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Inversion of Real-Valued Functions and Applications 

By J.-P. Peno t  1 and  M. Voile  2 

Abstract: This work is devoted to a systematic study of the inversion of nondecreasing one variable 
extended real-valued functions. Its results are preparatory for a new duality theory for quasieonvex 
problem [6]. However the question arises in a variety of situations and as such deserves a separate 
treatment. Applications to topology, probability theory, monotone rearrangements, convex analysis 
are either pointed out or sketched. 

Zusarnmenfassung: In dieser Arbeit wird systematisch die Umkehrung monoton nichtfaUender 
Funktionen f : ~ ~ F, u { ~, + ~  ) studiert. Die Ergebnisse bilden die Grundlage f'tir eine neue 
Dualit~itstheorie quasikonvexer Probleme 16]. Da jedoch die Fragestellung bel einer ganzen Anzahl 
weiterer Situationen auftritt, verdient sie eine gesonderte Behandlung. Anwendungen in der Topo- 
logic, Wahrscheinlichkeitstheorie, monotonen Umordnungen und in der konvexen Analysis werden 
aufgezeigt und skizziert. 

Key words: Quasi-inverse, epi-inverse, hypo-inverse, nondecreasing functions, quasiconvex func- 
tions, convex functions, duality, rearrangement, modulus of continuity. 

This w o r k  is devo ted  to  a sys temat i c  s t u d y  o f  the  inver t ib i l i ty  o f  nondee reas ing  map-  

pings f r o m  IR to  IR. This e l e m e n t a r y  p r o b l e m  arises in m a n y  ques t ions ;  to  our  know-  

ledge i t  has  n o t  been  t ack led  in i ts full  genera l i ty  (however  see [10]  where  a n o t i o n  o f  

quasi- inverse d i f f e ren t  f r o m  the  one  we use is i n t r o d u c e d ) .  

When  f : IR ~ IR is s t r ic t ly  increas ing the re  is n o  p r o b l e m  for  def in ing  an  inverse 

m a p p i n g  f r o m  f O R )  i n to  IR. When f i s  j u s t  n o n d e c r e a s i n g  (r ~ r' ~ , f (r)  <~f(r')) several 
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notions of inverse can be accepted. The best notion requires that the inverse g (called 

then the epi-hypo4nverse) satisfies the equivalence, for r, s in IR 

(g(s) <~r) *~ (s <~f(r)). 

This is a very restrictive condition and we have to relax it in order to be able to deal 
with situations in which this condition cannot be fulfilled. We get then the concept of 

quasi-inverse mappings: it is a symmetric notion sufficiently general for encompassing 

usual situations but uniqueness is not ensured. Refining it we get the former notion 

and intermediate concepts which appear to be useful. All these notions rely on the use 

of the epigraphs and the hypographs of functions. This is not a great surorise as we are 

interested in solving inequalities rather than equalities. Moreover the role of epi- 
graphs in optimization theory and "unilateral analysis" (an expression coined by 

J.-J. Moreau) is known to be prominent. 
Our first section is devoted to an exposition of these different notions. The set 

of quasi-inverses of a given nondecreasing function is characterized in section 2. We 

show in section 3 how quasi-inverses can be used for regularization processes of one 

variable functions. From this, one can pass to the regularization of some classes of 

functions of several Variables. For instance, using the fact that a lower semicontinuous 
(1.s.c.) quasiconvex function on a locally convex topological vector space is a supremum 

of a family of functions of the form g o h where g : IR -~ ~ = [-oo, +o~] is 1.s.c. and 

nondecreasing and h is a continuous linear functional (such a function is called a 1.s.c. 
quasi-affine function) a formula can be given for computing the greatest 1.s.c. quasi- 

convex function )a minorizing a given function f This formula readily yields duality 
results for quasiconvex optimization problems. Although this was the starting point of 
our study (see [1], [2], [4]) we do not consider this application here but refer to [6], 

as we believe that it deserves a separate treatment. Among several possible applications 
we point out the study of maximal monotone relations from IR into IR (section 2) 
and throw a glimpse at the theory of nondecreasing rearrangement (see [3 ], [5], [11 ] 
and their references). Other applications can be given in the geometry of Banach 

spaces and probability theory (c.f. [3]). 
In the domain of one variable convex functions, quasi-inverses lead us to an ex- 

tended Young formula (proposition 4.6) and to connect the left derivative of a closed 
proper convex function to the right derivative of its Fenchel conjugate (proposition 
4.7). Quasi-inverses are also used in the proof of the perfect duality between the strict 

monotonicity of the one sided derivatives of a one variable finite convex function and 
the coincidence of the one-sided derivatives of its Fenchel conjugate (corollary 4.8). 
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1 Various No t ions  o f  Quasiqnverses  

In what follows we denote by F = ~IR the set of all mappings from IR into N= N t.J 
{-oo, +o~}; we denote by G (resp. Q, resp. R) the subset o f f  consisting of nondecreas- 
ing functions (resp. nondecreasing and lower-semicontinuous (1.s.c.), resp. nondecreas- 

ing and upper-semicontinuous (u.s.c.) functions). The epigraph and the hypograph of 
f E  F are defined respectively by 

~'( f )  = ((r, s) c ~ 2  : f ( r )  <~ s) ,  ~r(f)  = ((r, s) ~ ~ 2  : s <~f(r)), 

while the strict epigraph Es(f) and the strict hypograph Hs(f) are defined similarly 
with the inequality replaced by the strict inequality. 

