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Super Efficiency in Convex Vector Optimization 

By J.M. Borwein 1 and D.M. Zhuang2 

Abstract: We establish a Lagrange Multiplier Theorem for super efficiency in convex vector op- 
timization and express super efficient solutions as saddle points of appropriate Lagrangian functions. 
An example is given to show that the boundedness of the base of the ordering cone is essential for 
the existence of super efficient points. 
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In our previous paper [B-ZI], we introduced the concept of super  ef f iciency,  a 
new kind of proper efficiency. Super efficiency refines the notions of efficiency 
and other kinds of proper efficiency, and provides concise (and equivalent) scalar 
characterizations and duality results when the underlying decision problem is 
convex. In this paper, we continue our study of super efficiency. We establish 
a Lagrange Multiplier Theorem for super efficiency in convex settings and ex- 
press super efficient points as saddle points of an appropriate Lagrangian func- 
tion. Similar developments for other kinds of optimality notions in vector op- 
timization theory can be found in, for example, [Benson 1], [Borwein 1], [D- 
Sa 1], [Hurwicz 1], [K-T 1] and in many other papers. 

For the convenience of the reader, we first recall the definition and basic pro- 
perties of super efficiency. The reader is referred to our previous paper for 
details. The preliminary materials on vector optimization theory, in particular, 
notions of various efficiency and proper efficiency are also discussed in the paper 
[B-Z 1]. Excellent reference books and survey papers on infinite dimensional vec- 
tor optimization theory and applications are [Jahn 1], [D-St 1], and [Hurwicz 1]. 
See also [Borwein 1]. 
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Definition ([B-Z 1]): Let X b e  a real normed linear space. We say that x is a super 
efficient point of  a non-empty subset C of  X with respect to the convex ordering 
cone S, written xeSE(C,S ) ,  if there is a real number M > 0  such that 

MB 3 K n (B - S) (1) 

where K: = cl[cone(C-x)],  the closure of  the cone generated by the set ( C - x ) ,  
and B is the closed unit ball of  X. 

A super efficient point can also be expressed explicitly in terms of  the norm. 
We observe that, x e S E ( C , S )  if and only if for each c in C, y in X and 
c-X<-sy, then 

IIc-xll ~MIlyll 

with an uniform constant M (depending only on x, not on y or c) [B-Z 1]. 
Super efficiency has a very simple description in a normed lattice. In this set- 

ting, xeSE(C,  S) is equivalent to the existence of  some uniform constant M >  0 
with 

Ilc-xll s M I l ( c - x )  + II (2) 
for all c e C. 

When the set C is convex, our definition of  super efficiency has a concise dual 
form. We can prove that (1) in the definition of  super efficiency is equivalent to 

X* = K  + - S  + = ( C - x )  + - s  + , (3) 

where X* is the norm dual of  X [B-Z 1]. 
With this duality, we can characterize a super efficient point as an optimal 

solution of  a scalar minimization problem: 

Theorem 2 (The scalarization theorem [B-Z 1]): Let X be a normed space. If  the 
convex pointed ordering cone S has a closed bounded base t9 and C is convex 
then x is in SE(C, S) if and only if there is ~ in the norm-interior of  S +, 
denoted by ~ e i n t  (S+), such that 

r . 

Our next theorem says that every bounded closed set in a Banach space has 
super efficient points provided the ordering cone has a bounded base. 
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Theorem 3 ([B-Z 1]): Let X be a Banach space and let the convex pointed order- 
ing cone S have a closed bounded base. Then every bounded closed set C 
possesses super efficient points. 

We offer  an example showing that  the boundedness of  the base of  the order- 
ing cone is essential for  the existence of  super efficient points. 

Example  4: A norm compact  convex subset of  Hilbert space lying in a norm-com- 
pact  order interval but which has no super efficient point. 

Let X =  12(N), S = I~-(N), the non-negative orthant of  X, and 

C" ~- {x~I2(N ) 2 2< IZn  x n -  1] . 

It  is clear that C is convex and closed. Note that if  x = (xl, x2 . . . .  ) is in C, then 
IXnl <-l /n for n = 1,2 . . . . .  

Define a linear operator  T: 12(N)~12(N ) by 

(Tx )  n = Xn/n . 

