). Let C o and C be two piecewise Cl-curves in IR z and let 

C Co CtoCo Co 7o~, (x )=~  (x)- 7o~ (x) 
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for  x e} C u C o, where ~pCa(x) is the solution o f  ( -  A + m 2 ) I p  = 0 in 1112- C and tp = g  on 
C. Then there is a constant a depending only on c and m such that for  x e l R  2 - C ~ C  o 
with d(x, C) >= 1 we have 

E(l~p~'C°(x)l z) < ae-"'a~'c), m' < m 

and i f  A is a compact subset o f  IR 2 -  C u C  o such that d(A, C)>  1 then 

Now in the same way as Theorem 2.1 follows from Lemma 2.2 we get the 
following theorem from Lemma 2.5. 

Theorem 2.2. Let  the notations be as in Theorem 2.1. Let  C O be any f i xed  Cl-curve 
and let C,  be any sequence o f  piecewise C~-curves in 1R 2 which tends to infinity in the 
sense that d(O, C , ) ~  oo. Le t  A ,  be any sequence of  bounded sets in 1R 2 such that 
A , c ] R 2 - C o u C ,  and d(A,, C , ) ~ o o  as n ~ o o .  Then for  any a < m  there is a 
subsequence n' such that 

e ~/2a(a"''c"') sup l~,~°uc"'(x)- vg~°(x)l~0 
x~An, 

for  #-almost all ~. [] 

3. Euclidean Markov Fields 

The free Euclidean quantum field of mass m > 0 in IR 2 ([1]) is the tempered random 
field ~ given by 

E(e ~<e'~>) = e-  1/2 E,,(~o) (3.t) 

Hence ~ is Gaussian and since 

E(t(~o, ~)t z) = Em(~o) (3.2) 

we have that ~ is a regular random field. Let now C be a piecewise Cl-curve and let 
tpoC(x) be as defined in (2.3). Then ~-+Ip~(x) is #o-measurable, where #o is the 
probability measure corresponding to the free Euclidean quantum field of mass m. 
It is easily seen that the a-algebra B c is generated by the functions ¢~p~(x) for 
x¢C.  We have 

E(~p~(x)~p~(y)) = ~ ~ Pc(x, zl)Gm(z 1 - z2)Pc(y , z2 )dz f l z  2 . 
CC 

Now from (2.4) we have that 

(3.3) 

~Pc(x,  z i ) G m ( z l - z 2 ) d z  1 (3.4) 
C 

for z 1 e C is the solution of (2.3), but this however is equal to Gin(x-22) , hence 

= I Gm(x - z)Pc(y,   )dz (3.5) 
C 
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and we get 

E ( ~ ( x ) ~ ( y ) )  = E(¢(x)~p~O')). (3.6) 

Therefore if we set ¢C(x)= ~(x)-tp~(x) then 

E(~C(x)~p~(y)) = 0 (3.7) 

for all x and y in IR2- C. By definition tp~(x)=~(x) for x e C  so that ~C(z)=0 for 
ze C. Since both ¢C(x) and ~p~(y) are Gaussian random fields with zero expectation 
we see that ~C(x) and ~p~ (y)are stochastically independent. An easy computation 
gives 

E(¢C(x)~C(y) = GC(x, y) (3.8) 

where c Gin(x, y) is the kernel of the operator ( - A  c + m2) - 1, Ac being the Laplacian 
with Dirichlet boundary conditions on C, while 

E(p~(x)~(y))  = Gm(x - y ) -  GC(x, y) . (3.9) 

Therefore 

=  C(x) + (3. m) 

is the splitting of the random field ~(x) into two mutually independent random 
fields. From this we get that if Eo(. ]C) is the conditional expectation with respect 
to the measure #o and the a-algebra B c then for any f e L l ( # o  ) 

Eo(flC)(vl ) c c c = E0(f(~ + ~p,)), (3.11) 

where Eo c is the expectation with respect to the random field ~C(x). Let now C be a 
piecewise Cl-curve such that IR 2 - C consists of two components (2+ and I2_. In 
this case it is well known that if x e f2+ and y e f 2  then GC(x, y)= 0 which implies 
that ~C(x) for xEf2+ is stochastically independent of ¢C(y) for y e f 2 .  But this 
together with (3.11) gives that if f+ are Bo -measurable respectively and bounded 
then 

E ( f  + f_  IC)(11) = E ( f  + IC)(q). E ( f  _ IC)0/). (3.12) 

If (3.12) holds whenever C is a piecewise Cl-curve such that 1R2-C has two 
components f2+ and f2_ and f+ and f_ are bounded Bin-respectively B~_- 
measurable functions we say that the corresponding random field has the global 
Markov property. If (3.12) holds whenever C is a bounded piecewise C 1-curve such 
that IR2-C has two components f2+ and f 2  we say that the corresponding 
random field has the local Markov property. Thus the free Euclidean quantum field 
of positive mass in IR 2 has the global Markov property. 

Let now, for each bounded Borel set A C 1R 2, aA(¢) be a #0-measurable function. 
We say that a A is an additive functional of the free Euclidean quantum field ~ iff 
aA(~ ) is BA-measurable and 

aAl uAz = aA,(4) + aA2(~) (3.13) 

w h e n e v e r  A 1 t~A 2 = 0. 
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Let #c(~lt/) be the probability measure on  St(jR 2) corresponding to the random 
field ~C(x) + ~C(x) for fixed q ~ S'(IR2). Then by (3.11) 

Eo(ftC)(n)= S f(~)d~C(¢ln) • (3.t4) 
s'(~ ~) 

It follows easily that #0c(.)/) also has the global Markov property. Let us now 
assume that aa(~ ) =0  for #-almost all ~. if [AI =0,  where IAI is the Lebesgue measure 
of A. Let C be any curve such that IR 2 - C has two components f2+ and O_ and let 
A be a fixed open bounded subset of ]R 2 and set A+ = A~f2+. Since 

e-"~ = e-"~+ - e--~A- (3.15) 

we have, assuming that 8A is piecewise C ~, that 

d/taaA(¢[r/) = (Eo(e -" aA[~A)(1//)) - I e-""d#~A(~[,l) (3.16) 

again has the global Markov property, i.e. ' aA - if E,, ~ IS the expectation with respect to 
the measure p.,~A(-lt/) and E~,A(.IC) is the corresponding conditional expectation 
with respect to the a-algebra B o then 

EOA(F (" _EOAff [C~EOAfF . , . , j  + j_  IC) -  .,.is +, , . , .w-[C) ,  (3.17) 

where f+ and f_  are B~ +- and B o -measurable respectively. From (3.14) and (3.16) 
we also get that if A o CA and ~A o as well as OA are piecewise C~-curves and f is 
BAo-measurable then 

aA - _  aA0 (3.18) E. , , ( f l0Ao)(q)-  E.,~ (f) .  

