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Abstract. We prove the global Markov property for the Euclidean measure
given by weak trigonometric interactions. To obtain this result we first prove a
uniqueness theorem concerning the set of regular Gibbs measures correspond-
ing to a given interaction.

1. Introduction

The interest in extending the theory of Markov processes to the case where the
time parameter is more than one dimensional, the so called Markov fields, arises in
several domains, in particular in connection with problems of statistical me-
chanics, information theory and quantum field theory. The two main problems in
the theory of Markov processes, the existence and uniqueness of the limit
distribution and the question of the global Markov property are also main
problems in the theory of Markov fields. For instance the question of the existence
of a limit distribution corresponds in statistical mechanics and quantum field
theory to the question of the existence of a Gibbs measure, while the uniqueness
corresponds to the question whether this Gibbs measure defines a pure physical
phase, non uniqueness indicating phase transitions.

The global Markov property on the other hand implies in statistical mechanics
the existence of the transfer operator, and in quantum field theory it implies that
the field theory is canonical and the zero time fields generate a maximal abelian
subalgebra.

In this work we first prove that in the case of .the Euclidean fields on IR? with
weak trigonometric interaction one has uniqueness and also the global Markov
property.

Concerning uniqueness corresponding results were proved in certain lattice and
continuous models of statistical mechanics first by Dobrushin [13] (for further
discussions see [14] and [15]).
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Concerning the global Markov property this is proved for some lattice models
by us in cooperation with Olsen [24] utilizing the ideas of the present paper.

The global Markov property for the Euclidean quantum field &(x) in R? is the
following. Let C be any piecewise Cl-curve such that R>—C consists of two
components 27 and Q7. Let £, and f_ be any measurable functions of the field
&(x) which are measurable in QF and Q7 respectively. ¢ has the global Markov
property iff

E(f. f-1CO)=E(f|O)E(/_]C), (L.1)

where E(f|C) is the conditional expectation of f with respect to the o-algebra
generated by C (“given all observations on C, observations within Q% are
conditionally independent of those within Q7). By taking C from the family of
lines orthogonal to a fixed direction we see that (1.1} implies that ¢ generates a
Markov process in this direction.

Nelson observed [1] that (1.1) holds for the free Euclidean field as well as the
nonhomogeneous random fields obtained by using multiplicative functionals of
the free field. These are the so-called space-time cut-off quantum fields with
polynomial [2], exponential [3] or trigonometric [4] interactions. The main
interest in quantum field theory is naturally in the corresponding homogeneous
(i.e. Buclidean invariant) random fields obtained as limits (the thermodynamical
limit) of the above models. That these limits are Markov fields in the sense that
(1.1) is satisfied whenever C is a bounded curve such that R*—C has two
components, was first observed by Newman [8], who called this property the
“local Markov property” (see also e.g. [9], [25]). For other properties weaker than
the global Markov property see [6] and [10]-[12].

Let us now shortly describe the methods by which we prove our results,
starting with the one about the uniqueness of the Gibbs measures. The measures
we consider are of the type (Eo(-)= [-dpu,)

du,=Eye V) te Uady, . (1.2)

where du,, is the free Euclidean field measure on S'(R?) [mean zero and covariance
(—A+m?)~17], and U, is a local space-time cut off interaction, so that A—U, is an
additive map from the bounded Borel subsets of IR*> into I'(du,) with
e”U1eIMdu,) and U, measurable with respect to the o-algebra %, generated by
the fields with support within 4. A Gibbs measure associated with U, is any
measure which is locally absolutely continuous with respect to u, and such that
the associated conditional expectation of functions measurable within 4 with
respect to the o-algebra 4, ,, coincides with those computed with u, instead of p,
shortly

E(floA)=E, (flo4). (1.3)

Such measures are also said to satisfy the DLR-equations, see [13, 20, 16]. In
particular any weak limit point of measures of the form y , is a Gibbs measure and
one sees that any Gibbs measure has the local Markov property. A Gibbs measure
is defined to be pure if there is no other Gibbs measure absolutely continuous with
respect to it. We show, using the local Markov property and the reverse martingale
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theorem, that purity of u is equivalent with E (f|04)—E(f) p-almost surely as
ATIR?, These concepts and the results are given in Sect. 3. The actual proof of the
convergence

E (floA)—E(f)
uses the following basic idea. By (1.3) and the definition of u, we have

Eo(fe”"184)

E(f184)=E, (AoA)= —p- v
O

(1.4)

On the other hand one obtains a more explicit expression for the right hand side in
the following way.

Let C=04 and let P(x, z) be the Poisson kernel associated with the Dirichlet
problem

(—4+mPyl(x)=0, xeR*-C
and the boundary condition

pe(x)=g(x), xeC.
Then for ge C,(R?) we have that wg(x)= jPC(x, z)g(z)dz. On the other hand we
prove that, for xelR*—C, é—npg(x) is a Zo-measurable linear function and in

fact with the help of the Gaussian random field x—»ng(x), where ¢ is the free
Euclidean field, it is possible to give an explicit formula for E4(-|C) by

E(f1C)(my=Eg(f(¢+v5)) (1.5

for py-almost all , where p§ is the free (Gaussian) measure with Dirichlet boundary
conditions on C. That is u§ is the Gaussian measure of mean zero and covariance
(—Ae+m*) ™1, where A is the Laplacian with Dirichlet boundary conditions on
C.

Introducing then (1.5) into {1.4) we get

Ef104) ) =E 24(f") (1.6)
with
AN E)=E,gle” W)™ e WOdug(¢), (L7

where for any function g(£) on S'(IR?) we use the notation g"(&)=g(¢+y)"). For
the family of functions f(£)=e"%*?, peS(IR?), we have then

E(e14P10A) () =< V%) [ 160> quia) (1.8)

Thus the proof of E (f]04)~>E(f) as A1TR? amounts to the proof of

A) it 9>—0 for p—aen,

B) ul*—u, weakly as A1RR?, for p—a.en.

The proof of A) is obtained under the condition that p be a Gibbs measure
satisfying a suitable regularity condition (second moments bounded by those of
some free Euclidean field: this condition is verified in all applications), by using

L*(dy)-estimates on the field wg(x). This is done in Sect. 2, where we prove in fact
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that, for p—a.en, wf,(x) goes to zero uniformly in x exponentially fast as the
distance from x to C tends to infinity.
The proof of B} is obtained for the choice of interaction

U (&)=2]: cos(a&(x)+0): dx (1.9)

with A, a, 0 real, a* <2m, 0 <0 <2x and A sufficiently small (depending on « and m).
The method of the proof is an adaption of the cluster expansion method first
introduced by Glimm, Jaffe and Spencer [2] for the polynomial interaction and
developed by Frohlich and Seiler [4] for the trigonometric interaction (1.9). We
need, in order to prove B), to extend the method by Frohlich and Seiler to cover the
case of the interaction U"(&) for u-almost all 4, rather then of the U ,(¢) interaction
(1.9), where we recall that UJ(¢)= U,(¢+5). The technical estimates required for
this extension are all given in Sect. 4, which is the most technical section of this
paper. For the reader’s convenience we have tried to keep the notations in this
section and the proofs as close as possible to the corresponding one in [4].

In Sect. 5 we combine in the described way, the results of the Sect. 2, Sect. 3 and
Sect. 4 to yield the uniqueness result for a Gibbs measure associated with the
interactions (1.9).

In Sect.6 we prove the global Markov property for the trigonometric
interactions. The ideas of this proof are the following. Let C be a fixed piecewise
C'-curve and p a Gibbs measure for the trigonometric interaction. We assume that
R? — C consists of two components @ and Q™. Let A be a bounded subset and f,,
be measurable in ANQ* respectively. By the definition of a Gibbs measure we then
have

E(f,f-|ICudA)=E, (f.f_|CuwdA) (1.10)
and by the global Markov property of x4, we have that (1.10) is equal to

E, (f|COOME, (f_|COdM)=E (f |CUIME(f_|CudA). (1.11)
If now ,uf is the measure p conditioned by £=# on C then (1.11) is equal to

E,sf|0ME gf_|o4). (112)

Now gy is in fact a Gibbs measure corresponding to the interaction Uy (& + ).
Hence we know that

Eg(f:10A) > Eug(f)=E (f:1C) (n) (1.13)

if and only if 4 is a pure Gibbs measure for the interaction Uy(¢ +45).

We now proceed to prove that, for u-almost all #, ug is pure by extending the
estimates and techniques for establishing uniqueness developed in Sect. 5 to cover
also this situation. Hence we have the convergence (1.13) which by the equality of
(1.10) and (1.12) proves that

E(fi f-1O=E(f{|OFEf-|C) (1.14)
ie. the global Markov property.