Our basic concept of inversion is well suited for dealing with inequations: as it is 
not too restrictive it appears in many concrete instances. 

1.1 Definition: Two elements f and g of F are said to be quasi-inverses if for any r 
and s in IR one has the following implications 

(a) s < f ( r )  ~g(s) <~r 

(b) g(s) < r  ~ s <f(r). 

This notion gives a symmetric role to f and g since (a) (resp. (b)) implies (a') (resp. 
(b')) and is in fact equivalent to it: 

(a') r <g(s) ~f (r )  ~< s 

(b') f ( r )  < s ~ r <. g(s). 

In other terms, f a n d  g are quasi-inverses iff 

HsO e) C g(g)- 1, gs(g )- 1 C H(f),  

iff 

/_lra(g ) -- I C ~7(f), .~Ts(f ) C / - / ( g ) -  1, 
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where, for a subset A of  IR x IR, A -  1 denotes the set 

a - 1  = s 

a notation compatible with the inversion of  relations (multifunctions), a relation being 

identified with its graph. 

We shall show below that any f E  G has at least one quasi-inverse (in general an 
infinity), and we shall characterize all the quasi-inverses offi  It will be shown that i fg  

is a quasi-inverse of  f then its lower semicontinuous hull gL and its upper semicontin- 

uous hull gu are also quasi-inverses of  f. Let us observe that supposing f E  G is not 

an artificial restriction. 

1.2 Lemma: If f has a quasi-inverse g then f i s  nondecreasing: f E  G. 

Proof: Suppose we can find r, r' in IR with r < r', f ( r ' )<f (r ) ,  raking s ~ P, with 

f (r ' )<s < f ( r )  it follows from (a) that g(s)<<.r <r', hence, by (b) s <~f(r'), a contra- 

diction with the choice of  s. [] 

It can be useful to extend definition 1.1 to mappings f : I ~ ~ ,  g : J ~ N defined on 

open intervals/,  J :  one takes (r, s)E1 x J  in definition 1.1. In particular in example 

1.5 below we take I = J = P ,  the set of  positive real numbers. 

1.3 Proposition: Let f : I ~ ~ ,  g : J ~ ~. be quasi-inverse mappings, where I = (a I, 6oi), 

J = (a j ,  co j )  are nonempty open intervals of  IR. When f ( / )  C ]  the following properties 
are equivalent: 

(i) sup g ( J ) <  co I (resp. in fg(J ' )>  oli) 

(ii) there exists ~ E I with f(~) = coj (resp. f(~) = a j t  

Proof: Suppose sup g(J) < 60 I. Let ~ E I with sup g(J) < ~ < 60 I. As g(s) < ~ for each 
s E J w e  have s ~<f(~) for each s E J h e n c e  f(~)  = coj. 

Conversely if f(P)= coj, for some ~ ~1,  then for each s E J  we have g(s)% ~ since 

otherwise we would have g(s )>~,  s ~>f(~), a contradiction with s < coj. The proof of 

the bracketted assertions is similar. [] 
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1.4 Corollary: Let f : IR ~ ~,, g : IR --> N be quasi-inverse mappings. Then the follow- 
ing assertions are equivalent: 

(i) f i s  finite valued; 

(ii) sup g = +0% in fg  = -oo. 

1.5 Example: Given two metric spaces (X, dx), (Y, dr )  and a mapping f :  X -+ Y, its 
modulus of  uniform continuity # : F -+ N+ = [0, +oo] is given by 

p( r )=  sup {dr(f(x),f(x')): dx(x, x')~<r},  r E P = (0, +~);  

f i s  uniformly continuous iff inf p = 0 iff  lim p(r) = 0 (obviously p is nondecreasing). 
r--~O+ 

Let ~ : F --> IR+ be any quasi-inverse of/~. Then proposition 1.3 shows that inf /~ = 0 
1P 

iff ~(e) > 0 for each e E ~.  The use of  a mapping 6 : P -+ ~,+ such that 6(e) > 0 for 
each e > 0 and 

dx(x, x ' ) <  a ( e ) ~  dr(f(x),f(x'))<~ e 

is quite familiar. Note that  the choice of  6 contains some arbitrariness while/1 is in- 
trinsically tied to f We will see that two optimal quasi-inverses/a e,/a ~ of/~ can be de- 

fined so that in fact two canonical mapping 6 e = p c  and ~h =/ah can be attached t o f  

in an intrinsic way. Moreover it will be shown that a slight modification of  the defini- 
tion of  the modulus of  uniform continuity yields a more handable notion. Namely, 
setting 

~(r) = sup {dy(f(xl f (x ' ) )  : dx(x, x ' )<r}  

and 

~(s) = sup (t  : ~ ( t ) < s }  

it will be shown that one has the convenient equivalence 

r < ~(s)~" ;4r )<  s. 
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Here 

g(e) = i n f  { r E F :  3 ( x , x ' ) ~ X 2 , d x ( x , x ' ) = r ,  dy( f (x) , f (x ' ) )>e} .  