Then T is a compact  operator  and C = T(B),  hence C is compact.  
Let x0 be in C and let 

O e ( C - x o )  + - S  + 

Then there is tu in ( C -  Xo) + such that 0 < s + tu. Now tu in ( C -  Xo) + implies that 
for each c in C, tu(e-xo)>-O. As C =  T(B),  Xo = Tbo for some bo in B and 
e = Tb  for  b in B. Hence t u ( T b -  Tbo)>O, or 

T* t u ( b -  bo) >_ O 

for all b in B. Thus, elther tu = 0 or lib011 = 1. This implies that 

T* tu = -bo l  I T* tull = t ( -  bo) 

where t: = II T* tull - 0. Let b 0 = (b~, b2 . . . .  ), 0 -- ( 0 1 , 0 2  . . . .  ) and tu = (tul, tu2, 
. . . )  so that  for n = 1 , 2 , . . . ,  

On <- tu n = t ( -  nbn) . (4) 
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(i)  I f  t = 0 or bn = 0 for some n, then q~n---0 and 

(C-xo)  + - S  + CX* 

(ii) If [bn[ > 0  for all n, then for each k in r~, select ne<nk+ 1 with 

1 
nelbnk[ < - -  

k2  k 

as is possible because by (4), (nlb n l) is in c o - the normed linear space of  all 
sequences of  real numbers converging to zero and normed by the supremum 
norm. Set 

~'n:=I~nklbne[ elseif n~{nk}ff= 1 .  

Then 2 : = (;tn) ell  (N) C 12(N) and we claim )~ r  Xo)+ - S +. Otherwise, (4) 
implies that 

knkl bn k[ = s tnkl bn k [ 

which, as I bnkl > 0, means k_< t for all k in N. This is impossible as t is fixed. 
Therefore for any x0 in C, 

(C-xo)  + - S  + r X*  

By the duality form of  super efficiency (3), SE(C,  S) is empty. However, one 
observes that the set of  efficient points of  C is 

-Sc~{x[ [ l ( nxn ) l l  = 11 

and one can also show that the set of  all proper efficient points of C, in the sense 
of Borwein, is norm dense in the set of  efficient points of C. (See, for example, 
[Zhuang 1].) 

Hence, without a bounded base for the ordering cone there need not be super 
efficient points even for a very well behaved norm-compact set. �9 



Super Efficiency in Convex Vector Optimization 179 

Let X be a linear space, Y, Z be normed spaces partially ordered by convex 
and pointed cones S and P respectively. Let f :  X ~  Y and g" X - ~ Z  be vector- 
valued. We consider the following vector minimization problem: 

(VMP) m i n s [ f ( x ) l g ( x ) < p O ,  x e C }  . 

Def ini t ion 5: We say that x0 is a super ef f icient  solution of  (VMP) if x0 is a 
super efficient point of  feasible set F with respect to the partial ordering cone S, 
that is, x o e S E ( f ( F ) + S , S ) ,  where 

F: = {xeCIg(x)<_pO } . 

The Lagrange Multiplier Theorem for a constrained optimization problem 
with a real-valued objective function asserts that under certain regularity 
assumptions, one can find a continuous linear operator T from Z to Y such that 
an optimal solution x0 of  the constrained problem is also an optimal solution of  
the unconstrained problem: 

min {f(x) + T[g(x)] I x e C }  

and 

T[g(xo)] = 0 . 

(See, for example, [Luenberger 1] or [Jahnl] . )  
Motivated by this, our next theorem shows that super efficient solutions of  

(VMP) are exactly the super efficient solutions for some unconstrained vector 
optimization problem. 

Theorem 6: Let X be a linear space, Y, Z be normed spaces partially ordered by 
convex and pointed cones S and P respectively. Assume further that S has a 
bounded base and P is closed and has non-empty norm-interior. Let f :  X ~  Y and 
g: X ~ Z  be convex with respect to the respective partial orderings, C C X b e  con- 
vex and suppose there is an x -  in C such that 

g ( x - ) e i n t  (P) . 

Then x o is a super efficient solution of  (VMP) if and only if there is a con- 
tinuous linear operator T from Z to Y such that T ( P )  C S, and T[g(Xo)] = O, 
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and x0 is in the feasible set and is a super efficient solution of the unconstrained 
vector optimization problem: 

mins{f(x) + T[g(x) l  I x e C }  . 

Proof." Assume first that x0 is a super efficient solution of (VMP). Since g is 
convex with respect to P and C is convex, the feasible set 

F: = {xeClg(x )<_pO } 

is convex. Moreover, f is convex with respect to S, S has a bounded base and 
hence S § has non-empty norm-interior ([Jameson 11, p. 122). By the scalariza- 
tion theorem (Theorem 2), there is ~e in t  (S § such that 

r  < r be(x) l  for all x e F  . 