Uniqueness and Global Markov Property 99

Let us now add some remarks on our results and relations to other works.
Concerning the uniqueness we show that there is a unique Gibbs measure within
the class of regular random fields (i.e. fields with two point functions dominated by
some free two point functions). We also show for the same trigonometric
interaction that with boundary condition & =# on 04, where # is any fixed element
in §(IR?) such that y?*(x) exists for xeIlR? — ¢4 and converges locally uniformly to
zero as ATR2, the corresponding measures converge weakly to this Gibbs
measure, which is thus independent of boundary conditions. Results on inde-
pendence of some particular boundary conditions were obtained for the poly-
nomial interactions in [26]-[28].

Concerning the global Markov property we remark that consequences of it
have been discussed in several papers, based on postulates i.e. assuming it to hold
together with some general properties, see e.g. [7, 16, 6a] ([5] contains further
references). In the present case all assumptions hold, hence all conclusions are now
proven for the trigonometric interactions. In particular we have that the corre-
sponding quantum fields are canonical ones and the time zero fields generate the
physical Hilbert space, i.e. the weakly closed algebra generated by the time zero
fields is a maximal abelian algebra (“cyclicity of the time zero fields”). From the
global Markov property it follows also, as pointed out by us in previous work ([5,
17, 197, to which we refer for more details) that the physical Hamiltonian is a
second order elliptic variational operator, i.e. an infinite dimensional analog of the
Schrédinger operator of quantum mechanics. In fact the whole “Schrodinger
representation” of this theory holds, which completely justifies the ideas of the
canonical formalism [18] for this field theory. Let us finally remark that the
essential ideas for proving the global Markov property have been applied by us, in
collaboration with Olsen, to the case of the lattice model of statistical mechanics,
yielding the first proof of the existence of a transfer matrix in this case [24].

2. Regular Random Fields on IR2

0* 0*
Let A= Fpes + Fael be the self-adjoint Laplacian on L,(R?) and let G,, (x— y) be the
1 2
kernel of the operator (—A+m?)~1, where m>0. Let ¢ be a positive bounded
Borel measure of bounded support in IR? and set

E,(0)= | G, (x—y)do(x)do(y). 2.1)

Since G, (x) is a positive continuous function for x+0 and G, (x)—0 as |x|—> oo,
G, (x—y) is Borel-measurable and therefore E, (¢) is well defined with values in the
extended positive half line. We say that ¢ has bounded energy if E, (¢)< c0. Since ¢
has bounded support, we see that if E,, (0) < co for some positive number m, than
E, (o) < oo for all m>0. We denote the set of positive bounded Borel measures on
R? with bounded support and bounded energy by M, and we denote its linear
span by M,. We see that M, and hence M, do not depend on the positive number
m.

Let S'(IR?) be the space of tempered distributions on IR? and let S(IR?) be its
dual. Let u be a Borel probability measure on S'(R?), where S'(IR?) is given the
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Borel g-algebra B generated by the open sets in S(IR?). The corresponding 8'(IR%)-
valued random variable &(x) is called a tempered random field on R*. We say that a
tempered random field £(x) is regular if there exist a number m >0 and a constant ¢
such that for any @eS(R?) we have

[Ko, &P dué) < cE,(0), 22)
where (¢, &) is the dualization between S(R?) and S'(R?). Note that if m=m,>0

2
then E (9)<E, (@)= (%) E,{¢), so that the condition (2.2) is independent of m.
4]

Let now &(x) be a fixed regular random field on IR? and let u be the
corresponding probability measure on S(IR?). It follows then from (2.2) that
E—<0,&) for ge M(R?) is in L,(p)=L,(S'(IR*), u). Hence for any ge M, (R?*) we
may take {g, &) to be Borel measurable by modifying it at some set of y-measure
zero. For any Borel set ACIR* we define M,(A) to be the subspace of M,(IR?)
consisting of measures ge M,(R?) with supp ¢CA. Moreover let B, be the o-
algebra of subsets of S'(IR?) generated by the linear functions &é—<{g,¢) with
oe M, (A). The map A— B, is then a monotone map from the o-algebra of Borel
subsets of IR? into the ordered set of g-subalgebras of B= Bg,. Therefore if E(- | A)
is the conditional expectation with respect to the o-algebra B, then A—E is a
monotone map from Borel subsets of R* into the ordered set of orthogonal
projections on L,(u). Hence if 4, is a monotone (increasing or decreasing)
sequence of Borel subsets of IR?, then E(-|A,) is a monotone hence strongly
convergent sequence of orthogonal projections in L,(u). Since 4, is monotone we
have in fact that E(f]4,) for feL,(u) is a uniformly integrable martingale and
therefore by the martingale convergence theorem E(f]A4,) converges almost surely
and also strongly in L,(u). For the martingale convergence theorem see e.g. [29].
Hence we have the following Lemma.

Lemma 2.1. Let A, be a monotone (increasing or decreasing) sequence of Borel
subsets of R%. Then for any fe L,(u) we have that E(f|A,) converges p-almost surely
and also strongly in L (1) [

Let now C be a piecewise C!-curve in IR?, and let ge C,(R?), where C,(IR?)
denotes the continuous functions with compact support on IR?. Let yS(x) be the
unigue solution of

(—4+m*)yix)=0 for xeR*-C, (2.3)
with

pS(z)=g(z) for zeC,
where m is the positive number occurring in (2.2).

It is well known, see for instance [30], that wg(x) exists and, for fixed xeIR?—C,
that g—>1p§(x) is a positive continuous linear function on Cy(IR?). The correspond-
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ing measure is absolutely continuous with respect to the natural measure dz on C
Le.

Y(x)= (f: P.(x,2)g(z)dz, (2.4)

where the Poisson kernel Pq(x, z) is a measurable function on IR* x C. For x¢C we
call wg(x) the linear function & —»wg (x) of the random field given by (2.4) i.e.

PE(x)= iPC(x, 2)éz)dz.

We then find

S,gR ., e WER)du(&) = £ ‘5: Plx,2,)8y(z1, 25) Pely, 2,)dz, dz, 2.3
where

S,(x, y)= | &) €D dp(?) (2.6)
is the second moment of y. From (2.2) we have that, for fe S(R?),

§§8:06,9) f(x) f(v) dxdy S cE,(f). (2.7)

Therefore if pE(@)= [yi(x)p(x)dx for pe S(R?) and if suppep CIR*—C, then by
{2.5) and (2.7) we have that

| lwE@)Pdu) Sc [ Kdlx, y)ox)o(y)dxdy (2.8)
§'(R2)
with
Kx,y)= [ [ Polx,2,)G (2, — 2,) Py, 2,)dz, dz, . (2.9
ccC

Since G, {x—z}, ze C is a solution of (2.3) with boundary condition g(w)
=G, (w—z), we get from (2.4) that for x and y in R*~C

K%, y)= i G, (x—2)Po(y,2)dz. (2.10)

We have from (2.9) that K (x,y)=K(y,x) and (— 4, +m*)K(x,y)=0 on R*—~C
—{y}. Moreover from (2.10) and (24) we see that if xeR?’—C then
K (x,2)=G,(x—2z) for zeC. This however implies that

K%, 9)=G,(x—y)— G5(x, ) (2.11)

where G(x, ) is the kernel of the operator (— 4.+ m?)™ !, A; being the Laplacian
with Dirichlet boundary conditions on the curve C. It is well known that K (x, y) is
a bounded continuous function of x an y in IR — C. This follows from the fact that

1
G, (x—y)and G¢(x, y) are both of the form - Elnlx — y|+ f(x, y), where f(x,y)is a
bounded continuous function. Especially we get from (2.8} that if x¢C then

E(lpE(0)1?) S cK (%, ), (2.12)
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where E stands for the expectation with respect to the random field . From the
known behavior of G,(x—y) and G(x, y) we have that there is a constant b such
that

K c(x, x)| £h|Ind(x, C)| -~ ™10 (2.13)
where d(x, C) is the distance from x to C. Therefore
E(lp§(x)*) L allnd(x, C)|-e~ 49 (2.14)

where a=b-c.
Let now A be a compact subset of R? —C, such that d(4, C) = 1. From (2.14) we
then get

E (f Iwg(x){zdx) SalAlem 40 @.15)
A
where |A] is the volume of A and m’ <m. Hence we have the following lemma.