1.6 Example: Let E be a normed vector space with topological dual space E '  and let 

F : E ~ E  ' be a firmly monotone relation, i.e. a relation such that for some non- 

decreasing firm function 3' : IR+ + IR+ (i.e., such that (tn)-~ 0 whenever the sequence 

(7(t n)) converges to 0 or, as 3' E G, such that 3'(0 > 0 for t > 0) one has 

( x ' - y ' , x - y ) > 3 " ( l l x - y l l )  [Ix - y l l  

for any x, y E dom F, x' EF(x) ,y '  ~ F(y). Then one has 

I lx ' -Y ' I I  ~ 3'([[x -YII)  

so that F -q : F ( E ) ~ E  is a well defined mapping and is uniformly continuous since for 

any quasi-inverse 8 : P ~ IR+ of 3' I P one has 

x ' ,y '  E F(E),I[x' - y'l[ < e =~ [[F-l (x ' ) -  F-l(y')[I <~ 8(e), 

while proposition 1.3 shows that lim 8(e)= inf 8(e) = 0 as 3' is firm. As the notion 
e~0+ e>O 

of quasi-inverse is rather weak it will be useful to consider a stronger inversion proper- 

ty. Its drawback lies in its lack of symetry. 

1.7 Definition: An element g is said to be an epi-inverse o f f E  G if assertions (a)and 

(l~)below hold true: 

(b) g(s)<r ~ s <~f(r l 

Thus g is an epi-inverse o f f i f f  

Hs(f) -1 C E(g) C H(f) -1 . 
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Similarly, g is called an hypo-inverse o f f  when 

E~ffy ~ ~ H(g) c E f t )  -~ 

i.e. when (b)and (~)hold true, with 

(a) r <~g(s)~ f(r)<<, s. 

These two notions are clearly different. Let us observe that when g(s) is finite (~) (resp. 

(6)) is equivalent to f(g(s)) <~ s (resp. f(g(s)) >~ s). Therefore when g : 1R -+ IR is both an 

epi-inverse o f f  and an hypo-inverse of  f i t  is a right inverse off.  It will be more useful 

to consider another combination of the preceding concepts. 

1.8 Definition: An element g of  G is said to be an epi-hypo-inverse o f f E  G i fg  is an 
epi-inverse of  f and f is an hypo-inverse of  g. Then f is said to be an hypo-epi-inverse 
ofg. 

Then we have simultaneously (~)in which the roles o f f  and g are interchanged and (6) 
so that 

(g(s) <~ r) ~ (s <~ f(r))  

or 

E ( g )  = Afar(f) - 1.  

This formula shows that i f f ~  G has an epi-hypo-inverse, then it can have only one. 

Let us observe that a function f E G may have several epi-inverses. For instance, if f 

is constant with value 0, then any g E F with g(s) = - ~  for s < 0, g(s) = +~  for s > 0 

is an epi-inverse off .  However we do have a converse uniqueness result. 

1.9 Lemma: I f g  is an epi-inverse off1 E G a n d f  2 E G then f l  =f2.  
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Proof: As for i = 1,2 we have Hs(fi ) C E(g)- 1 C H(fi), we get for any r E 

fi(r) = sup (s : (r, s) EH(f / )}  = sup {s : (r, s) E Hs(f/)} 

hence 

f /(r)  = sup { s '  (r, s) E E ( g )  -1 }. [] 

The following result is an obvious necessary condition for g to be an epi-hypo-inverse 

of  some f E G  as for each r E IR g - l ( ] _ ~ ,  r]) = ] - ~ , f ( r ) ] .  

1.10 Lemma: I f g  is an epi-hypo-inverse theng  is 1.s.c. 

Similarly, we see that any hypo-epi-inverse is u.s.c. 

The versatility of  the notion of quasi-inverses can be tested with the following 

result which will be used in [6]. 

1.11 Lemma: Let (fi)i~r and (gi)i~z be two families of  elements of  G such that for 
each i E1 fi  and gi are quasi-inverses. Then f := inf f i  and g := sup gi are quasi-inverse. 

i~I iEI 

Moreover when ~ is the hypo-epi-inverse of  gi for each i ~ I, then f is the hypo-epi- 
inverse ofg. 

This follows from the following relations 

H s ( f )  C n Hs(J~), E (g )  = n E(gi)  
iEI iEI 

H(/)-- n H(~), E~(g) c n e~(gi). 
iEI i~_I 

2 Characterization of Quasi-Inverses 

Up to now epigraphs and hypographs have occupied the stage while graphs remainded 

in the shadow. Nevertheless graphs are likely to be of  crucial importance for defining 
generalized inverses. As the inverse M -  1 of  a relation (or multifunction) M : X --> Y 
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given by 

M -1 = { (y ,x )  E Y x X :  (x ,y)  EM},  

(a relation being identified with its graph) is a relation even when M is a mapping we 

are led to consider monotone relations rather than non-decreasing functions. Further- 

more, the domain of  M -1 being the image of  M, it is advisable to "complete M by 

vertical segments" so that its image becomes as large as possible. More precisely, any 

monotone relation A : IR ~ IR (i.e. any relation such that for (r, s ) E A ,  (r', s ' ) E A  
one has s'>~ s whenever r '  > r )  is contained in a maximal monotone relation (in fact 

a largest monotone relation containing A ) M  : N ~ N, where M(-~o) = [ - ~ ,  infA(1R)], 

M(+~)  = [sup A(IR), +,,o], and for r E IR 

M( r )= [ sup  U A(r')U { - ~ } ,  inf O A(r")u {+~o}]. 
r '<r  r">r 

Then M -1 : ~ -+ ~ ,  also is maximal monotone and its restrictionM -x  ~ IR x IR to IR 

again is maximal monotone as a relation from IR to IR. 

