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Abstract: We present an additive characterization of Monge matrices based on the extremal rays 
of the cone of nonnegative Monge matrices. By using this characterization, a simple proof for an 
old result by Supnick (1957) on the traveling salesman problem on Monge matrices is derived. 

Key Words: Combinatorial optimization, traveling salesman problem, Monge matrix, cone. 

1 Introduction 

An m x n matrix C = (c,j) is called a Monge matrix if it satisfies the Monge 
property 

cij+cr,<ci~+cri V1 < i < r < m  , 1 < j < s < n  . 

This property dates back to G. Monge I-5] and is also known as concave quad- 
rangle inequality (cf. e.g. Yao I-8]). Monge matrices play an essential role in 
combinatorial optimization problems: For  example, the NP-hard traveling 
salesman problem (TSP) is solvable in linear time if the distance matrix is a 
Monge matrix (cf. Park [6]). For  the Hitchcock transportation problem, the 
north-west corner rule yields the optimal solution, if the underlying cost- 
matrix is Monge (cf. Hoffman [2]). For  further examples the reader is referred 
to the survey by Burkard, Klinz and Rudolf [1]. 

Although it is easy to see that the class of m x n Monge matrices forms 
a cone K in the vector space of the m x n matrices with real entries, the 
extremal rays of K have not been investigated till now. 

1 This research has been supported by the Spezialforschungsbereich F 003 "Optimierung und 
Kontrolle", Projektbereich Diskrete Optimierung. 
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In this note  we determine the extremal  rays of the cone of nonnegat ive  
Monge  matrices and thereby derive simple additive character izat ions for 
Monge  matr ices and symmetr ic  Monge  matrices. Moreover ,  it is shown how 
to apply  these character izat ions to simplify opt imal i ty  proofs for several com- 
binatorial  opt imizat ion problems on Monge  matrices. Intuit ively speaking, 
whenever the combina tor ia l  structure of the op t imum solution to some opti- 
mizat ion p rob lem is identical for all extremal  rays, then this combina tor ia l  
structure carries over  to the op t imum solution for all Monge  matrices. This 
idea leads to very simple proofs  for two results obta ined by Supnick [7] on 
special cases of the traveling salesman problem. 

2 The Cone of Monge Matrices 

Unless stated otherwise, all matrices in this section are m x n matr ices with 
real entries. The following n + m + 2(n - 1)(m - 1) Monge  matrices form the 
extremal  rays of the cone of the m x n Monge  matrices with nonnegative 

entries. Fo r  1 < i < m define matr ices H I~ = (h~), for 1 < j < n define matr ices 
V(J) = ,~pq,,("~i)~ for 1 _< i _< m - 1 and 2 _< j _< n define matr ices R "j) = t-p~J~, and 
for 2 < i < m and 1 < j < n - 1 define matrices L ~ijl = a"J)~ by . . . .  , , - p q  , ,  

h(~) := {~ p = i  Vi = 1 , . . . , m  
vq otherwise 

v(S) := {10 V j = I  . . . . .  n 
q = j  

"q otherwise 

r~ij) := {10 p < _ i , q > _ j  
Pq otherwise u = 1 . . . .  , m - 1 , j = 2 . . . . .  n 

to) := {10 p > _ i , q < _ j  
Pq otherwise Vi = 2, . . . ,  m , 

j =  1 , . . . , n - -  1 . 

Let a f  = {Ht')I 1 < i < m}, U = {V(J)[1 < j  < n}, ~ = {Lt~ < i < m, 1 < j  < 
n - 1} and ~ = {R"J)[ 1 < i < m - 1, 2 < j  < n}, and let J r  be the union of Jg, 
~/, ~ and ~e. It  is s t ra ightforward to check that  all matr ices in J/r are Monge  
matrices. 

Observation 2.1: Let  C and D be m x n Monge matrices and let u E R r~ and 

v ~ ~". Then the following matrices are Monge matrices as well. 
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(i) the transpose C T, 
(ii) the matrix 2C for  2 >_ O, 

(iii) the sun C + D and 

(iv) the matrix A = (ai~) defined by aij = cij + ui + vj. [] 

Observation 2.2: I f  an m x n m a t r i x  C is not  a Monge matrix, then there exist 
indices 1 < p < m and 1 < q < n with cpq + Cp+l,q+ 1 > Cp, q+ 1 "~ Cp§ q. [] 

Observation 2.3: For an m x n Monge matrix C, let j(i) denote the column index 
o f  the minimum entry in row i, 1 <_ i < m (if the minimum occurs more than once 
in this row, j(i) is the index of  the leftmost occurrence). Then j(1) _< j(2) _<... _< 
j(m) holds. [] 

Matrices  that  fulfill the above  condit ion on the row min imum are called mono- 
tone matrices. The  p roof  of  the following l emma  will make  extensive use of  
Observa t ions  2.1, 2.2 and 2.3 wi thout  explicitly stating this every time. 

