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On the Numerical Solution of a Class 
of Stackelberg Problems 

By J.  V. O u t r a t a  1 

Abstract: This study tries to develop two new approaches to the numerical solution of Stackelberg 
problems. In both of them the tools of nonsmooth analysis are extensively exploited; in particular 
we utilize some results concerning the differentiability of marginal functions and some stability 
results concerning the solutions of convex programs. The approaches are illustrated by simple 
examples and an optimum design problem with an elliptic variational inequality. 

Zusammenfassung: Diese Arbeit zielt auf eine Entwicklung von neuen Verfahren l'fir die numeri- 
sehe L6sung der Staekelbergproblemen. In beiden vorgesehlagenen Verfahren niitzt man die Mittel 
dex nichtglatten Analysis aus. Besonders handelt es sich um eine Charakterisierung der verallge- 
meinerten Gradienten yon marginalen Funktionen und einige Stabilit~itsergebnisse, die die L6sun- 
gen yon konvexen Programmen betreffen. Die Verfahren sind dureh einfaehe Beispiele und ein 
Optimum Design Problem mit einer elliptisehen Variationsungleiehung illustriert. 

Key words: Nondifferentiable optimization, set-valued maps, generalized Jacobians. 

1 Introduction 

Stacke lberg  p r o b l e m s  play an i m p o r t a n t  role in e c o n o m i c  model l ing ,  o p t i m u m  design 

and  f u r t h e r  areas o f  appl ied  m a t h e m a t i c s .  They  have b e e n  s tud ied  first f r o m  the  p o i n t  

o f  view o f  the  ex is tence  and  the  i n t e r p r e t a t i o n  o f  the i r  so lu t ions  and  the  c o n s t r u c t i o n  

o f  su i tab le  o p t i m a l i t y  cond i t i ons ,  cf. e.g. V o n  S tacke lberg  (1952) ,  Basar and  Olsder  

(1982) ,  A u b i n  and  Eke land  (1984) .  Later  the  a t t e n t i o n  has  been  devo ted  also to  the  

ques t ions  c o n n e c t e d  w i t h  the i r  numer i ca l  so lu t ion ,  e.g. Sh imizu  and  Aiyoshi  (1981) ,  

Lor idan  and  Morgan  (1988) .  The a im of  this  w o r k  is to  app ly  some results  o f  non -  

s m o o t h  analysis  wh ich ,  t oge the r  w i t h  sui table  o p t i m i z a t i o n  rou t ines ,  wou ld  enlarge the  
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number of  available numerical methods. We confine ourselves to the simplest situation 

with merely two players: The Leader (L) and the Follower (F). However, an increase 

of  the number of  followers would not cause principal difficulties as it is explained in 
the conclusion. Our problem attains the form 

f L (x, y )  -+ inf 

subject to 

y E arg min fF(x,  s) 
s e a  (x) 

x ~ c o ,  

(1.1) 

where 

fL[IR n x l~. m ~ IR] is the objective of L, 

fF[~ ,  n x •rn _+ IR] is the objective ofF ,  

co C IR n is the set of  admissible strategies of  L and 

~ [ N  n -+ 2 IRm ] specifies the set of  admissible strategies ofF.  

Problems of  the type (1.1) can be found very often e.g. in optimum design. Consider 

e.g. the optimization problem 

J(x, y )  -+ inf 

subject to (1.2) 

B x E A y  + NK(Y)  

X ~ co, 

where x E X is the design (control) variable,y @ Yis the state variable, J[X  x Y ~ I1] is 

the optimality criterion, N K (5;) is the normal cone to a convex set K at y, A ~ 1_ [ Y, Y * ] 
is a selfadjoint linear elliptic operator, B[X-+ Y*] is the natural embedding and co is 
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the set of  feasible controls. This problem possesses exactly the form (1.1) if one sets 
1 

fL =J, fF =2 (y' Ay>- <Bx, y> and f2(x)=K. Indeed, the variational inequality in 

(1.2) may easily be rewritten into the form 

1 
2- <Y, Ay> - <Bx, y> ~ inf z 

subject to (1.3) 

y E K .  

Problems of the type (1.2) are investigated in Haslinger, Neittaanmgki (1988) from 
both the theoretical and numerical point of view. We have chosen a concrete problem 
of this type, having a direct practical interpretation, as the illustration for the both 
numerical approaches, proposed in the sequel. 

Besides design problems of the above type a number of other important applica- 

tion of the Stackelberg model (1.1) may be found e.g. in the market theory, cf. Von 
Stackelberg (1952), Aubin and Ekeland (1984). 

Let us return back to its general formulation. Assume that at any fixed 2 E c~ 
the Follower's problem (F-problem) 

f F(2, y )  -~ inf 

subject to 

y ~ rz(~) 

(t  .4) 

is a convex programming problem which possesses a solution. To be precise, we will 
henceforth suppose that 

(i) fF is continuous on IR n x IR rn andfF(X, .) is convex over ~rn for allx E co; 

(ii) g2 is a convex-valued closed-valued map over ~n  and arg rain fF(x, s) ~ ~ for X 
sEfZ(x) 

from some open set co' D co. 