Lemma 2.2. Let £(x) be a regular random field on R? so that

E(Ke, E)P) S cE, (o)

for any ge M. Let C be a piecewise C*-curve in ]R_2 and let wg(x) be the solution of
the Dirichlet problem (2.3). Then, for any xelR*—C, é—npg(x) is in L,(u), where p is
the probability measure on S'(R?) given by &, and there is a constant a such that

E(jpg()?) Salln(d(x, C))e =9
Moreover if A is a compact subset of R? — C such that d(A,C)=1 then

E(]~ lpg(x)* dx) SalAle ™A w«m. [0
4

Let now wp satisfy the equation (—4+m?)p=0 for |x|<R. Let y, be the
function obtained from y by averaging with respect to rotations ie.

pox)= [ wlox)ds. (2.16)

SO2)

Since — A +m? is invariant with respect to SO(2) we have that (— 4 +m?)y,=0.
By rotational invariance we have p,(x)= ¢(|x|) and (— 4 +m?)p,=0 gives us the
equation

PO+ g O)=o0) @.17)

(2.17) has a regular singularity at »=0 and there is therefore a unique solution
@o(r) of (2.17) defined for r=0 such that ¢,(0)=1. But then we have that
o) =1,(0)- @, (x]) e, by the definition of yp,,

Gy |x|j=r Wo(X)dx = o(r)- o(0). (2.18)



Uniqueness and Global Markov Property 103

Now we observe that ¢,(r)>0 for all »=0.(This is so because if we would like
@ola)=0 for a>0 then this would imply that py{x)=g@4{|x]) is a solution of
(— 4+ m*)p, =0 such that y, =0 for [x|=a. By partial integration we then would
get that

[ PpolPdx=—m> | |poldx, (2.19)

Ix[<a Ix/<a

which is a contradiction.) Using now the translational invariance of — 4 +m? we
have the following lemma

Lemma 2.3. Let o, (r)=q4(r)" ' where () is the unigue solution for r 20 of the
equation @y(r)+ %qpb(r):mz @o(r) such that ¢o(0)=1. Then if p is a solution of the
equation (— A+m?)p=0 for |y—x| <R then

_a,l(r)
p(x)= D lx_£1=’1l)(JJ)dy
forr<R. []

It follows from the fact that ¢(r) is a solution of
1
P4+~ Po(r) =mgo(r) (2.20)

which remains bounded at =0 that ¢(0)=0. From (2.20) we then get ¢;(0)=m?
hence @y (r) >0 for re(0, ) for some ¢>0. Now since ¢y{r)>0 for all =0 we see
that at any point r, where @, (r,) =0 one has ¢{(r,) >0 so that the function ¢4(r)
has no local maximum and is therefore monotone increasing ie. gy(r)=0 for all
r 2 0. Therefore o, (r) is monotone decreasing and thus from Lemma 2.3 we get,
with ¢ <r:

%, (r)? [

Q)
2mr “{

WGP < oy = v O)Pdy.

|x=y|=r |x~y|=r

Now since [ dx=mnlo+1)*—me?=2m(p+%)>2mp we get by integrating
eslx(sett

the right hand side with respect to r, between ¢ and o+1:

2
G2 S (ﬁ‘—@) [ wO)Rdy. (221)

270 | gxin-dse+1

From this we have the following lemma.

Lemma 2.4. Let o,(r) be as in Lemma 2.3 and set

Brr) =, (r)/ 2mr)? .

Then if y(x) is a solution of the equation (— A +m?)p=0 in some open set ACR?
then for any xe A such that d(x,0A)>1 we have

lp()l* £ B, (d(x,04)— 1)/51 (I dy.
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Moreover B, (r) is a monotone decreasing function of r such that

,8 () (2?-”)2 —Zmr

as r—oo. L]

Let now &(x) be a regular random field on R?, and let C, be a sequence of
piecewise C!-curves in R? which tends to infinity in the sense that

d(0,C,)— 0. (2.22)

Then d(4,C,)—~oo for any bounded ACIR? Let A, be a sequence of bounded
subsets of R? such that A, is contained in the interior of C,. From Lemma 2.2 we
have for any a<m that

e“"(/‘"’c")E< { |q;§n(x)|24x) -0 (2.23)
An

as n— oo if d{4,, C,)— 0. Thus the sequence of functions

i-—»e"‘/zd(A"’C")“ lwgn(x)lzdx>1/2 (2.24)

An

converges to zero in L,(u) and therefore there is a subsequence that converges to
zero p-almost everywhere. Let n' be this subsequence, then

s Co) [ ()2 dx—0 (2.25)

Ant

as n'— o0, p-almost everywhere. Let A,>A, such that d(4,,04,)=2 and /in is
contained in the interior of C,.

By Lemma 2.4 we then have for xe 4, that

lpe(x)> < B,(1) ; [wE()*dy . (2.26)
We may obviously take A4, so that ZEA ; —1 and from (2.25) and (2.26) we then
have that

24050 sup [y ()]0 (227)

xedn

for py-almost all &.
We have proved the following theorem.

Theorem 2.1. Let £(x) be a regular random field on R?, so that there is a constant ¢
such that for all peS(R?)

E({p, & ScE (p)=c | [ G (x— ) o(x)p(y)dxdy.

If C is a piecewise C*-curve let y5(x) be the solution of (— 4+m?)=0 in R*— C with
the boundary condition ng(Z) g(z) for zeC. Then for x¢C, g—»tpgc(x) is a linear
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functional on C,(IR?) which extends to a u-measurable linear function f—w)g(x)
which is in L,(u), where u is the probability measure on S'(R*) given by the regular
random field &(x).

Moreover if C, is any sequence of piecewise C'-curves in IR? which tends to
infinity in the sense that d(0, C,)— o0, and A, any sequence of bounded sets in R? such
that A, is contained in R* — C, and d(A,, C,)— 0 as n— o0, then for any a <m there
is a subsequence n' such that

290 C) sup ()| -0
xedn

Sor almost all £, T

Let us now consider two piecewise C'-curves C, and C such that ConC=4.
Then for ge C(R?)

W& Co(x) = S Co(x) — pCo(x) (2.28)
is a solution of the equation

(—A+m*)p=0 (2.29)
in R*— CuC, such that

pyz)=0 for zeCyypS(2)=g(z)—ypSoz) for zeC. (2.30)
Thus

V5= [ Peue,x,2)(9(2) = w5 (D) dz. (231)

Therefore for x¢ CuUC,
wgox)= (f: Peyeyfx, 2)Elz)dz -~ i Peye(x, 2)p5(2)dz, (2.32)
and by (2.2) and 2.8)
Jlwg e du@) <2c £ i Peoe(%:2)G (2= 2) Pey X, Z)dzdZ
+2c (j: i Peoco(X. 2) K (2, 2) Poy e (X, 2)dzdz . (2.33)
It follows from (2.33) that if d(x,C)=1 then

E(lpsCo(x)?>)Sae ™0, m'<m, (2.34)

for some constant a.
Hence we get the following lemma.

Lemma 2.5. Let &(x) be a regular random field on R? so that

E({e, ) =c| ] o(x)p()G,(x— y)dxdy
for @eS(R?). Let C, and C be two piecewise C'-curves in R* and let

w§o(x) = o x) — pE(x)
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Jor x¢ CUC,, where pS(x) is the solution of (— A+m*)p=0inR*>—C and w=g on
C. Then there is a constant a depending only on ¢ and m such that for xe R* — CuUC,,
with d(x, C)z= 1 we have

E(lpg “x)P)sae™™ 0, m'<m
and if A is a compact subset of R2—CuUC,, such that d(A,C)=1 then
E(;f1 g Co(x)? dx) Sae ™40 ]

Now in the same way as Theorem 2.1 follows from Lemma 2.2 we get the
following theorem from Lemma 2.5.

