
ZOR - Methods and Models of Operations Research (1991) 35:27-43

A Procedure for Finding Nash Equilibria
in Bi-Matrix Games

By A. H. van den Elzen 1'2 and A. J. J. Ta lman 2

Abstract: In this paper we consider the computation of Nash equilibria for noncooperative bi-matrix
games. The standard method for finding a Nash equilibrium in such a game is the Lemke-Howson
method. That method operates by solving a related linear complementarity problem (LCP).
However, the method may fail to reach certain equilibria because it can only start from a limited
number of strategy vectors. The method we propose here finds an equilibrium by solving a related
stationary point problem (SPP). Contrary to the Lemke-Howson method it can start from almost
any strategy vector. Besides, the path of vectors along which the equilibrium is reached has an
appealing game-theoretic interpretation. An important feature of the algorithm is that it finds a
perfect equilibrium when at the start all actions are played with positive probability. Furthermore,
we can in principle find all Nash equilibria by repeated application of the algorithm starting from
different strategy vectors.

Zusammenfassung: In diesem Beitrag entwickeln wir ein neues Verfahren zur Berechnung eines
Nash-Gleichgewichtspunktes liar Zweimatrizen-Spiele. Das Standardverfahren zur L6sung dieser
Spiele ist der Lemke-Howson Algorithmus. Dieses Pivotverfahren 16st ein lineares Komple-
mentarit~itsproblem. Da dieses Verfahren nur in einer beschrankten Anzahl Punkte beginnen kann,
kSnnen nieht alle Gleichgewiehtspunkte bereehnet werden.
Unser Verfahren 15st ein stationares Punktproblem definiert auf die Strategiemenge und darf in
einem beliebigen Punkt angefangen werden. Der Weg der Punkte des Algorithmus hat einc
einladende spieltheoretische Interpretation. Wenn im Startpunkt alle Strategien mit positiver
Wahrscheinlichkeit g e w ~ werden, dann ist das gefundene Nash-Gleichgewicht perfekt. Auch
diirfen alle Gleichgewichtspunkte bereclmet werden durch mehrcre Startpunkte zu w~hlen.

Key Words': bi-matrix game, Nash equilibrium, complementarity

This research is part of the VF-program "Competition and Cooperation", which has been approved
by the Netherlands Ministery of Education and Sciences.
1 This authoris financially supported by the Co-operation Centre Tilburg and Eindhoven Universities,
The Netherlands.
2 A.H. van den Elzen and A. J. J. Talman,Departmcnt ofEconometrics, Tilburg University, p.0. Box
90153, 5000 LE Tilburg, The Netherlands.

0340-9422/91/1/27-43 $2.50 �9 1991 Physica-Verlag, Heidelberg

28 A.H. van den Elzen and A. J. J. Talman

1 Introduction

In this paper we consider the problem of finding Nash equilibria in mixed strategies
for a noncooperative bi-matrix game. A noncooperative bi-matrix game is a two-
person game with a finite set of actions for each player. The payoffs of a player are
listed in a matrix. The Nash equilibrium is the standard equilibrium concept for a
noncooperative game. It states that a strategy is an equilibrium strategy when no
player can improve upon his situation by deviating from his strategy while all other
players keep on playing their strategies.

The standard method for solving a bi-matrix game is the Lemke-Howson method
(see [4]). That method finds a Nash equilibrium by solving a related linear
complementarity problem (LCP), which is not defined on the strategy space but on
a nonnegative orthant. Each solution then uniquely determines an equilibrium on the
strategy space.

The method proposed in this paper finds a Nash equilibrium by solving a
stationary point problem (SPP) on the strategy space. Thus, contrary to the Lemke-
Howson procedure it directly operates on the strategy space. Both methods are
complementary pivoting algorithms and therefore find under some nondegeneracy
assumption a positively indexed equilibrium (see [6]). However, because the choice
of the starting vector for the Lemke-Howson procedure is restricted, that method may
fail to reach certain positively indexed equilibria. In our method the choice of the
starting vector is free and therefore we can find in principle all positively indexed
equilibria by a repeated application of the algorithm from different starting vectors.
We also show how the algorithm can find negatively indexed equilibria by restarting
it from the positively indexed equilibria already being found. Our method can be seen
as a strategy adjustment process having an appealing game-theoretic interpretation.
In this respect it is also interesting that the algorithm finds a perfect equilibrium
whenever the starting vector lies in the interior of the strategy space, i.e., when at the
start all actions are played with a positive probability.

The organization of the paper is as follows. In Section 2 we show that the set of
Nash equilibria in a bi-matrix game can be seen as the solution set of a stationary point
problem. Furthermore, we give some intuition concerning the working of the
algorithm. The formal steps of the procedure are presented in Section 3. Besides, in
that section we give conditions under which the algorithm converges and we prove
the perfectness of the equilibrium found by the procedure when starting from a
strategy vector in the interior of the strategy space. In Section 4 we present some
examples and provide a game-theoretic interpretation of the method. In Section 5 we
show how the algorithm can find negatively indexed equilibria. We also give an
example of a game for which our method can find more equilibria than the Lemke-
Howson method can find. Finally, some remarks are made concerning the
computational speed of both algorithms.