If f is BAo-measurable and A o C A we have that 

c~A c~A c~A E~.,(E~.,(fl0Ao)) = E. . , (f)  (3.19) 

by the property of the conditional expectation. From (3.19) and (3.18) we get that if 
f is BAo-measurable then if A 0 CA such that 0A o as well as ~A are piecewise C ~ 
then 

or 

~ f ( ~)d#~ A (~1~/) = ~ ~ f (  ~ )d}t~aA°( ~ [ O)d#a0A(?'/I t/) (3.2o) 

~.a(~ I~) = S#~.Ao(~ [~)d#3A(r¢l~). (3.21) 

Remark now that if A 0 is compactly contained in A then peA( • It/) restricted to BAo 
is absolutely continuous with respect to the restriction of/~o to BAo, hence also the 
restriction to BAo of #0A(. [7) is absolutely continuous with respect to iz o. Let now 
P~o(A) be the set of probability measures on BAo of the form 

#°A(¢l, ) ~(q)d#o(t/) (3.22) 

where 0(t/) is an arbitrary positive normalized function in Ll(#O). From (3.21) it 
follows that P~o(A) is a decreasing function of A and set 

p a  __ a o -  @ P~o(A) • (3.23) 
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It follows from the definition of P~,o that if AoCA ~ then the elements in PaAo are 
restrictions to Bao of elements in P~. Hence there is a unique set of measures G" 
such that the restriction to Bao of the elements in G a are the elements in P~o" The 
elements in G ~ are called the Gibbsrneasures given by the additive functional a. 

It is easily seen that the elements in P~o(A) have the Markov property with 
respect to curves C C A 0 such that IR 2 -  C consists of two components f2+ and £2_, 
where f 2  is the bounded component. The Markov property (3.12) may also be 
written in the form 

Eu(flg2 + )-= Eu(flC) (3.24) 

whenever f is B~_-measurable, where now Eu is the expectation with expect to a 
measure p of the form (3.22). In fact (3.24) follows immediately from the Markov 
property of g0a(. It/) and (3.22). This proves the following theorem 

Theorem 3.1. The Gibbsmeasures given by an additive functional a A o f  the free 
Euclidean field of  positive mass in ]R 2 have the local Markov property. 

Remark 1. This theorem was first proved by Newman [8]. 

Remark 2. Assume now that the additive functional aA(~ ) is Euclidean invariant 
i.e. aoa(~)=aa(9-1~) for any Euclidean transformation g. There are then two 
interesting questions concerning the Gibbsmeasures G a given by the additive 
functional a. 

1. When is there exactly one element in Ga? 
2. When are the elements in G a globally Markov? 

We say that/~e G" is an extreme phase if there are no other elements in G a which 
are absolutely continuous with respect to #. It is easily seen that if vs G a and v is 
absolutely continuous with respect to /~ then dv=~d# where 0 is B ~ _  A- 
measurable for any open bounded set A, where B~2_A is the a-algebra generated 

by BN2_ A and the p-null sets. Hence 0 is B%-measurable with Boo-" -- (-~B~2_ A. So 
A 

that p is an extreme phase if and only if/~ ~ B% is a trivial probability measure. 
Since 

Eu(-}B~2_A)~E~(-IB~) (3.25) 

monotonously as A/~]R 2 and strongly as projections in Lz(#) we have that/~ ~ Bu~ is 
trivial if and only if E,(.  IBm2_ A)~Eu(') as A~IR 2. We therefore have the following 
theorem 

Theorem 3.2. peG ~ is an extreme phase if and only' if 

E.('tB~_A)~G(.) 

as ATIR 2, where A ranges through the filter of bounded open subsets of  IR 2. [] 
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4. The Trigonometric Interaction 

The trigonometric interaction [21,4, 22, 23] is obtained by considering the additive 
functional UA(~) of the form 

UA(~ ) = j" : COS(e~(X) + Oo):dx (4.1) 
A 

with e2 <4n. Fr6hlich proved [22] that e-~VA~Ll(#O) for all 2 and moreover that 
G ~v is non empty, where G ~v is the set of Gibbsmeasures given by the Euclidean 
invariant additive functional 2UA(~ ). Fr6hlich and Seiler [4] proved that there is a 
# ~  G ~v such that #~. is weakly analytic in 2 for [)q <2o, where 2 o depends only on 
and on m 0, the mass of the free field. This result is proven by using the cluster 
expansion which was first introduced by Glimm et al. [2] to prove the existence of 
the infinite volume limit for the weak polynomial interaction. 

It follows from the result of Fr6hlich and Seiler that for 12[ < 2o we have 

Ez(I Qp, 3)12) __< C'Em(q) ) (4.2) 

for some positive m > 0, hence by the remark following (2.2), also for any m. Thus 
we have 

Ez(l(q), 4)12) _--< CEmo((p) (4.3) 

for any (pE S(IR2), where Ez is the expectation with respect to #z and m o is the mass 
of the free Euclidean field corresponding to the probability distribution #o on 
S'(1R2). From (4.3) we have 

Lemma 4.1. Let #~ be the Gibbsmeasure correspondin9 to the additive functional 

2 ~  =2 J" :cos(~(x) + 0o):dx 
A 

with cd <47c which is analytic in 2 for 121 <2o. Then #x defines a regular tempered 
random field on IR 2. [] 

Following Fr6hlich and Seiler [4] we introduce for 0E [0, 2re) the random 
fields 

Co(X ) = :cos(e~(x) + 0): (4.4) 

and set 

co(f) = ~ Co(X ) f(x)dx 

for feCo(lR2). Then Co(f)sL2(#o ) where #o is the probability measure on S'(IR 2) 
corresponding to the free field of mass m 0. Set {x, 0}N= {xa .. . . .  XN; 01 .. . . .  ON} 
and 

S~( {x, O}N)= E~ (i=~I ~ Coj(Xj) ) . (4.5) 

Set also 

(j01 ) ) (46) s~({ o}) ( -  )- ~ x, N =Eoe  avA aE o Coj(X j e  av~ 



Uniqueness and Global Markov Property 111 

and set 

S~A(Xl,..., X~) = go(e - zv~)- 1Eo ~(xs)e- av~ , (4.7) 

then an integration by parts with respect to the normal measure /l 0 (see [4]) 
shows that S~(x 1 . . . . .  x,) may be expressed by S~({x, 0}N ). Thus the convergence of 
S~({x, 0}N ) to S~({x, O}N) implies the weak convergence 

(~ e - a v~(0 d#o) - 1 e -  ~VA(¢)d#o(~) ~ d#z(~) ' (4.8) 

as A/~IR 2. 