Now with any relation N : ~ ~ ~ with domain IR are associated the two func- 

tions e N and h N given by 

eN(r ) := infN(r)  

hN(r ) := sup N(r); 

we have e N <~ h N and when N is monotone ear and h N a r e  nondecreasing. Moreover, 

when N is maximal monotone its graph is obviously closed so that for any r E 

N(r) = [eN(r), hN(r) ] 

eN(r)=sup {s ' :  3 r' <r,(r ' ,  s ' ) E N }  

hN(r) = inf ( s " :  3 r">r , (r" ,  s") E N } ,  

e N is 1.S.C. and h N is u.s.c. When one takes N = M  -1 , where M is the maximal mono- 

tone relation containing the graph of  a given g @ G one gets two quasi-inverses of  g 

which appear to be of  fundamental importance. Let us give first a direct naive defini- 
tion which can be phrased for any mapping in F. 
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2.1 Definition: G i v e n f E F  one sets for s E IR 

fe(s) = inf (r  E IR : s ~<f(r)} 

fh(s) = inf (r  E IR : s < f ( r ) ) .  

Obviously one h a s f  e ~<f~. Moreover f o r f ~  G one also has 

fe(s) = sup ( t  E IR : f ( t )  < s} 

fh(s) = sup {t E IR : f( t)  <. s}, 

since we have partitions of  IR into two intervals; furthermore for f ~  G and s Ef( IR)  
one has 

fe(s) = i n f f - l ( s ) ,  fh(s) = s u p f - l ( s ) .  

Taking N = M -1 , where M is the maximal monotone relation containing the graph of 

f, i.e. the maximal monotone relation N containing A = f -  1 what precedes shows that 

for each s E IR 

eN(S) =sup { t E ~ :  3s'  EIR, s' <s , (s ' , t )  E A }  

= sup (t  EIR : 3 s' E ~ , s '  <s, s' =f( t )}  =fe(s), 

and similarly hN(S) = fh (s). 

The following result whose proof is elementary describes the main properties o f f  e 
and f~.  

2.2 Proposition: 

a) For any f@ G, f e  and fh are quasi-inverses off.  More precisely,f  is an epi-inverse 
o f ]  ~ and an hypo-inverse o f f  e. 

b) An elementg of  G is a quasi-inverse o f f i f f f  e <~g <~fh 
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c) For each s E IR one has sup fh(s')<.fe(s)<~fa(s)<~ inf fe(s"). 
8"($ $" ~.~" 

d) 

e) 

A quasi-inverse g o f f  coincides w i t h f  e i f fg  is 1.s.c. 

A quasi-inverse g o f f  coincides w i t h f  h i f fg  is u.s.c. 

Proof." Let us observe that implications (a) and (b) of  definition 1.1 can be rewritten 

(a)*~g(s)~< inf {r : s < f ( r ) }  :=fh(s) 

(b) ~" (b')c~g(s)/> sup (r  : f ( r ) <  s} :=fe(s) 

so that f a n d  g are quasi-inverses i f f f  e <~g <~fh. 
The inclusion H(f) C E(fe) -1 (resp. E(f) C H(g) -1 )  follows from the first (resp. 

second) characterization o f f  e (resp. fh). This proves assertions (a )and  (b). Assertion 

c) follows from the facts observed before definition 2.1 or from a direct argument: for 
any s' < s  we have fh(s')<~fe(s) since for any r E IR with s <.f(r) and any t E 1R with 

f( t)  <~ s' we have f(t) < f ( r )  hence t ~< r. 

Assertion c) shows that fe (resp. fh )  is left (resp. right) continuous hence 1.s.c. 
(resp. u.s.c.). 

Now if g is a l.s.c, quasi-inverse of f ,  for any s ff IR we have re(s) <.g(s) = sup g(s') 
8"<~8 

sup fh(s') <~fe(s), and g =fe. The proof  of  assertion e) is similar. [] 
8"(8 

As an obvious consequence of  proposition 2.2 we have that f C  G has a continuous 
quasi-inverse iff it has a unique quasi-inverse. 

The idea of the following statement has been suggested to us by R. Correa. 

2.3 Corollary: Let I be an open interval of  IR and l e t f  : I --> N be nondecreasing. Then 
f has a continuous quasi-inverse i f f f i s  (strictly)increasing on D = f - 1  (IR). 

The proof  relies on Proposition 2.2d), e) and on the following obvious but useful ob- 
servation. 

2.4 Lemma: For anyfEG, s E IR, one has 

Ire(s), fh(s)[ C f -1  (s) r [fe(s), fh(s)]. 
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2.5 Remark: The conclusion of corollary 2.3 fails when D is replaced by L as shown 
by the following example: I = IR, f( t)  = - ~  for t <. O, f ( t )  = + ~  for t > 0 so that f is 
not strictly increasing but has as a continuous quasi-inverse the constant mapping with 
value O. [] 

Proposition 2.2.a) and Lemma 1.10 show that fh  cannot be the hypo-inverse o f f  (and 
f the epi-hypo-inverse o f f  h) unless f is 1.s.c. In fact this condition is also sufficient. 

2.6 Proposition: For a n y f E  G , f  h is the hypo-inverse o f f i f f f i s  1.s.c. 

Proof." Let us suppose f i s  1.s.c. As we already know that E ( f ) C  H( fh )  -1 we only have 

to prove the opposite inclusion. Let (r, s)~ Hs(f), the complement of  E(f) .  As s < f ( r )  
and f i s  1.s.c. we can find r '  < r such that s < f ( t )  for each t E [r', r]. A s f i s  nondecreas- 

ing f( t)<.s can occur only for t < r '  (since s<f(r')),  and we get fh ( s )<.r '<r  or 
(r, s )E  Es(fh)  -1 , the complement o f H ( f h )  -1 . [] 

Let us present an easy variant of the preceding result; we give a direct proof  although 

it is a consequence of lemmas 1.9 and 1.10. 

