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A Vector Variational Inequality and Optimization 
Over an Efficient Set 

By G.-Y. Chen I and B. D. Craven 2 

Abstract: Some relations are obtained between weak vector minimization, a vector variational in- 
equality, and the optimization of a utility function over a set of efficient points. 

Zusommenfassung: Es werden einige Beziehungen fiber sehwaehe Vektorminirnierung, ciner vektoriel- 
len Variationsgleichung und der Optimierung einer Nutzenfunktion fiber einer Menge effizienter 
Punkte hergeleitet. 

1 I n t r o d u c t i o n  

Multiobjective opt imizat ion problems arise in many applications. Usually, only efficient 

solutions need be considered as possible optima. One natural approach is to opt imizc a 

suitable uti l i ty funct ion over the set o f  efficient  solutions. This ~et is no t  generally 

convex,  even when the given mult iobject ive problem is convex.  

Philip [8] has considered some special mult iobject ive problems, and proposed an 

algorithm. More recently,  Benson [1, 2] has discussed the opt imizat ion  o f  a linear utili- 

ty funct ion  over the set o f  efficient  solutions,  and has proposed an algorithm. 

I G.Y.  Chen, Academica Sinica, Institute of Systems Science, Beijing 100080, China, and Mathe- 
matics Department, University of Melbourne, Parkviile, Vic. 3052, Australia. 
2 B.D. Craven, Mathematics Department, University ofMelbourne,ParkviUe, Vic. 3052, Australia. 

0340-9422/90/1/1-12 $2.50 �9 1990 Physica-Verlag, Heidelberg 



2 G.-Y. Chen and B. D. Craven 

2 Definitions and Preliminary Results 

Let X be a real linear topological space, and let (Y, S) be a real topological linear space 
with a partial order ~> induced by a pointed closed convex cone S, with nonempty 

interior int S; thus y i ) Y2 ~* Y 1 - -  Y2 E S. Let So = S ~ {0 }. Let L(X, Y) be the space 
of continuous linear operators from X into Y. Let C C X be a nonempty convex set. 

Let f :  C-+ Y be a mapping, and let G : C +  2 Y be a point-to-set mapping. If 4 E X ' ,  

the dual space of  X, then ~x denotes the evaluation of ~ at x ~X.  

Definition 1: The mapping f : C -* Y is S-convex if 

( V x l ,  x2 E C, V a C (0, 1)) o~f(x 1 ) + (1 - a)f(x2) Ef(ax 1 + (1 - a)x2) + S. 

The point = to-set mapping G : C -+ 2 Y is S-convex if 

( V x l , x 2  EC ,  V a E ( 0 ,  1)) aG(Xl)  + (1 - a)G(x2) C G(ax 1 +(1 -a)x2)+S.  

Definition 2: Let C C X be a nonempty set, x 0 E C, and G : C ~ L(X, Y) a point-to- 

set mapping. A generalized vector variational inequality is the problem of finding a 

vector x o E C and a linear operator A E G(xo) such that (V x ~ C) A (x - Xo) q~ - in t  S. 
Consider now a multiobjective optimization problem: 

WMINf(x) subject to x E C, (1) 

where C C X is a nonempty set, f : X ~ Y is a mapping, and WMIN denotes weak 

minimum. 

Definition 3: A point Xo is a weak minimum, or weak efficient point, for problem (1) 

if (V x E C) f(x) - f (xo)  ~ - in t  S. The set of all weak minimum points for (1) is de- 

noted by CE. 

Definition 4: A linear operator A E L(X, Y) is a weak subgradient o f f  : C --> Y (where 

CCX)a t xo  E C i f  

( V x E C) f ( x ) -  f ( x o ) -  A(x - X o )  q~-int S. 
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The weak subdifferential of f at x 0 is the set ~ wf(xo)set of all weak subgradients o f f  

at Xo. A linear operator A ~L(X, I0 is a strong subgradient o f f :  C-+ Y a t x  0 C C i f  

(V x E C) f(x) - f (xo)  - A ( x  -Xo) E S. The set of  all strong subgradients of f a t  Xo is 

denoted by bsf(Xo). 
Since S is a pointed cone with nonernpty interior, 

(v Xo ~ C) ~sf(Xo)c ~wf(xo). 

