
B R I A N F .  C H E L L A S  A N D  K R I S T E R  S E G E R B E R G  

M O D A L  L O G I C S  W I T H  T H E  M A C I N T O S H  R U L E *  

1. I N T R O D U C T I O N  

In various contexts, philosophers have occasionally propounded 

principles of  the form A -+ S A  or 0A --+ A - theses to the effect that 
if a proposit ion is true then it is necessarily true, or that it is possibly 

so only if so. For  example, in [6] Kripke asserts the logical truth of  

a = b --* D(a = b) and a r b --+ N(a r b) (equivalent, as we shall see, 
to 0(a  = b) ~ a = b) for certain kinds of  terms a and b. Recently, 

J. J. Macintosh has discussed the role of  such principles in proofs of  the 
existence of  God, where it is sometimes maintained that God exists if it is 

possible that He exists, or that God  exists necessarily if He exists at all 
(see [9] and references therein). In conversations with us, Macintosh 

raised the question under what conditions these are equivalent theses. 
Of  course a full answer to this question might depend on special 

properties that attach to propositions about  identity and the existence of 

God. But for the equivalence generally of  principles of  the form 0A -+ A 

and A ~ []A, the presence of the following two rules of  inference is 
obviously sufficient, and minimal: 

0A --+ A A --+ DA 
RMac.  RMac0 .  

A --+ [2A 0A --+ A '  

According to these rules, either both 0A --+ A and A ~ E]A are 
theorems, or else neither is, for any formula A. 

In logics that afford the usual interdefinability of  necessity and 
possibility - 

Dr0.  A ~ -~D-~A Df[2. []A ~ -~0-~A 

- each of these rules is reversible: one holds if and only if the other does. 
For  if A ~ I~A is a theorem then so is -~[2A --, ~A, and hence by Df[2, 
also 0-~A -~ ~A. Supposing RMac holds, we conclude that -~A ~ U]-~A 
is a theorem, from which it follows that ~[2-~A -~ A is too. But by D f 0  
this means that 0A -* A is a theorem. Thus a logic has RMac0  if it has 

Journal of  Philosophical Logic 23: 67-86, 1994. 
�9 1994 Kluwer Academic Publishers. Printed in the Netherlands. 



68 B R I A N  F. C H E L L A S  A N D  K R I S T E R  S E G E R B E R G  

RMac, and the argument in the other direction is exactly similar. Because 
we deal always with logics in which [] and ~) are interdefinable, we will 
refer to each of the rules above, indifferently, as the Macintosh rule. 

We should emphasize the difference between the Macintosh rule, 
which says that the schemas 

Tc. A ~ � 8 9  T0c. 0 A ~ A  

are equivalent as theorems, and the schema 

(A ~ U]A) ~ (0A -+ A), 

which says, if it is a theorem, that A ~ [3A and 0A ~ A are logically 
equivalent. This schema is truth-functionally equivalent to the con- 
junction of  To and T0c. So given interdefinability, the presence of any of  
these three schemas implies the presence of the others, and of course the 
Macintosh rule as well. This fact furnishes us with a simple example of 
what we shall call a Macintosh logic, albeit a very strong one. 

The present paper is a study of logics that have the Macintosh rule. In 
Section 2 we provide some background on modal logics. In Section 3 we 
note some features of the Macintosh rule, suggest a definition of  a 
Macintosh logic, and try to get a feeling for what logics have the rule and 
what theorems, if any, they all have in common. We ascertain some such 
theorems and succeed in identifying the smallest Macintosh logic in 
terms of a pair of modal logics already familiar in the field. In Section 4 
we consider what we call genuine Macintosh logics, and in Section 5 we 
look a the possibilities of applying the Macintosh rule in philosophical 
reasoning. In conclusion, in Section 6, we raise the question of what we 
call Macintosh territory, and find that it remains terra incognita in at 
least one important respect. 

2. P R E L I M I N A R I E S  

We assume a propositional language in which all boolean connectives 
are available, along with operators for necessity and possibility. A logic 
is a set of  formulas that contains all tautologies and is closed under 
tautological consequence. We do not insist that logics be closed under 
a rule of uniform substitution, so as to accommodate logics con- 
taining formulas - e.g. P ---+ [~P or 0P ---+ P - not all substitution 
instances of which are meant to be theorems. Logics in this more general 
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sense may thus be regarded as theories, although we will not use this 
term. 

A normal logic provides for replacement of logical equivalents, the 
interdefinability of [] and 0, and the following schemas: 

R. [](A A B) +--* ([2A A []B) 

N. � 9  

The formula N may be replaced equivalently by a rule of necessitation: 

A 
RN. 

� 9  

Let us note for future reference that normal logics are closed under the 
following rules of  monotonicity: 

A - * B  A - + B  
RM. R M 0 .  