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 29

2 Solving the Bi-Matrix Game as a Stationary Point Problem

A bi-matrix game is a tuple (nl, n2, A, B) in which n 1(n2) denotes the number of actions
of player 1(2) while A(B) is the payoffmatrix of player 1(2). The actions of player 1 (2)
are indexed by (1, k), k e { 1, ..., nl } ((2, k), k E { 1 n2 }). The matrices A and B
have dimension n l x n2. An element ajk of A denotes the payoff to player 1 if he plays
his j-th action while player 2 plays his k-th action. Similarly, bjk denotes the payoff
of player 2 in that situation.

The strategy space ofplayerj, j e { 1, 2 }, is defined as the (nj - 1)-dimensional unit
s i m p l e x S nj -1 1= { X j E l R + j [~.~J= l X j k = 1}. A vectorxjin S nj - I , j c {1, 2}, represents
the mixed strategy of playerj at which he plays his k-th action with probability xjk.
The nj vertices of S nj-1 are the unit vectors in IR nj They correspond to the pure
strategies ofplayerj . The strategy space of the game, S, is equal to S n1-1 x S ~2 -1. A
vector x in S is called a strategy vector and is equal to (&, x2) with Xl e S ~1 -~ and
x2 ~ S ~2 -1. Each vertex of S corresponds to a strategy vector at which both players
play a pure strategy. The set S being the product of two unit simplices is called a
simplotope.

On the set S we define the function z: S ---> IR " x IR ~2 as follows. For each x in S
the vector z(x) = (Zl(X), z2(x)) with ZI(X) E IN nl , Z2(X) E IR n2 , is defined by

z 1 (x) = Ax 2 and z2 (x) = BTxl . (2.1)

The element &k(x), k e { 1 , n1 }, is the payoff to player 1 when he plays his k-
th action while player 2 plays x2. Similarly, z2k(x), k e { 1 n2}, is the payoff to
player 2 when he plays his k-th action while player 1 plays xa. An action (j, k) for which
zj~(x) = maxh zjh(x) is called optimal for playerj at ~: The number x~-zj (x) is the expected
payoff to player j , j e { 1, 2}, when the strategy vector x is played.

A strategy vector x* in S is called a Nash equilibrium if

x f ~ j (x ,) *~ ' < xj zj(x'~), xj ~ S nj -1, j ~ {1, 2}. (2.2)

Thus, deviating from xj will not increase the expected payoff to playerj. The problem
of finding an x* in S such that x* satisfies (2.2) is known as the stationary point
problem (SPP) on S with respect to z. Since x~zj (x*) is linear in xj we can restrict
ourselves in (2.2) to the nj vertices of S nj-1, j ~ {1, 2}, so that x* in S is a Nash
equilibrium if and only if zjk(x*) <_ x j rz j (x*) , k ~ {1 n j}, j ~ {1, 2}. From this it
is straightforward to derive thatx* is a Nash equilibrium if and only if for all k e { 1,

. . . . n A ,

zjk (x*) = maxh Zjh (X*) when xj*k > O, j ~ {1, 2}. (2.3)

30 A.H. van den Elzen and A. J. J. Talman

Thus, at a Nash equilibrium only actions that are optimal for a player are played
with positive probability. Note that at a Nash equilibrium x* the expected payoff to
player j is equal to maxh zjh(x*) since zjk(x*) < maxh zjh(x*) implies x~k = 0.

The algorithm searches for a solution to the SPP as given in (2.3). Starting from
an arbitrarily chosen strategy vector v = (vb v2) in S, the algorithm generates a piecewise
linear path of points in S leading from v to a Nash equilibrium. More precisely, points
x = (Xx,X2) e S on the path generated by the algorithm satisfy the following conditions.
F o r k ~ {1 nx},

Xa~ = b(x, v). vlk

Xlk >- b(x, v). vak

if zl~ (x) < maxh zlh(x)

if zlk (x) = maxh Zlh (X),

and fork e {1 n2}, (2.4)

XZk = b(x, V).Y2k

Xzk > b(x, V).Y2k

if z2k (x) < maxh z2h (x)

if z2k(x) = maxh Z2h(X),

whereO<-b(x' v) : :minlXY~ [v]h ' ~ >0}_<1.

Observe that x = v satisfies (2.4) with b(x, v) = 1. Also each Nash equilibrium x*
satisfies (2.4) with b(x*, v) = 0 or with vjk = 0 for all (j, k) for which zjk(x*)
< maxh Zjh(X*). In the latter case the non-optimal actions are already played with
probability zero at the start. In both cases xj*k = b(x*, v). vjk is equal to zero when at
x* action (j', k) is non-optimal. Under some nondegeneracy condition the set of points
satisfying (2.4) contains apiecewise linear path, P, from v to a Nash equilibrium. This
path will be followed by the algorithm. The notion of nondegeneracy will be made
precise further on, but it is for example required that at x = v both maxk z~k(x) and
max e Zze(X) are attained for a unique index. Thus, at the starting strategy vector v
each player has only one optimal action. Suppose these maxima are attained for the
actions (1, kl) and (2, kz), respectively. Clearly, from v, along P, b(x, v) must decrease
from 1. Thus, according to (2.4), initially vectors x in S are generated such that all the
xlk, k s ka, and x2k, k ~ k2, are relatively decreased (xi~ = b(x, v). vik, (i, k) r (1, k0,(2,
k2)), while both Xlkl and x2k2 are increased in order to keep Xl in S n~ -~ and x2 in S n2 -1.
This is done till b(x, v) becomes 0 and a Nash equilibrium is reached, or till a point
x is reached at which zjk (x) = zj~ i (x) for some (i, k), k ~ k i. Then xjk is al so relatively
increased. In general the algorithm generates strategy vectors x such that all the
xidvjk, related to the indices (/, k) for which zjk(x) < maxhzjh(X), are minimal, i.e., equal
to b(x, v) (xjk = 0 if vjk = 0). As soon as one of these components ofz(x), say zje(x),