The convergence of (4.6) to (4.5) is proven by Fr6hlich and Seiter [4] by 
showing that the cluster expansion converges. The cluster expansion is obtained in 
the following way as described in [4]. We keep concepts and notation as close as 
possible to those used in [4]. 

First one covers 1R 2 by a square lattice L with lattice constant 1. Let B denote 
the set of all bonds i.e. square sides in L. Let C B be the operator (--AB+m2) -1, 
where A B is the Laplacian with Dirichlet boundary conditions on B. The Gaussian 
measure on S'(IR 2) with mean zero and covariance C B is denoted by #B and let 
( " )ca be the expectation with respect to #B. The measure/iB decouples regions 
that are separated by bonds of B completely in the sense that if cp and ~p in S(IR 2) 
are such that suppq~ is separated from supp~ by a closed line of bonds in B then 
(p ,  ~> and (q~, 45 are independent with respect to the probability measure/~.  Let 
n o w  

N 
(4.9) 

It is obvious that (4.9) is independent of A as soon as A contains the smallest union 
of lattice squares of L containing {x}N. Therefore the limit of (4.9) as AZIR 2 exists 
trivially. 

The cluster expansion is obtained by removing the Dirichlet condition on the 
bonds of B step by step and estimating after a partial resum:mation the terms in the 
final series. Now removing the Dirichlet condition on a bond bEB introduces a 
convergence factor proportional to mo"(t / >0) or, in a term localized near x, a 
convergence factor proportional to e -m°a(b'x). These factors yield the convergence 
of the expansion. For  details on the procedure see [2] and [43. Following [4] we 
introduce the following notations. 

A collection of bonds b in B is denoted by F and let U = B - F  (the 
completement of F in B). Let w{x}N ) be a function of compact support in Lp(IR 2N) 
with p ( p -  1)- le2 <4m Set X o =suppw. Let X range over finite unions of closed 
lattice squares and let F range over the set of finite collections of bonds in B such 
that 

(i) each connected component of X -  F c meets X o 

(ii) F C IntX. (4.10) 
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Set 

c({s}~) = 
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Z [Isb I] (1-sb)Cro, (4..ll) 
F c B  b e e  b~Y c 

where Crc is the operator ( - A  re + m2) - 1 and A re is the Laplacian with Dirichlet 
boundary conditions on U. [Clearly C(1, 1 .... ) = ( -  A + m2) - 1.] Let 

s(F)= {s(F)b}b~8 with 

s ( rb )=  ~sb, b~r ( 0 < s b < l )  (4.12) 
(o, bet. 

Expectations with respect to the Gaussianmeasure on S'(IR 2) with mean 0 and 
covariance C(-) are denoted ( ')c(.)  and we set 

Z~r(A) - / o -  ~vA\ (4.13) 
- -  N~ / C F  " 

The cluster expansion is summarized in the equation 

2 I]dsb  (I 
X , F  0 0 bsF  OSb j = l  

• w {x}N ) e -  zv~ ~ x(e))c(~(r)) Z~ox (A - X )  ZZ(A)- 1. (4.14) 

The cluster expansion (4.14) is derived in [2, Sect. 3, Eq. (3.15)]. Now the 
important property of (4.14) utilized by Fr6hlich and Seiler is that it is model 
independent. The basic result of [2] is the following theorem. 

Theorem 4.1 [2, Sect. 43. The convergence of the cluster expansion (4.14) implies the 
convergence (4.8) and also the exponential cluster property. 

For the proof of this theorem for P(rp)2-models see [2]. []  
The convergence of the cluster expansion follows from three essential estimates 

which are given here as the three following lemmas and which correspond to 
Proposition 5.1, 5.2 and 5.3 of [2]. 

Lemma 4.2 [2] (Proposition 5.1). The number of terms in the cluster expansion 
(4.14) with a fixed value of p(] is bounded by CleIqlXl(K1 = 19). 

This lemma is entirely model independent and is therefore proved in [2]. []  

Lemma 4.3 [2] (Proposition 5.2). There is a K 2 independent of 2, A as long as 
1)~[ <_ 21 (~) such that [Z~x (A - X )  Z z (A)- 1] < eK2 Ix I. 

Proof This follows from the proof of Proposition 5.2 [2] and the basic estimate 

1 3 
< [ZZ(A)I < ~ (4.15) 

which is given in (2.4) of [2]. []  
The third basic estimate is 
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Lemma 4.4 [2] (Proposition 5.3), [4] (Proposition 2.2). There is a constant K 3 and 
a norm [w] on test functions such that for any K > O, for any A and for any 2 with 
121 <21(e ) we have for all m o > #~ that 

( s  or ~i~= Co~(Xi)e- ZV a(O d#c(=(r))(~)ds(F), w )  

~e-KIVI+K3IAIIwI. 

Moreover if w is of compact support X then we may take lwl = C~x- t lw l l  ~. 

This lemma is [2] (Proposition 2.2) and for the proof we refer the reader to the 
original paper [2]. []  

Let us now write the cluster expansion (4.14) in the form 

S~t(w, {0}N)= ~ ~ TZ({X}N, {O}N,A,X,F) w({X}N)d{X}N , (4.16) 
X,F  

with 

N 

{x}N = (xl .... , x=), d {x=} = 1]  dxj. 
j=l 

We have then the following lemma which corresponds to Theorem 4.1 of [2]. 

Lemma 4.5. Let K > 0 be given. Then there is a constant #K depending on K such 
that for 12}<21(e ) and Jbr mo>#K there is an S-norm 1"1 such that 

Y I~ TZ({x}u, {O}N,A,X,r) w({x}N)d{x}=l_-<lwl e -K<°-s). 
x r  

tSt~D 

Moreover if w is of compact support then we may take Iwl=CN,xLTw[[~ where 
X = supp w. 