� 9  ---+ []B 0A --+ 0B 

Classes of logics weaker than normal can be distinguished. For  
example, with replacement and interdefinability guaranteed, a logic is 
said to be regular if it has R. Our focus in this paper is on normal logics, 
although several of  the results stated below hold more generally for 
nonnormal logics. 

In what follows we refer to a number of  further modal schemas, the 
most important of which are: 

D. 0Y 

D. E]_L 

T. [ 3 A ~ A  

T!. []A ~ A 

B. A -+ � 9  

4. [3A --+ � 9  

5. 0A -+ S 0 A  

The smallest normal logic is called K, and its normal extensions may 
be denoted (following Lemmon's idea, [7], p. 51) by suffixing names of 
schemas. For  example, KT4 is the smallest normal logic containing T 
and 4. We prefer, however, to use more conventional designations 
wherever possible: KD, the basic normal system of  deontic logic, is 
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usually referred to simply as D; it has many formulations, most notably 
that using the schema rNA ~ 0A (in fact more commonly referred to as 
D) rather than 0 T  as an axiom. KT, the "logique t" of  Feys, is more 
commonly known as T. KTB is the so-called Brouwersche system (and B 
is known as the Brouwer schema). KT4 and KT5 are the well-known $4 
and $5, respectively. Note that the latter is also, inter alia, KTB4, KDB4, 
and KDB5. 

The logics KT! and K/) are more rarely encountered. The former is 
called the Trivial logic, the latter the Verum. Notice that K/) can also be 
characterized as the smallest logic in which every formula of the form 
[~A is a theorem. Because it is so to speak the antithesis of D, we will 
refer to the Verum logic here as / ) .  

For  the semantics of normal logics, we use models ~r (U, R, V), 
where U is a set of points (or "possible worlds"), R is a binary relation 
in U, and (the valuation) V assigns subsets of  U to atomic formulas. A 
model is finite if U is. An R-chain in a model is a sequence of  points each 
of which is R-related to the next if there is one (this allows also for 
singleton sequences). A model is generated if it contains a point (a 
generator) from which every other point can be reached by an R-chain. 
Truth conditions for formulas at a point x in a model ~g are standard for 
boolean combinations. For  atomic formulas P and modal formulas DA 
and 0A, the conditions are as follows: 

~ / ~ x  P iff x E V(P) 

Jg ~x E]A iff Vy C U(xRy ~ J///~y A) 

d / /~x  0A iff 3y E U(xRy&J~ ~y A) 

A formula is said to be valid in a class of  models just in case it is true at 
every point in every model in the class. Every class of models determines 
a logic - viz. the set of sentences valid in the class - and every logic is 
determined by one or more classes of models (trivially, since each logic is 
determined alone by its so-called canonical model). For  example, T is 
determined by the class of models that are (more precisely, whose rela- 
tions are) reflexive, and $4 is determined by the class of models that are 
reflexive and transitive. 

As the logics D and/3  figure prominently in what follows, we record 
here some further information about them. First, theoremhood in these 
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logics can be characterized alternatively in terms of  deducibility 

in K: 

A E D if and only if { [ ]"0T : n>~0} kKA 

A 6 / 5  if and only if {[] n _L: n~>0} RKA 

The second characterization is in fact equivalent to 

A 6 / )  if and only if [] • A c K 

- since [] _1_-~ � 9  • is a theorem of  K for every n > 0. 

Secondly, D is determined by the class of  serial (and also finite serial) 
models, i.e. those in which Vx c U3y 6 U(xRy), whereas/)  is determined 
by the class of  models with an empty accessibility relation - or even by 
the class of  models consisting of  one isolated point. 

For  more information on the topics covered above, see e.g. [2], [3], [5], 
[7], and [t0]. 

3. MACINTOSH LOGICS 

We begin with the observation that N is present in every logic with the 
Macintosh rule. For, since every logic contains 07- --+ T, a logic that has 
the Macintosh rule contains T ~ [2T, and hence []T. It follows that 
every regular logic with the Macintosh rule is normal as well. This 
suggests the definition of  a Macintosh logic as a normal logic that has the 
Macintosh rule. 

Notice that the intersection of any two - indeed, of  any class of - 
Macintosh logics is a Macintosh logic. For  •A ~ A belongs to such an 
intersection only if it belongs to the intersectors, and so, by the rule, 
A ~ DA belongs to the intersectors and hence the intersection. 

What logics are Macintosh logics? We begin to get an idea if we note 
that RMac and RMac0 are special cases of  the following rules, 
respectively: 

0A ~ B A --+ DB 
RX. RX<>. 