We will also assume that the (generally nonconvex) problem (1.1) possesses a solution 
which, however, may be in some cases rather problematic, cf. Loridan, Morgan (1988). 
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Due to assumptions (i), (ii) problem (1.1) may be rewritten into the form 

fL (x, y )  -+ inf 

subject to 

0 E ~yfF(X, y) + Na(x)(y ) 

X EO0, 

(1.5) 

where 3yfF is the partial subdifferential of f p  with respect to y. In this way, the 

hierarchical structure of (1.1) has been removed. The classical approach to the deriva- 

tion of optimality conditions relies on this transcription. However, for the numerical 
solution of (1.1) this transcription is not especially suitable because the constraint 

structure of (1.5) is hardly tractable even in very simple situations, cf. Basar, Olsder 

(1982). Generally one has namely to introduce even the multipliers, corresponding to 
the constraint 

y ~ a ( x )  (1.6) 

as unknown variables. 

The appearance of multipliers as unknown variables may be in some cases avoided 

if we apply the method proposed in Shimizu, Aiyoshi (1981). They recommend to aug- 

ment the constraint y ~ ~2(x) into the F-objective by means of a smooth interior 

penalty which enables to replace the complicated constraint in (1.5) by the equality 
VyP(x, y)  ; 0, where P is the augmented F-objective. 

In this paper we intend to study two different approaches which may be considered 
as alternative to the above mentioned treatments. In the next section we collect some 
fundamental results concerning marginal functions in mathematical programming 
which are then utilized in Sect. 4. Sect. 3 is devoted to a special class of problems (1.1) 
in which the map x ~- arg min fy(x, y) is an operator and its generalized Jacobian may 

y c a  (x) 
be computed. In this way, we obtain a nonsmooth optimization problem defined only 
over x E w which represents a substantial decrease of dimensionality. Unfortunately, 

the assumptions are rather severe so that in most cases we have to apply a more general 
approach of Sect. 4. This second approach enables us to solve fairly complicated prob- 

lems, but we have to optimize over co x N m as in the metod of Shimizu, Aiyoshi 
(1981). 

For the understanding of the paper a certain basic knowledge of nonsmooth ana- 
lysis is necessary. We refer the reader to Clarke (1983) or t o  Aubin, Ekeland (1984), 
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where all the required background is collected. The following notation is employed: 

af(x) is the generalized gradient or the generalized Jacobian of  a function f at x, 

3xf(X, y )  is the partial generalized gradient with respect to x, vsf(x)  is the strict deriva- 

tive, NK(x) is the normal cone (in the sense of  convex analysis) to a set K at x EK,  

clA, convA are the closure, the convex hull of  a set A, respectively, Y* is the topo- 

logical dual to a linear normed space Y, L IX, I1] is the space o f  continuous linear 

operators mapping X into Y, IR7 is the nonnegative orthant or ~n, E is the unit 

matrix, l-In is a norm in IR n, for an a ~  (a) + = m a x  {0, a} and x / is the f-th co- 

ordinate of  a vector x E IR n. 

2 Some Preliminary Results 

Consider the map g2 given by 

f2(x) = {yE~,mi~i(x,y)~O, i = 1,2 . . . .  , l ) ,  (2.1) 

where functions q$i are twice continuously differentiable and functions cbi(x, .) are con- 

vex for all x E IR n, i = 1,2 . . . . .  L We may introduce the marginal function (value 
function) h[co -~ IR] in the standard way be the relation 

h(x) = inf fF(x, y), (2.2) 
y ~ a  (x) 

and examine its differentiability properties. I f f p  as well as all function ~b i are convex, 

it has been proved in Pschenichnyi (1980) that h is then also convex and for x C a~ a 

formula characterizing the subdifferential Oh(x) is also provided. However, one can 

only rarely meet Stackelberg problems satisfying such stringent convexity require- 

ments. Therefore, we make use of  a recent result of  Outrata (1990) which directly 

implies the assertion of  Prop. 2.1 below. To simplify the notation we introduce the 

map S which assigns to 2 E IR n the set of  solutions of  the F-problem 

fF(x, Y) -+ inf 

subject to (2.3) 

~i(~,y)<<.O, i= l,2,. . . , l .  
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I n  accordance with Rockafellar (1984), under the inf-boundedness condition we shall 
understand the requirement that for each )7 from co' and each a E ~ there is an e > 0 
such that the set of (x, y )  E co' x IR rn satisfying 

[x-)Tln<.-.e, fF(X,y)<~OL, r i = 1 , 2  . . . .  , l ,  

is bounded. 

Proposition 2.1: Let the inf-boundedness condition hold, )7 E co,y E S()7) and U()7,y) 
E IRl+ be the set of Kuhn-Tucker vectors of  (2.3) at 37. Assume furthermore t h a t f p  is 

twice continuously differentiable and the following hypotheses hold: 

(H 1) all couples 0 ~, X), X E U(2, y) satisfy the 2-nd order sufficient optimality condi- 
tions of  Robinson (1980)with  a positive modulus; 

(H2) there exists a direction ~ E IR m such that (7y0i(2, ~),  ~) < 0 for all i ~ I()7, ~)  = 

( j E  ( 1 , 2  . . . . .  l}[~bJ(2, 37) = 0}; 

(H3) the gradients V~bi($, Y), i E I()7, y), are positively linearly independent. 

Then h is Lipschitz near 2, regular (in the sense of  Clarke) at )7 and 

ah()7) -- (VxfF(e, Y) + 
l 

~-~ )kivx~Ji(x, y)lX E u()7, y) ). (2.4) 
i=1 

For the proof  we refer to Outrata (1990). Note that due to ( / /1 ) the  set S(~)shrinks 
to a singleton (namely 37). Hypothesis (/ /2) is the well-known Mangasarian-Fromowitz 

constraint qualification. If we replace it by a more stringent requirement that the 
gradients 7yCY(Y~, f ) ,  i EI()7, y) ,  are linearly independent, then simultaneously hypo- 

thesis (H3) is satisfied and U()7,~) also shrinks to a singleton - the unique Kuhn- 
Tucker vector X. It implies that in this case h is strictly differentiable at ~(7Sh()7) = 

I 
7xfF(x,Y) + ~ ki\]x~i()7, Y)) which is a well-known result proved in different con- 

i=1 
texts in various papers. 