Proof The proof is the proof of [2] (Theorem 4. t) and goes as follows. We replace 

A by AFJ;  in Lemma 4.4. For X in (4.16) we have X =  ~ ) ~  with r < N  and X~ 

connected. Moreover 

FC Q) IntR~, (4.17) 
i = 1  

and Xi - F¢ =Xi. Thus 

[X~I- t<21Fc~Int)(,I and [XI-N<21FI.  (4.18) 

Hence we replace the upper bound in Lemma 4.4 by 

e -K(lxt-=)twl (4.19) 

with a new choice of K and [w[. Lemma (4.5) follows directly by combining (4.19) 
with Lemma 4.2, Lemma 4.3. []  

We shall need the following two lemmas which are a special case of a result due 
to Guerra, Rosen and Simon [16] called "conditioning". 
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Lemma 4.6. Let Z~ and Z2 be bounded positive functions on IR 2 and let C(Z~) 
= ( - A + m 2 + Z~)- ~, then if  Z1 > Z2 > - m2 + e, ~ > 0 we have, for arbitrary f and g 
in C(IR2)~LI(IR2), that 

(exp {~ (f(x): cos a~(x) : + g(x): sin a~(x):)dx} >c(x~) 

< <exp {6 (f(x) : cos c~(x) : + g(x): sin o~(x):)dx} >c(z~) 

Pro@ Let a=C(z1)  and b=C(z2)-C(z1) and let ~(x) and ~b(X) be Gaussian 
random fields with mean zero and covariance a and b respectively. Then ~(x) 
= ~ ( x ) +  ~b(X) has covariance C(Z2). Thus by Jensen's inequality we have 

<exp {~ (f(x):cos a~(x): +g(x): sin ~(x):)dx>c(z~ ) 

= (exp {~ (f(x) :cos a(~(x) + ~b(X)) : + g(X) 

:sin a(~(x) + ~b(X)):)dx>~. b 

> (exp {6 ( f ( x ) (  :cos a(~,(x) + ~b(X)):>~ + g(X) 

( :sin ~(~,(x) + ~b(X)):>b)dx}>~ 

= (exp {~ (f(x) : cos ~ ( x )  : + g(x) : sin 0¢~,(x):)dx} >~ 

(where < >~,b means integration with respect to ~ and ~b, and < >,, ( >b means 
integration with respect to ~ resp. ~b alone), since 

: cos a(~a + ~b) : = :COS a~a : : COS a~b : -- : sin a~, : : sin ~b  : 

and 

:sinc~(~+~b): = :s inai , :  :COS~b: + :s in~b:  :COSC~,: 

and 

(:COS0~b:)b=l, while ( : s i n ~ b : ) b = 0 .  

This proves the lemma. [] 

Lemma 4.7. Let 71 and 72 be two piecewise smooth curves in IR 2 and let C(yi) 
= ( _  A7 ~ +m2) - 1, where A~ is the LapIaeian with Diriehtet boundary conditions on 
7i. Then if  71 372 we have that, for arbitrary f and g in C(]RZ)v3Lt(]R2), 

<exp {6 ( f (x)  :cos a ~(x) : + g(x) :sin a ~(x) :)dx} >c(~) 

< <exp {6 (f(x): cos a ~(x): + g(x): sin a ~(x):)dx} >c(~). 

Proof. We may approximate in the strong operator sense (-A~,+moZ) -1 by 
( - A  + m 2 + Z,,,)-1, where Zi,,, i=  1, 2 are smooth positive functions going to 0 as 
n ~  Go. Since 7~ )~'2 it is easy to see that this approximation may be done in such a 
way that Z~,, > Z2,,. From the strong convergence of the covariances follows weak 
convergence of the corresponding Gaussian measures. Hence the inequality of this 
lemma follows from that of Lemma 4.6. [] 

For our purpose we need a stronger version of Theorem 4. t and to get this we 
shall need a stronger version of Lemma 4.3, 4.4, and 4.5. Let us first :introduce the 
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notation 

cA(f) = ~ %(x)f(x)dx 
A 

for f e  L2(]R2), where %(x) = :cos a ~(x) + q~ :. Then 

Ica(f)12dPo = ~ ~ e~2G'~o(~-Y)f(x)f(y)dxdy 
A A  

(4.20) 

1 
which is finite since A is bounded and ~2<4~Z, Gmo(X-y)~ 2~l ln(x-y)I ,  so that 

e ' ~ 0  (~-y) is a bounded integral kernel in Lz0R2). For  this reason we have that 
f-~e~(f) is a bounded map from L2(]R 2) into Lz(dPo ). Let now fisC(A) such that 

If~(x)l ~ 2e ~'~/2K~A(x'~) (4.21) 

where Kea(x, y) is given by (2.t0). We have that 

[K~A(X , X)[ =< 2~ lind(x, 8 A ) l e  - m ° d ( x ' ~ a )  (4.22) 

so that I~(x)l 2 <4[d(x, (?A)] (-(~2)/2~) and hence for ez < 27r we have that (4.21) implies 
that f/@ L2(]R2). 

Let now f ~  C(A), A open and bounded, satisfy (4.21), ~piE [0, 2~), i=  t . . . . .  k for 
some fixed k. Then by Lemma 4.7 we have 

-~ u~+ ~ ~,(fO c(ax) o e va + ~ %(f) 
i=I i=l 

where ( >o is the expectation with respect to/~o. 
k 

Thus, with t~a= U a + 2 c~(f~) 
i = 1  

(e-Zt?A)o i/D--~t?A-X\ </o--ZOx\--I (4.23) 
\ ~ / C ( O X )  ~--- \ ~ / C ( O X )  • 

Let now F(X) be all the lattice bounds in X, then again by Lemma 4.7 we have 

(e-aVX)c(ox) < (e-£tSX)c(r(x))= [ I  (e-ZS~')am 
Aic X 

where Ai are the unit squares of the lattice. Since k is fixed and fj  satisfies (4.21) we 
see that the LE-norm of)G,(x) f/(x) is bounded with a bound that is independent of 
x. Hence we get in the same way as the basic estimate (4.15) is proved in [4] 
(formula (2.4)) that for c~ 2 <2n and I,~l <,~,(~) [possibly with a smaller bound 21(c~)] 
we have 

~ 

Thus we have 

Lemma 4.8. Let  k be a fixed integer and 

~0i~[0,2~z), fiEC(A) with If~(x)l<2e ~/2K~AIx'x), i=1  . . . . .  k. 
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Then for (g2< 2re and ]2[ <21(~ ) there is a constant K 4 independent of  2, A and X 
such that 

( e -  ~UA ) 0  1 (e - ~JA - x )C(~dX ) ~ eK4 IX] 

where 

k 

¢=va+ E4 (Z). [] 
i = 1  

This was the strengthened version of Lemma 4.3 we needed. The following is 
the strengthened version of Lemma 4.4 : 

Lemma 4.9. Let the assumptions be as in Lemma 4.8, then there is a constant K 5 and 
a norm [wl on test functions continuous on S(1R zN) such that for any K > O, for any A 
and any 2 with IZ I <21(~) we have that 

(?r ~ H co,(x3e-~VA~dl~c(~ir~(¢)ds(F), w <e-~lrl+K'lal[wl • 
i=1 

Moreover if w is of compact support in X then we may take Iwl = CN,x[Iwll ~. 