Apply the standard Lagrange Multiplier Theorem [Luenbergerl], we can find 
) . eP  + such that ,~ [g(x0)] = 0 and 

r162 for all x e C  . (5) 

Choose s ~ S  with r = 1. Let T: Z ~  Y be defined as 

T ( z )  = 2 ( z ) s  

then T ( P )  = Z ( P ) s  C S as A(p)_>0 for a l l p e P .  Tis a continuous linear operator 
and 

T[g(xo)] = ,~ [g (xo) l ' s  = O-s = o .  (6) 

Now, by (5) and (6), 

[f(xo) + Tg(xo)] = r [ f  (xo)l -< (b [f(x)] + ~ [g(x)l r 

= # ) [ f ( x ) +  Tg(x)]  for all x e C  . 
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Since Oeint  (S +), by the scalarization theorem again, the above implies that Xo 
is a super efficient solution of  the unconstrained problem 

mins{f(x)  + T[g(x)] IxeC} . 

Conversely, we assume that x0 is feasible and is a super efficient solution of  
the unconstrained minimization problem: 

mins{f(x)  + T[g(x)] ]x~C} 

where T: Z ~  Y is a continuous linear operator satisfying 

T(P)  C S , T[g(xo)] = O . 

By the scalarization theorem, there is O eint  (S +) such that 

O[f(xo)+ Tg(xo)]<~Lf (x )+ Tg(x)] for all x e C  . 

Now for all feasible x, we have 

q~ [f(xo)] -< q~ [f(x)]  + ~ [Tg(x)] <_ q~ [ f (x)]  , 

because ~ [Tg(x)] <_0 for all x in F. This implies that x0 is a super efficient solu- 
tion of  (VMP), by the scalarization theorem. 

Finally, we present a theorem which allows us to express a super efficient 
solution of  (VMP) as a saddle points of  an appropriate Lagrangian function. 

Theorem 7: Let X be a linear space, Y, Z be normed spaces partially ordered by 
convex and pointed cones S and P respectively. Assume further that S has a 
bounded base and P has non-empty norm-interior. Let f :  X ~  Y and g: X-- ,Z  be 
convex with respect to the appropriate partial orderings, C C X be convex and 
suppose there is an x -  in C such that 

g(x  ~) Eint (P) . 

Then x0 is a super efficient solution of  (VMP) if and only if there is q~enorm- 
int (S +) and ~u0eP + such that (x0, ~o) is a saddle point of  the Lagrangian func- 
tions L :  C • P + --* ~ defined by 
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L(X, q/): = 0 [ f (x) l  + q/[g(x)l �9 

Proof." Since x0 is a super efficient solution of (VMP), by Theorem 6, there is 
a continuous linear operator T from Z to Y such that x0 is a super efficient solu- 
tion of  the unconstrained optimization problem: 

min s be(x) + T[g(x)]lx~ C} 

with 

T(P) C S , T[g(xo)l = O . 

By the scalarization theorem, there is 0 t i n t  (S +) such that 

O[f(xo)+ Tg(xo)]<_Obe(x)+ Tg(x)] for all x e C  . 

Let 0 o T =  q/o, we have q/o~P +, q/o[g(xo)] = 0, and 

r bffXo)] + q/o b (Xo)] -< ~ I f  (x)] + q/o [g (x)] 

That is 

L (x o, q/o) < L (x, q/o) for all x in C . 

for all x i n C .  

(7) 

Note also that since Xo is a super efficient solution of (VMP), Xo is feasible, that 
is g(Xo)_<pO, we have 

q/ [g (x0)] _< O for all q/~P+ 

Hence 

O[f(xo)l+q/[g(xo)]<_O[f(xo)]+q/o[g(xo)] for all q / eP  + 

because q/o [g (x0)] = 0. Therefore, 

L(xo, q/)<L(xo, q/o) for all q/~P+ (8) 
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Combining (7) and (8), we have 

L ( x o , ~ , ) < L ( x o ,  q /o)<L(x ,~o)  for all (x,g/) in C •  + 

Thus, (Xo, q/o) is a saddle point of  the Lagrangian function L(x ,  q/). 
Conversely, if g/oeP +, and (Xo, q/o) is a saddle point of  the Lagrangian func- 

tion L (x, g/), then 

L(xo, g/)<_L(xo,~o)<_L(x,g/o) for all (x,g/) in C •  + 

From this we see that, for all q / eP  +, 

~ [f(xo)] + ~u [g(xo)]-< ~ [f(xo)] + ~,o [g(xo)] (9) 

and, for all x in C, 

[f(xo)]  + ~,o [g(x0)] -< 0 I f (x ) ]  + q/o [g(x)]  . ( lo )  

The inequality (9) implies that 

q/[g(xo)]<q/o[g(Xo)] for all q/~P+ 

Since P § is a cone, this implies that 

~o [g(xo)] = o .  

Now (10) implies that 

qb [f(xo)] < (~ [ f  (x)] + ~uo[g(x)] < q~ [ f  (x)] for all x in F , (11) 

because ~uoeP + and hence ~/o[g(x)] _<0. 
Note that since r is assumed to be in int (S+),  (11) implies that x o is a super 

efficient solution of  (VMP). 
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