Theorem 2.2. Ler the notations be as in Theorem 2.1. Let C,, be any fixed C*-curve
and let C, be any sequence of piecewise C*-curves in R? which tends to infinity in the
sense that d(0,C,)->o0. Let A, be any sequence of bounded sets in R* such that
A, CR2—C,uC, and d(A,, C)—>o0 as n—oo. Then for any a<m there is a
subsequence n' such that

ea/Zd(An'»Cn’) sup lwgoucnf(x)_nwgo(x)t—)o

xedn

for py-almost all &. [

3. Euclidean Markov Fields

The free Euclidean quantum field of mass m >0 in IR? ([ 1]) is the tempered random
field & given by

E(ei<®O) = ¢~ 1/2Emlo), 3.1
Hence ¢ is Gaussian and since

E(Ko, &) =E, () (6.2

we have that £ is a regular random field. Let now C be a piecewise C!-curve and let
tp;: x) be as defined in (2.3). Then f-—»w‘g(x) is po-measurable, where u, is the
probability measure corresponding to the free Euclidean quantum field of mass m.
It is easily seen that the o-algebra B, is generated by the functions é—»ng(x) for
x¢C. We have

E(p§(x)ys ()= g i P(x,2,)G, (2, — 2,)Pcly, 2,)dz, dz, . (3.3)
Now from (2.4) we have that

(j; Px,z,)G,(z, — z,)dz, (3.4
for z, € C is the solution of (2.3), but this however is equal to G (x—z,), hence

E(we(x)ys(n) = i G(x—2)P(y, 2)dz (3.5)
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and we get

E(pf()ps(0) = ECps(y) . (3.6)
Therefore if we set £(x)= &(x)—wg(x) then

EE (x)ps(y)=0 (3.7)

for all x and y in R*— C. By definition y§(x)=¢(x) for xe C so that £%z)=0 for
ze C. Since both £(x) and y§(y) are Gaussian random fields with zero expectation
we see that £°(x) and wg (y) are stochastically independent. An easy computation
gives

ECEWM=Grxy) (3.8)

where G<(x, y) is the kernel of the operator (— 4. +m?)™ !, 4. being the Laplacian
with Dirichlet boundary conditions on C, while

E(pE)wi) =G (x —¥)— G(x, ). (39
Therefore
&(x)=E(x) + pE(x) (3.10)

is the splitting of the random field &(x) into two mutually independent random
fields. From this we get that if Ey(-|C) is the conditional expectation with respect
to the measure yu, and the o-algebra B, then for any fe L, (u,)

Eo(f1O)(m) = EG(f (£ +v5)), (3.11)

where ES is the expectation with respect to the random field £%(x). Let now C be a
piecewise C*-curve such that R? — C consists of two components @, and Q_. In
this case it is well known that if xeQ_ and yeQ_ then GS(x, y)=0 which implies
that £5x) for xeQ, is stochastically independent of £%(y) for yeQ_. But this
together with (3.11) gives that if f. are B, -measurable respectively and bounded
then

E(f, /- 1O)m=E(f+ |C) (- E(f_|C)(n). (3.12)

If (3.12) holds whenever C is a piecewise C'-curve such that IR* —~C has two
components Q, and ©_ and f, and f_ are bounded B, -respectively B, -
measurable functions we say that the corresponding random field has the global
Markov property. If (3.12) holds whenever C is a bounded piecewise C*-curve such
that IR?— C has two components Q. and ©_ we say that the corresponding
random field has the local Markov property. Thus the free Euclidean quantum field
of positive mass in IR? has the global Markov property.

Let now, for each bounded Borel set A CIR?%, a ,(¢) be a y,-measurable function.
We say that a, is an additive functional of the free Euclidean quantum field ¢ iff
a &) is B ,-measurable and

Ay, o1, =4,(8)+a,, () (3.13)

whenever A, nA,=0.
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Let uS(£]n) be the probability measure on S'(IR?) corresponding to the random
field £%x)+yS(x) for fixed neS'(R?). Then by (3.11)

E(fIOm= [ fOdus(Eln). (3.14)

S{RY

It follows easily that uS(-|n) also has the global Markov property. Let us now
assume that a (&) =0 for p-almost all & if [A] =0, where | 4] is the Lebesgue measure
of A. Let C be any curve such that R? — C has two components , and Q_ and let
A be a fixed open bounded subset of R? and set A4, = AN, . Since

g tAmpT 04y LT A- (3.15)
we have, assuming that 04 is piecewise C?, that

At Elm) =(Eqle™**10A) ()~ e *4dug"(ln) (3.16)

again has the global Markov property, i.e. if Ea" is the expectation with respect to
the measure u)*(-|) and E}A(-|C) is the correspondmg conditional expectation
with respect to the o-algebra B, then

EX(f4 f-1O)=EZ(f+ IOEL(/-1C), (3.17)

where f, and f_ are B, - and B, -measurable respectively. From (3.14) and (3.16)
we also get that if A,CA and 84, as well as 94 are piecewise C'-curves and f is
B, -measurable then

EZ5(f1040)(@) = EZ5(f). (3.18)

If fis B -measurable and A,CA we have that

EZ(ES(floAg)=E(f) (3.19)

by the property of the conditional expectation. From (3.19) and (3.18) we get that if
f is B, -measurable then if 4, CA such that 64, as well as 04 are piecewise C'
then

A&l = [§ A(Odpe e ldug (Fln) (3.20)
or

uZA (&) = f (& mydul Fin). (3.21)

Remark now that if A, is compactly contained in A then pg?(-|n) restricted to B Ao
is absolutely continuous with respect to the restriction of g, to B ,, hence also the
restriction to B, of p2*(-|n) is absolutely continuous with respect to uo. Let now
P4 (A) be the set of probability measures on B of the form

§ 2 lmelmdug(n) (3.22)

where o) is an arbitrary positive normalized function in L,{g,). From (3.21) it
follows that P4 (A) is a decreasing function of A and set

Po,= ()P (0). (3.23)



Uniqueness and Global Markov Property 109

It follows from the definition of P} that if A,CA, then the elements in P§ are
restrictions to B, of elements in Pf. Hence there is a unique set of measures G*
such that the restriction to B, of the elements in G are the elements in P; . The
elements in G* are called the Gibbsmeasures given by the additive functional a.

It is easily seen that the elements in P% (4) have the Markov property with
respect to curves CC A, such that IR? — C consists of two components @, and Q_,
where _ is the bounded component. The Markov property (3.12) may also be
written in the form

E (f1Q,)=EfIC) (3.24)

whenever f is B, -measurable, where now E, is the expectation with expect to a
measure u of the form (3.22). In fact (3.24) follows immediately from the Markov
property of p24(-|n) and (3.22). This proves the following theorem

Theorem 3.1. The Gibbsmeasures given by an additive functional a, of the free
Euclidean field of positive mass in R? have the local Markov property.

Remark 1. This theorem was first proved by Newman [8].

Remark 2. Assume now that the additive functional g (&) is Euclidean invariant
Le. a ,(&)=a (g7 1&) for any Euclidean transformation g. There are then two
interesting questions concerning the Gibbsmeasures G* given by the additive
functional a.

1. When is there exactly one element in G*?
2. When are the elements in G* globally Markov?

We say that ue G* is an extreme phase if there are no other elements in G* which
are absolutely continuous with respect to . It is easily seen that if ve G* and v is
absolutely continuous with respect to u then dv=gdu where ¢ is Bf._ ;-
measurable for any open bounded set A, where By, _ , is the ¢-algebra generated

by By, and the p-null sets. Hence g is B% -measurable with B% = (") B, _ ,. So
A

that u is an extreme phase if and only if u I B% is a trivial probability measure.
Since

E(|Bge- ) —E,(-1B%) (3.25)
monotonously as A/R? and strongly as projections in L,(u) we have that u I B% is

trivial if and only if E,(-|B._ )—E,(-) as A/ R?. We therefore have the following
theorem

Theorem 3.2. ueG* is an extreme phase if and only if
E(-|Bga- )=E(")

as AJR?, where A ranges through the filter of bounded open subsets of R*. []
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4. The Trigonometric Interaction

The trigonometric interaction [21, 4, 22, 237 is obtained by considering the additive
functional U 4(&) of the form

Uy &)= | :cos(xé(x)+0,):dx 4.1

with «? <4n. Frohlich proved [22] that e~ *Y4e L, (y,) for all 4 and moreover that
G*Y is non empty, where G*V is the set of Gibbsmeasures given by the Euclidean
invariant additive functional AU ,(&). Frohlich and Seiler [4] proved that thereis a
u,€ G*U such that yu, is weakly analytic in 4 for |4] <A,, where 4, depends only on «
and on my, the mass of the free field. This resulit is proven by using the cluster
expansion which was first introduced by Glimm et al. [2] to prove the existence of
the infinite volume limit for the weak polynomial interaction.
It follows from the result of Frohlich and Seiler that for |A| <4, we have

E (Ko, &) SCE, (o) (4.2)

for some positive m >0, hence by the remark following (2.2), also for any m. Thus
we have

E (Ko, 1) SCE,(0) (4.3)

for any pe S(IR?), where E, is the expectation with respect to u, and m,, is the mass
of the free Euclidean field corresponding to the probability distribution p, on
S'(R?). From (4.3) we have

Lemma 4.1. Let u, be the Gibbsmeasure corresponding to the additive functional
AU =4 | :cos(aé(x)+0,):dx
A
with o® <4m which is analytic in A for |A| <A, Then u, defines a regular tempered
random field on R%. [

Following Frohlich and Seiler [4] we introduce for fe [0, 2n) the random
fields

co{x) = rcos{aé(x)+0): (4.4)
and set

co(f) = J %) fx)dx

for fe Co(R?). Then cy(f)e L,(1,) where u, is the probability measure on S'(R?)
corresponding to the free field of mass mg. Set {x, B}y=1{x1, ..., Xy; 01, ..., On}
and

N
SH(x, 6}N>=EA( 1| coj(x,a). 4.5)

J=1
Set also

S50 0= Ele 1 [T cof)e™ 46



Uniqueness and Global Markov Property 111

and set
N
SH(xrs o) = Egle™4) 1 Eq ( 1 ﬁ(x,-)e‘““), 47
j=1

then an integration by parts with respect to the normal measure u, (see [4])
shows that S%(x,, ..., x,) may be expressed by S%({x, 8},). Thus the convergence of
S*({x, 8}y) to S*({x,0}) implies the weak convergence

(Je™ 040 dpug)™ e aOdpy()—dp, (&), “8)

as A7R2.