Proof. The only change in the proof of Proposition 2.2 of [4] we have to make in 
order to prove this lemma is in the Lemma 2.3 of [4]. Instead of that lemma we 
need to establish the following estimate directly 

( e-  2U A )c:(s(F) ) ~ e K° [A] (4.24) 

where K o is a constant which only depends on 121 and e. 
However by Lemma 4.7 we have 

If follows from Theorem 3.4 of [22] and its proof that if ~2<2n and f~eL2(IR 2) 
then 

(e"ff:A)o <=Ae"'~('A'+ L I'f,'@ 
i=1 

where A and B are constants independent of), and A. By the unimrm bound (4.21) 
we get that if leA[ ~ [A[ where leAI is the length of 8A and [At is the area of A then 
there is a constant C such that 

(e--XOA)o < AeCaalAI . 

This proves (4.24) and now the proof of Lemma 4.9 follows from the proof of 
Proposition 2.2 of [4]. [] 

~Z 
Let n o w  SA(W , {0}N ) and TZ({x}N, {O}N,A,X,F) be defined as S~a and T z 

k 
respectively, but with UA = Ua + 2 cA,(f~) instead of U A. 

i = l  
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Lemma 4.10. Let  the assumptions be as in Lemma 4.8 and let us in addition assume 
that ]t?AI _-< IAI. Then for  any K >0  given, there is a constant yg, depending on K such 
that for  I21<21(e ) and for  mo>PK there is an S-norm I't such that 

If q'~({~}u, {0IN, A,X, F)w({x}u)d{~}~l =< Iwle -~c(°-u) 
X F  

X > D  

where zF ~ is defined as T ~ in (4.16) but with (JA instead of  U a. Moreover i f  w has a 
f i x ed  compact support inside X then we may take Iwl =CN, xltWtloo. 

Proof. The inequality of the lemma follows by combining the combinatorial 
estimate (4.18) with Lemma 4.2, Lemma 4.8, and Lemma 4.9. [] 

Now if supp w = X  o and X o is a product of unit squares in IR 2 w e  set CN, xo -- C N 
since Crux ° obviously is independent of X o as long as X 0 is a product of unit 
squares. Now if d(X) is the diameter ofX C IR 2N then X is contained in the union of 
d(X) 2N unit squares. From this it follows that the constant Czv,x ° of Lemma 4.10 
satisfies the following inequality 

CN,x < C~,, .d(X) 2N . 

From Lemma 4.10 and (4.25) we now have the following theorem 

(4.25) 

Theorem 4.2. Let  ~2 < 27~, k a f i x ed  integer and 

(pie[0, 2re), f i ( x ) e C ( I n t A )  

and set 

k 

~fA=UA 21- E A co,G). 
i = i  

and If~(x)l ~ 2 e  ~2/2KoA(x'x) 

Then for  I,Zl ~,Tl(c~) and m o > Yic and Ilwll oo ~ Cd(supp w) -aN we have that the cluster 
expansion 

\ ~  /0 \~ IC(OX) 
X,F 

0 0 bel" b \ \  j =  1 / C(s(F)) 

converges absolutely and uniformly in 2, A, m o, qh, fi and w for  121 _-<21(c0, m0 >YK, 
If~(x)l < 2 e ~2/2 r 0Atx, x), 1611 < IAI and (d(supp w)) 2n II w II ~ < C, where d(supp w) is the 
diameter o f  the support o f  w. [] 

Let now 

-;'d]A -- 1 S~,0a({ x, 0}N)=(e )C(Oa) 1~ cos(x)e xvA , (4.26) 
\ j =  1 (OA) 
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where C(63A)=(-Z]OA4-m2) -1, ZJOA is the Laplacian with Dirichlet boundary 
conditions on 8A and 

k 
co,G). 

i=1 

Let ()c(~(r),oa) be constructed from ()c(oa) in the same way as ()C(s(r)) was 
constructed from ( )o. The following theorem then follows from the proof of 
Theorem 4.2. 

Theorem 4.3. Let the assumptions be as in Theorem 4.2. Then for J21<21(e) and 
mo > #K and d(suppw)2N[jwll~ ~ C we have that the cluster expansion 

\ ~ /C(~A) \ ~ /C(OXwOA) 
X,F 

0 beF / / C(s(F),OA) 

converges absolutely and uniformly in 2, A, m o, qh, f~ and w for 12[ <21(~), m o >#K, 
[f/(x)f_<2e ~2/2 K°a(x'x) and 18A[ < IAI, (d(supp W)) 2N II WII ~ ~ C where d(supp w) is the 
diameter of the support of w. [] 

Now exactly the same way as the convergence of the cluster expansion (4.14) 
implies the exponential cluster property for S](w, {0}) (see [4], p. 901 and also 
[2], Sect. 4) we get that Theorem 4.3 implies the following temma 

Lemma 4.11. Let the assumptions be as in Theorem 4.2. Let w({x}N ) and w'({x}N, ) 
have compact support X and X'  respectively and let d(X) and d(X') be the 
corresponding diameters and d(X,X') the distance between X and X'. Then there are 
positive constants a, 21, #1 and CN, N, such that 

IG,~(w®w, {0}~x{0}N,)--g~,oa(w,{0}N).S ~ ~w' ~,~, , {0}N, ) I  

< CN, N, e-~a<x'x'), d(X)2N d(x,)ZN'  It Wit 0o I[ W' II oo 

for 121<,tl, m0_>_#p pAI__<IAI and [f~(x)J<2e ~/21~o~(~'~, i=1  ..... k. [] 

k 
L e t  n o w  U A - [J; 4- o~ ~ A %~(f~), and set 

i = I  

Then 

SZt:~OA({X, O}N ) = -- 2 2 (SZA',%A({ x ,  O}N(~ {)~Afi, ~0i}) 
i=1 

- SA,~A({X, O}N)'G,~(ZJ; q~)) 

(4.27) 

(4.28) 
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where ZA is the characteristic function for the set A. By integrating (4.28) over 
from zero to one and using Lemma 4.11 we get: 

Lemma 4.12. t~4th the notations of Lemma 4.i t  there is a constant C N depending 
only on N and k such that 

I~,~(w, {0},,})- s~.~(w, {0}~,)I 
< CN(e -"e(x'A - r)d(A)2 + ed(Y) 2) d(X) 2N ]l w LI ~o 

/f If&)l<e for xEY and X ~ s u p p w ,  with w=w(xl , . . . , xN) ;  for I).1<~1, 
< ~-~:~(~,~). 

mo>#l,  lSAl<lA I and ]f / (x)[_2e , t = l , . . . , k .  [ ]  