A --~ []B ~A --+ B 

Like RMac and RMac<), each of the rules RX and RX0 is reversible. 
Thus any logic that has either of these rules also has the Macintosh rule. 
The rules RX and RXO are equivalent in normal logics to the presence of  
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the Brouwer schema (see [3], p. 136; cf. [4], p. 58). So any normal logic 
containing B - e.g. the Brouwersche system, $5, and the Trivial logic - is 
a Macintosh logic. 

On the other hand, again for example, K4, KD4, $4, K5, and KD5 are 
not Macintosh logics, since for each of  these either 4 or 5 is a theorem, 
but not both. This is of  interest because it shows that a sublogic of  a 
Macintosh logic need not be a Macintosh logic. 

There are many other Macintosh logics. For  a large class of  them, 
consider the following generalization of the Brouwer schema: 

B n. A ~ � 8 9  

Thus B ~ is Tc and B 1 is B itself. 

T H E O R E M  3.1. (1) KB"  is a Macintosh logic, f o r  every n>~O. (2) 
Indeed, every normal extension o f  K B  n is a Macintosh logic, f o r  every 

n>~O. 

Proof. For  n ~> 0, Let L be a normal logic that extends K B L  Assume 
that L contains 0A ~ A, for some formula A. Then the presence of  
the rule R M 0  guarantees that 0i+IA ---+ (}iA is in L for any i > 0. 

Consequently, so is 0hA ~ A, and hence, by RM, [30nA ~ DA. The 
fact that L extends K B  n then gives us A ~ NA, as we wanted. �9 

We remarked earlier that the intersection of any class of Macintosh 
logics is itself such a logic. So Theorem 3.1 yields the following: 

C OR OLLAR Y 3.2. N { K B  ~ : n~>0} is a Macintosh logic. 

In order to explain the interrelations among normal KBn-logics, and 
to convince oneself that they really form a large and nontrivial 
family, it is well to turn to semantics. From one of Lemmon and 
Scott's general completeness results ([7], pp. 58ff.), it follows that 
K B  ~ is determined by the following condition, which we might call 
n-symmetry: 

x R y  ~ y R n x  

T H E O R E M  3.3. K B  m C_ K B  n i f  and only i f  m -- n (mod n + 1) , for  every 

m, n>~O. 
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Proof. Only- i f  part: Assume that K B  m C_ K B  ~, for m, n ~> 0. We define 
a model JE = (U, R, V) as follows: Uis the set of  integers modulo n + 1, 

R is the binary relation on U given by the condition 

iRj  iff i + 1 = j (rood n + 1), 

and V is any valuation such that for a certain atomic formula P, 

V(P) = {0}. 

In other words, in J / /each  integer i is R-related to all and only its 

"successors" i + 1 within the modulus (n + 1), and the atomic formula 
P is true at 0 and only at 0. Note that this model is n-symmetric: if iRj 

t hen jRn i .  Hence it validates K B  ~ and, by our assumption, K B  m as well. 
In particular, it validates the formula P --+ D0mp. Thus, since ~ ~0 P, 
we have that dg ~0 [~(}mp and so ~ ~l 0raP since 0R1. Evidently, since 
P is true at 0 alone, 1RmO. Again since 0R1, 1R~0 by n-symmetry. 
Therefore m --- n (rood n + 1), as we wished to show. 

I f  part: For the argument here it is important to observe that an 
n-symmetric relation is also k(n + 1) + n - symmetric for every k~> 0. To 
see this, suppose that x R y .  Then by n-symmetry, yR"x .  Thus there are 
routes from x via y back to x of any multiple of (n + 1) R-steps, and so x 
can always be reached from y in k(n + 1) + n steps - i.e. yRk(~+l)+nx - 

for every k~>0. Assume now, for m, n~>0, that m - n (mod n + 1), i.e. 
that m = k(n + 1) + n for some k~>0. To show that K B  m C K B  ~, it is 
sufficient to show that K B  ~ contains B m, and for this it will be enough 
(via the Lemmon and Scott result) to show that B m is validated by any 
n-symmetric model. So let ~ = (U, R, V} be such a model and suppose 
that Jr '  ~x A, for some point x in U. To show that ~ ~x K]0mA, we 
suppose that x R y  and argue that ~ ~y ~)mA. By n-symmetry, y R " x .  

Hence also y R  k(" + 1)+n x for every k >~ 0. Therefore, by our initial 
assumption, yRmx .  So ~ '  ~y 0mA. [] 

The following corollary to Theorem 3.3 tells us that there are infinitely 
many Macintosh logics: 

C OR OLLAR Y 3.4. I f  m ~ n, then K B  m 7~ KBn,  f o r  every m, n>~O. 