In many important  cases the feather restrictive hypothesis (H I)  does not hold. In 

such a case we can sometimes utilize a result of  Gauvin, Dubeau (1982) stated below. 



On the Numerical Solution of a Class of Stackelberg Problems 261 

Proposition 2.2: Let 2 E a~ and fF be continuously differentiable. Assume furthermore 
that the following hypotheses are fulfilled: 

(H4) ~2 is uniformly compact near ~ (i.e. there is neighbourhood o of 2 such that 
cl U ~2(x) is compact); 

xEO 

(H5) at all.9 E S(2) the gradients VyOi(x, fl), i E I(X, f;), are linearly independent. 

Then h is Lipschitz near 2, -h  is regular at 2 and 

( ' 1 3h(2)=conv 7xfF(2, fi)+ ~ X~VxgJ(2,.f)[.fES(2) , 
i=1 

(2.5) 

where Xy E IR t is the (unique) Kuhn-Tucker vector of (2.3) at its solutionp. 

The proof may be found in Gauvin and Dubeau (1982). 

Remark: As hypothesis (H5) implies that the constraints in (2.3) satisfy the Slater 
constraint qualification, by using of Thms. 3.1.5 and 4.3.3 of Bank at al. (1982) we 

can conclude that S is upper semicontinuous at 2 and h is continuous at 2. It implies 
that the assertion of Prop. 2.2 remains true if we replace (H4) by the inf-boundedness 
condition defined above. 

Thus, dependantly on the nature of the F-problem (2.3), vectors from the gener- 
alized gradient of the marginal function h may be evaluated according to (2.4) or (2.5) 
provided the appropriate hypotheses hold. We utilize this possibility in Sect. 4 in the 
quasi-indirect numerical treatment of problem (1.1). 

Remark: The assertions of Props. 2.1,2.2 may also be used to the decomposition of 
the optimization problem 

fF(x, y)  -+ inf 

subject to 

d(x, y) < o, i - - 1 , 2  . . . . .  l 

(2.6) 

xE~o  
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with respect to variables x and y. Indeed, instead of  solving (2.6) over co x N,n we 

may minimize the (generally nondifferentiable) marginal function h over 6o by means 

of  some nondifferentiable optimization (NDO) method. At each evaluation of  h(x) 
we solve then a convex program of the type (2.3) and the needed "subgradient infor- 

mation" is obtained by using of  Props. 2.1, 2.2. 

3 Di rec t  A p p r o a c h  

The most elegant way of  the numerical treatment of  problem (1.1) would be to take it 

as a nondifferentiable optimal control problem with x being the control variable, y 

being the state variable and the system map x ~ y  being given by the set-valued map 

S : x ~ arg min fF(x, y). To simplify the analysis, let us assume that fF(x, .) is strictly 
y~S2(x) 

convex on F, m for all x E ~ n  which implies that S is an operator. We impose also 

some further assumptions, namely that fL is continuously differentiable over IR m x IR m 

and S is locally Lipschitz and directionally differentiable over 6o. (The assumptions 

guaranteeing the satisfaction of  the latter requirement for a concrete form of  ~2 are 

imposed below.) 

Problem (1.2) may now be rewritten into the form 

O(x) = fg (x, S(x)) -+ inf 

subject to 

x E 6 o .  

(3.1) 

Under the above requirements 19 is locally Lipschitz over w. It is also directionally 

differentiable and therefore the chance for a successful implementation of  an NDO 

routine for the minimization of  19 over w is satisfactory. However, we must be able to 
compute at any x E w at least one vector ~ E ~19(x). Let P(x) be an [ m x  n] matrix 
from ~S(x), the generalized Jacobian of  S at x. Then we may use the following asser- 

tion of  Hiriart-Urruty (1978). 

Proposition 3.1: Let x E w a n d y  = S(x). Then 

= v~fL(x, y)  + (~(x))rvyfL(x,  y)  e OO(x). (3.2) 
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However, the computation of  matrices P(x) is generally highly complicated and avail- 

able results concern as to our knowledge only special cases, cf. Haslinger, Roubi~ek 

(1986), 0utrata (1988). The approach we intend to apply here hinges upon a result of  

Malanowski (1985) (Prop. 3.2 below), and therefore we have to confine ourselves to 

the case when 

g2(x) =g2 = {y E IRm [~bi(y) ~< 0, i =  1,2 . . . .  , l ) .  

Recalling from the introduction that co' D co is some open subset of  IR n, we impose 

the following further suppositions: 

(i) for each x E co' the function fF(x, .) is twice continuously differentiable on IR m. 

Moreover, there exists a constant ~ > 0 such that 

(v, V~,yfy(x,y)v)>~[V[2m for all XECO', y, "oElem; 

(ii) the funct ionsfF and vy fy  are continuously differentiable on co' x IR rn ; 

(iii) for each x E co' the functions ~ ,  i = 1,2,  ..., l, are convex and twice continuously 

differentiable on IR m ; 

(iv) the gradients Vq~i(y), i E I (y)  = {j E { 1, 2, . . . ,  l }10i(y) = 0}, are linearly indepen- 

dent at any y = S(x), x E co'. 