Let  now B ~ { x ~ l R 2 ; I x l < n }  and C,=OB,. Let f~,,,, i = 1  ..... k be in C(IntB,)  

with If~,,(x)l <Re T~a(~'x) such that  for r e < n - 1  we have 
cU 

sup lf~,, (x)l _-< be- ~("- m) (4.29) 
x~Bm 

where b and c(are positive constants independent  of n and m. F rom Lemma 4. t2 

and (4.29) we then get with m =  2'  Y=B'/2 and ~=be - ~  

IS.~,o~(w, {0}N)- S~.,~B~(W, {0}N)I 

<=CN ( e_~(~_e( x .n2+be_¥,(2))d(X)2nNwt]~ 2 (4.30) 

N o w  the convergence of the cluster expansion for S~,0A(W, {0}N ) uniformly in A is 
of  course a consequence of  Theorem 4.3. F r o m  this it follows in the same way as in 
Theorem 4.1 that  

S~A,~(W, {O}N)--+SX(w, {0}n ) (4.31) 

as A,~R 2. F r o m  (4,30) we then get the main theorem of this section. 

Theorem 4.4. Let 0~2<27C, k a fixed integer and ~oi~[0,2n). Let f i . sC(B.) ,  
0~2 

B, = {x E R 2 ;Ix] < n} such that ]f/,.(x)[ 5 2e 5n~"(~'~) and for m < n - 1 

sup Ifi,,(x)} <be -~-('-") 
x~Bm 

where b and e' are positive constants independent of n and m. Let 

k 

(;".o = cI,o + 2 % (f~,,,), 
i = 1  

and 

-,~fJ~ - 1 Co~(Xj) e ,~o~,, w({X}N ) d {x} N" Sn,.oR,(w, {0}n ) = (e  "° )c(on,,) ~ \ J=  1 c(on,) 

Then 

~,"o.~(w, {o}~,)-,S~(w, {0}N) 
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as n--,oo, whenever w=w(x  1 ..... xN) is bounded measurable and of  bounded 
support. [] 

5. Uniqueness for the Trigonometric Interaction 

Let E 0 respectively E~ be the expectations with respect to the measure #o given by 
the free Euclidean field of mass m and respectively a measure # ~  G ~v such that #~ 
is a regular random field. Let now B, = {x~lR2 ;[xl <n} and C, =~B,. From (3.11) 
we have 

Eo(f t C ) (tl) = EC(f( ( + pC)) (5. t) 

where Eo c is the expectation with respect to the Gaussian measure of mean zero 
and covariance ( - A c + m ~ ) - 1  Ac being the Laplacian with Dirichlet boundary 
conditions on C. Then 

Eo(fIC)(tl)-- ~ f(~)dPoC(~]t/) (5.2) 
s'(~ ~) 

where #c(~lt/) is the Gaussian measure with mean pC(x) and covariance 
( - A c + m ~ )  -1. Since #z~G ~'v, where A--+U A is the additive functional given by 
(4.1), we have by (3.16) that 

E~(flC)(tl)= ~ f(~)dpC(~[tl) (5.3) 
S'(~.  ~ ) 

with 

d#C(~I~l) = (Eo(e- zv~lC ) (t/))-I e- ~V~dpC((lt/) (5.4) 

where B is a bounded domain and 3B = C. 
Hence by (5.1) 

E~,(ftC) (17) = (Eo(e- zV~tC) (rf))- I Eo(f  e-  *vB I C) (rl) 
= EC(e- avB(¢ + to,f))-1 EC(f(~ + pC) e- zv~(¢ + re)). (5.5) 

Let now f (~ )=e  i<°'¢> for some (peS(Re), and set UB(~+pC)= U~, then we get 

E~(e ~<~' ¢>1C)(t/)= e '<~°' t~, >EC(e- zv , ) - ,  EC(e,<O, ¢> e- ~v,). (5.6) 

We shall prove that E~(e~<~°'~>[C,)(rl)--+Ez(e i<¢';>) #k-almost surely as n ~  oe. From 
Theorem 2.1 we have that if A, CB, such that d ( A , , Q ) ~ o o  then for any c4<m o 
there is a subsequence n' such that 

e ~'/2d(An''c'~') sup IpC"'(x)l~0, (5.7) 
x~An" 

for #~-almost every ~, because #~ is a regular Markov field. (5.7) implies that 

ei<¢,~g°'> ~ 1 (5.8) 

for gk-almost all t/. 
From the fact that ~(x) and p~(x) are independent Gaussian fields with 

covariance Gc(xo y) and Kc(x, y) respectively [-see (2.11) and (3.10)] we have by 
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using the trigonometric formula for cosinus 

u~(~) = ~ - cos(c~(x) + 0 + c~C(x)) :c/x 
B 

= y" cos (~ (x )  + 0) :: cos ~v~C(x) :d~ 
B 

- ~ : sin(~{(x) + 0) :: sin ~C(x) :dx, 

Hence in the notation of (4.4) 

g~( o = U B( O + Co(f.) + co_ ~,~/2~(0.) 
with 

f , =  1 - : cosmpC(x).--'--1 - -  eC~2/2Kc(x'X) coso~lflC(x]~l , 

and 

G(x) = - : sin atpC(x) : = - e ~:/2 Kc(x,x)sinc~C(x). 

From (5.7) and Theorem 4.4 we get that 

121 

(5.9) 

(5.10) 

(5.11) 

for some subsequence n' of natural numbers. 
Since #4 is locally equivalent to #o and Co(X ) generates the a-algebra of 

#o-measurable sets the convergence (5.12) implies that 

EC,,(e- XV~,)- 1 EC,,,(ei(O,4> e-  aV<;)~ Ex(e i(e,~)) (5.13) 

for go~ S(IR 2) with compact support, for #;-almost all t/~ S'(IR2), 
Since the functions of compact support are dense in S(IR e) and/-to and #4 are 

measures on S'(IR 2) we see that the convergence (5.13) holds for any goES(IRx). Now 
(5.13) together with (5.8) give that for any goeS(IR a ) 

Ex(e<~"~>[C,,) (t/)-~Ex(e i<~'' ¢>) (5.14) 

for #k-almost all ~leS'(IR2), where n" is some subsequence of the sequence n of 
natural numbers. From (3.25) we have that 

ex( .  I IRe _ A)-*G( .  I B~o) (5.15) 

monotonously as  A)~IR 2 in the ordered family of bounded open sets and the 
convergence is monotone and strong in the sense of operators on L2(d#~ ). If go has 
bounded support we have that 

Ex(ei<,e, 4> ] C.) = Ex(e i<e' ~> ]]R 2 - B.) (5.16) 

as soon as suppgoCB., Therefore (5,15) together with (5.14) implies that 

Ex(e i( ~' {> ]]R e - A)- ,  E x(e i<~°" {>) (5. t 7) 

as A converges to IR 2 in the ordered family of bounded open subsets of IR 2. 
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By Theorem 3.2 we have proved that #x is an extreme phase. Now the only 
condition on #;~ was that #xEG ;~v, i.e. that #;~ is a Gibbs measure for the 
trigonometric interaction (4.1) and that #~ is a regular random field. If there are 
two regular random fields p~ and #~ in Gav then 3 _ t 1 - 1 2 /'tA--7~Z t~), is also a regular 
random field in G xv and since #~ and #z both are extreme phases #3 is not an 
extreme phase. 