Proof. Suppose, for m, n/> 0, that m r n, or, without loss of generality, 
m < n. Then m ~ n (rood n + 1). By Theorem 3.3, K B  m ~ K B  n and 
hence K B  m 7~ K B  n. [] 
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The notion of  n-symmetry admits of  an obvious generalization. Let us 
say that a relation R is *-symmetric ("star-symmetric") if it satisfies the 
condition 

xRy ~ yR*x 

- where R* is the ancestral of R (i.e. R* holds just in case R n holds for 
some n ~> 0). This condition is of course different from symmetry. 
However, as is readily checked, it is equivalent to the condition that the 
ancestral be symmetric: 

xR* y ~ yR*x 

The following result yields a new proof  of  the first part of Theorem 
3.1, but not the second; it will also be used below. 

T H E O R E M  3.5. Any class of*-symmetric models determines a 
Macintosh logic. 

Proof. Let C be a class of *-symmetric models. It will be enough to 
show that the logic L(C) determined by C is a Macintosh logic. Suppose 
that L(C) contains 0A ~ A, for some formula A. Let x be a point in a 
model J/g in C. Assume that .////~x A. If  we can show that ~ '  ~x []A, 
then we are entitled to assert that A ~ [~A is a theorem of L(C) and 
hence that L(C) is a Macintosh logic. 

So take any y such that xRy. It is sufficient to show that Jg ~y A. 
By *-symmetry, yRnx for some n/> 0. This means that there exist n + 1 
elements, which we may represent by the numbers 0 , . . . ,  n, such that 
y = 0, x = n, and, for each i < n, iR(i+ 1). We assert that, for all i<<.n, 
~ '  ~i A and prove this by backward induction. The claim is certainly 
true for i = n. Suppose that d / ~ i + 1  A, where 0~<i < n. Since iR(i+ 1), 
J/g ~i 0A. But 0A ~ A is valid in C; so ~ '  ~i A. This completes the 
induction. It follows that ~ ~0 A, i.e. ~t' ~y A. �9 

In [2], Bull and Segerberg show that every frame for [3(A ---+ �89 ---+ 
(0A --+ A) is n-symmetric, for some n ~> 0 - i.e., is *-symmetric. Of course 
it is easy to see that in a normal logic the schema yields the Macintosh 

rule. 
Since the class of  Macintosh logics is closed under intersection, there is 

a smallest such logic. What is it? It is clear that it must be included in 
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N{KB ~ : n~>0}. On the other hand, it is stronger than K, for K i s  not a 

Macintosh logic: 0 T  --+ � 9  is not a theorem of  K, even though 

0 0 T  --+ 0 T  is. In other words, every Macintosh logic - and hence the 
smallest - contains 0 T  --+ DOT. As a little reflection shows, this formula 

is equivalent in a normal logic to DOT. 

Let D/)  be the smallest normal extension of  K that contains this 

formula, [30T. Here our nomenclature does not mean KD/),  which of  

course is the inconsistent logic. Rather  it anticipates our identification of  

this logic; for it turns out that D/)  is the intersection - the synthesis as it 
were - of  D and/3:  

T H E O R E M  3.6. D/)  = D N/3. 

Proof. Note that D/)  is included in D N/) ,  since DOT is in each of 

D a n d / ) .  For  the reverse inclusion, we offer two arguments. The first 

uses the alternative characterizations of  theoremhood for D and/5  noted 

earlier. Suppose that A is in D n / ) .  Since A is then a theorem of  D, 
we have that {E]n0T: n ) 0 }  t-i( A. So f rom the fact that D/)  contains 

E]n0T for every n > 0, it follows that 0 T  ~ A is in DD. On the other 

hand, since A is a theorem of  D, we have, as remarked earlier, that 

[] 2- - ,  A is a theorem of K - and hence also of  DO. Therefore A is a 
theorem of  D/). The second argument for this inclusion is semantic 

and relies on the fact that D/)  is determined by the class of  models 
dr' = (U, R, V) in which for every x and y in U it holds that 

xRy  ~ ~z E g (yRz )  

- i.e. in which every point is R-isolated or is part  of  an endless R-chain. 
(This is perhaps easier to see when one considers ~)T ~ DOT.) Our 

argument uses the fact that D/)  is determined moreover  by the class 

of  generated models that satisfy this condition. In each of  these either 
there is just one point, the R-isolated generator, or a generator begins 

endless R-chains. We reason contrapositively, using the determination 
results for D and /3  noted earlier. Assume that A is not a theorem of  
DD. Then it is false at a generator of  a model satisfying the condition 
above. I f  the generator is isolated, then we have a model o f / ) ,  and so 
A is not a theorem of  this logic. I f  the generator commences endless 

R-chains, then the model is serial and hence models D, and so A is not a 
theorem of  this logic. In either case, A is not a theorem of  D N/3. [] 
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It turns out that D/)  is exactly what we are after, the smallest 
Macintosh logic. We know that every Macintosh logic - including 
the smallest - contains [203-. So DO will be the smallest Macintosh logic 
if it is a Macintosh logic. But then D/)  is a Macintosh logic if D is, since 
/) is one for sure. Thus we need to establish that D is a Macintosh logic. 
We do so by showing that D is determined by a class of *-symmetric 
models and applying Theorem 3.5. 