Under these assumptions S is indeed locally Lipschitz and directionally differentiable 

over co due to the results of Hager (1979) and Jitorntrum (1984). At a fixed 2 E co the 

F-problem attains the form 

fF(:~, y )  -~ inf 

subject to 

qq(y) ~ O, i = 1 , 2  . . . .  ,l. 

In what follows we employ for the sake of  simplicity the following notation: 

l 
Q(~?) = 2 - VyJF(*, s(~)) + Y~ x~v2O*(s(,)), 

i = 1  

(3.3) 
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where X = (~t 1 , X 2 . . . . .  X l) E ~t+ is the (unique)Kuhn-Tucker vector o f (3 .3 )a t  fi = S(2), 

q(~ ,  g )  = 2 - 
v y x f v ( ~ ,  s(s))g, 

where the vectorg E IR n will be specified later, 

1I(2) = {i E ( 1,2 . . . . .  l)  Ir = 0}, 

Jl(2) = (i E lI(2)IX i > 0)  

and f o r l L C  { i = 1 , 2  . . . . .  l} 

Lm(2)  = { r E  ~ m  1(7r v) = 0, i E IL}. 

Proposition 3.2." Let 2 E w and the operator 2 - ~rn vyxfF(2,  S(2) ) [N n ~ ] be surjective. 

Then a necessary and sufficient condition for S to be Fr6chet differentiable at 2 is the 

strict complementarity 

~(~)  = ~ (~ ) .  

For any direction g E IR n the Fr6chet differential VS(2)g is given as the (unique) solu- 

tion of the quadratic programming problem 

1 
-2 (v, Q(g)v) + (q(2, g), v) ~ inf 
2 

subject to (3.4) 

v e  L~(~,)(2). 

If  ]I(2) is a proper subset .of 11(2), then for any set of  indices](2) satisfying the inclu- 
sions 

~(~) c J(~) c ~(~) (3.s) 
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there exists a direction g E IR n and a sequence (xi} converging to 2. a l o n g - g  such that 

 (xi) : n ( x i )  : 

For the proof  see Malanowski (1985). This assertion may directly be used for the 

construction of matrices from 0S. 

Proposition 3.3." Let)7 E co and the operator 7~xfF(X, S(2.)) be surjective. Assume that 
J(2)  satisfies inclusions (3.5) and 1~ is the operator which assigns to g C IR n the 

(unique) solution of the quadratic programming problem 

1 
-~ (v, Q(2.)v) + (q(2, g), v) -~ inf 

subject to 

v E Lj(e)(2.). 

(3.6) 

Then P(2.) E ~S(2). 

Proof.' As S is Lipschitz near 2, we may approach 2" by points at which S is differenti- 
able. By Prob. 3.2 we know that to any J(2.) satisfying the inclusions (3.5) there exists 

a direction g and sequence x i converging to 2. along - g  such that VS(xi) is the operator 
which assigns to g the solution of the quadratic programming problem 

1 
-~ (v, Q(xi)v) + (q(xi,g), v) -+ inf 

subject to 

v E Lj(e)(xi). 

(3.7) 

We show that 7S(xi) -+ P(2.) with P(2) being given by (3.6). Indeed, VS(xi) = V-(xi) o 
( -V2xfF(xi ,  S(xi))), where E(xi) is the projection operator which projects (Q(xi))-lu,  
u @IR m, onto Lj(e)(xi) in the Q(xi)-metric. Due to the continuity assumptions being 

imposed, ~ as well as V2xfy( . ,  S(.)) depend continuously on x over co' so that 



266 J.V. Outrata 

vS(x~) -~ P(~) ~ ~s(~) (3.8) 

by definition. [] 

Of course, when computing points from O| it is not necessary to evaluate the opera- 
tor E explicitly, but we may proceed directly according to Prop. 3.1. 

Proposition 3.4: Let ~ E co,J(2) satisfy inclusions (3.5) and ~ be the (unique) solution 
of the quadratic programming problem 

1 
~(v,  Q ( g ) v ) - ( V y f L ( g ,  S(2)), v) ~ inf 

subject to (3.9) 

v E L f(~)(Yr 

Then 

v~A(x, s(x)) - (V~,xfF(~, S(X)))r~ ~ aO(~Z). (3.10) 

Proof." As E is symmetric, (p(yc)T 2 - = -(Vyxfr(2 ,  S(2))r---(~). It remains to apply Prop. 

3.1. [] 

Let us consider a particular problem in which n/> m and 

1 
fF(X, y )  = -~ (y, Hy ) - (b(x) ,y ) ,  (3.11) 

where H is a symmetric positive definite (m x m) matrix and b[IR n -~ ]R m ] is a contin- 

uously differentiable operator with Vb being surjective on co'. Then V~,xfy(X, y ) =  
-Vb(x)  so that the assumptions are met. For ~ E 

vxA(~z, s(~)) + (vb(~))rO ~ O0(~), 
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provided ~ is the solut ion of  the quadra t ic  programming prob lem (3.9) wi th  Q0?) = 
l 

H + ~ ~kiv2~i(S(x)) and an index  s e t J ( ~ )  being appropr ia te ly  chosen. 
i=1 
As we have po in ted  ou t  in the in t roduc t ion ,  Stackelberg problems wi th  fF given 

by (3.11)  result  f rom a discret izat ion o f  o p t i m u m  design problems wi th  ell iptic varia- 

t ional  inequalit ies.  To test the proposed  numerical  approach we have solved firstly 

five simple academic examples  o f  this fo rm and then  a larger o p t i m u m  design p rob lem 

taken f rom Haslinger, Neittaanm~iki (1988).  In the first five problems we have n = m = 2, 
CO = ~2, 

fL = ~1 (yl)2 +!(y2)22 --371 --4y2 +r[(xl)2 +(x2)2]' 

where r > 0 varies, and 

f2 = { ( y l ,  y 2 ) E  IR+Z I -  0 .333y I + y 2  ~<2 ,ya  _ 0.333y2 ~<2}. 