Hence we have the following theorem. 

Theorem 5.1. Let C( 2 < 2 n  and m o >0,  then there is a 2 a > 0  depending only on a and 
m o such that for -21  <2<21 there is one and only one measure #~ corresponding to 
a regular random field ~(x) with # ~  G ~v, where G zv is the set of all Gibbs measures 
corresponding to the additive functional 

"~UA(~) = ;L ~ : COS(~(X) + 0) :dx. 
A 

We recall that ~(x) is said to be a regular random field if the corresponding 
probability measure is supported by S'(IR 2) and there is a constant c such that 

E([(cp, ~)12)< c ~ Gm(x - y)rp(x)q)(y)dx dy 

for any q)eS(IR), for some fixed positive m. 
For - 2 ~  < 2  <21 we have especially that # ~  Gav is an extreme phase. [] 

From the proof  of Theorem 5.1 we also have 

Theorem 5.2. Let 0~ 2 <2n  and m o > 0  then there is a 21 > 0  depending only on a and 
m o such that for - 2 1  < 2  < 21 we have that if  tl~ S'(IR 2) such that ~po.a(x)--~O locally 
uniformly as A ?IR 2 then 

e- zuA(¢) 
d ~A 

d~(¢)= Eo(e_~.VAi~A)(~) ~o (~[~) 

converge weakly to the unique limit # given in Theorem 5.1, where U a is the 
trigonometric interaction of Theorem 5.1 and p°oA(~Itl) is the free Euclidean field with 
boundary condition ~ =r I on OA defined in Sect. 2 by 

+ oa d ~a ~f(~)dl2~oA(~lrl) = ~f(~ ~ ) #o (C) 

where #OoA is the free field with Dirichlet boundary conditions on c]A. 

6. The Global Markov Property for the Trigonometric Interactions 

Let now C O be an unbounded connected piecewise Cl-curve such that IR 2 -  C O 
consists of two components f2+ and f2_. Let B,={x~IRZ; lxI<n}, hEN and 
C, = 8B, - C 0, where ~?B, = {Ix I = n} is the boundary of B,. We also assume that, for 
any n~N, c3Bj~C o consists of at most  a finite number of points. F rom (5.3) we then 
have that if f is BB -measurable then 

Ez(f]CowC.)(tt)= ~ f(~)dpC°uC"(~ttl), (6.1) 
S'(~ 2) 
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with 

d# c°'~ c~(~ It/) = [E o (e-  aVB, ]C O ~ C,) (r/)] - 1 e -  a v,° d#oCO u c,(~[q). (6.2) 

Thus  by (5.5), with U , =  UB°, 

E~(f  l Co wC,)  (~) = [ ECo°'C"(e- ZV"(¢ +~:°°c")) ] -1 

• Eco,~ c,(f(~ + ~oCo ~ c,) e -  av,(~ + t~Co,~C°)). (6.3) 

Set now ~p~(x)= ~pc°~C"(x)-qJC°(x), f ( ~ ) =  e <~°'~>, then (6.3) takes the form 

Ea(e<~,¢> l C o t3C.) (q) = ei<~,~Y °> e i<¢'' w,q> 

• [ E C o  w C n ( e  - -~Un({ + lp Co + tp,~))] -- 1 

• E c°'~' C"(e< ~' ~> e -  ~_v~(¢ + toco + ~ ) .  (6.4) 

F r o m  Theorem 2.1 we have that  if A,,CB. such that d(A., C.)--+oo as n--+ oo, then 
we have for any f i<m o that  there is a subsequence N ' C N  such that  if d e N '  then 

ee/2 a(a.,,cw) sup I~g'(x)l ~o  (6.5) 
x E A n ,  

as n'-~ o% for #a-almost all ~/in S'(IR2). Thus 

e/<~,~'>_+ t 

for #k-almost all q, as n'--+co. 
Let  now for tleS'(tR 2) 

S~o ~ c,({x, 0 }k) - [ Ec° ~ c"( e-  av.(~ + ~2o + v~))] - 1 

k 

and 

• E c°~c~ CoflX j e -~v~(¢+t~°) . (6.7) 
j= / 

We remark now that one has 

U,(~+ Co lpq -~- ~)tl) = U n( ~ -]- l])C°) -1- Co(f~/) -]- CO-(r~/2)(gq), (6.8) 

with 

f,(X)~I--e~'/2Kc(~")COSc~C(x) and g,(x)=-e~'/2Kc(~'~)sinc~C(x). (6.9) 

Using (6.8) and (6.9) together  with Lemma 4.11 we get, by making the obvious 
changes in the proof  of Lemma 4.12, the following 

Lemana 6.1. There exists a constant a independent of  k and a constant C' k depending 
only on k such that, for [21<21 and t o O > # 1 :  

Is~o ~c~(W, {0}0-S~.o,~co(W, {0}01 
<= C,k( e - .d(X,/3. - r)d(A)2 + ed(g)2) d(x)NN H w ll o~, 

/f I ~ ( x ) l < e f o r  all x e Y a n d X = s u p p w ,  with W=W(Xl,...,Xk). [ ]  
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Take now Y=B,/2 and e = e  (-(~)/4)n, then we get from Lemma 6.1 

Is~o~co(W, {0}k)-S'~o~C,,(w, {0}: 

<C k e-"(2-d(X))n2 +e(-(P)/4)" d(x)2k[lwNo e (6.10) 

whenever 

sup I~(X)I < e ( -(fl)/4)n (6.11) 
x~Bn/2 

(and 12[<21, m o =>/~1)- From (6.5) we have that  there exists a subsequence N ' C N  
such that  (taking A,, = B,/2) 

e #/4 "' sup n' IW, (x)l ~ 0  (6.12) 
xEBn, / 2 

as n'~N', n ' ~ ,  for # : a l m o s t  all ~/. But this implies that  

IP, (x)l < e (- (/~)/4)"" (6.13) sup n" _ 
xEBnt/2 

for n' >= noO/), where no(~) is finite for #z-almost all 17- Hence there is a subsequence 
N ' C N  such that  if n'~N' and n'>no(rl) then (6.10) holds. Hence we have the 
following 