We begin by defining a certain construction. Where .//g = (U, R, V) is 
a model, let us say that an R-chain (x0 , . . . ,  xn) in ./~ is of length n. 
(Note that length measures the number of links or R-steps, not the 

number of elements, in the chain.) Where x is an R-chain (x0 , . . . ,  xn), 
we write lng(x) for the length, n, of x and x # for the last point, x, ,  
o fx .  For  each n~>0, we define the model J//n = (U,, Rn, V~) in terms 
of R-chains from ~/.  First, Un is the set of R-chains of length at 
most n. Next, xRny is defined to hold between an R-chain x - say 
(x0,.. �9 xi) - and an R-chain y if and only if: 

either lng(x) < n and y : (xo~... ,xi, y#), 

o r l n g ( x ) = n  and y = ( x 0 )  

That  is to say, in Jgn an R-chain of length less than n is related to every 
R-chain that extends it by a single point, and an R-chain of maximum 
length, n, is simply related by fiat to the R-chain consisting solely of its 
first point. Finally, we define V~ so that chains in Jgn agree with their last 
points in Jg on all atomic formulas: V~(P) = {x ~ Un : x  # c V(P)}, for 

every atomic formula P. 
It should be clear that whenever Jg is serial J ln  will be both serial 

and *-symmetric, and that one of the models is finite if and only if the 
other is. 

By the degree of a formula A, in symbols deg(A), is meant the 
maximum number of nested modal operators in it. The following claim 

can now be proved: 

LEMMA 3.7. For every formula A, if  x is an element of  Un such that 
deg(A) + lng(x) <~n, then 

~/n ~x A if and only if r162 A 
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Proof. By induction on A. As usual in proofs of this kind, the interest 

is solely in the modal part of the inductive step. Let A be a formula 
and x an element in U~ such that deg([2A) + lng(x) ~<n. The inductive 
hypothesis is that the claim to be proved holds for A. Note that 
lng(x) ~<n - 1. Thus there is some i<~n - 1 and some )co,... ,xi in U 
such that x = (x0 , . . . ,  xi). By our convention, x # = xi. 

First suppose that ~g{n ~x DA. Then: 

(1) Vy 6 U,(xRny ~ Jfn ~y A) 

Take any u in U such that x#Ru. Since i<<.n - l, it follows that the 
sequence y = (x0 , . . . ,  xi, u) is in Un. By definition, xRny. Hence by 
(1), M~ ~y A. Since deg(A) + lng(y) = deg(DA) + lng(x) ~n ,  the 
inductive hypothesis applies. So d/t ~y# A; that is, JCl ~u A. 
Consequently, de' ~x# []A. 

For  the reverse, suppose that J/l ~x# DA. Since x # = xi, this 

implies: 

(2) Vu ~ V~(xiR. ~ ~ au A) 

Take any sequence y in Un such that xRny. Since i<~n - 1, it follows 

that y = (x0,. �9 xi, u), for some u in U such that xiRu. By (2), ~/d ~u A, 
i.e. Jg  ~y# A. Again the inductive hypothesis applies; so ~/'~ ~y A. 

Consequently, ~/n ~x DA. [] 

T H E O R E M  3.8. D is a Macintosh logic. 
Proof. Every nontheorem of  D has a serial countermodel. Our 

construction shows that for each of  those models there exists a 
countermodel (for the nontheorem in question) that is *-symmetric as 
well as serial. It follows that D is determined by a class of *-symmetric 
models. Therefore, by Theorem 3.5, D is a Macintosh logic. []  

This result is interesting in its own right and also because it shows that 
an extension of a Macintosh logic need not be a Macintosh logic 
(e.g. $4 is an extension of D). In this respect the Macintosh rule 
differs from the rule RX, which, as remarked earlier, is present in a 
normal logic just in case the logic extends KB. But to us the main 
interest of  Theorem 3.8 derives from the following consequence, as 
explained above: 
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C O R O L L A R Y  3.9. DD is a Macintosh logic, indeed the smallest 

Macintosh logic. 

Yet another outcome of  the proof  of  Lemma 3.7 is this: 

C O R O L L A R Y  3.10. D/5 = n{KBn:  n >~ 0}. 

Proof. Every nontheorem of D is false in a finite serial model. In 
this case the countermodel mentioned in the p roof  of  theorem 3.8 is 

finite and so is n-symmetric, for some n i> 0. 

The logic D/)  has numerous other identities, of  which we shall state 

just this one: 

T H E O R E M  3.11. DD = D fq K B " , f o r  every n>~O. 