Definition 5: [7] A topological vector space Y, partially ordered by a convex cone S, 

is order-complete if every subset A which has an upper bound b in terms of  the order- 

ing (that is, ( V y  E A )  b - y  CS)  then has a supremum b" (that is, there exists b" E Y 

such that b" is an upper bound to A, and each upper bound b to A satisfies b ̂  - b E S). 

Remark: From Def. 5, a similar statement holds, replacing upper bound by lower 

bound, and supremum by infimum. It is well known that R n, with an order cone S 

having exactly n generators, is thus order-complete; but that C(I) (the space of  con- 

tinuous functions on an interval L with the uniform norm) is not order-complete. 

3 Existence of Subgradients 

In this section, the existence is proved of  weak and strong subgradients. In order to 

prove the existence of strong subgradients, a generalized Hahn-Banach extension 

theorem is introduced. This result (Theorem 2)is generalized from Giles' "Hahn-Banach 
dominated extension theorem" for functionals [6]. 

Lemma 1: Let C C X  be a convex set, with int Cv~b; let f :  C ~  Y be an S-convex 

mapping, continuous at some point Xo E int C; let int S v ~ ~. Then the set 

e p i f : =  { ( x , y ) E X  x Y : xEC,  y - f ( x ) E S )  

is convex, and int e p i f 4 :  r 



4 G.-Y. Chen and B. D. Craven 

Proof: Let (X 1 ,Yl ), (X2, Y2) E epif,  and let 0 < a < 1. 

Let (x, y)  = c~(x 1, Y 1 ) "b (1 -- ~)(X2, Y2)" Since f is S-convex, 

Y ~S otf(x1 ) + (1 -- o O f ( x 2 )  ~ S  f((?LX 1 + (1 -- a)X2) = f ( x ) .  

Thus e p i f  is convex. Choose Yo E Y such that Yo - f ( x o )  C int S, thus Yo - F ( x o )  + 

2 M C  S for some neighbourhood M of 0 in Y. Since x o E in t  C a n d f i s  continuous at 

Xo, there is some neighbourhood N of  0 in X, such that Xo + N C C, andf (xo  + M) C 

f ( x o )  +M. Hence (x 0 +N, Yo +/14) C epif ;  thus int ep i f i s  nonempty. [] 

Theorem 1: Let C C X  be convex, with int Cr  let the cone S be pointed, with 

int S 4: ~; let F : C -~ Y be an S-convex mapping, continuous at x o E int C. Then there 

exists a weak subgradient B of  F at Xo, satisfying the further condition that Bz ~ - i n t  S 

r Bz E S. (Continuity of  F need not be assumed in finite dimensions.) 

Proof: Let D = C - {Xo }, and g(z) - F(xo + z) - F(xo).  Then 0 E int D, g(0) = 0, and g 
is S-convex and continuous at O. Let K = { (z, y )  E D x Y : y - g ( z )  E int S }. By Lemma 

1, K is a nonempty convex set. Since (0, 0) NK, by the separation theorem for convex 

sets, there exists nonzero (-p,  a ) E X ' x  Y' (the dual space of  X x II) such that 

(V (z, y )  @ K)  - pz + ay >10. If  p = 0 then (V y C II) oy >~ O, contradicting (-O, cr) =~ 

(0, 0); hence p r 0. If a = 0 then (V z E D) - pz/> 0; this, with 0 ~ int D, shows that 

p = 0, contradicting (-p,  a) ~ (0, 0); hence a ~ 0. Since f ( z )  is a limit of  points y E K, 

(V z E D ) - p z  + og(z) >I O. 

A continuous linear mapping B : X -~ Yis a weak subgradient o f g  at 0 if (V z E D) 

g ( z ) - B z ~ - i n t S .  If, for some x E D ,  this does not hold then, since 0 4 : a E  Y', 

a[g(z) - Bz] < 0. If B is chosen to satisfy (V z E D) aBz + pz then crg(z) - pz < 0 for 

some z E D, giving a contradiction. Hence any B satisfying aB = p gives a weak sub- 

gradient to g, and therefore to F. 