The convergence of (4.6) to (4.5) is proven by Frohlich and Seiler [4] by
showing that the cluster expansion converges. The cluster expansion is obtained in
the following way as described in [4]. We keep concepts and notation as close as
possible to those used in [4].

First one covers IR? by a square lattice L with lattice constant 1. Let B denote
the set of all bonds i.e. square sides in L. Let Cy be the operator (—A4,+m?*) ™%,
where Ay is the Laplacian with Dirichlet boundary conditions on B. The Gaussian
measure on S'(IR?) with mean zero and covariance C, is denoted by p, and let
(¢, be the expectation with respect to ug. The measure py decouples regions
that are separated by bonds of B completely in the sense that if ¢ and v in S(IR?)
are such that suppeg is separated from suppy by a closed line of bonds in B then
{1p, &y and (@, &) are independent with respect to the probability measure pg. Let
now

N

Sh g({x, 03y =Ce My < H co(x)e” w“>c . 4.9)

j=1

It is obvious that (4.9) is independent of A as soon as /A contains the smallest union
of lattice squares of L containing {x}. Therefore the limit of (4.9) as A/'IR* exists
trivially.

The cluster expansion is obtained by removing the Dirichlet condition on the
bonds of B step by step and estimating after a partial resummation the terms in the
final series. Now removing the Dirichlet condition on a bond be B introduces a
convergence factor proportional to mgy *(n>0) or, in a term localized near x, a
convergence factor proportional to e ™4®-® These factors yield the convergence
of the expansion. For details on the procedure see [2] and [4]. Following [4] we
introduce the {ollowing notations.

A collection of bonds b in B is denoted by I' and let I'"=B—1I (the
completement of I' in B). Let w{x}) be a function of compact support in L,(R*")
with p(p—1)"'a? <4n. Set X, =suppw. Let X range over finite unions of closed
lattice squares and let I range over the set of finite collections of bonds in B such
that

(i) each connected component of X — I'“ meets X,

(i) I'CIntX. (4.10)
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Set
C{s}p)= Y TIs [1(1—s)Cre, (4.11)

I'CB bel” belc

where C. is the operator (— 4 .+mj)~* and 4,. is the Laplacian with Dirichlet
boundary conditions on I'“. [Clearly C(1,1,...)=(—4+m3) 1.7 Let

(I ={s(I),}pep With

S(rb)= {f)b’;;?r (Oésbgl) (4.12)

Expectations with respect to the Gaussianmeasure on S'(R?) with mean 0 and
covariance C(-) are denoted {- ), and we set

Zh(A)=(e My, . 4.13)

The cluster expansion is summarized in the equation

1 1 a
S ()= ¥ [ ndsba—sb@

N
cgj(xj)dxj
Xx.ro 0 berl’ =1

J

W {x}N)e—wAnxff>> ZA(A—X) ZHA) 1. (4.14)
C(s{I')

The cluster expansion (4.14) is derived in [2, Sect. 3, Eq. (3.15)]. Now the
important property of (4.14) utilized by Frohlich and Seiler is that it is model
independent. The basic result of [2] is the following theorem.

Theorem 4.1 [2, Sect. 4]. The convergence of the cluster expansion (4.14) implies the

convergence (4.8) and also the exponential cluster property.

For the proof of this theorem for P(p),-models see [2]. [

The convergence of the cluster expansion follows from three essential estimates
which are given here as the three following lemmas and which correspond to
Proposition 5.1, 5.2 and 5.3 of [2].

Lemma 4.2 [2] (Proposition 5.1). The number of terms in the cluster expansion
(4.14) with a fixed value of X is bounded by C,eX*|(K, =19).

This lemma is entirely model independent and is therefore proved in [2]. T

Lemma 4.3 [2] (Proposition 5.2). There is a K, independent of 1, A as long as

[A| £ A, () such that |Zi(A—X) Z*(A)™ | S 2L

Proof. This follows from the proof of Proposition 5.2 [2] and the basic estimate
1 3
Z<IZMAN < 4.15
AU 415)

which is given in (24) of [2]. O
The third basic estimate is
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Lemma 4.4 [2] (Proposition 5.3), [4] (Proposition 2.2). There is a constant K, and
a norm |[w| on test functions such that for any K >0, for any A and for any A with
|A] <A, () we have for all my> py that

N
l JaT [ TT o x)e™ 2@ dpg (D) ds(D), w>,
i=1
ée_K|F|+K3|A|IWI .
Moreover if w is of compact support X then we may take [w|=Cy x-|W| -

This lemma is [2] (Proposition 2.2) and for the proof we refer the reader to the
original paper [2]. [
Let us now write the cluster expansion {4.14) in the form

Saw, {0y = Y [ T*({x} {O}w A, X, D) w({x} ) d{x}y, (4.16)
X, r
with
N
(=00, xp), d{xy} = ] dx;.
j=1
We have then the following lemma which corresponds to Theorem 4.1 of [2].

Lemma 4.5. Let K>0 be given. Then there is a constant y, depending on K such
that for |M <A, (o) and for my> y, there is an S-norm |-| such that

Z |.[ T;L({X}Ns {B}N, A,X, F) W({X}N)d{x}N| é |W| e“K(D—N) .

X,
|X|2D

Moreover if w is of compact support then we may take |w|=Cy y|lw|, where
X =supp w.

Proof. The proof is the proof of [2] (Theorem 4.1) and goes as follows. We replace
A by AnX in Lemma 4.4. For X in (4.16) we have X = U)fi with r<N and X,

connected. Moreover

IntX,, 4.17)

o~

rc

13

1
and X,— I'"=X,. Thus

X|—1Z2/lnIntX,| and [X|—N<Z2|7. (4.18)
Hence we replace the upper bound in Lemma 4.4 by

e~ KUXI=My) 4.19)

with a new choice of K and |w|. Lemma (4.5) follows directly by combining (4.19)
with Lemma 4.2, Lemma 4.3. [

We shall need the following two lemmas which are a special case of a result due
to Guerra, Rosen and Simon [16] called “conditioning”.
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Lemma 4.6. Let X1 and y, be bounded positive functions on R?* and let C(y,)
=(—d+mi+y) L, thenif y, 2 —mj+¢, £>0 we have, for arbitrary [ and g
in CR*)NL,(R?), that
{exp{f(f(x):cosa&(x): +g(x):sinaé(x):)dx} Deten
=<{exp {f (f(x):cosad(x): +g(x):sinal(x):)dx} de,
Proof. Let a=C{y,) and b=C(y,)—C(x,) and let £ (x) and {,(x) be Gaussian
random fields with mean zero and covariance a and b respectively. Then &(x)
=¢,(x)+ &,(x) has covariance C(y,). Thus by Jensen’s inequality we have
Cexp{f (f(x):cosal(x):+glx):sinal(x) )X e,
= Cexp{[ ((x):cosaE,(0) + &,(x)): +9(x)
ssina(E,(x)+ &, (x)) )dxD, ,
2 Cexp {[ (/< :0050(E,06) + &) 9, +9)
Cesinal€ () + E(xD) D)dx ),
={exp {{ (f(x):cosa,(x): +g(x):sinal, (x) )dx}),

(where { ), , means integration with respect to ¢, and &, and { },, ), means
integration with respect to &, resp. £, alone), since

wcosafé,+ &) =cosal,: rcosaf,: — sinal,: sinal,:
and

sinofé,+ &)= sinad, 0 icosad,: + sinad,: rcosal,:
and

(ieosaly, D, =1, while (:sina,:3,=0
This proves the lemma. [

Lemma 4.7. Let y, and y, be two piecewise smooth curves in R* and let C(y,)
—( A, +md)~ ', where A, is the Laplacian with Dirichlet boundary conditions on
Then if 4 ’_)yz we have that for arbitrary f and g in C(R*)NL,(R?),

Cexp{[(f(x):cosa&(x): +g(x) :sin o &(x):)dx} ey,
<<exp{ f (f(x):cosa(x): +g(x):sina(x):)dx} e, ,, -