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 31

becomes equal to maxh zjh(x), then xj ~/vj ~ is increased from b(x, v) (xj ~ is increased
from zero if vie = 0), while keeping z ig(x) maximal forj . On the other hand, if a
vector x is generated such that xjvjr , with (j, r) such that zjr(x) = maxh zjh(x), becomes
minimal, i.e., equal to b(x, v) (Xjr becomes 0 if vjr = 0), then vectors y are generated
with Yjr equal to b(y, V).Vjr and Zjr(Y) is decreased from maxh zjh(y).

To illustrate the foregoing let us provide a simple example of a game in which both
players have two actions and the payoff matrices A and B are given by

A=I__4 l ~] a n d B = I ~ 3] �9

The strategy space forthisgameis equalto S = S 1 x S 1 -- {x E IR 4 IXll -I- x12 = 1 and
x21 + x22 = 1}, and is displayed in Figure 2.1.

((~,o),(o,~)) ((o,1),(o,1))

a i

((~,o),0.o)) • =2 /0 ((o,1),(1,o))

Fig. 2.1. The path P of points satisfying (2.4) from v to a Nash equilibrium.

Consider the starting point v = ((1/8, 7/8),(1/2, 1/2)). It is straightforward to verify that
z(v) = ((2, 1), (9/4, 25/8)). Thus at v, zli(v) and z22(v) are maximal. So, the algorithm
leaves v in the direction of ((1, 0),(0, 1)), i.e., xn and x22 are both increased. The
algorithm continues in this way till the vector a = ((2/9, 7/9), (4/9, 5/9)) is reached at
which z(a) = ((16/9, 11/9), (22/9, 22/9)), i.e., a tx=a, z21(x) has become equal to z22(x).
Observe that along the segment [v, a] the number b(x, v) decreases from 1 to 8/9. Next
the algorithm continues, according to (2.4), by increasingx21 relatively away fromx12
while keeping z21(x) equal to z22(x). It is easy to verify that the latter holds along the
line segment [a, c]. In fact z21(x) = z22(x) = 22/9 if xll = 2/9. At c = ((2/9, 7/9), (5/9,
4/9)) with z(c) = ((20/9, 7/9), (22/9, 22/9)) we still have z21(c) = z22(c) and Zn(C) >
z12(c). But observe that at x = c, x2z/v22 has become equal to b(x, v) = xlJvl~ = 8/9.

32 A.H. van den Elzen and A. J. J. Talman

When keeping z22(x) equal to Z21(X) one would have to generate points x with X22/V22
< xlJv12, which contradicts (2.4). In that case one would leave S at the vector ((2/9,
7/9), (1, 0)). But instead the algorithm continues by keeping x22 relatively minimal,
i.e., x22/v22 is kept equal to Xlz[V12, while, according to (2.4), z22(x) is decreased from
maxh Zzh(X) = Z23.(X). In this way the algorithm reaches the vertex ((1,0), (1, 0)) which
is a pure Nash equilibrium with z((1, 0),(1, 0)) = ((4, -1),(4, -3)).

The idea behind the procedure is to generate a sequence of vectors x along which
the set T of actions (j, k) for which zj~(x) = maxh Zjh(X) grows while the probabilities
related to all the other actions are driven down to zero, since if they are zero, a Nash
equilibrium is found, as follows from (2.3). However, the set Tdoes not need to grow
monotonically (cf. point c in the foregoing example). This guarantees the convergence
of the algorithm to a Nash equilibrium.

3 The Procedure

The algorithm is a complementary pivoting procedure. To implement it we first have
to rewrite (2.4) into a system of linear equations. By substituting (2.1) we obtain that
the process generates from v the (piecewise linear) path P of strategy vectors x ~ S
satisfying for k E { 1, ..., nl },

Xllc = bVlk if Akx2 < fll

Xlk > bvl~ i f Akx2 = fll ,

and for k e {1 ha}, (3.1)

x2k = bv2k if x? O k < f12

x2~ > bv2k if Xrl Bk = flz ,

where b := b(x, v), C k and Ck respectively are the k-th row and k-th column of a matrix
C,/~1 = maxk Akx2 , and]~2 = max~ xrlB~.

Before going further we introduce some additional notation. The set of actions of
player j is denoted by I(j) , j e { 1, 2}. Thus, I(j) = {(j, 1) (j, nj)}. The s e t / = I(1)
u I(2) denotes the set of all actions in the game. For each x in S satisfying (3.1) there
is at least one set T c I such that xjk > bvjk and zjk(x) = flj for all (/, k) ~ T while Zih(X)
<- fli and Xih = bVih for all (i, h) ~ T. From this observation we obtain that the procedure
generates for a sequence of subsets T of I with Tj := T ~ l q) ~ r starting from x = v,
strategy vectors x in S such that

Xlk --- bVlk and Akx2 <- fll if (1, k) ~ T

xxk >- bvlk and Akx~ = fit if (1, k) ~ T ,

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 33

and (3.2)

x2k = bv2k and XVl Bg < r2 if (2, k) r T

X2k >-- b'l~2k and XrlBg = r 2 if (2, k) c T.