One special case chooses Bz = (pz )y  o for some fixed Yo E Y; then oBz = pz 

provided that also cry o = 1. For this choice of  B, taking Yo E int S and using int S c3 

(-S)  = ~, there follows the special property 

Bz q~-int S ~* (pz)y o q~-int S c~ pz >~ O r Bz ES.  [] 

Theorem 2: Let X be a real linear topological space, and let (Y, S) be a real order- 

complete linear topological space, with order cone S. Let C C X be convex, with 

int C 4= qS. Let the mapping F : C ~ Y be S-convex, and let Xo be a proper subspace of 

X, with Xo C3 cor C 4= q~. Let h : Xo ~ Y be a continuous affine mapping such that 
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h(x)  <~ F ( x )  (in terms of  S), for  each x E X o (1 C. Then there exists a con t inuous  affine 

mapping  k : X ~ Y such tha t  k (x )  = h(x )  for all x E Xo  Cl C, and k (x )  <<. F ( x )  (in terms 
of  S), for  all x E C. 

Proof:  For  no ta t iona l  convenience,  adjoin an upper  bound  e lement ,  oo, to  (Y,  S). The 

theorem holds  tr ivial ly i f  C = X o. If  C 4= Xo, suppose  tha t  h has been e x t e n d e d  to  a con- 

t inuous  affine mapping  h ^ : X ~ -~ Y, where X ^ D X o is a subspace,  wi th  X ^ N cor C 4 = ~b. 

I f X  ^ 4= X,  choose u E ( X \ X  ~ ) (~ C, and set X 1 = { x + K u : x E X ~ , tr E R  }. I f x  1 E X  1 

cor C, and I~tl is suff ic ient ly  small,  then x 1 -+ ~u E X o  O cot  C. Define F * ( x )  = F ( x )  

for x E C, and F * ( x )  = oo otherwise.  When x 1 - IJU, x2  + Xu E X 1 C) C, for  X, ~t > 0, set  

c~ = X/(X +/a),  3 = 1 - c~; then 

0~hA(x2) + 13h^(x1) = h^(~x2 + ~x1)  

<~F*(ax 2 + ~x  1 ) 

= F * ( ~ ( x  2 - g u )  + 3 ( x  1 + Xu)) 

<<- ~F*(x2 - Uu) + ~F*(xl  + Xu) 

= a F ( x 2  - ~ u ) + 3 F ( x  1 + Xu). 

Then,  by  rearrangement ,  

[F(x  1 + Xu) - h ^(x 1 )]/X >~ [h ̂ (x2)  - F(x2  - Uu)]/#, 

which holds whenever  x 1 + )kU, X 2 --[M.t E X  I ("1 C and X, g 2> 0, and thus for  all suf- 

f ic ient ly  small  posit ive ~t and X. Since Y is an order-complete l inear space, there exists 

y #  = inf  ([F(Xl  + Xu) - h^ (x l  )]/X : Xl + Xu E X  1 0  C, ~k 2> 0} E Y. 

Hence ,  when x 1 + ~ku, x 2 - ~ E X 1 0  C and )t, g 2> 0, 

[F(x l  + ?~u) - h~(x)]/X >~ y #  >~ [h^(x)  - F ( x l  - / s u ) ] / p .  
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Then an extension of  h to Xa is defined by 

(v x ~ x  ^, v X e R )  h#(x + Xu) = h'(x) + ~y#, 

and then h#(x) <~F(x) for al lx CXx C3 C. Since h ̂  is continuous, so is h e. 

If X :/= X1, h may similarly be extended to a subspace of  one higher dimension. 

The extension to k : X ~ Y follows, by an application of  Zorn's lemma, as in the usual 

proof  of  the Hahn-Banach extension theorem. [] 

The following result is proved similarly: 

Theorem 3: Let X be a real linear topological space; let (Y, S) be an order-complete real 

partially ordered linear topological space; let C C X be convex, with nonempty interior, 

and let x o E int C; let F : X ~ Y be a S-convex mapping. Then there exists a continuous 

affine mapping h : X ~ Y such that h(xo) -- F(xo), and (V x E C) h(x) ~ F(x). 

Theorem 4: Let X, Y, S, C, x o and F be as in Theorem 2. Then there exists a strong 

subgradient of F at Xo E int C. If S is a pointed cone, then there also exists a weak 

subgradient of F at x o. 