P r o o f  We have already seen that D contains r~0T. Note then 

that, for each n >i O, K B  ~ also contains this formula. For  otherwise, 

for some such n, 0[3 l holds somewhere in an n-symmetric model, 

which means that [] • holds at some point R-related to a point 
where, absurdly, _1_ is true. So D/)  is included in D r~ KB  n, for every 

n ~> 0. For  the other direction, we reason as in the proof  of  Theorem 
3.6. Suppose A to be a nontheorem of D/). Then A is false at a 
generator in a model of  D/3. Again, either this point is R-isolated or 

it commences endless R-chains. In the former case, the model is 
n-symmetric for every n >~ 0, and so validates K B  n for every such n; in 

the latter case, as before, it is a model of  D. In either case, A fails to 
be a theorem o f D  n K B  n, for any n>~0. 

The construction of J//n in the proof  of  Lemma 3.7 can be adapted to 

show that Tis a Macintosh logic. In outline, this extended proof  assumes 
that the given model Jg  is reflexive (and so is a model for T), the 
relations in d/n are "reflexivized" by the addition of  all pairs (x, x) where 

x is in U~, and the original conditions for x R ,  y are stipulated only 
for the case in which x ~ y. The result is clearly a *-symmetric model. 
The subsequent induction is then modified to take into account the 

reflexive possibilities. Given this, we argue that T is a Macintosh 
logic analogously as for D: Every nontheorem of T is rejected by a 
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reflexive model, and our construction shows that the nontheorem also 

fails in a reflexive *-symmetric model. So T is determined by a class of  

*-symmetric models and hence, by Theorem 3.5, is a Macintosh logic. 
Let us state this formally for the record: 

T H E O R E M  3.12. T & a Macintosh logic. 

We shall return to the construction in the p roof  of  Lemma 3.7, and its 

extension to the reflexive case, in the context of  applying some of our 
results. 

4. GENUINE MACINTOSH LOGICS 

Which Macintosh logics contain one of, and hence both, 0A --4 A and 

A ~ MA, for some formula A, but neither - ,0A nor E]A? Which 
Macintosh logics are, as we shall say, genuine? 

I t  is easy to see that $5 is genuine, since for any atomic formula 

P it contains 0NP  ~ DP and DP ~ [3DP, whereas neither -~0MP nor 

DDP is a theorem. Indeed, it can be shown that except fo r /5  every 
consistent Macintosh logic extending K45 has this property and so 

is genuine. On the other hand, it is evident that nei ther/5 nor the 
inconsistent logic is genuine. What  about  other Macintosh logics? 

We make a little progress when we consider the so-called "rule of  

disjunction" (see [3], pp. 181-182, and [7], pp. 44-46). A logic has this 
rule if whenever it contains an n-termed disjunction of the form 

DA1 V . . .  V IS]An it also contains Ai for some i<<.n. 

T H E O R E M  4.1. No Macintosh logic that has the rule of disjunction is 
genuine. 

Proof Suppose we have a Macintosh logic that has the rule of  
disjunction. I f  the logic contains 0A --* A and hence A --+ []A, for some 

formula A, it contains 0A ~ E]A as well, and thus, equivalently, 
[3-~A V []A. By the rule of  disjunction, either ~A or A is a theorem. 
Because the logic is normal,  it follows by the rule of  necessitation that 
either N-,A or DA is a theorem - i.e. that one of  ~ 0 A  and DA is. 
Therefore the logic is not genuine, i l  
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The logics D and T have the rule of  disjunction. So we may conclude 
from Theorem 4.1 that neither of them is a genuine Macintosh logic. The 
result for D leads to one for D/): Suppose D/)  contains A -+ E]A and 

hence 0A ~ A. Then these formulas are in D. Because D is not genuine, 
it contains --0A or DA. But both ~0A and DA are in / ) .  So D n / ) ,  i.e. 
D/), contains ~0A or [3A. 

The idea of this reasoning for D and T was suggested to us by Max 
Cresswell. That  for DO was inspired by Tim Williamson, after he 
pointed out that D, T, and D/)  obey his "rule of margins" and are 
therefore not genuine Macintosh logics. 

A logic has the rule of  margins just in case it contains either A 
or ~A whenever it contains A -+ DA or, equally well, 0A --+ A; 
see [11]. Notice that normal logics with this rule also have the Macintosh 
rule. 

T H E O R E M  4.2 No Macintosh logic that has the rule of margins is 
genuine. 