Example 1: 1 - 2 ]  b(x) =x. 
r = 0 . 1 , H =  - 2  5 ' 

Start ing point :  x 1 = 0, x 2 = 0. 

Solut ion:  x 1 = 0 . 9 7 , x  2 = 3 . 1 4 , y  1 = 2 . 6 , y  z = 1.8,f t .  = 3.58. 

Example 2: 

Example 3: 

r = 1, H and b like in Ex. 1. 

Starting point :  x 1 = 0 , x  2 = 0. 

Solut ion:  x I = 0 . 2 8 , x  2 = 0 . 4 8 , y  1 = 2 . 3 4 , y  2 = 1 .03 , fL = 4.92.  

Start ing point :  x 1 = 1 0 , x  2 = 10. 

Solut ion:  x 1 = O,x 2 = 0 , y  1 = 0 , y  a = 0,fz ,  = 12.5. 

1 3 ],b(x)=x" 
r = 0 , H =  3 10 

Starting point :  x 1 = O,x 2 = O. 

Solut ion:  x 1 = 3 , x  2 = - 0 . 1 4 , y  I = 2 , y  2 = 0 , f  L = 8.5. 

Starting point :  x 1 = 1 0 , x  z = 10. 

Solut ion:  x 1 = 2 0 . 2 6 , x  2 = 4 2 . 8 1 , y l  = 3,y2 = 3 , f L  = 0.5. 
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Example 4." r = 0.1, H and b like in Ex. 3. 

Starting point:  x 1 = - 3 , x  2 = 6. 

So lu t ion :x  1 = 2 , x  2 = 0 .06 ,y  a = 2 , y  2 = 0 , f  L = 8.9. 

Example 5." 21 r and H like in Ex. 4, b(x) = -3  x. 

Starting point:  x 1 = -3 ,  x 2 = 6. 

Solution: x I = 2 .42 ,x  2 = - 3 . 6 5 , y  I = 0 , y  2 = 1 .58 , f  L = 9.35. 

In all examples we have to solve two quadratic programming problems at each compu- 

tat ion of  a vector from 3| the first corresponds to the solution of  the F-problem 

(3.3) at the current x, the second is the appropriate problem (3.9). To this purpose 

the code SOL/QPSOL of  Gill and al. has been applied, for the unconstrained minimiza- 

zation of 19 the NDO code M1FC1 of  C1. Lemar~chal has been used. In all examples 

we needed less that  10 iterations of  the bundle algorithm. 

Consider now the problem (1 .2) in  which the design (control)  space X = L2(0,  1), 

the state space Y =/~2(0, 1), 

1 

J(x, y)  = f (y(s)-g(s))2ds,  (3.12) 
o 

where the function g C H2(0,  1)is given, K = {y ~ YLy(s)>~g(s) on [0, 1 ]},Ay =y'"' ,  
B is the natural embedding of  L2(0, 1) into H - 2 ( 0 ,  1) and 

1 
co = {x E Lo.(O, 1)[a <x(s)  <~ (3 for a.a. s C [0, 1], f x(s)ds = M } ,  

o 
(3.13) 

where the nonnegative scalars ~, ~, M are given. 

The elliptic variational inequality Bx E A y  + N g ( y )  assigns in this case to a given 

load density x the deflection y o f  a clamped beam limited from below by a rigid ob- 

stacle described by the function g. The aim of  the optimization is to find such a load 

density x that maximizes the contact area between the beam and the obstacle. 

The discretization has been performed by dividing of  [0, 1 ] into ten equidistant 

subintervals of  the length d = 1/10, and representing X by means of  functions, constant 

on each subinterval and Y by means of  third order polynomials on each subinterval. 

In this way we have obtained a Stackelberg problem of  the form (1.1) in which n = 10, 

m = 18, x = (x 1 , x2 . . . . .  x l 0 )  gives us the load density and the odd,  even coordinates 
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of y approximate the beam deflection and its derivative at the grid points, respective- 

ly. fL corresponds to a chosen rule for the quadrature of (3.12) (we have chosen the 

trapezoidal rule), fF is given by (3.11) with the rigidity matrix H and the map b 
being given by the used discretization, 

[ lO ] 
a~= x@IRl~ Z x i = M  

i=1 

and 

~'~ = (y ~ ]R 18 ly 2i-1 >~g(i/lO), i = 1,2 . . . .  ,9 }. 

We have set c~ = 0,13 = 10, M = 5, g -- -0.001,  the product of the Young modul and the 

cross-sectional moment of innertia to be equal one and applied the proposed direct 

approach with the numerical code M2FC1 of C1. Lemar+chal. We had, however, to 
1o 

augment the constraint 1/10 ~ x i =M to the objective by means of an exact penalty 
i=1 

because this code can handle only the box constraints a ~<xi~</3 directly within the 
optimization procedure. With the initial guess x i= ~ for all i and the final accuracy 

being specified by e = 0.001 we have obtained the solution after 7 iterations (17 func- 
tion evaluations). The results are depicled on Fig. 1. 