2. 7 Proposition: If f is an epi-inverse of some g ~ G then fh  = g. 
I f f  is an hypo4nverse of  some g ~ G then f e  = g. 

Proof." It suffices to prove the first assertion, the second one being similar. 
As Hs(g )- 1 C E(f)  C H(g)- 1 we have 

r < g ( s ) ~ f ( r ) < .  s ~ r <g(s) 

hence 

fh(s) :-- sup {t E IR : f ( t ) %  s} = g(s). [] 
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3 Inversion and Regularizat ion 

In this section we intend to show that the notions of generalized inverses we introduced 
can be useful for regularization of functions in F. Let us recall the following notion 

and introduce some notations and terminology. 

3.1 Definition: Given a subclass K of F the K-lower hull o f f  E F is 

fK :=supK( f )  where K(f )  = (kEK:k<~f} .  

Similarly the K-upper hull of f is given by 

fK : = i n f { k E K : k > / f } .  

When K is stable under suprema (i.e. supL E K  for each subfamily L of K) then 

fK E K  and f~c is the greatest element of K minorizing f. More generally, introducing 
S(K), the smallest subclass of F containing K and stable under suprema, we get that 

fK E S(K) and fK is the greatest element of S(K) minorizing f. Moreover S(K)= 
(fK : fEF} .  For instance when K is the set L of 1.s.c. functions from 1R into ~, we 
have S(L) =L and for e a c h f C F f  z is given by 

fL (r) = lira inf f(s) 
$--*u 

or the equality E 0  eL) = cl E(f) ,  where clA denotes the closure of the subset A of IR 2. 
Similarly if U denotes the set of  upper semi-continuous (u.s.c.) functions from IR into 

fu(r) = lira sup f(s) = --(--f)C(r). 

When f E  G the preceding formulas can be simplified into 

fZ(r) = sup (f(t) : t <r}, fv(r ) = inf {f(s) : s > r } .  

Several other cases of interest are described in the two following lemmas. 
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3.2 Lemma: The G-(lower) hul l f  G o f f ~  F is given by 

fa(r) = inf {f(s) ' s >~r}. 

Proof." Obviously, the right hand side defines a nondecreasing function g of r and g ~<f. 

Moreover, for any h ~ G  with h ~<f and any s>~r we have h(r)<.h(s)<.f(s), hence 
h(r) <~g(r). Therefore g = fG. [] 

3.3 Lemma: The Q-hull fQ of f E F  is given by fQ =fGL =fLG. Moreover fQ = 
( ( f i ) v ) L  : 

/ 2  (r) = sup inf f(s) = sup inf f(s). 
t < r  s>~t t<~ s > t  

In particular, for g E G, gQ = gL. 

Proof." As Q(f) c G(f) and Q(f) c L(f)  we have/2  ~< fG and fQ ~< fL. As f O E  L and 
fQ e G we deduce from these inequalities tha t f  Q ~<fGL,fO <~fLG. Now the formula 
giving gn for g E G shows that gL E G when g E G so that (fV)L ~ Q hence fGL • fQ 
and fGL =fO. by what precedes. Similarly, one easily sees that h o is 1.s.c. whenever 
h is l.s.c, so thatf LG ~ Q and the definition o f f  Q yieldsf 0 =fLO. 

The equality fQ(r) = sup inf f(s) is just a rewriting of the relation f G (r) = F L (y). 
t < r  $>~t 

In order to obtain the last equality let us set h(t) = inf f(s) so t h a t f  a ~ h an d f  Q = 
s > t  

/TL <<. h L" Now for each t < r we have h(t) <.f(r) hence 

h L (r) = sup h(t) <.f(r) 

and h L = h Q <. fQ so thath L =fQ. [] 

The following results point out the links between hulls and quasi-inverses. 

3.4 Proposition: Let f E G and let g E G be any quasi-inverse off.  Then ge is the 1.s.c. 
hull fL off. In particular fee = fL = fhe. 
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Proof." We have to show that for any r E IR 

g e(r) := inf  {s : r <~g(s) ) = sup {f(t) : t <r)  :=fL(r )  

For any s C IR such that r <~g(s) and any t < r  we have t < g ( s )  hencef ( t )  ~< s a s f i s  a 
quasi-inverse of g, so that fL(r) <.ge(r). Now for any q <ge(r) = sup {t : g(t) < r }  we 

can find t > q with g(t)<r. Then, as g is a quasi-inverse o f f  for any r ' E  ]g(t), r[ we 
have t.<~f(r'), hence q < f ( r ' )  so that q < f L ( r ) .  Thusge(r) =fL(r ) .  [] 

3.5 Proposition: L e t f C  G and le tg  E G be any quasi-inverse o f f  Theng  h is the u.s.c. 
(upper) hull f u  o f f  In particular feb = f u  = fhh. 

The proof  is similar to the preceding one. [] 

3.6 Remark: Proposition 2.6 is a consequence of proposition 3.4 since for f E Q  
f=fhe  so that by proposition 2.2a) f a  is an hypo-inverse o f f  he = f a n d f i s  an epi- 
inverse o f f  ~ . 

In a similar way we get from proposition 3.5 that f o r f E  G C~ U f  e is an epi-hypo- 
inverse o f f s i n c e f = f  eh. The following result is used in [6]. 