We now show how the path P can be followed by a sequence of linear programming
(g. p) pivot steps in a system of linear equations obtained from (3.2). Denote the set
of points x in S satisfying (3.2) for certain T c I byB(7). Thus, the algorithm reaches
a Nash equilibrium via a (finite) sequence of sets B (7), T c I. Assuming nondegeneracy
as given below, each nonempty B(T) is a line segment in S and we need one g. p step
to traverse such a B(7). The system of linear equations in which the g. p pivot step
is made is obtained from (3.2) by introducing slack variables for each inequality. The
slack variables for the inequalities Ahx2 <_ ill, (1, h) ~ T, are denoted by/-qh and those
for XrlBh < f12, (2, h) ~ T, by/22h. The slack variables for the inequalities xjk > bvj~,
(j, k) c T, are denoted by A4g. Adding these slacks to (3.2) we obtain that x belongs
to B(T) iff for j e { 1, 2} there exist/~jk > 0 for (j, k) e T, Pjk > 0 for (j , k) ~ T, flj ~ IR
and 0 < b < 1, such that

x j = b v j +]~ ~jkej(k) with Y~ 2 j k = l - b , (3 . 3)
(j,k)~Tj (j,k)~Tj

while

Ax 2 + Y~ ylhel(h) = e l f l 1
(1,h)~T

and

BYx1 + ~.]A2he2(h)=e2fl2 .
(2,h)~T

(3.4)

Here ej(k) is the k-th unit vector in IR nj while ej is the vector of ones in IR "J, j ~ {1, 2}.
Substituting (3.3) in (3.4) gives the system of linear equations

/!/ . |BTvI, ~T Ak el (oh)

(1 ,k)e r (2, k) ET (1 ,h)~r

34 A.H. van den Elzen and A. J. J. Talman

Ill e2!h) _]3 -]32 = (3.5)

where 0 denotes a vector of zeros of appropriate length. In the system (3.5) there are
nl + n2 + 2 equations and nl + n2 + 3 variables. The last two equations of (3.5) reflect
the property that ~(j, k)~ ~ A'jk = 1 - b, j e {1, 2). These equations can be eliminated by
substituting for j e { 1, 2} one of the 2jk's, say ~jkj, by

s 1; ~jk. (3.6)
(j .k)~

k~kj

Let T 1, j E {1, 2}, be the set of indices defined by T 1 = Tj \ {(j, k j)} and let
T 1 = Ta 1 u T2 a . All of this together and the substitution ofb by 1 - b' , gives the following

system of equations

IA z I 0) I b + 1; ~lk - + Z ~2k U_
(1, k)~T1 B~ B{ (2, k)~:c' Iel)) (;)

+ Z /l~h + I; /~2h h) -] 31
(1,h)~T (2,h)~T e2

-Av2 "]. (3.7)

The latter system has only n l + n2 equations and n l + n2 + I variables, and the variables
must satisfy ~k -> 0 for (j, k) ~ T 1, 1;(j,k)~Tj' ~jk <- b" for j ~ { 1, 2}, 0 _< b' _< 1, ~'h ~

0 for (i, h) ~ T. A solution to this system is denoted by (b' , ~1, ~2, #1,/.t2,]31, ~) and
corresponds to a point x = (xl, x2) in B(T) as defined in (3.3). The g. p pivot steps of

the algorithm are made in system (3.7).
Before stating the formal steps of the algorithm we give a condition that

guarantees the convergence of the procedure. This condition is explained in more

detail after the description of the algorithm.

Assumption 3.1.: (nondegeneracy assumption). At each solution (b', &l, ~, /-q,]-/2,
]31,/32) of (3.7) at most one of the constraints 0 < b' < 1, &j~ > 0 for (j, k) ~ T 1 , b' >
Y~(j,k)~r) 2~jk, I-rib > 0 for (i, h) ~ T, is binding unless b' = 1 or Vih = 0 for all (i, h)

T.

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 35

Step 0: Initialization
Choose an arbitrary vector v in S. If v is a Nash equilibrium then the algorithm stops.
Else calculate the (unique) indices (1, k~) and (2, k2) for which Ak~ v~ = max~ A %2 and
vrxBg~ = maxg vVtBg. Furthermore, set T ~ = 0, b ' = 0fl~ = a~v2, [32 = vr~B~,l.t~h =
fl~ - Ahv2 for h ~ k~ and #2h = [32 -- vV~Bh for h ~ kz. Increase b' from 0 in (3.7) and
go to Step 1.

Step 1:
a. If b" becomes 1 then let the solution of (3.7) be (1,).a, A.z, bq,/-t2, flj, * fie)- The

vector x* = (x;, x~), with x~ = ~](j;e)~ 2c~.~ej(k), j �9 {1, 2I, is a Nash equili-
brium and the algorithm stops.

b. If &jk becomes 0 for some (j, k) �9 T 1 then T 1 becomes TI\{ (j, k) } and go to Step
2a.

c. If Z(j. k) ~ ~ 2jk becomes equal to b' for somej �9 { 1,2 } then according to (3.6),
&jkj becomes 0. Go to Step 2b.

d. If Pih becomes zero for some (i, h) r T then go to Step 3.