X 

/ / /  # #I. A 
/ / . , -  f .#f 11 

/ / / 1 " /  A 
/ / / / / 1 " 1  ~.//. / . .q 

0 ols I 

Fig. I 
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Remark: Due to the discretization being chosen b is not surjective so that relation 

(3.10) need not be true. This obstacle is of  a purely technical nature and may easily 

be overcome by using a different discretization. However, as we wanted to compare 

our results with those of Haslinger, Neittaanmgki (1988), we have used their discretiza- 

tion and the proposed direct approach proved itself to be sufficiently robust. 

4 Q u a s i - I n d i r e c t  A p p r o a c h  

In this section we propose a numerical approach to the problem (1.1) without any sub- 

stantial restrictions, needed in the previous section. It uses a special form of optimality 

conditions which justifies the adjective quasi-indirect. Problem (1.1) can namely be 

rewritten into the form 

f L (X, y )  -~ inf 

subject to 

f F(x, y)  - inf 
s~s2 (x) 

y ~ a ( x )  

X E (-d, 

s s)<O 

(4.1) 

where we have a generally nondifferentiable function appearing in an inequality con- 

straint. We will assume that fL is regular locally Lipschitz and distinguish between the 

following two situations: 

(a) ~(x)  = ~2 is a nonempty compact subset of  IR m not depending on x, fF(. ,Y)  is 

continuously differentiable on some open set co' D co for ally E IR m and VxfF is 

continuous as a function of  (x, y).  

Then it is a consequence of  the calculus of  generalized gradients that the function 

g(x, y)  =fF(x, y)  -- inf fF(X, S) =fF(x ,y)  + sup (--fF(X, S)) 
s E  f2 s E  ~ 
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is regular locally Lipschitz over IR a x IRm and 

[ v xf v(x, y) - V xf F(x, z)] 
~g(x, Y), 

] /l 
(4.2) 

provided z E S(x) = arg min fF(x, s) and # E 3yfF(x , y). If fF is continuously dif- 
sEI2 

ferentiable on co' x IR m and attains its infinum with respect to y on ~2 at a single 

point  for all x ~ co', then g is in fact continuously differentiable on w' x ~m.  
Let 

= {y~iRnldpi(y)<~O,i= 1,2,  . . . , l } ,  (4.3) 

where functions q~i, i = 1 ,2 ,  ...,  l, are convex and continuous over IN m . 

I f f L ,  g are continuously differentiable on co' x IRm and all functions ~b i are con- 

tinuously differentiable on IR m, then some standard (smooth) method can be applied 

to the nonlinear programming problem 

f L (x, Y) --> inf 

subject to 

g(x, y) <. o 

~iO,) <. o, 

x E c o  

i = 1 , 2  . . . . .  l 

(4.4) 

with Vg computed according to (4.2). 

Provided either fL or g or at least one of  the functions q~i is nondifferentiable and 

problem (4.4) is calm with respect to vertical perturbations of  constraintsg(x, y )  ~ O, 
~bi(y) ~< 0, / = 1 ,2  . . . . .  I (cf. Clarke 1983), we recommend to augment all inequality 

constraints to the objective by means of  exact nondifferentiable penalties. We arrive 
then at the problem 
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fL(X, Y) + ro(g(x, y))+ + 

subject to 

x E c o  

l 
Z, ri(Oi(y)) + ~ inf 

i=1 

(4.5) 

which may be solved by some NDO method provided the structure of  co is sufficiently 

simple and r i > 0, i = 0, 1 . . . . .  l, are suitably chosen penalty parameters. 

(t3) f~(x) is given by (2.1) and either the assumptions of  Prop. 2.1 or the assumptions 

of Prop. 2.2 hold for all 2 E co. 

Then we may use the respective assertion and conclude that in both cases the function 

G(x,y)=fF(x,y ) -  inf fF(x,s) (4.6) 
s~ ~ (x) 

is locally Lipschitz directionally differentiable on co x Nrn and 

l 

vxfF(x, y) - V,,fF(X, z ) -  ~ x;v~d(x, z)] 
i= 1 1 ~ OG(x, y) 

VyfF( X, Y) (4.7) 

provided z E S(x) and X @ U(x, z). Note that S(x) is a singleton in the case of  Prop. 2.1 
and U(x, z) is a singleton in the case of  Prop. 2.2. 

From the available NDO software only some methods from Kiwiel (1985) can 

directly be applied to problems with nondifferentiable inequality constraints. For the 

application of  most NDO codes one has to assume that the mathematical program 

"i 

f L (X, y) -," inf 

subject to (4.8) 

a(x, y) <~ o 

~(x , y )~O,  i=1,2  ... . .  l 

x Eco 
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is calm with respect to vertical perturbations of constraints G(x, y)  <, O, Oi(x, y)  <, O, 
i = 1,2 . . . .  , I. We can then augment these inequalities to the objective by means of 
exact nondifferentible penalties and arrive at the problem 

l 
fL(x, y)  + ro(G(x, Y))+ + ~ r~(Oi(x, y))+ ~ inf 

i=1  

subject to (4.9) 

X E C O ,  

where ri > 0,i = 0, 1, ..., l, are suitably chosen penalty parameters. Provided co is given by 
lower and upper bounds for single coordinates, e.g. the code M2FC1 of C1. Lemar6chal, 
mentioned already in the previous section, may be applied. Vectors from the gener- 
alized gradient of the augmented objective in (4.9) may be computed by using of (4.7) 
and the standard calculus rules of Clarke (1983) except of the following situation: G is 
positive and nondifferentiable at (x, y )  and there exists an index i C { 1,2 . . . . .  l} for 

which q~i(x, y ) =  0. Then, namely, the sum of points from the generalized gradients 
3G(x, y) and 3Oi(x, y) need not belong to O(G + ~i)(x, y)  whenever G is nonregular. 
Such a "subgradient information" could theoretically mislead the algorithm, but if 
G is differentiable at the solution of (4.1), we do not expect any difficulties caused by 
this obstacle. 