Lemma 2.4: For every nonnegative m x n Monge matrix C, there exist non- 
negative numbers xi, 2j, I~; and v o such that 

~ m n-1 m-1 n 

C = x'  H~O + 2J Vu~+ ~, L #q Ltij' + E E vo R'ij~" 
i=1 j= l  i=2 j= l  i=1 j=2 

(1) 

Proof: Suppose  the contrary,  i.e. that  there exist nonegat ive Monge  matr ices 
which cannot  be represented as a nonnegat ive  linear combina t ion  of the matr i -  
ces in ~ '  as described in (1). Let  C be a counterexample  with the m a x i m u m  
number  of zero entries. Clearly, every row and column of C contains at  least 
one zero entry (In case C had, say, a row i with only non-zero entries, let ct 
denote  the smallest  value in row i. Then  the matr ix  C - ~H ") consti tutes an- 
other  counterexample  containing more  zero entries than  C does). 

Since C and C r are m o n o t o n e  matrices and since each row and each column 
contains at least one zero entry, there exist indices i and j such that  cij > 0 and 
(i) ci- l , j  = 0 and ci,j§ 1 = 0 or (ii) ci+l. j = 0 and  ci,~_ 1 = 0 holds. W.l.o.g. sup- 
pose that  c~_~,j = 0 and ci,j+l = 0 (the other  case is symmetric).  We show tha t  
c~j < cpq for all i < p < m and 1 < q < j .  Indeed, since c~_l,q + c~ < c~_~,j + c~ 
and c~-1,i = 0, ciq > c~j holds for all q < j .  An analogous  a rgument  yields 
cpj > c o for all p > i. Finally for p > i and q < j, c o + cpq > c~q + cpj >_ 2c~j 
holds. Summarizing,  this yields cpq > c o for all p > i and q < j. 

Consider  the matr ix  C' = C - coLtiJ~. C' is nonnegat ive  and (since c~j = 0) it 
contains  more  zero entries than  C. We claim that  C' is again a Monge  matrix,  
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thus derive a contradiction to the choice of C and prove the lemma. Suppose 
that C' is not a Monge matrix. Then there exist indices 1 < p < m and 1 < q < 
n with cpq + cp+~,q+~ > cp,q+l + cp+L~. The only interesting case arises if p = 

' = ' ' = 0 and i - 1  and q = j .  By the construction, then cpq cp+~,q+~ = cp,~+~ 
! 

cp+l, q > 0 holds. []  

The above lemma shows that each nonnegative Monge matrix can be writ- 
ten as a nonnegative linear combination of matrices in ~r i.e. that ~ is a 
superset of the extremal rays of the cone of nonnegative Monge matrices. The 
following lemma proves that ~1//indeed equals the set of extremal rays of this 
cone. 

Lemma 2.5: The nonnegative scalar multiples of the matrices in ~1 form ex- 
tremal rays of the cone of nonnegative Monge matrices. 

Proof: It is sufficient to show that no matrix C e J r  can b e  represented as 
nonnegative linear combination of the other matrices in J / .  Clearly, neither 
any H I*1 nor any V ~j) may be written as an nonnegative linear combination of 
the other matrices in J///. 

Next consider some L (*j) and suppose that there exists a non trivial non- 
negative linear combination of L t*~) with matrices in Jr Since the first row and 
the last column of L t~ only contains zero entries, no matrix in ~ u ~ u 
may contribute to the nonnegative linear combination for L "j). Since l~j j) = 1, 
at least one matrix L Irsl with r < i and j > s or r < i and j > s must have a non- 
zero coefficient in the nonnegative linear combination of L tU~. Since l ~ ) =  0, 
this yields a contradiction. Matrices in ~ are handled symmetrically. []  

Next, the nonnegativity constraint is removed and Monge matrices with 
arbitrary real entries are considered. 

Theorem 2.6: (Characterization of Monge matrices). For every m x n Monge 
matrix C there exist real numbers 2j and nonnegative numbers xi and vi~ such that 

~, ~ m--1 n 
C = x in  (~ + 2jV ~ + ~ ~, v..R (~ 73 

i=l j=l i=1 j = 2  

Proof: Each Monge matrix C can be transformed into a nonnegative Monge 
matrix by adding a very large constant a to every entry, cf. Observa- 

0~ n tion 2.1.(iv). This procedure corresponds to adding ~ = i  V~i) to matrix C. 
Moreover, 
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L<~ = R(i-l"j+x) + E H(p) - V(q) 
p=i q = j + l  

holds. Combining this with the statement in Lemma 2.4 completes the proof. 
[] 

Finally, symmetric Monge matrices are investigated. Define for all 1 < i < n 

S ti) = H o) + V o) 

and for all 2 < i _< n and 1 < j _< n - 1 

T(o) = L.J) + R rio 

All matrices S "1 and T tij~ are symmetric Monge matrices. Moreover for i < j, 
T ~~ = T tj§ + ~,=~ S tp~ holds. These observations and an argument analo- 
gous to the proof  of Lemma 2.4 yield the following characterization. 