Step 2:
a. Increase the complementary variable/.tj~ from zero by pivoting into system

(3.7) the column (el(k), 0) r if j = 1, or (0, e2(k)) T if j = 2. Return to Step 1.

b. Substitute the largest Xjk, say ,~je, by b' - ~, 2jh. Increase #jk~ from zero
(j,h)~rj
h~kj,t

by pivoting the related column into system (3.7). T ~ becomes Tak{ (j, g)}, kj
becomes g, and return to Step 1.

Step 3:
If additionally vjk= 0 for all (j , k) ~ T u {(i, h)} thenlet the solutionbe (b', 2~, ;L~,/.t~,

i l l ,r2). The vector x*=(Xl,X2), with xj=(1-b')vj+~,(j,k)~rs;~jkej(k),
j �9 {1, 2}, is a Nash equilibrium and the algorithm stops.
Else increase the complementary variable 2~ih from zero by pivoting its related column
into system (3.7). T 1 becomes T 1 ~ { (i, h) } and return to Step 1.

Let us make a few remarks. The algorithm starts with increasing b' from zero.
From (3.6) we derive that this means that both/~k~ and 22k~ are increased from zero.
In Step lc the variable &jkj becomes zero. Then we have to adapt system (3.7) by
eliminating another 3.ik to take over the role of 2~k~- In principle any 2sk, (J, k) �9 T 1,
can be taken. We suggest to take the largest, say '?Vg" This substitution can easily be
performed in (3.7) by adding the column related to 2~je to the column related to b '
and subtracting the same column from the columns related to ~jh, h ,/: g.

Assumption 3.1 is standard in linear programming and assures that all steps of the
algorithm are unique. More precisely, when this nondegeneracy condition holds it

36 A.H. van den Elzen and A. J. J. Talman

cannot occur that more than one constraint in Step 1 becomes binding simultaneously.
This is only allowed when the algorithm stops. Assumption 3.1 also guarantees the
uniqueness of the indices (1, kl) and (2, k2) in Step 0. To see this, suppose that
A~v2 = maxk A~v2 = Aev2 for some t ~ kl. But then ~/lt ---- 0 and two constraints (the
other one is b' = 0) are binding. This is the only restriction on the choice of the starting
vector.

The nondegeneracy condition guarantees the convergence of the algorithm. First,
observe that the solution set of (3.7) is bounded for given T. Since/~ = maxk zjk(x)
and z is a linear function on the compact set S,/3j must be finite and therefore also the
/,rib's with (i, h) ~ T. This together with Assumption 3.1 implies that for each T the
solution set of (3.7) and hence also B(T) is either empty or a line segment with two
end points. The algorithm starts by traversing B(T~ with T O = { (1, kl),(2, k2)}. If the
algorithm operates in some B(T) and 2,jk becomes zero for some (j, k) ~ T then the
algorithm continues in B(irk{ (j, k) }). Similarly, the algorithm continues inB(T u { (i,
h)}) if/-tih for some (i, h) ~ T, becomes zero and no Nash equilibrium is reached.
Assumption 3.1 guarantees that these transitions are unique so that no cycling can
occur. Because there are only a finite number of possible subsets Tthe algorithm must
reach within a finite number oft . p steps a Nash equilibrium.

What about the relation between our nondegeneracy condition and the
nondegeneracy condition on games of Lemke-Howson [4] (See also Shapley [6])?
Our condition is much weaker. We only need this condition to hold along the path
generated by the algorithm. The last pivot step may be degenerated. In other words,
it is possible to apply our procedure to games that are degenerated in the sense of
Lemke-Howson. In the next section we give an example.

At the end of this section we discuss whether something can be said about game-
theoretic properties holding for the equilibrium found by our algorithm. More
concrete, we would like to know whether the equilibrium found is isolated, quasi-
strong, regular, essential, perfect, or proper. The precise definition of these concepts
can be found for example in van Damme [2]. It turns out that our algorithm finds a
perfect equilibrium whenever it starts from an interior strategy vector. This is
interesting the more because for bi-matrix games an equilibrium is perfect iff it is
undominated (see Theorem 3.2.2 in [2]). Other properties may not hold for the
equilibrium reached by our procedure. We remark that this is partly due to the fact
that the algorithm can for example be applied to certain games with no isolated
equilibria.

Thus, the positive result is that our algorithm finds a perfect equilibrium whenever
the starting point v is in the inner of the strategy space, i.e., when vjk > 0 for all (j, k)

I. To prove the statement it is most convenient to define a perfect equilibrium as
a limit point of a sequence of e-perfect equilibria. Thus, first we have to define e-
perfectness.

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 37

Definition 3.2. The strategy vectorx(e) c S is an e-perfect equilibrium if it is completely

mixed and satisfies

if zjk(x(e)) < zje(x(e)) then xjk(e) < e, Vj, k, g.

Observe that an e-perfect equilibrium need not to be a Nash-equilibrium. The
concept only states that non-optimal actions are played with a small probability, i.e.,
players make only small mistakes. Now x* in S is aperfect equilibrium if x* is a limit
point of a sequence {x(e)}~; 0, where for all 6, x(e) is an e-perfect equilibrium.

Theorem 3.3.: If v lies in the interior of S then the algorithm finds a perfect Nash
equilibrium.

Proof'. Recall that the vectors x on the path generated by the algorithm satisfy

xj~ = b(x,v).vjk if zjk(x) < maxe zje(x)

xjk > b(x,v).vjk if zjk(x) = maxe zjt(x) ,

whereON b(x, v):= min~Xih l vih Lxih 0}<1.