If for all x from some open set co' D co the assumptions of Prop. 2.2 hold and the 
F-problems possess unique solutions, then G is in fact continuously differentiable on 

co' (Clarke 1983) and any standard (smooth) method can be applied to the nonlinear 
programming problem (4.8) whenever fL is continuously differentiable. 7G may be 
be computed by means of (4.7). 

Remark." In some concrete problems of the type (~) it may be difficult to check, 

whether for all x E co indeed ~(x)  :~ 0. Constraints arising from this requirement are 
termed induced constraints and may cause substantial difficulties. 

The approach was used to solve the following simple test examples with increas- 
1 

ing complexity. In all of them x E gl+, y ~ IR 2 ,fL = ~ [(Y 1 _ 3)2 + ( y 2  _ 4 ) 2  ] and 

1 
fF = ~ (Y, H(x)y) - (b(x),y), i + 1.333x l b(x) = 
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where the (m x m) matrix of continuously differentiable functions H(x) varies. Also 
the starting point was in all of  them but Ex. 2 the same: x = y l  =y2  = 0. 

Example 1: 

Example 2: 

Example 3: 

H(x) = & a ( x )  = a = 

{ ( y l , y 2 )  E lR2+l_0.333yl +y2 ~ 2 , y l  _ 0.333yZ ~<2). 

Solution: x = 2 .07,y  1 = 3 , y  2 = 3 , f  r = 0.5. 

H(x)=[ l+x 0 00 ] '  [Z(x) like in Ex" 1" 

Starting point: x = 5 ,y  1 = 0 , y  ~ = 0. 

Solution: x = 0 ,y  1 = 3 , y  2 = 3,fL = 0.5. 

H(x)=[ I+xO 1 +0.1x0] S 2 ( x ) l i k e i n E x ' l ' '  

Solution: x --- 3 .456,y  1 = 1.707,y 2 = 2 .569 , f  r = 1.859. 

Example 4: 

Example 5: 

Example 6: 

H(x)  = E, ZZ(x) = 

{O,J ,y2)  E 1R2+1(_0.33 3 + 0 .1x)yl  +y2 <~x, yl +(-0 .333  - 0.1x)y2 ~ 2}. 

Solution: x = 2 .498,y  x = 3 .632,y  2 = 2.8,f L = 0.919. 

H(x)=[ l+xO 0]1 ' g2(x) like in Ex. 4. 

Solution: x = 3 .999,y  I = 1.665,y 2 = 3 .887 , f  L = 0.897. 

H(x)=[ 1+0"2x0 l+0.1x0 ] g2(x)= 

+ O. ix)yl  +y2  ~<2_0 .1x ,  y l  + ( - - 0 3 3 3 -  0.1x)y 2 < 2 - O . l x } .  

Solution: x = 1.909,~v 1 = 2 .979,y  2 = 2 .232 , f  L = 1.562. 

All examples have been solved first by the NDO code M1FC1 of C1. Lemarbchal with 
penalties. As the functions g in Ex. 1, 2, 3 and functions G in Ex. 4, 5, 6 are con- 
tinuously differentiable, we could apply also the sequential quadratic programming 
code NLPQL (Schittkowski 1985) to the appropriate problems (4.4), (4.8). The inner 

quadratic programming problems have again been solved by the SOL/QPSOL code of 
Gill and al. M1FC1 needed approximately 2 - 3  times more function evaluations than 
NLPQL. Maximal number of  iterations of  M1FC1 was 22. 
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Fig. 2 
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H (x)y 

. /  
/ , i ,  , .  
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The geometric situation of Ex. 6 at its solution is depicted on Fig. 2. Observe that 

the line segment [H(x)y, b(x)] is perpendicular to the edge [C, y] of g2(x) so that 

H(x)y - b(x) ~ - :Va  (x)(Y) 

and hence y is indeed the solution of the F-problem at x. 

Besides the above academic examples we have applied the quasi-indirect approach 

also to the design problem with the elliptic variational inequality, described in the 

previous section. We have treated the appropriate inequality g(x, y)  <~ 0 as well as the 
1o 

equality 1/10 ~ x i ; M by means of exact penalties, arriving thus at the augmented 
i = 1  

objective 

[ ,0 l Jd(Y) +rl(g(x,y))++r2 1/10 Z x i - M  , 
i = 1  

where Ja is the discretized original objective and r l ,  r 2 are positive penalty parameters. 