Proof. We may approximate in the strong operator sense (—4, + mg)~! by
(—A+md+y, )", where y; ,, i=1,2 are smooth positive functions going to 0 as
n— 0. Since y; D7, it is easy to see that this approximation may be done in such a
way that y, , =y, ,. From the strong convergence of the covariances follows weak
convergence of the corresponding Gaussian measures. Hence the inequality of this
lemma follows from that of Lemma 4.6. [

For our purpose we need a stronger version of Theorem 4.1 and to get this we
shall need a stronger version of Lemma 4.3, 4.4, and 4.5. Let us first introduce the
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notation
co(N)=J ¢, () f(x)dx (4.20)
for feL,(R?), where ¢ (x)=—:cosa&(x)+¢:. Then

e dug = i i e Gmax =9 £(x) f(y)dxdy

1
which is finite since A is bounded and o«*<4n, G, Jx—=y)~ o {In{x — y)|, so that

¢**@mo™*=3 is a bounded integral kernel in L,(IR?). For this reason we have that
f—ch(f) is a bounded map from L,(IR?) into L,(dy,). Let now f;e C(A) such that

[ fi(x)] < 2e7/2K2ale (4.21)

where K, ,(x, y) is given by (2.10). We have that
1
|K (%, )| = 7 [Ind(x, 8.4)|e ™ modx.04) (4.22)

so that | f,(x)|> £4|d(x, 8A)" 2™ and hence for o? < 27 we have that (4.21) implies
that fie L,(R?).

Let now f,e C(A), A open and bounded, satisfy (4.21), ,€[0, 2n), i=1, ..., k for
some fixed k. Then by Lemma 4.7 we have

< e~ (UA+ é czi(fi))> can= <e~l(UA + ,é Cﬁi(ﬁ))>0

where { ), is the expectation with respect to .
k

Thus, with ﬁA= U+ s (f)
i=1

N R G T st (4-23)

Let now I'(X) be all the lattice bounds in X, then again by Lemma 4.7 we have
<€*wx>c(ax) = <€_AUX>C(1*(X)) = l—[X <€_lﬁA'>aAi
A4;C

where 4; are the unit squares of the lattice. Since k is fixed and f; satisfies (4.21) we
see that the L,-norm of y,(x) f(x) is bounded with a bound that is independent of
x. Hence we get in the same way as the basic estimate (4.15) is proved in [4]
(formula (2.4)) that for o < 2r and |4 £ 4, () [possibly with a smaller bound 4, ()]
we have

EELCRAlDWES 3
Thus we have
Lemma 4.8. Let k be a fixed integer and
0,e[0,2n), feC(A) with |f(x)|S2e2Keatex) =1 k.
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Then for o? <2m and |A] £ A, (o) there is a constant K, independent of A, A and X
such that

<e'2ﬁ4>& 1<e—lﬁA-x>C(6X)§eK4|X]

where
N k
Uy=U,+ Z cjp’i(fi). |
i=1

This was the strengthened version of Lemma 4.3 we needed. The following is
the strengthened version of Lemma 4.4

Lemma 4.9. Let the assumptions be as in Lemma 4.8, then there is a constant K 5 and
a norm |w| on test functions continuous on S(R*™) such that for any K >0, for any A
and any A with [ < A,(o) we have that

o § ce,(xi)e“m"(@duhr (&)ds(I), w )| Se  KITI+Ksldljy)
iy (s(I'))

Moreover if wis of compact support in X then we may take |w|=Cy x[|w] .

Proof. The only change in the proof of Proposition 2.2 of [4] we have to make in
order to prove this lemma is in the Lemma 2.3 of [4]. Instead of that lemma we
need to establish the following estimate directly

<e—ZﬁA>C(S(F))§eKO,A| (4.24)

where K, is a constant which only depends on [4] and o.
However by Lemma 4.7 we have

Ke™ X[JA>C(5(1“))I < <e_’m;‘>o .

If follows from Theorem 3.4 of [22] and its proof that if «*<2r and f,e L,(R?)
then

E
a0 B A+ 31443
<€ A>() é A € ( 211 2>

where A and B are constants independent of 4 and A. By the uniform bound (4.21)
we get that if |04] < |A] where |0 4] is the length of 94 and |4 is the area of A then
there is a constant C such that

<e—)L(7A>0 éAeCAZIAl .

This proves {(4.24) and now the proof of Lemma 4.9 follows from the proof of
Proposition 2.2 of [4]. [T

Let now S*(w, {#}y) and TH{x}y, {0}y, A4, X,T) be defined as S% and T*
k
respectively, but with U,=U,+ ) ci(f;) instead of U,
i=1
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Lemma 4.10. Let the assumptions be as in Lemma 4.8 and let us in addition assume
that |0A| £|A). Then for any K >0 given, there is a constant p, depending on K such
that for |Al<A{a) and for my> py there is an S-norm |-| such that

XZ If TH{x}y, {0}, A, X, Dw({x})d{x} | < [wle” ¥@-M
HED

where T* is defined as T* in (4.16) but with ﬁA instead of U,. Moreover if w has a
fixed compact support inside X then we may take |w|=Cy x|wll .-

Proof. The inequality of the lemma follows by combining the combinatorial
estimate (4.18) with Lemma 4.2, Lemma 4.8, and Lemma 49. [

Now if suppw =X, and X, is a product of unit squares in R*> we set Cy y =Cy
since Cy 4, obviously is independent of X, as long as X, is a product of unit
squares. Now if d(X) is the diameter of X CIR?¥ then X is contained in the union of
d(X)*" unit squares. From this it follows that the constant C, , of Lemma 4.10
satisfies the following inequality

CN,X = CN . d(X}ZN . (425}
From Lemma 4.10 and (4.25) we now have the following theorem

Theorem 4.2. Let o> <2, k a fixed integer and

0,€[0,27), fi{x)eC(IntA) and |f(x)|<2e*"2Kealtxx)

and set
- k
U=U+ 3 cﬁi(fi) .
i=1

Then for || < 4,(a) and my = py and ||w|| . < Cd(suppw)~ >N we have that the cluster
expansion

Si(w, {0}) = z (e Hays 1 (o= Mamxy,

11 5 N )
f f H dsba—<(f l_[ cej(xj)dij{x}N) e—wmx>
o ober O AL S c(s(r)

converges absolutely and uniformly in A, A, my, @, f; and w for |A| S 4,(a), my =y,
|f(0)| S2e%2Keat 19 A| <|A| and (d(suppw))*¥||w||,, <C, where d(suppw) is the
diameter of the support of w. [

Let now
N

S 9},;)=<e~*f’f*>g(§,n< 1 cgj(xj)e-lﬁﬂ> , (426)
C(

j=1 o4)
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where C(0A)=(—4,,+m3)" ', 4,, is the Laplacian with Dirichlet boundary
conditions on é4 and

k
U=U+ ) cgi(fi).
i=1

Let { Dcwry.oa be constructed from < D, in the same way as < D¢y Was
constructed from < ;. The following theorem then follows from the proof of
Theorem 4.2.

Theorem 4.3. Let the assumptions be as in Theorem 4.2. Then for |A|=1,(x) and
my = g and d(suppw)*N||w| < C we have that the cluster expansion

Sfx,aA(W’ {0}y = xzr <e-w4>5<alz1)<e_ *a- *Dewex oo

bel’ CUs(I),04)

converges absolutely and uniformly in A, A, m, @, f, and w for |A| <A (), my 2 pg,
Ifi(x)|S2e%12Keatd gnd 1A <|A), (d(suppw))*V|lw|l , £C where d(suppw) is the
diameter of the support of w. [

Now exactly the same way as the convergence of the cluster expansion (4.14)
implies the exponential cluster property for Si(w, {8}) (see [4], p. 901 and also
27, Sect. 4) we get that Theorem 4.3 implies the following lemma

Lemma 4.11. Let the assumptions be as in Theorem 4.2. Let w({x}y) and w'({x}y,)
have compact support X and X' respectively and let d(X) and d(X') be the
corresponding diameters and d(X,X’) the distance between X and X'. Then there are
positive constanis a, A,, p, and Cy y. such that

152 s s (W@W, {0}y x {0%y) — 8% ;W {0})- 5% 5, (W, {6} )]
S Cy oy @™ @EX XN AXY W], 1w,

for |A| S Ay, my 2y, |0A|Z|A] and [fy(x)| £ 2% Kea®®) i1, k. O
1 0 1 i

k
Let now U3 =U +a ) ci(f), and set
i=1

N

Sh5al{x, 03 y)={e” A o < I1 cg, (X)) e_w’?> . 4.27)
cad)

i=1

Then

d k
T Saoallx 0=~ 1 _; (S554 (%, O3 ® (s, 0})