First of all, every Nash equilibrium x* in the inner of S is perfect for then
zj~(x*) = maxt zje(x*) for all (j, k) e I. Next, because vjk > 0 for all (j, k) ~ 1, the
algorithm can only reach an equilibrium x* on the boundary of S if in the last iteration
of the algorithm b(x, v) becomes zero. Suppose b(x, v) decreases along the line segment
[y, x*] from b(y, v) down to zero. Let I(x*) = {(j, k) ~ I Ix~k = 0} and let (r, g) be
an index for which Yr g = max(g,p~ t(x*) Yip. Now each vector x on (y, x*) is an G-per-
fect equlibrium x(e) with e = Xrt. The limit point x* of {x(e)}~, 0 is perfect by
definition. []

Observe that we not only proved that our algorithm finds a perfect equilibrium but
also that the last linear piece of the path consists of G-perfect equilibria. Furthermore,
we emphasize that the result above is not trivial. This because the algorithm can be
applied to games which are degenerated in the sense of Lemke-Howson. For such
games not all equilibria are perfect. However, our procedure succeeds to find one
when being started in the interior of the strategy space. In Section 4 we illustrate this
with an example.

38 A.H. van den Elzen and A. J. J. Talman

4 Game-Theoretic Interpretation

In this section we want to explain the working of the algorithm in terms of strategies
and payoffs. Technically speaking the algorithm roughly works as follows. From the
start b' is increased from zero. Recall from (3.6) that an increase of b' means that both
Alkl and Azk2 are increased and that b is decreased (from 1). As soon as/-tjk for some
(j, k) ~ T becomes zero, its complementary variable Ajk is increased from zero and
vice versa. From (3.3) we deduce that a positive Ajk means that the relative probability
with which playerj uses his k-th action is larger than the relative minimum (xjk > bvjk),
whereas Ajk = 0 indicates that xj~ = bvjk. Similarly, from (3.4) we infer that/-tjk > 0
corresponds to action (j, k) being non-optimal for player j, i.e., zjk(x) < maxh Zjh(X),
whereas #jk = 0 means that action (j, k) is optimal for playerj. With all of this together
it is straightforward to derive the game-theoretic interpretation of the adjustments
made by the algorithm.

From the start the probabilities related to the unique optimal actions of both
players are increased, whereas the probabilities related to all other actions are
proportionally decreased. If the latter probabilities all become zero then a Nash
equilibrium is reached. This because then all non-optimal actions are played with
zero probability. Else, the algorithm eventually generates a strategy vector at which
for some player a second action becomes optimal. Then the procedure continues by
keeping that action optimal whereas the corresponding probability is relatively
increased. In general, the algorithm generates strategy vectors at which the non-
optimal actions are played with probabilities all being, relative to the starting
probabilities, equal to each other and smaller than each probability with which an
optimal action is played. As soon as a non-optimal action becomes optimal, its
relative probability is increased from the probabilities related to the non-optimal
actions. On the other hand, if a probability with which an optimal action is played
becomes relatively equal to the probabilities of the non-optimal actions then it is kept
equal to these and the algorithm continues by making the related action non-optimal.

For a more specific illustration we apply the algorithm to the example presented
earlier (see Figure 2.1). At v for the solution (b',/-tl,/.,L2, ~1, f12) of (3.7) holds that fll
= (A v 2) 1 - - 2, 1~2 = (B T V l) 2 = 25/8, # 1 2 = ~1 -- (A v 2) 2 = 2 - 1 = 1,/[/21 =-]32 -- (BTv1) I =
25/8 - 9/4 = 7/8 while b' = 0. The algorithm leaves v by increasing b' from zero, i.e.,
3,11 and ~2 are increased (Step 0). At the vector a, the variable/-t21 has become zero
(Step ld) whereas b" = 1/9, fll = (Aa2)l = 16/9, fl~ = (Bral)2 = 22/9,/[212 = 5/9. Thus,
the algorithm continues from a by increasing "~['21 from zero (Step 3). The solution at
c is fll = (Ac2)1 = 20/9, fl~ = (B q - C l) l = (B q - C l) 2 = 22/9,/[112 = ~ 1 -- (Ac2)2 = 13/9, ~1 =
b' = 1/9. Thus ~ 2 has become zero (Step lc). In system (3.7), (2, k2) becomes (2, 1)
and the algorithm continues by increasing #22 from zero (Step 2b). In the next step
the algorithm reaches the Nash equilibrium ((1, 0),(1, 0)) at which b" = 1 (Step la).

The game-theoretic interpretation of the adjustments along the latter path is as
follows. At v, action (1, 1) is optimal for player I and action (2, 2) is optimal for player

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 39

2. Now the algorithm increases from v the probabilities with which these actions are
played and decreases the probabilities of all other actions with the same rate. The
algorithm continues in this way till it generates the strategy vector a at which player
2 becomes in equilibrium (zzl(a) = z22(a)) . From a the algorithm generates strategy
vectors x by relatively increasing probability x21 away from x12 while keeping player
2 in equilibrium. At c the probability with which player 2 plays his second action has
become relatively equal to the probability related to the only non-optimal action (1,
2). Then the algorithm distorts the equilibrium situation of player 2. It continues by
generating vectors x at which for player 2 the action (2, 2) is non-optimal, i.e., z22(x)
is made smaller than z21(x). Meanwhile, the probabilities x12 andx22 are kept relatively
equal to each other but smaller than xH and Xzv In this way the Nash equilibrium ((1,
0),(1, 0)) is reached.