Proof. Let Xo E int C By Theorem 2, there exists a continuous affine mapping h : X ~ Y 

such that h(xo) = F(xo), and (V x E C) h(x) <.F(x). Then, for some A C L(X, II), 

(v x ~ x )  h(x) = h(xo) + A(x -Xo), 

and 

(V x E C) h(xo) + A(x -Xo)  <<- F(x). 

Therefore F(x) - F ( x o ) - A ( x  -Xo)  E S  for all x C C. When S is pointed, a weak sub- 

gradient exists since (V x E C) ~s f (x)  C ~ wf(x).  [] 
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4 Equ iva lence  o f  the  Weak Min imiza t ion  P r o b l e m  (1) 

and  a V e c t o r  Var ia t iona l  I n e q u a l i t y  

In this section, the weak minimization problem (1) is shown to be equivalent, under 

some restrictions, to a generalized vector variational inequality. 
Consider the following generalized variational inequality: Given nonempty C c X 

and S-convex f : C-+ Y, find xo E Cand B C 3wf(xo)  such that 

(V x CC) B(x - X o )  q~ -int  S. (2) 

Theorem5: Let C C X  be convex with int C4=r let the convex cone S be pointed, 

and let int S ~ 4; let f : C ~ Y be S-convex, and continuous at a point x o E int C If 
x o is a weak minimum of the multiobjective optimization problem (1), then x o solves 

the generalized variational inequality (2). Conversely, if (Xo, A) solves (2), where also 
A E Osf(xo), then x o is a weak minimum of (1). 

Proof." I fxo is a weak minimum of (1), then (V x E C) f (x )  - f ( x o )  ~ - int  S. Then, by 

definition of Owf(xo) (see Def. 3 and Def. 4), 0 E Owf(xo). So (2) is satisfied with the 
given Xo, and B = 0. Conversely, let (Xo, B) solve (2), where Xo E int C and B E Osf(xo). 
Let W := Y\(--int S). Then 

(V x E C) B(x - Xo ) E W; 

and 

(v x ~ c) f(x) - f ( xo )  - B(x -Xo)  ~S, 

since B is, by hypothesis, a strong subgradient. Combining these, 

(V x C) f ( x ) - f ( x o ) ~  w + s c w; 

thus Xo is a weak minimum of (i). [] 

Remarks: If (Xo, B) solves (2), but B E 3wf (xo) \3s f (xo)  ' then x o is not necessarily a 
weak minimum for (1). The above proof does not extend, since W + 1u is not con- 
tained in W. 
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If B E ~wf(xo) and (V x E C ) B ( x - X o ) E S  then, by a similar proof, x o is a 
weak minimum of (1). 

If x o is a weak minimum of (1), then usually 0 @ ~sf(xo) does not hold, except 
when the constraint Xo E C is inactive, thus when Xo E int C However, suppose now 
also that C is convex, and f is (Fr6chet or linear G~teaux) differentiable at x o (as well 

as S-convex). A weak minimum of  (1) at x o implies that (V x E C ) f ( x ) - f ( x o ) E  If 

:= Y \ ( - i n t  S). Let x o + v E  C; since Cis convex, (V a E (0, 1)) x o + a v e  C. Hence 

(V ~ E (0, 1)) [ f (x  o + av)  -f(x)]/c~ E W. 

Since If is close d, and f is differentiable at Xo, it follows that  f ' (xo)  (x - Xo) E I4/. Thus 

x o and f '(Xo) satisfy the generalize d variational inequality (2), and f ' (xo)  E ~sf(xo). 

Theorem 6: Let C C X be convex; let f : C ~ Y be S-convex and linearly G~teaux dif- 

ferentiable at x o. Then x o E C is a weak minimum of (1) if and only i f f x  o and f ' ( x o )  

solves (2). 

Proof: See the above remark, together with the proof  of  Theorem 5 for the converse.[~ 

5 O p t i m i z a t i o n  O v e r  an  E f f i c i e n t  Se t  

Given C c C, f : C --> Y, and ~ : X ~ R, consider the following problems: 

(I): Multiobjective optimization: WMIN f (x )  subject to x E C. Denote the set of 
weak minimum (= efficient) points for this problem by E. 

(II): Generalized vector variational inequality: Find x o E C and A E Owf(xo) such 
that (V x E C) A(x - Xo) ~ - in t  S. Denote the set of  optima for this problem 

by V. 