Proof. The argument resembles that for Theorem 4.1. Suppose 
A ~ DA is a theorem of  a Macintosh logic with the rule of margins. 
Then --A is a theorem or A is. By normality, ~0A or DA is a theorem, 

and so the logic is not genuine. �9 

Williamson has also shown (in [11]) that the rule of margins is present in 
KDB and KTB (i.e. the Brouwersche system). So neither of these 
Macintosh logics is genuine, and he has subsequently (in [12]) proved 
that, indeed, for n > 0 none of  the Macintosh logics KB n is genuine. 
(KB ~ is KTc, an extension of  K45.) 

5. P R A C T I C A L I T I E S  

Given the fickle character of the Macintosh rule with respect to which 
logics it inhabits, one may well ask to what practical uses it may be put in 
connection with theses such as a = b --+ D(a = b) and "God  exists if it is 
possible that God exists". To focus the remarks that follow, let us 
distinguish a certain atomic formula P, which we may think of  as 
interpreting a = b, "God  exists", or some other such sentence. The 
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formulas we are interested in, then, are: 

P+. p - - + N P  P+. 0 P - - + P  

To adopt one of  these formulas as a theorem of a modal logic is not 
of  course to say that the logic contains the formula, but rather to add 
the formula to the logic. Where L is a Macintosh logic, let L+ be the 
least normal extension of L containing P+, and similarly for L + and 
P+. Then let L +  be the least normal extension of L that contains both 
P+ and P+. Evidently, L +  = L+ + = L++. What are the results of these 
additions? 

Consider any of  the Macintosh logics KB n. As we have seen 

(Theorem 3.1), the Macintosh rule is present in every normal 
extension of KB n. Hence KB~_ and KB ~+ have the rule and so are 
identical with KB"+. In this way a normal KB logic provides a setting 

for proofs of the existence of God: One first establishes P --, DP and 
hence 0P --+ P, then argues (presumably independently) for 0P, 
and concludes with P. Compare the reasoning, e.g., in [8], p. 161, 
where P means a = b. 

Of course in this context there is no need to restrict oneself to the 
Macintosh rule, since the stronger rules RX and RX0 are available, 
as remarked earlier, in any normal logic containing B. This is probably 
a good place to point out that if truth, and not theoremhood, is at 
issue, one has the option of arguing for the truth of  C3(P -~ ZIP) and 
then moving to the truth of 0P --* P via the following theorem of  
KB: 

N(A ~ DB) ~ (0A ---, B) 

(This schema is equivalent as a theorem to the Brouwer schema; see 
[3], p. 136.) Compare the reasoning, e.g., in [1], pp. 43-44, where P 
means "God  exists". In this situation, one could as welt appeal to an 
instance of  the schema: 

D(A --. DA) + (0A --+ A) 

But note the necessity here of  the initial [3; without it the logic is at least 
as strong as KTc. Recall the remarks about Tc and T0c at the beginning 
of the paper. 
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Indeed, unless one is prepared to adopt a modal logic as strong 
as $5, one may wish not to employ a logic containing the Brouwer 
schema in philosophical argumentation involving modalities, i.e. 
one may wish not to presume that whatever is so is necessarily 
possibly so. Is there an alternative? Can one make do with modest 
extensions of  such relatively innocuous modal logics as D and T, 
where the presumption is only that whatever is necessary is 
possible or that whatever is necessary is so? The answer is not so 

clear. 
To begin with, unlike KB+, KB +, and their relatives, none of  D+, D +, 

T+, and T + is a Macintosh logic. To see this in the case of D+ and D +, 
we begin with the observation that these logics are determined by the 
classes of  serial models ~ = (U, R, V) satisfying, respectively, the 

following conditions: 

xRy (x c v(P) y v(p)) 
xRy (y c v(p) x v(p)) 

But where x and y are distinct, U = {x ,y} ,  R = {(x,y) ,  (y ,y)}  and 
V(P) = {y}, we have a serial countermodel for P+ that satisfies ( 3 ) .  
Thus, D+ does not have the Macintosh rule. Likewise, where ~ is as 
above except that V(P) = {x} we have a serial countermodel for P+ that 
satisfies ( ~ )  - which shows that D + is not a Macintosh logic. The logics 
T+ and T + are determined by the classes of  reflexive models satisfying 
the respective conditions above. For  these cases, adding (x, x) to R in the 
countermodels shows that these logics also fail to have the Macintosh 

rule. 
It might be argued that someone who accepted the principles of 

49 or T -  and hence accepted the Macintosh rule - could without 
qualm accept the logics MacD and MacT obtained respectively 
from (say for the sake of definiteness) D+ and T+ by closing them 
under the Macintosh rule. Such logics would thus possess 
principles otherwise less controversial than those found in KB ~ 
systems. 

But there is no difference between adding the Macintosh rule to D+ 
and T+, on the one hand, and simply adding P+ to them, on the other. 
This emerges as a corollary to the following: 
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THEOREM 5.1. (1) D+ is a Macintosh logic. (2) T+ is a Macintosh 

logic. 
Proof. We concentrate on part (1). Clearly by Theorem 3.5 it is 

enough to show that D+  is determined by a class of *-symmetric 
models. 