We conclude this section with an application of our algorithm to a bi-matrix game
which is degenerated in the sense of Lemke-Howson [4] (see also [6]). The algorithm
cannot only be applied to this game but it also finds a perfect Nash equilibrium
whenever it starts from the interior, although there are an infinite number of equilibria
not being perfect. The game we consider is the bi-matrix game with payoff matrices

A;E: :1 ~ ',1
This game is graphically represented in Figure 4.1. The piecewise linear curve

heavily drawn denotes the set of optimal strategies of player 1 against player 2, also

((~,0),(0,~))

I .,... R 2
~ R 1

1(~ 1),(Z~}

{(1,1), (2,1)}

I " , ,

(0,o),(1,o)) x. = 1/2

((0,1),(0,1))

((o,I),(I,o))

Fig. 4.1. The set of Nash equilibria consists of the unique perfect Nash equilibrium ((1, 0),(1, 0))
and the set {x c S I Xll < 1 / 2, x 2 = (0,1)}.

40 A.H. van den Elzen and A. J. J. Talman

called the best reply set R 1 of player 1. We see that player 1 plays action (1, 1) with
probability one against all strategies of player 2, except when player 2 plays (2, 2)
with probability one. In that case player 1 is indifferent between his actions.
Similarly, one can derive the best reply set R 2 of player 2, indicated in the figure by
the dashed piecewise linear curve. The Nash equilibria coincide with the intersections
of R 1 and R 2 . In the figure {(1, 1),(2, 1)} indicates that in the corresponding subset
of S the actions (1, 1) and (2, 1) are optimal. Similarly, for {(1, 1), (2, 2)}.

When the algorithm starts in the interior of Sit always finds the perfect equilibrium
((1, 0), (1, 0)). We have given two possible paths in the figure. Observe that all Nash
equilibria except ((1, 0), (1, 0)) fail to be perfect. Consider for example the
equilibrium ((0, 1), (0, 1)). If player 2 makes a mistake and plays his first action with
arbitrary small probability then player 1 immediately plays (1, 1). Hence, this equili-
brium is unstable against small mistakes.

5 How to Find More Equilibria

Both our algorithm and the Lemke-Howson procedure are complementary pivoting
algorithms and therefore find positively indexed equilibria. The notion of the index
of an equilibrium in a bi-matrix game has been introduced by Shapley [6]. The index
of an equilibrium is positive or negative depending on the sign of the determinant of
a matrix related to the payoff structure at that equilibrium. For more details we refer
the reader to [6]. In principle our algorithm can find all positively indexed equilibria.
This because our procedure can start from almost all strategy vectors. Because the
Lemke-Howson method can only start from a limited number of strategy vectors, it
is possible that this procedure cannot detect some of the positively indexed equilibria.
We illustrate this with an example given by Shaptey in the article mentioned.
Furthermore, we show that our algorithm can also find negatively indexed equilibria
by restarting in a positively indexed equilibrium already found. This can only be done
for games with an odd number of isolated equilibria, so that the number of negatively
indexed equilibria is one less than the number of positively indexed equilibria (see
[6]). This is not a great restriction because the set of bi-matrix games having these
properties is dense in the set of all bi-matrix games (see [2]). We conclude this section
with some remarks on the computational performance of the Lemke-Howson
algorithm and our procedure.

Before giving the example of Shapley we first give a rough impression of the
Lemke-Howsonprocedure. It solves a bi-matrix game (n l, n2,A,B) by solving arelated

n 1 -t-/Z 2 linear complementarity problem on IR+ . Any vector y = (Yl, Y2) in iRnl+ +n2
corresponds to a strategy vector x = (Xa, x2) in S, where xj = yj (Z'~J=I Yjl)-a, j �9 {1, 2].
By this transformation we can indicate how the Lemke-Howson procedure operates
on the strategy space S. It starts from a pure strategy vector at which player 1 plays
some pure strategy while player 2 plays his best reply against that strategy. If this

A. H. van den Elzen and A. J. J. Talman 41

vector is not a Nash equilibrium, the algorithm starts with increasing the probability
related to the best reply strategy of player 1 against the starting strategy of player 2.
In this way, the Lemke-Howson method follows the best reply set of player 2 till it
reaches a Nash equilibrium. For more details we refer to [3]. Note that the starting
vector is related to one of the pure strategies of player 1. By interchanging the players
the maximal number of different starting vectors therefore equals nl + n2.

The example of Shapley concerns a 3 x 3 bi-matrix game with payoff matrices

A = 2 and B = 2 .

0 0

Observe that the payoff structure for both players is identical. This game possesses
two positively indexed Nash equilibria, i.c. ((0, 0, 1), (0, 0, 1)) and ((1/3, 2/3, 0),
(1/3, 2/3, 0)). However, the Lemke-Howson algorithm can only find the first one.
This because that method can only start in one of the three vectors ((1, 0, 0), (0, 0, 1)),
((0, 1, 0),(1, 0, 0)) and ((0, 0, 1), (0, 0, 1)), each corresponding to a pure strategy of
player 1 and the best reply of 2. Of course, interchanging the players gives no
additional starting vectors because the payoffs are equal for both players.