(III): Optimization over an efficient set: Minimize ~(x) subject to x @ E. 

(IV): Linearized problem: WMIN f '(xo)(X - X o )  subject to x E C. 
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(v) 

(vi): 

(vii): 

WMIN [ r  - x o ) l  subject to x E C. 

Minimize r subject to x E Is. 

Minimize q~(x) subject to ( V x E C) f ' ( xo  )(X - Xo ) E If  =- Y\( - in t  S). 

For (IV), (V) and (VII), [ is assumed (linearly Gfiteaux) differentiable. The weak 
minimization is with respect to the cone S, or R+ x S for (V). 

Theorem 7: Let C C X  be closed convex, let int S be nonempty,  and let f : X - - >  Y be 

S-convex and (Fr6chet or linearly G~teaux) differentiable, with derivative f ' ( xo )  at 
x o EX.  Then: 

(a) Problem (I) is equivalent to problem (IV); if also f is (linearly Ggteaux) differen- 
tiable at Xo, then (I) is equivalent to (II). 

(b) If f is (linearly G~teaux) differentiable at Xo, then (III) is equivalent to (VI). 

(c) If  Xo is an opt imum for (III), then Xo is an opt imum for (V). (So any necessary 
conditions for an opt imum of (V) hold also for (III).) 

(d) Problem (III) is equivalent to problem (VII). 

Proof.' (a): If x o is a weak minimum for (I), then (V x C C ) f ( x ) - f ( x o ) @  If, where 
W - Y \ ( - i n t  S). If C is convex and x o + v E C then ( V  a E (0, 1)) x = x o + av  E C, 

hence [f(xo + a v) - f ( x ) ] / a  E If; since If  is close d, and f is differentiable, f ' ( x o ) v  C W; 
thus x o is a weak minimum for (IV). Conversely, if x o is NOT a weak minimum of  (I), 

then ( 3 u E C) f (u )  - f ( x o )  E - i n t  S; since f is S-convex, ( 3 u E C, 3 s E S) f ' ( xo )  

(u - X o )  + s E - i n t  S, thus f ' (xo)(U - X o )  E - i n t  S, so that x o is not a weak minimum 
for (IV). The equivalence of  (I) and (II) follows from Theorem 6. 

(b): By Theorem 6, E = V. 

(c) and (d): Let x o be a minimum for (III). Then ( V x  ~C,  V u E C )  ck(x)>>-4O(Xo) , 

f ( u )  - f ( x o )  @ I f=  Y\(--int  S). By a similar argument to that  in (a), it follows that 

(V x E C, V u E C) ck(x ) >1 ~(Xo) , f ' (xo)(U - Xo) E If. Thus x o is a weak minimum for 
(VII). Conversely, if x o is a weak minimum for (VII), then (V x E C, V u E C) r >1 

r f ' (xo)(U - X o )  E If. Since f is S-convex, (V x E C, V u E C) r ~ r , 

f ( u )  - f ( X o )  ~ S  + If C If. Thus Xo is a weak minimum for (III). Now, i f x  o is a weak 
minimum for (VII), then (V x E C, V u E C) r >10(Xo),f '(xo)(U - X o )  E If, which 
is equivalent to (V x E C, V u E C) [ r  ~(Xo) , f ' (xo)(U - X o )  ] ~ - i n t  JR+ x S], 
which states that Xo is a weak minimum for (V). [] 
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6 K u h n - T u c k e r  N e c e s s a r y  C o n d i t i o n s  f o r  O p t i m i z a t i o n  O v e r  

an  E f f i c i e n t  Se t  

Theorem 8: Kuhn-Tucker necessary conditions for the point Xo to be an opt imum for 
problem (III) are: 

~r~'(Xo)+frf'(Xo)ENc(xo), ~ER+, f Es*, (~,~)e(0,0), 

where Nc(xo) denotes the normal cone to C at x o. 