Let # / b e  a serial model that satisfies conditions (4=) and (3 ) .  We 
construct the model J /n as for Lemma 3.7. Then dgn is serial and 
*-symmetric, and we need to show that it satisfies ( ~ )  and (3 ) .  
Accordingly, let x = (x0, . . . ,  xi) be a point in {In, where i<~n. Note that 

X # = Xi. 
We assume that xR,,y and argue by cases, according as lng(x) < n 

or lng(x) = n. In the first case, y = (x0, . . . ,  xi, y#). For (~ ) ,  suppose 
that x is in V~(P) - to show that y is too. Then x # is in V(P), and hence 
by ( 3 )  in Jg: 

Vy C U(x#Ry  => y C V(P)) 

But x#Ry#. So y# is in V(P) and thus y is in V~(P). The reasoning for 
(4=) is parallel. If y is in V~(P) then y# is in V(P), and hence by ( ~ )  
in d/: 

Vx E V (xRy  # =~ x E V(P)) 

But again x#Ry#, so that x# is in V(P) and x is in V~(P). 
In the other case, y = (x0). Note that here x# = xi = x , ,  and 

y# = x0. For (=*), suppose once more that x is in Vn(P). So x~ is in 
V(P). This is the basis of an induction, backward, to show that xj 

is in V(P) for eachj  from n through 0. Suppose for 0 <j<~n that 
xj is in V(P). Because Xj-IRxj, it follows by ( ~ )  in M( that Xj_l is in 
V(P). So x0 is in V(P). Thus (x0) is in V~(P), which is to say that y 
is in Vn(P). Finally, for (4=), suppose that y is in Vn(P). This is the 
basis of an induction, this time forward, to show that xj is in V(P) 
for each j from 0 through n. Suppose for 0 < j  < n that xj is in 
V(P). Because xjRxj+l and ( ~ )  holds in M//, xj+l is in V(P). So 
xn is in V(P), which is to say that x # is. Consequently x is in 
Vn(P). 

By Lemma 3.7, it follows that every nontheorem of D+  is false in 
a *-symmetric model of this logic. Therefore D+  is a Macintosh logic. 
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The reasoning for T+ is similar and uses the "reflexivization" of ~'n 
described for Theorem 3.12. �9 

C OR OLLAR Y 5.2. (1) D+  = MacD. (2) T+ = MaeT. 
Proof. Clearly D+ c_ MacD and T+ C_ MacT. By Theorem 5.1, D +  

has every axiom and rule of  inference that MacD does, and similarly for 
T+ and MaeT. So the inclusions are identities. �9 

Thus there is no difference between adding the Macintosh rule and 
adding 0P --+ P to D+ or T+, and it would seem that the argument - an 
ad hominem argument, be it noted - for adopting the rule loses cogency. 
But it may be that addition of further theses to D +  or T§ would 
bring to the fore considerations in favor of, or against, accepting the 

Macintosh rule. 
The general question of when rules may be carried forward in forming 

extensions of modal logics is vexing and deserves investigation on its 

o w n .  

Let us close this section with the observation that D+,  T§ and all 
the logics KBn+ are genuine. To see this, it is enough to show that 

neither -,0P nor Np is a theorem of these logics. Let d{ = ( U, R, V} be 
a model such that U = {x}, and R = {(x, x}}. Note that no matter 
what V(P) is, Jg  will be reflexive, hence serial, and n-symmetric, and 

it will satisfy both ( 3 )  and @=). So it will be a model of D+,  T+, and 
KBn+. When V(P) = {x}, ~0P is false at x. So the logics do not contain 
~0P.  When V(P) = ~, Np is false at x. So this formula is also outside 

all the logics. 

6. C O N C L U S I O N  

Having gained some idea of what Macintosh logics there are, we 
conclude this paper with a remark about the totality of them. Let 
the territory of a rule or condition be the class of  all modal logics that 
have the rule or satisfy the condition. What is Macintosh territory, the 
class of all normal logics with the Macintosh rule, like? What is its 

structure? 
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The class o f  all normal logics is a lattice under the operations �9 and + ,  
defined by: 

L1 �9 L2 = L1 fq L2 

LL + L2 = A { L  : L1 C L & L2 C_ L} 

We k n o w  that L1 �9 L2 is a Macintosh  logic if L1 and L2 are. Thus if 
L1 + L2 is a Macintosh  logic whenever L1 and L2 are, it follows that 
Macintosh  territory is also a lattice under the operations + and .. 
Whether or not this is so is a question we had not  been able to answer, 
but here again Timothy Will iamson has enlightened us. He has proved in 
[12] that the answer is negative. 
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