Lemma 6.2. Let w=w(x 1 ..... Xk)=W({X}k ) be in C(IR 2.k) with compact support. Let 

~o~°(w, {0}~)_= ~" g"~o~Co({x,O}~)w({x}~)d{x}~, 
~2k 

k 

where d{x}k= 1~ dxj, and define accordingly S'co~c,(W, {0}k), with S~o~C,({x, 0}k ) 
j - -1  

and S~.o~c,({x, 0}k ) given by (6.6) resp. (6.7). Then there exists a subsequence N' C N 
such that for n' e N' 

IS~o~C..(w, {0}~)-S'co~c..(w, {o}~)l-~O 
as n'--* 0% whenever 12[ < 21 and m o > p~. The subsequence N' C N does not depend on 
k orw. [] 

From (6.7) we see that  S" depends on ~/ only through the random field Co~Cn 
q)C°(x). F rom (2.4) we have that  ~pC°(x) is Bco-measurable, where Bco is the o-- 
algebra generated by the functions t/-,(t/ ,Q}, where ~ is a measure of finite 
support, supp~C C o, and with finite energy. Hence the functions 

tl~S'~o~C.,(w, {0}k ) (6.14) 

are all Bco-measurable. On the other hand by (6.6) we have 

But 

Co n co(x) (~-  ~, - ~,) = cos(~(~c°(x)- ~(x)))- co(x) (0 
+ sin(c(0pC°(x) - tp~(x))).c °- ~(x) (¢). (6.16) 
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Hence S~o~C,,({x, O}k ) may be expressed as a finite sum of terms of the form 

l 

H [c°s(~OPc°(x) + ~p~(x)))] f i  [sin(~OpC°(y3 + ~(y~)))] 
j=l i~1 

l 

The second line in (6.17) is by the local Markov property of #h equal to 

Eh Co,(X) Co,_ .~_(Yl)[Co wO Re - B,,) (t/), (6.18) 
j = l  "= 

for n' so large that x~ and Yi are all contained in B,,. However (6.18) is obviously a 
martingale in n' and thus (6.18) converges as n'-~ oe for #h-almost all t/. From (6.5) 
we also have that (6.17) converges for #h-almost all t/. Hence we have proved that 
S"couc,,(w, {0}k ) converges as n'-~ oc for #h-almost all t/, By Lemma 6.2 we then have 

, t /  *~l 
that SCouC,,(w, {0}k ) also converges to the same limit. Since Sco~C,,(w, {0}k) is Bco- 
measurable we get that the common limit is also Bco-measurable. By (6.15), (6.16) 
and (6.18) we have that this common limit is 

E~o Coj(X ) (~- tp ,  )1 co (t/), (6.19) 

where Bcoco-- ~ Bco,~(m2-B,~). Hence we have proven that the functions (6.19) are 
n 

Bco-measurable. Making use of (6.16) and of the fact that ~)C°(x) is Bco-measurable 
we get that 

k 

is Bco-measurable. From the fact that the fields co(x ) generate the whole ~-algebra 
of #h-measurable sets we get that, for any bounded continuous function f on 
S'(IR2), 

E~,(fIB L) (q) 

Bco is Bco-measurable. Since Bco C Co we may express this in the form 

E~(fjBco ) (~) = Ex(ftn~o ) (~/), (6.21) 

for #;-almost all r/, because 

E co n ---~ co a(f[Bco ) (t/) = lim Ea(flCou(IR 2 - B,)) (t/) (6.22) 

for #h-almost all t/. We have thus proven the following Theorem, which is actually 
a stronger version of the uniqueness Theorem 5.1. 

Theorem 6.1 Let ct 2 <2~ and m o >0, then there exists a number 2~ >0, depending 
only on ~ and m o, such that, for -2~  <2__<2~ and for any piecewise Cl-curve C o and 
any bounded continuous function f on S'(IR2), we have Ez(f]Co) (tl) 

= lira Eh(flCow(IR 2 -B, ) )  (tl),for I~h-almost all rl, where B , -  {x~IRZl Ix I <n} and #h 

is the unique regular random field of Theorem 5.1. [] 
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Let  now C o be a piecewise Ca-curve such tha t  I R 2 - C o  consists of  two 
componen t s  f2+ and  f2_. Let, for some fixed n o, f+  and  f _  be b o u n d e d  con t inuous  
funct ions which are  Be+ c~B~o respectively Be_ ~B,o-measurable .  

By Theo rem 6.1 we then have for #a-a lmost  all t/ 

E~.(f+ f _  JCo)(~1) = l im  E~(f+ f_IC o k.J(]R 2 - -  B,))(t/). (6.23) 

By the local M a r k o v  p rope r ty  (Theorem 3.1) we have that ,  for n>n  o and  #x" 
almost all q, 

Ex(f  + f _ lC o w(IR 2 - B ,)) (rt) = Ea(f + f _ [C o w C,) (t/) 

= Ex(f+ [Co w C,) (tl)Ex( f_  ]C O wC,)  (t/) 

= E x ( L  [C ° w (IR2 _ B,)) (t/)Ex(f_ [Co w (]R e - B,)) (t/) 

with C,=~B, .  F r o m  T h e o r e m  6.1 we then get 

E~(f+ f _  [Co) (t/) = Ez(f+ I Co) (t/)Ez(f_ ICo)(t/). 

Hence we have p roven  the fol lowing Theorem,  giving the g lobal  M a r k o v  p rope r ty  
for t r igonomet r i c  in te rac t ions :  

Theorem 6.2. Let e2 <27c and m o > 0 ,  then there exists a number 21 > 0  depending 
only on ~ and m o such that, for -)~1 <--),<=21, the measure #~ given by Theorem 5.t 
has the global Markov property. This is to say that for any piecewise C~-curve C o 
such that ]R 2 -  C o has two components g2 + and f2 and for any bounded continuous 
functions f+ and f_  which are Be+-respectively Be_-measurable one has 

Ex(f  + f-tCo) (17) = Ex(f  + ICo) (rl)Ex(f -[Co) (~) 

for p~-almost all t t. We recall that, for any Boret-measurable set A C IR a, B A denotes 
the a-algebra generated by #a-null sets and the linear functions ~ ~(Q,  ~), where 0 is 
any measure of bounded support with s u p p ~ C A  and finite energy, i.e. such that 
~Gm(x-y)dQ(x)d~(y ) < 0% for some m > 0 .  Moreover Ex(f[Co) stands for the con- 
ditional expectation Ex(flBco ). 
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