Proof.' From Theorem 7(c), Kuhn-Tucker conditions for (V) are also necessary for 
(III). The usual Kuhn-Tucker theorem for weak vector minimization (see [4]) then 
applies. [] 

Consider now the constraint -g(x) E T, where Tis a closed convex cone, a n d g  is a dif- 

ferentiable vector function. Replacing x E C by -g(x)  E T, and assuming a constraint 

qualification holds for this constraint at Xo, necessary Kuhn-Tucker conditions for 

x = z to be a weak minimum o f f (x ) ,  subject to -g(x) E T, are: 

(Q): rTf'(z)+prg'(z)=O, "rES*, peT*,  "rTe=l, -g(z)ET, pTg(z)=O, 

where e is any constant vector in int S, so that 7Te = 1 ensures that ~- =# 0. (If  S = RP+ 
then e = (1, 1, ..., 1) T may be chosen.) Denote now by K the set of  weak minima for 

f(x), subject to -g(x)  E T. 
Consider now the problem: 

(H): Minimize ~(z) subject to z E K ,  

Assume now also that f is S-convex, and g is T-convex; then the necessary conditions 

(Q) for x E K are also sufficient. (Note that the hypotheses could be reduced; it suf- 
fices if f is S-pseudoconvex and g is T-quasiconvex.) Under these assumptions, problem 
(H) is equivalent to minimizing 9(z) subject to constraints (Q). A Lagrangian function 

for this latter problem is: 

~(~) + e[ , -rf (~)  + p~g'(~)] + x ~ # ~ ) -  ~-r,~- J ~  + ~[~re - 1] + STg(=).  
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Consequently, Kuhn-Tucker necessary conditions (assuming a constraint qualifications) 

for z o to minimize r over the efficient set K are that Lagrange multipliers X E T*, 

0 E R, a E S, w E T,/3 E R, 6 C R exist, satisfying the conditions: 

+ o[ rf"(zo) + prg"(zo)] + Xrg ' (zo)  + 6prg(zo) = o, 

Of'(zo) - o +/3e = 0; 

Og'(zo) - co + 6g(zo) = O; 

Xrg(z) = 0; 

TTo = O; 

pTcA =0.  

Consider, in particular, the multilinear (linear multiobjective)problem: 

(L): WMIN Mx subject to Ax - b ~ O. 

Here M is an r x n matrix, and A is an m x n matrix; x ER n. Denote by E L the set of  

weak minima for problem (L), minimizing with respect to the cone R~_. Then 

x E E L  r  <~O, rrM + pTM + oTA =0,  rERr+,p ERr~,rre = 1, 

pT(Ax-b)=O].  

The requirement r:Ve = 1 ensures that r 4= 0. If  cT"x is another (real) objective function, 
then the problem of minimizing c rx over x E E L is equivalent to the problem: 

Minimize eTx subject to 

A x - b  <~O, "cTM +pTA =O, r E R  r,  pERry,  r T e = l ,  pT(Ax-b)=O.  

This last problem fails to be a linear program, because of  the complementary slackness 

constraint p T ( A x - b )  = O. The minimization is with respect to the variables x, L P. 
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Kuhn-Tucker  necessary condi t ions  for a m i n i m u m  are that  Lagrange multipliers X E R m , 

0 ER,  a ERr+, m ERRS, [j ER,  ~ ER  exist,  satisfying the constraints:  

cT + xTA=o,  OM-a+fJe=O, OA-co+3, (Azo-b)=O , XT(Azo-b)=O,  

7"To = O, prr.d = O. 
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R e f e r e n c e s  

1. Benson HP (1984) Optimization over the efficient set. J Math Anal App198:562-580 
2. Benson HP (1986) An algorithm for optimizing over the weakly efficient set. European J 

Operational Research 25 (2): 192-199 
3. Chert Guang-Ya, Cheng Ging-Min (1987) Vector variational inequality and vector optimization 

problems. Proceedings of 7th MCDM Conference, Kyoto, Japan. Springer-Veriag, Berlin, 
pp 408-416 

4. Craven BD (1978) Mathematical programming and control theory. Chapman & Hall, London 
5. Craven BD (1977) Lagrangean conditions and quasiduality. Bull Austral Math Soc 16:325-339 
6. Giles JR (1982) Convex analysis with application in differentiation of convex functions. Pit- 

man Advanced Publishing Program, Boston 
7. Jameson G (1970) Ordered linear spaces. Lectture Notes in Mathematics 141. Springer-Verlag, 

Berlin 
8. Philip J (1972) Algorithms for one vector maximization problem. Math' Programming 2:207-  

229 

Received November 88 