The constraints a <~x i ~</3, i = 1,2 . . . . .  10, and y2i-1 >~_0.001, j = 1,2 . . . . .  9, have 

been treated directly within the used NDO code M2FC1. However, we have needed 

106 iterations to obtain results comparable with those computed boy the direct approach 
and the final accuracy specified by e = 0.001 has not been achieved. The reason lies 
probably in a very bad scaling of this problem (cf. Haslinger, Neittaanmgki 1988) 
which makes a proper choice of the penalty parameters r l ,  r2 extremely difficult. 
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5 Conclus ion  

In both approaches being proposed we have a certain outer minimization procedure 
for which the information about the minimized function is provided by solving of 
another inner optimization problem(s). The solution procedure of  the inner prob- 

lem(s) cannot be too time-consuming and must be sufficiently accurate. Therefore, 

we have in fact to confine ourselves to those inner problems that are either linear 

or quadratic. In the simple academic examples of this paper as well as in the solved 

optimum design problem these inner optimizations are convex quadratic programming 

problems and there have been difficulties neither with the time-consumption nor with 

the accuracy. On the other hand, the outer problems are generally nonconvex and 

especially function 19 from Sect. 3 may possess a lot of stationary points even in the 

simplest examples. This phenomenon is well illustrated by Examples 1 and 3 (Sect. 3). 
Let us conclude with a remark concerning a possible extension of the quasi-in- 

direct approach to Stackelberg problems with more, let us say, two followers F 1 , F2 
playing according to the Nash solution concept between themselves. 

Under the appropriate assumptions the quasi-indirect approach combined with an 

exact penalization technique leads to the optimization problem 

fL(x, y l , Y 2 )  + Rl  lYl - V l  [rn 1 +R2LY2-V21m2 -+inf 

subject to 

G1 (x, Yl ,Y2,72) =fFl(X, Yl , Y 2 )  --  inf fF 1 (x, s, 'l) 2 ) ~ 0 
{sl(s, v2)ea  (x) } 

G~.(X, y l ,Y2 ,  "O1)=fF2(x, Y l , Y 2 ) -  inf fF2(X, Vl, S)<~O 
{sl(v 1 ,s)EI2 (x) } 

X E (.d, 

(5.1) 

where R1, R2 are some positive penalty parameters, Vl, v2 are auxiliary variables, 
enabling us to decouple the followers' problems and the other symbols have an analo- 
gous meaning as in the previous text. To the solution of (5.1) a suitable NDO method 

can be applied with functions G1, G 2 treated as shown in Sect. 4. The dimensionality 
has, unfortunately, further increased due to the introduction of variables 7)1,7) 2 . 

Acknowledgement: I would like to express my deep thanks to Prof. C1. Lemar~chal, Prof. J. Zowe, 
Prof. K. Schittkowski and Prof. J. Haslinger for their important help during my work on this sub- 
ject. 



On the Numerical Solution of a Class of Stackelberg Problems 277 

References 

Aubin JP, Ekeland I (1984) Applied nonlinear analysis. Wiley, New York 
Bank B, Guddat J, Klatte D, Kummer B, Tammer K (1982) Nonqinear parametric optimization. 

Akademie-Verlag, Berlin 

Basar T, Olsder GJ (1982) Dynamic noncooperative game theory. Academic Press, London 
Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York 
Gauvin J, Dubeau F (1982) Differential properties of the marginal function in mathematical 

programming. Math Prog Study 19:101-119 
Hager WW (1979) Lipsehitz continuity for constrained processes. SIAM J Contr Optim 17:321-338 
Haslinger J, Neittaanm~i P (1988) Finite element approximation for optimal shape design. Theory 

and applications. Wiley, Chiehester 
Haslinger J, Roubi~ek T (1986) Optimal control of variational inequalities. Approximation and 

numerical realization. Appl Math Optim 14:187- 201 

Hiriart-Urruty JB (1978) Gradients generalises de fonctions marginales. SIAM J Contr Optim 16: 
301-316 

Jittorntrum K (1984) Solution point differentiabil2ty without strict complementarity in nonlinear 
programming. Math Prog Study 21:127-138 

Kiwiel KC (1985) Methods of descent for nondifferentiable optimization. Lecture Notes Math, vol 
1133. Springer-Verlag, Berlin 

Lemar6chal C, Strodiot J J, Bihain A (1980) On a bundle algorithm for nonsmooth optimization. 
NPS 4, Madison 

Loridan P, Morgan J (1988) Approximate solutions for two-level optimization problems. Interna- 
tional Series of Numerical Mathematics, vol 84. Birkh~iuser, Basel, pp 181-196 

Malanowski K (1985) Differentiability with respect to parameters of solutions to convex program- 
ming problems. Math Prog 33:352-361 

Outrata JV (1988) On the usage of bundle methods in optimal control ofnondifferentiable systems. 
In: Hoffman KH, Hiriart Urruty JB, Lemar~chal C, Zowe J (eds) Trends in mathematical 
optimization. Birkh~iuser, Basel, pp 233-246 

Outrata JV (1990) On generalized gradients in optimization problems with set-valued constraints. 
To appear in Math Oper Res 

Pscheniehnyi BN (1980) Convex analysis and extremal problems. Nauka, Moscow (in Russian) 
Robinson SM (1980) Generalized equations and their solutions. Part II: Application to nonlinear 

programming. Univ. Wisconsin-Madison, Technical Summary Rp. #2048 
Roekafellar RT (1984) Directional differentiability of the optimal value function in a nonlinear 

programming problem. Math Prog Study 21:213-226 
Schittkowski K (1985) NLPQL: A Fortran subroutine solving constrained nonlinear programming 

problems. Annals Oper Res: 485-500 

Shimizu K, Aiyoshi E (1981) A new computational method for Stackelberg and min-max problems 
by use of a penalty method. IEEE Trans Autom Contr AC-26:460-466 

Von Stackelberg H (1952) The theory of market economy. Oxford University Press, Oxford 

Received August 1988 
Revised version received May 1989 