(4.28)
- Sﬁ’,%A({xa 6}y Sﬁ',ofm (ati )
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where y, is the characteristic function for the set /. By integrating (4.28) over o
from zero to one and using Lemma 4.11 we get:

Lemma 4.12. With the notations of Lemma 4.11 there is a constant Cy depending
only on N and k such that
1% 6a(%, {035 1) = S 4w, {6} 5)]
SCy(e™ A0 d(A) +ed(Y)) dX)*N |w]
if 1f00Se for xeY and X'-suppw with w=w{x,..,xy); for |AS4,,
> 10AI<|A] and |fi(x)|<2e2 "7 =1, k. O
Let now B ={erR2'1x1§n} and C,=0B,. Let f;,, i=1,...k be in C(IntB,)

with |f; ,(x)| < 2e? 7 K04 ch that for m=n—1 we have

sup |, ()| <be "3

x€Bm

(4.29)

where b and o are positive constants independent of n and m. From Lemma 4.12

and (4.29) we then get with m= E, Y=B,,, and g=be *

2
ISB ,8By, (w, {0} y)~ Sl,.,aB,,(“’» Ham
<Cy (e—a(%'d(x)) .n? +be_%" (g)z) d(X)zN Il . (4.30)

Now the convergence of the cluster expansion for 8% ,,(w, {6} ) uniformly in A is
of course a consequence of Theorem 4.3. From this it follows in the same way as in
Theorem 4.1 that

5% {0}~ 5w, {0} y) (4.31)
as A7R?. From (4.30) we then get the main theorem of this section.
Theorem 4.4. Let o’ <2m, k a fixed integer and ¢,e[0,2n). Let f;,eC(B,),
B,={xeR?;|x|<n} such that |j;.7n(x)l§Ze%Km"(x’x) and for m<n—1

= ll(n —m)

sup |f; ,(x)| <be ?
xeBm,

where b and o are positive constants independent of n and m. Let

k
Up,=Us,+ 2, ¢o(fi)>
i=1

and

~ N ~
géfasn(m {0}y =<e" #U5, >c_{é3n) §< H Cej(xj) e i, > w({x}y)d{x}y-
j=1

C(8Br)

Then
im0, {03 ) S (w, {6})
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as n—oo, whenever w=w(x,,...,xy) is bounded wmeasurable and of bounded
support. [}

5. Uniqueness for the Trigonometric Interaction

Let E, respectively E, be the expectations with respect to the measure y, given by
the free Euclidean field of mass m and respectively a measure pu,e G*Y such that y,
is a regular random field. Let now B, = {xeIR?;|x|<n} and C,=0B,. From (3.11)
we have

Ey(f10) ) =E5(f (& +vy) (5.1)

where ES is the expectation with respect to the Gaussian measure of mean zero
and covariance (—A4.+md)~ !, A, being the Laplacian with Dirichlet boundary
conditions on C. Then

E(f10m= [ f@duEln) (52)
S'(R?)
where u§(¢ln) is the Gaussian measure with mean yS(x) and covariance
(—A.+m2)~*. Since u,eG*, where A—U , is the additive functional given by
{4.1), we have by (3.16) that

E;(f1C) )= S,(f \ S&AsE (5.3)
with
duS(Elm) =(Egle™*"=|C) ()~ e~ *U=dug(Eln) (54)

where B is a bounded domain and 0B=C.
Hence by (5.1)

E,(f1C) ()= (Eqle™*=1C) ()" Eo(fe~ "1 C) ()

= Ef(e Vs oM T LEG(f(E+pyp)e” *UBCETwi), (5.5)
Let now f(£)=¢"?% for some @eS(R?), and set U (¢ +yt)= U}, then we get
E, (<29 |C) ()= ei<“”"ﬂc>Eg(e"wg)‘ LES(eo® e"wg) . (5.6)

We shall prove that E, (X% |C. ) ()~ E,(/*®’) u,-almost surely as n—oo. From
Theorem 2.1 we have that if A,CB, such that d(4,,C,)—co then for any o'<m,
there is a subsequence »’ such that

) sup [y (x)|-0, (5.7)

xedn

g% 124(An,Cr

for u;-almost every &, because g, is a regular Markov field. (5.7) implies that

eie v 51 (5.8)

for p,-almost all #.
From the fact that &(x) and q)g(x) are independent Gaussian fields with
covariance G(x,y) and K(x,y) respectively [see (2.11) and (3.10)] we have by
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using the trigonometric formula for cosinus

UR&) = | :cos(aé(x)+ 0 +ayt(x)) :dx
B

= [ :cos(aé(x)+6) :: cosapl(x) : dx

— { ssin(aé(x) +6) ::sinoyS(x) 1dx. (5.9)
Hence in the notation of (4.4)
UK =UpO)+colf)+Co— m2)(9y) (5.10)
with
fy=1—:cosompf(x):=1— /> Kel=X) o5 apl(x) (5.11)
and
g,(x)= — sinayf(x) : = — e/ KeDsin o).

From (5.7) and Theorem 4.4 we get that
N
ESr(e™ k)1 G (3" [T (co,x)dx ) wix,, ...,xN)e—“’Bﬂ')
j=1 /

N
—E, <j U (cq,(x)dx pwix,, ...,xN)), (5.12)

for some subsequence n’ of natural numbers.
Since p, is locally equivalent to u, and c,(x) generates the c-algebra of
io-measurable sets the convergence (5.12) implies that

ESw(e= MUy~ 1 ECu(oi 08 o= 3Usl) L | (0.0 (5.13)

for peS(IR*) with compact support, for p,-almost all neS'(R?).

Since the functions of compact support are dense in S(IR?) and u, and p, are
measures on S'(IR?) we sce that the convergence (5.13) holds for any e S(R?). Now
(5.13) together with (5.8) give that for any @eS(IR?)

E (€ ®[C,) (N —E (") (5.14)

for y,-almost all neS'(R?), where n' is some subsequence of the sequence n of
natural numbers. From (3.25) we have that

E,(-|R*—~A)~E(-|B,) (5.15)

monotonously as A7R? in the ordered family of bounded open sets and the
convergence is monotone and strong in the sense of operators on L,(du,). If ¢ has
bounded support we have that

E (<99 |C,)=E,(¢*?|R*—B,) (5.16)
as soon as supp @ CB,. Therefore (5.15) together with (5.14) implies that
Eﬁ(eiw‘@ IR? —A)—»Ea(e"“‘”@) (5.17)

as A converges to IR? in the ordered family of bounded open subsets of R2.
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By Theorem 3.2 we have proved that g, is an extreme phase. Now the only
condition on g, was that u,eG*, ie. that u, is a Gibbs measure for the
trigonometric interaction (4.1) and that g, is a regular random field. If there are
two regular random fields g} and y; in G*Y then pj =%p; +3 42 is also a regular
random field in G*' and since pu; and p2 both are extreme phases y; is not an
extreme phase.

Hence we have the following theorem.

Theorem 5.1. Let o® <2r and my, >0, then there is a 1, >0 depending only on o and
my such that for — 2, LA, there is one and only one measure u, corresponding to
a regular random field £(x) with u,e G*Y, where G*V is the set of all Gibbs measures
corresponding to the additive functional

AU (&)= [ :cos(@&(x)+0) : dx.

We recall that &(x) is said to be a regular random field if the corresponding
probability measure is supported by S'(R?) and there is a constant ¢ such that

E(Kp, )< [ Glx—y)o(x)p(y)dx dy

Jor any e S(R), for some fixed positive m.
For —A, <A< A, we have especially that p,e G* is an extreme phase. [

From the proof of Theorem 5.1 we also have

Theorem 5.2. Let o> <2n and m,>0 then there is a A, >0 depending only on o and
mq such that for — L, <A<A2, we have that if neS'(IR*) such that wi*(x)—~0 locally
uniformly as A7IR? then

o Hal®
 Eole”*Y4(04) (n)
converge weakly to the unique limit p given in Theorem 5.1, where U, is the

trigonometric interaction of Theorem 5.1 and p3*(E|n) is the free Euclidean field with
boundary condition &=y on 04 defined in Sect. 2 by

§ f©dug"Elm=§ fE+wih)dug(©)

where pi* is the free field with Dirichlet boundary conditions on JA.

dpy(&) dui(&ln)

6. The Global Markov Property for the Trigonometric Interactions

Let now C, be an unbounded connected piecewise C'-curve such that IR>—C,
consists of two components ©, and Q_. Let B, ={xeR?; |x|<n}, neN and
C,=0B,— C,, where 0B, = {|x|=n} is the boundary of B,. We also assume that, for
any ne N, dB,nC, consists of at most a finite number of points. From (5.3) we then
have that if f is By -measurable then

E(fICouC)m= | ) J@dp5e Clm), (6.1)

S(R?
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with
dufo (€l =[Eqle™*"B,|CouC,) (]~ e s (Eln). (6.2)
Thus by (5.5), with U, = Uy,
E(f1CouC,) ()= [E§evCr(e™ *onte )] -1
CEGoCn(f(E 40w e AUnET i) (6.3)
Set now (x)=pev (x)— po(x), f(£)=€®, then (6.3) takes the form
El(ex“”é) [CouC,) )= PACRT PR N
I Ego VCn(p ™ ARG pio+ vyt
- ECovCn(gi0.8 o= AUnE+ v + oty 6.4)
From Theorem 2.1 we have that if A4, CB, such that d(A,,C,)— o0 as n—co, then
we have for any f<m, that there is a subsequence N'CN such that if n'e N then

P12 44, C) Slip Iy (x)| -0 (6.5)
X€Ans

as n'— oo, for p,-almost all 4 in S'(IR*). Thus
PACR DR

for p;-almost all #, as n'— co.
Let now for neS'(R?)