3.7 Proposition: For eachfEG, (fL)h = f h .  I f g  is a quasi-inverse o f f t heng  U is the 
hypo-epi-inverse o f f  r . 

Proof.' As by proposition 2.6 and 3.5 gu =fh and (fL)h is the hypo-epi-inverse o f f "  
it suffices to prove that (fL)h = f a .  Since fL  ~<f we have fh <~ (f/ .)h.  Now given 

s E IR, for each q < (fL)h(s) we can find t > q with fL(t) ~ s. A s f r ( t )  = sup {f ( t ' )  : 
t '  < t}, we get f (q )  ~< s and fh(s)  >1 q. Thusfh(s) = (fL)h(s).  [] 

3.8 Corollary: Let f E G  and let g E G  be any quasi-inverse o f f  T h e n f  h =geh. In 
particular for any f E G one has fh = fheh = feeh. 

Proof" The first assertion follows from propositions 3.4 and 3.7 as f z  = ge and fh  = 
( f r ) h .  The second is then a consequence of proposition 2.2a). [] 

A similar stabilization property holds true for fe :re =fehe =fhhe. Let us note the 
following observation. 
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3. 9 Proposition: For any f, g E G, the following properties are equivalent: 

a) f and g have the same 1.s.c. hull: fL = g L  ; 

b) f a n d g h a v e  the same u.s.c, hull: f u  =gu; 

c) f and g generate the same maximal monotone relation in IR x IR. 

Proof: The equivalence between a) and b) follows from lemma 3.3. In fact, for a) =* b) 
we have 

f u = (fL )u = (gL )u = gu 

and for b) =~ a) 

fL _ (fv)z, = (gu)L =gL. 

The equivalence between a) and b )on  one hand and c) on the other hand is due to the 

fact that the maximal monotone relation M in IR x IR generated by k E G is given by 

M ( - ~ )  = [ - ~ ,  i n f /~  ], M(+ ~)  = [sup ku, + ~],  M(t) = [k c (t), ku(t)] for any t @ IR. [] 

3.10 Remark: When f and g are not identically +~  neither - ~ ,  the assertions of 
proposition 3.9 are also equivalent to the fact that f and g generate the same maximal 

monotone relation in IR x N. 

4 App l i ca t ions  

A Duality Schemes 

The following example abstracts an approach of duality theory for quasiconvex prob- 

lems due to J.-P. Crouzeix. 
Let X be a set and let f, g be two mappings from X into N,. Given r E IR we define 

the strict slice S(f, r) o f f  at level r as 

S(r r) = {x  E X  :f(x) <r} 



Inversion of Real-Valued Functions and Applications 133 

while the slice (or trench) o f f  at level r, T(f, r) is obtained by replacing the strict in- 
equality by inequality. Then one can set 

gf(r) = sup (g(x) : x e T(f, r)}. 

When X is a topological vector space and g is a continuous linear functional gf(r) 
appears as the support function of the trench T(f, r) of f. When f is quasiconvex and 
ks.c, i.e. T(f, r) is closed convex for each r E IR, then {gf(.) :g EX*}  characterizes 
the family (T(f, r) : r E IR}, hence]:. This explains the importance of the function gf. 
Here we do not make any assumption of this type. Along with gf we define 

fg(r) = inf ( f (x )  : g(x) >~ r} 

= - ( - f ) _ g  (-r) .  

4.1 Lemma ([2] Prop. 1, 2, 3): The functions gf and fg- are nondecreasing and are 
quasi-inverses. 

The proof is easy and similar to the proof of the following result in which we use the 
following variants of the preceding functions: 

~f(s) = sup {g(x) :x  ES(f, s)) 

fg- (r) = inf ( f (x)  : g(x) > r )  = -(@)_g(-r) .  

4.2 Proposition: The functionj3g is the hypo-epi-inverse of~f. 

This follows from the following equivalences for each (r, s) E IR 2 : 

[? i ( r )  ~> s] ~* [ v  x ~ x , g ( x )  > r ' f ( x ) > ~ s ]  

r [V x E L f ( x )  < s " g(x) <~r] r [/l(s) ~<r]. [] 

Let us observe that for X=IR,  f E G ,  g=I,  the identity mapping of IR, we have 

gf=fh ,  ~ f = f e  while f g  =f, f g  =fu. Thus the present situation encompasses the 
framework of the preceding sections. However the results of these sections can be used 
here. In particular [2] corol. 4 is a consequence of our proposition 2.4b) while [2] 
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prop. 5 follows from our proposit ion 3.4. Other results can also be deduced from the 

previous sections. Observing that  

S(f, r)= U T(f, t), 
t < r  

{x:g(x)>r)= U (x:g(x)>~s}, 
s > r  

we have that  

~Ar) = sup gr(t) = (gl)Q(r) 
t < r  

f g ( r )  = inf f g  (s) = (f~)u(r) 
$ > r  

Using lemma 3.3 we can conclude: 

4.3 Proposition." The mappings f ~  andre-  have the same Q-hull. Moreover ~f = (gy)Q. 

This result enables one to give new duality relations for quasiconvex problems. See [6] 

for details. 