With our algorithm we can also find the second positively indexed Nash
equilibrium. For example, when it starts from v = ((0, 1, 0), (0, 1, 0)), it reaches
((1/3, 2/3, 0), (1/3, 2/3, 0)) in one step. This because z(v) = ((3, 2, 0), (3, 2, 0)), making
that the algorithm generates from v a path of vectors x with xjl = 1 - b, xj~ = b, and xj3
= 0, j ~ { 1, 2 }, with b decreasing from 1 till 2/3.

Next, we indicate how to find negatively indexed equilibria with our algorithm.
We recall from Section 2 that the algorithm generates from a starting vector v apiecewise
linear path of vectors x in S all lying in the set By := ~T By (T), T ~ I, where

Bv (T) = {x ~ S I xik >_ b(x , v). vjk and zjk (x) = max h Zjh (x), (j , k) e T

xjk = b(x, v). vjk and zjk (x) _~ maxh Zjh (X), (j , k) r T}.

In general the setBv is a 1-dimensional manifold. More precisely, for games with an
odd number of isolated equilibria it consists of disjoint piecewise linear paths. One
such path connects v and a positively indexed Nash equilibrium while all other paths
connect two Nash equilibria, one positively and one negatively indexed. In this way
all other equilibria are connected.

How can we use the set By to find negatively indexed Nash equilibria? Suppose
we have found k different positively indexed Nash equilibria by starting our algorithm
from k different starting vectors. Then we consider the set By related to the starting
vector v from which the first Nash equilibrium was found. We successively restart our

42 A.H. van den Elzen and A. J. J. Talman

((~.o),(0,~))

i
a

x ~

((o, ~), (o,1))

X21 =3/8

((1,0), (1,0)) x~, =2/9 ((0,1), (1,0))

Fig. 5.1. The s e t Bvl consists of a linear path connecting v I and ((1,0), (1,0)) and apiecewise linear
path connecting ((0, 1), 0, 1)) and x*. The line segment connecting ((0, 1), (0, 1)) and a lies on the
line through v 1 and ((0, 1), (0, 1)) and equals By1 ({(1, 2), (2, 2)}). Furthermore, the line segment
[a, x*] equals Bv~ ({(1, 2), (2, 1), (2, 2)}).

algorithm from the other k - 1 positively indexed equilibria and find k - 1 different
negatively indexed equilibria by following the piecewise linear paths in By connecting
the equilibria with positive and negative index. That these paths can indeed be
generated by our algorithm follows from the fact that vectors on the paths satisfy the
conditions (2.4). The only additional step is the initialization of the algorithm at a
positively indexed equilibrium x*. In practice this can be done by substituting v for
the starting vector v* related to x* in the final system of the algorithm starting from
V:~.

Again we illustrate this with the example of Section 2. Consider Figure 5.1. When
we apply our algorithm starting from v I we find ((1, 0), (1, 0)). Next we apply the
algorithm from v 3 and find ((0, 1), (0, 1)). The third (negatively indexed) equilibrium
is found by restarting the algorithm in ((0, 1), (0, 1)) while considering v 1 as starting
vector in the system. Thus, in the final system related to ((0, 1), (0, 1)) with v = v 3 we
have to substitute v 1 for v 3. Applying the algorithm in this manner means that we reach
((2/9, 7/9),(3/8, 5/8)) by traversing in two steps the piecewise linear path in By1
connecting ((0, 1), (0, 1)) and ((2/9, 7/9), (3/8, 5/8)).

To compare the computational strength of our algorithm and the Lemke-Howson
procedure we applied both algorithms to several games of different dimension. More
precisely, the number of actions ofbothplayers varied from4 to 16. The computational
speed was measured in the number of pivot steps needed to obtain an equilibrium.
Overall seen, the Lemke-Howson method performs best. In particular that method is
in favour for games of small dimension and games in which the number of actions

A Procedure for Finding Nash Equilibria in Bi-Matrix Games 43

of one player is small compared to the other. We then let the Lemke-Howson method

operate on the best reply set of the player having the largest number of actions. Our

method is more suited for relatively large games with both players having a more or
less equal number of actions. The reason is that our algorithm adapts all probabilities

simultaneously. Of course, the choice of the starting strategy vector is crucial for our
algorithm. In general it seems impossible to select a 'best' starting vector from the
data. We did experiments with starting vectors related to rationalizable strategies (see

[1] and [5]). At such starting vectors only actions are played which are a best reply

against an action played by the other player. However, the results are not better than
those obtained for starting vectors at which all actions are played with equal
probability.

References

[1] Bernhein D (1984) "Rationalizable strategic behaviour", Econometrica 52:1007-1028
[2] van Damme EEC (1983) Refinements of the Nash Equilibrium Concept, Lecture Notes in

Economics and Mathematical Systems 219, Springer Verlag Berlin
[3] van den Elzen A (1990) "Interpretation and generalization of the Lemke-Howson algorithm",

Methods of Operations Research 60:337=345
[4] Lemke CE, Howson JT (1964) "Equilibrium points of bimatrix games", SIAM Journal of

Applied Mathematics 12:413-423
[5] Pearce D (1984) "Rationalizable strategic behaviour and the problem of perfection",

Econometrica 52:1029-1040
[6] Shapley LS (1974) "A note on the Lemke-Howson algorithm", Mathematical Programming

Studies 1:175-189

Received October 1988
Revised version received October 1989