‘§r(r:0 uCn({x7 0},)= [Egoucn(e—wn(ﬁ wnc°+wﬂ))] -1

k
-ES““C"(( 1 c@j(xj))e"”"“f“‘”"c"*‘”{”) (6.6)
=1
and ’
S"Coucn({x’ g}k) = [Egoucn(e~ AUn(E+ wn%))] -1
k
-Egover (( [T cox j)> e MR *“’"C‘”) . (6.7)
j=1
We remark now that one has
U E+ 50+ )= U (E+9E0) +colfy) +Co_ )9y - (6.8)
with
(x)=1—e??KeXcosapl(x) and g, (x)= —e* /2 KN gin gp(x). (6.9)
" n 1 n

Using (6.8) and (6.9) together with Lemma 4.11 we get, by making the obvious
changes in the proof of Lemma 4.12, the following

Lemma 6.1. There exists a constant a independent of k and a constant C;, depending
only on k such that, for |\|£4, and my=u,:

IS8 e (w, {03 — SE e (w, {0}
S Cile™ X BN gAY +ed(Y)2)AX)N W],

if lpi(x)| <e for all xe Y and X =suppw, with w=w(x,, ....,x,). [
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Take now Y=B,,, and e=e("?'*" then we get from Lemma 6.1

1%, e, (W, {03 — S2 el {031

gC;((e—a(?_d(X)) 24 o= (6}i4>n< ) )d(X)”‘HW (6.10)
whenever

Sup [1p(x)] Sel~ 14 (611)

xeBns2

{and |A|£4,, my=p,). From (6.5) we have that there exists a subsequence N'CN
such that (taking 4,=B,,)

et sup [y (x)| -0 (6.12)

xeBy f2

as n'e N, W'— oo, for p,-almost all #. But this implies that

sup [y (x) s e” P (6.13)

xeBpr2

for n' Z ny(n), where ny{n) is finite for u,-almost all 4. Hence there is a subsequence
N'CN such that if ”’e N’ and #' Zn,(n) then (6.10) holds. Hence we have the
following

Lemma 6.2. Let w=w(x, ..., x,)=w({x},) be in C(R*) with compact support. Let
Stoue, 0 03 = | Stoe, (f 03wl dlxly,

where d{x}, = H dx;, and define accordingly Si ¢ (w,{6},), with §g0ucn({x 6}

and St ¢ ({x, B}k) given by (6.6) resp. (6.7). Then there exists a subsequence N'CN
such that for ne N’

iSCguCn (W {Q}k) SCguC,, (W7 {Q}Ic)l—)o
as W — o, whenever |A| < A, and my = u,. The subsequence N'C N does not depend on
korw, O

From (6.7) we see that Sg ¢, depends on n only through the random field

(x) From (2.4) we have that wc"(x) is B -measurable, where B is the o-
algebra generated by the functlons n—<{n,0>, where ¢ is a measure of finite
support, suppo CC,, and with finite energy. Hence the functions

1=>St0c.(Ws 10} (6.14)
are all B -measurable. On the other hand by (6.6) we have

81 (,01) = F, ([ I o ()

But

(E—yee ~w,,)ICoUcﬂf> ). (6.15)

co(x) (€ =y — ) = cos(oypy°(x) — Wi(x)) - c4(x) (€)
+sin(ay;o(x) = y(x))-c, _;g,(X) (- (6.16)
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Hence Sgwcn,({x, #},) may be expressed as a finite sum of terms of the form
! m
Hl Leos(awso(x)+wi(xN] T [sin(a(p) + ;)]
i= i=1

i 1
E, ( n ce_,»(xj) I;Il Cei__ ,g(yi)ICo Ucn') (). (6.17)

j=1

The second line in {6.17) is by the local Markov property of u, equal to

! m
B T eofs) [T e, _s0iCou®=5,)] 0. (6.15)

=
for n’ so large that x; and y, are all contained in B,.. However (6.18) is obviously a
martingale in 7’ and thus (6.18) converges as n'-» oo for y,-almost all . From (6.5)
we also have that (6.17) converges for p,-almost all #. Hence we have proved that
St.uc, W, {0},) converges as n'— oo for y;-almost all . By Lemma 6.2 we then have
that S%,c,.(w, {6},) also converges to the same limit. Since S¢, ¢, (w, {0};) is B¢,
measurable we get that the common limit is also B -measurable. By (6.15), (6.16)
and (6.18) we have that this common limit is

E, ({ [ co, (x| wﬁ"){Bé"O) . (6.19)

ji=1
where BE = () B¢, e -3, Hence we have proven that the functions (6.19) are
n

B -measurable. Making use of (6.16) and of the fact that I/JSO(x) is B, -measurable
we get that

fioe

j=1

(é)lBé°0> () (6.20)

is B¢ -measurable. From the fact that the fields c,(x) generate the whole o-algebra
of u,-measurable sets we get that, for any bounded continuous function f on
S(R?),

E,(f1B&) ()
is B¢ -measurable. Since B, C Bg, we may express this in the form

E;(f1Bc ) m=EfIB&) (), (6.21)
for y,-almost all 5, because

E\(f1BE) ()= lim E,(f|Cou(R*—B,) (), (6.22)

for p,-almost all #. We have thus proven the following Theorem, which is actually
a stronger version of the uniqueness Theorem 5.1.

Theorem 6.1 Let o? <2n and m, >0, then there exists a number 1, >0, depending
only on o and my, such that, for — A, <A< A, and for any piecewise C'-curve C, and
any bounded continuous function f on S'(IR?), we have E,(f|C,) ()

= lim E,(f|CoU(R? — B,)) (n), for w;-almost all , where B, = {xeR*||x|<n} and p,

is the unique regular random field of Theorem 5.1. [



126 S. Albeverio and R. Heegh-Krohn

Let now C, be a piecewise C'-curve such that R*—C, consists of two
components £, and Q_. Let, for some fixed n,, f, and f_ be bounded continuous
functions which are B, B, respectively B, nB, -measurable.

By Theorem 6.1 we then have for u,-almost all ¢

E(f+ f-1Co) ()= lim E (£, f_|Cou(R?—B,)) (). (6.23)

By the local Markov property (Theorem 3.1) we have that, for n=n;, and p -
almost all #,

Eff+ f-ICouIR* =B,)) ()= E,(f, f-ICouC,) ()
=E,(f,1CouC)YME,(f_ICouC,) ()
=E,(f,1Cou(R? —B,)) (NE,(f_|CoU(IR* — B,)) (1)

with C,=0B,. From Theorem 6.1 we then get

E (e f-1C) M =E(fL1Co) ME(f_1Co) ()

Hence we have proven the following Theorem, giving the global Markov property
for trigonometric interactions:

Theorem 6.2. Let »* <2 and my>0, then there exists a number i, >0 depending
only on o and mg, such that, for — 1, S A< A, the measure y, given by Theorem 5.1
has the global Markov property. This is to say that for any piecewise C*-curve C,
such that R? — C, has two components Q. and Q_ and for any bounded continuous
functions f, and f_ which are By, -respectively B, -measurable one has

E\(f /- [Co) ()= E(f. ICo) ME(f-1C) ()

for u,-almost all . We recall that, for any Borel-measurable set ACIR?, B, denotes
the g-algebra generated by u,-null sets and the linear functions £, &, where g is
any measure of bounded support with suppeCA and finite energy, i.e. such that
G (x—y)do(x)de(y) < 0, for some m>0. Moreover E,(f|C,) stands for the con-
ditional expectation E,(f|B¢ ).
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