What precedes can be applied in other situations. For instance one can take for X 

a metric space and, given an element w of X, one can set g(x) = -d(x, w). Then 

gf(r) = -d(w, r( f ,  r)), b (r )  = -d(w, S(f, r)) 

while 

f~(r) = inf {f (x)  : x ED(w, -r), f~-(r) = inf {f (x)  " x eB(w, - r )  } 

where B(w, -r) (resp. D(w, -r)) is the open (resp. closed) ball with center w and radius 

- r  and d(w, A)  = inf {d(w, a) �9 a E A }. Using similar techniques as in [6] one can show 

that  the lower semicontinuous hull f L  o f f  can be writ ten as 

f z  = sup hi o (-d(wi, .)) 
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where (Wi)iE 1 is a family of  points of X and (hi)i~ I a family of  nondecreasing 1.s.c. 
function from IR into ~,. 

B Applications to One Variable Convex Functions 

Let f : IR ~ ~, be a non-decreasing function, finite at some a ~ IR. It is well-known 

(see [7 ] - [9 ]  for instance) that F given by 

t 

F( t )  = f f ( r )dr ,  
a 

t E 1 R  

is a closed proper convex function with left and right derivatives F'_,  F~ respectively 

which coincide with the 1.s.c. hull f L  o f f  and the u.s.c, hull f u  of f respectively. More- 
over the subdifferential of  F at t, that is 

OF(t) = (u  E IR " V s E IR, F(s)  - F ( t )  >~ u(s - t) ) 

is given by 

OF(t) = [F'_(t), F+(t)] r3 ~, = [ f L ( t ) , f u ( t ) ]  f3 IR. 

Let g " 1R -~ N be a quasi-inverse of  f, finite at some b E IR and let G be the convex 
function given by 

a(u) = f g(s)ds. 
b 

Using our observations in section 2 we see that 0G is the inverse multifunction of  OF 
so that G differs from the conjugate F*  o f F  given by 

F * ( u )  = s u p  ( u  . r -  F ( r )  " r ~ IR ) 

by an additive constant c. We intend to give an explicit calculation of  this constant 

in terms o f f  and g. This will result from the following lemma. 
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4.4 Lemma: For each real number u such that  g(u) is finite one has 

F*(u)  = ug(u) - F(g(u)) 

This formula is akin to the definition of the Legendre transform of F but  here no dif- 

ferentiability assumption on F is made and f a n d  g are not  supposed to be bijective. 

Proof." In the definition of F*(u)  the supremum is attained at some t E IR iff u E OF(t), 
i,e., using the preceding formula for 3F(t), iff 

f L  (t) <<. u < f u( t)  

or, by proposit ion 3.7, iff 

gL(u) < t <gu(u). 

This occurs with t = g(u) when g(u) is finite, hence the formula holds true. [] 

Taking u = b we get that c := F * ( b ) - G ( b ) = F * ( b )  = bg (b ) -F (g (b ) ) ,  so that,  ex- 

changing the roles of F and G and noting that F = F * *  = G* - c, we get the following 

calculation: 

4.5 Lemma: There exists a constant c E IR such that  F *  = G + c. Moreover 

c = bg (b ) -F(g (b ) )  = a f ( a ) -  G(f(a)). 

In particular, when b = f (a)  we get c = ab. 

The following result generalizes the classical Young formula [12] (see also [13] 

Th. 130.1 for another extension of  this formula we recapture here) as f i s  not  supposed 

to be injective. 
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4.6 Proposition." Let f and g be two quasi-inverse mappings from IR into N finite at 

a and b = f ( a )  respectively. Then for each t E IR such that f ( t )  is finite one has 

t f ( t )  
f f ( r ) d r  = t f ( t )  - af(a) - f g(s)ds. 
a f ( a )  

Proof." Exchanging the role o f f a n d g  in lemma 4.4 we ge t  

G*(t)  + G ( f ( t ) )  = t f ( t )  

G*(a) + G ( f ( a ) )  = af(a). 

Substracting and using the fact that F( t )  = G*(t)  + c with c = F(a) - G*(a) we get the 
result, [] 

When f :  IR+ ~ IR is continuous, strictly increasing, with f ( 0 ) =  0, taking g = f - 1  we 
obtain the Young formula �9 for each t E IR+ 

r y( t )  
f f ( r ) d r  = t f ( t ) -  f f - l ( s ) d s .  
0 0 

The following statement which incorporates the previous discussion, taking into ac- 

count the symmetry of the notion of quasi-inverses, was suggested to us by a referee. 

4. 7 Proposition." Let f, g be non-decreasing extended real-valued functions on 1R and 
let a, b E IR with f(a)  = b, g(b)  = a. Let F, G be given by 

Y s 

F(r) = f f ( t ) d t ,  G(s) = f g(t)dt .  
a b 

Then the following assertions are equivalent: 

(i) f, g are quasi-inverses; 

(ii) f i s a  selection of OG*; 
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(iii) g is a selection of 3F*; 

(iv) ~F = ~G*; 

(v) DG = OF*; 

(vi) F*  = G + ab; 

(vii) G* = F +  ab; 

(viii) F(r) + G( f (r ) )  = rf(r) - ab for r C f - ~  (IR); 

(ix) G(s) + F(g(s)) = sg(s) - ab for s ~ g -  1 (IR). 

Another generalization of the Legendre transform formula is as follows. 

4.8 Proposition: Let F = IR ~ ~ be a closed proper convex function and let G = F* .  
Then the left derivative G'_ of G is the epi-hypo-inverse of  the right derivative F~ of 

F :  for each (s, t) E 1R 2 

G" (s) < t e, s <~ F'+(t). 