Theorem 2.7: (Characterization o f  symmetric Monge matrices). For every sym- 
metric n x n Monge  matrix C, there exist real numbers xi and nonnegative 
numbers vij such that 

n i - 1  

C = x iS t~  ~ ~ vljT tij) �9 (2) 
i = l  i = 2  j = l  

[] 

3 Applications 

This section deals with optimization problems (P) of the following type: For a 
set ~ of m x n matrices and an m x n cost-matrix C, find that matrix F = (f0) 
in ~ that minimizes the Hadamard  product of F with C, i.e. the sum 

f, c,j . 
i=1 j = l  

In general, the set ~ will be defined implicitly and not by enumeration of its 
elements. The arguments in this section are based on the following trivial ob- 
servation (an analogous statement holds for symmetric Monge matrices). 
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Observation 3.1: Let (P) be an optimization problem defined as above and assume 
that the same matrix F o ~ ~ yields the optimal solution to problem (P) for any 
cost-matrix in J~. Then for any nonnegative Monge matrix C, matrix F o also 
constitutes an optimal solution to (P) with cost-matrix C. [] 

The traveling salesman problem TSP  is defined as follows: Given n cites and 
an n • n distance matrix C, find a tour of minimal cost, i.e. find the minimum 
min~ {c(~): ~ is a cyclic permutation},  where c(~) denotes the overall cost of a 
tour  and is defined by c(~) = ~7=1 ci~,r Since the TSP  is known to be NP-  
hard, scientific research is interested in polynomial  time solvable special cases 
of the TSP. 

Supnick [7] has shown that for a symmetric n x n Monge matrix, there 
always exists a tour  of minimal cost that  has the form (1, 3, 5 . . . .  ,6,  4, 2)  
("visit the odd cities in increasing order  and afterwards the even cities in 
decreasing order") and that  there always exists a tour  of maximum cost of the 
form (n, 2, n - 2, 4, n - 4, 6, . . . ,  5, n - 3, 3, n - 1, 1). The  latter result was 
obtained independently by Michalski I-4]. In case ~- consists of all cyclic per- 
mutat ion matrices, the optimization problem (P) turns into the traveling sales- 
man  problem. In the following, Observat ion 3.1 is applied to the T SP  and 
simple alternative proofs for these two results of Supnick are derived. 

Theorem 3.2: (Supnick [7]) Let C be an n x n symmetric Monge matrix. Then 
for the TSP with distance matrix C, 

(i) (1, 3, 5, . . . ,  6, 4, 2)  is the minimum cost tour, and 
(ii) (n, 2, n - 2, 4, n - 4, 6, . . . ,  5, n - 3, 3, n - 1, 1) is the maximum cost tour. 

Proof." We only prove statement (i); the p roof  of s tatement (ii) can be done 
analogously. Due to Observat ion 3.1 and Theorem 2.7, it is sufficient to prove 
that the Supnick permutation ~ = (1, 3, 5, . . . ,  6, 4, 2)  is optimal for all matrices 
S ti~, 1 < i < n, and for all matrices T ~~ 2 < i < n and 1 < j < i. Matrices S t~ 
are sum matrices, and hence for them the length of a tour  does not  depend on 
the tour's combinatorial  structure and is constant.  Therefore, every cyclic per- 
muta t ion constitutes an opt imum tour  for S "~. 

Next, consider some matr ix T ~~ 2 < i < n and 1 < j < i. Par t i t ion the 
indices of T t~ into three sets I = {1 . . . . .  j}, J =  { j +  1 . . . . .  i - 1 }  and 
K = { i , . . . ,  n}. I and K are bo th  non-empty  sets, whereas J might be empty. 
Then the costs of all edges between cities in I and cities in K are one, and all 
other  edges cost nothing. We distinguish three cases depending on the size of 
IJI. 

(Case 1). I f l J I  > 2 then c(~) = 0 and c(n) > 0 for all tours n. 
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(Case 2). If IJI = 1 then c(~) = 1. Every tour must contain at least one edge 
connecting I to K (the tour must go from I to K and return to I; in 
the best case, one of these transitions is via J and the other has cost 
one). Hence, c(n) > 1 for all tours n. 

(Case 3). If IJI = 0, then c (4 )=  2. Since every tour n must use at least two 
edges connecting I and K, c(n) > 2 holds. 

Summarizing, ~ is in any case an optimal tour. []  

The linear assignment problem consists in finding a (not necessarily cyclic) 
permutation ~ for an n x n cost-matrix C = (clj) that minimizes the sum 

n C ~i=1 ~ti~- It is a well-known fact (see e.g. [1]) that the identity permutation 
yields an optimum solution for the linear assignment problem on Monge ma- 
trices. Combining Observation 3.1 with similar (but even simpler) arguments 
as in the proof of Theorem 3.2 yields a short proof for this fact. 

4 Conclusion 

In this note we investigated the cone of Monge matrices and thereby derived a 
simple additive characterization of Monge matrices. We showed how to apply 
this characterization to get a simple proof for an ancient result of Supnick 
(1957) on traveling salesman tours for symmetric Monge matrices. 

Concerning further research, we note that there are many results in the 
Soviet literature on the TSP with "specially structured" distance matrices. 
Some of these matrix classes are cones. It might be interesting to determine the 
extremal rays of these cones and to derive simple proofs for these cases by 
exploiting the structure of the cone. 
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