Here, as in [8] th. 24.2 the derivatives of  F and G are extended by -~o and +oo on the 
left (resp. on the right) of  dora F and dora G respectively. Proposition 4.7 implies that 
G'_ , e , = (F ) )  , G+ = (F'_) a , a fact proved in ['14] Prop. A2 when F is a convex function, 

nondecreasing on IR+ such that there exists Xo > 0 with F~(xo)  E (0, +~) .  

t 
Proof." This follows from the fact that F can be written F(t)  = F(a) + f f ( r )dr  for 

a 

some non-decreasing f ([8] th. 24.2); choosing f =  F~ = f u  proposition 3.7 yields the 

result. [] 

The following corollary could be deduced from [8] th. 26.3 as its assertion (a) is equiv- 
alent to the property that F is essentially strictly convex and its assertion (b) is equiva- 

lent to essential smoothness of  G. With one variable functions a direct proof  as here 

avoids these general concepts. 

4.8 Corollary: Let F :  IR ~ ~, be a closed convex function;let  G = F *  and let f : IR ~ ~, 
be such that F'_ ~<fK F~-. The following assertions are equivalent: 

(a) f i s  (strictly) increasing on the domain o f F ;  

(b) OL = C:~. 
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Proof." Using proposition 4.7 and the characterization of  quasi-inverses (proposition 

2.2) we have t ha tg  " IR -+ ~, is a quasi-inverse o f f i f f  G'_ ~<g ~< G+. 

Now as the domain of  F and D = f - 1  (IR) have the same interior, proposition 2.3 

shows that assertion (a) is equivalent to the fact f :  IR-+ N has a unique (continuous) 

quasi-inverse. By what precedes, uniqueness of  the quasi-inverse is equivalent to 

G ' _ -  ' - G + .  [ ]  

4.9 Proposition: Let F :  1R--> ]R be a convex function and tet f be a non-decreasing 

function such that F'_ ~<f~< F~.. The following assertions are equivalent: 

(a) G = F*  is finite valued; 

(b) lira f ( r )  = +o% lira 
r . . -++  ~ u 

(c) lira F( t ) / l t [  =+~176 
It]--++~ 

f ( r )  = -oo. 

Proof: (a)*~ (b) By propositions 4.7 and 2.2.b we have G'_ is a quasi-inverse o f f .  
Now, G is finite valued if and only if G '  is finite valued. 

Then corollary 1.4 yields the equivalence (a) *~ (b). 

(b) ~ (c) For each A ~ IR we can find b E IR such that f ( b )  >~ A. Then for t ~> b we 

have 

= I f  F(b)  1 F(t) F(b) + _ [(r)dr  I> + - 0 - b ) A  

t t t b  t t 

y ( t )  F(O 
hence lim inf F(t)  >~A so that lira - -  = +oo. The proof of  lim - ~ is similar. 

t--~ e~ t t-+ ~ t t ~ - -  ~ t 

(c) ~ (a) In the definition of  G(s) = sup (rs - F(r)) the supremum is attained since 
r E I R  

r ~+ rs - F(r) is u.s.c, and 

lira ( r s - F ( r ) )  = lira I rl s -  = lira - [rl 
Irl-,~ 

Thus G(s) = rss - F(rs) for some r s E IR and G is finite valued. [] 
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C Application to Rearrangements 

Let (T, T,/~) be a measured space and let u : T ~ N. be a measurable function. The 

distribution function fu associated with u is the funct ionfu : IR -+ IR+ given by 

fu(r)=p(Su(r)) with Su(r):u- l ( (-oo,  r)). 

The nondecreasing rearrangement of  u is the function fi : IR ~ 115, given by 

fi(s) = inf { r E I R  : fu(r)>s} : rub(S). 

In fact usually t~ is restricted to T =  ]0, m[ ,  with m = ~(T)  or defined on [0, m] by 
gt(O) = fh(O), fi(m) = ess sup u, but this is inessential for what concerns the measurabili- 

ty properties of  ft. The correspondence u ~+ fi has many interesting properties (see [5] 
and its references for instance). In particular for any p E [ 1, oo] it is a nonexpansive 

mapping from Lp(T) into Lp(l") and for any borelian function F "  IR-+ IR bounded 

below by an integrable mapping one has 

y F(u(t))d~(t) = f F(fi(t))d'a (t)  
T T 

where X is the Lebesgue measure on T. As an illustration of our methods let us present 
the two following properties. 

4.10 Properties: The nondecreasing rearrangement ~ of u is the hypo-epi-inverse of fu :  

(r < ~(s)) ~ (u(s .(r))  < s) 

Proof." This follows from proposition 2.6 since, by the very definition of a measure, 

fu is 1.s.c. [] 

4.11 Proposition: For any s ~ IR one has 

fi(s) 7> inf {sup u(S) : S E C, g(S) >1 s} 

Equality holds exept, at most,  on a countable set. 
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When (T, T, g) is a nonatomic measured space one can write 

~(s) = inf {sup u(S) : S E  C,~(S) = s} a.e. s E lR. 

Proof." Let v(s) denote the right hand side of  the preceding inequality. Using proposi- 

t ion 2.2.b) it suffices to prove that  v is a quasi-inverse of fu ,  owing to the fact that two 

quasi-inverses of fu  can differ only on a countable set. 

Now v is easily seen to be nondecreasing and v( fu(r))  <<. r for each r E 1R so that 

v(s)<~r whenever s <.fu(r). Now if v ( s ) < r  we can find S C C with/1(S) ~> s, sup u(S )  
< r so that  S c Su(r) , fu(r)  = ~(Su(r)) >~ ll(S) >~ s. [] 
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