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Abstract. Formfactors of semileptonic decays 
B ~ D ( D * ) e v  are calculated by means of QCD sum 
rules for three-point Green functions. Partial widths 
found essentially differ from values obtained in pre- 
vious papers [1-5]. 

Introduction 

The study of exclusive B-mesons semileptonic decays 
can provide us with important  information on both 
the Kobayashi-Maskawa matrix elements and the 
strong interaction dynamics of quarks in hadrons. 
Many theoretical papers were devoted to this subject 
which was stimulated by intensive experimental study 
of the B-mesons exclusive decays [6-8]. But in our 
opinion the results obtained for the semileptonic tran- 
sitions of B-mesons into D- and D*-mesons [1-5] are 
not grounded enough. In particular, papers [1, 2, 4, 
5] are based on some model-dependent assumptions 
about B- and D-mesons' structure. Voloshin and Shif- 
man [3] did not use the models for B- and D-mesons, 
but they however made assumptions whose accuracy 
could not be controlled theoretically in the framework 
of the approach used. Namely, in the point of maxi- 
mal momentum transfer squared 2 qmax = (roB-- rrto) 2 the 
formfactors f+,  Fo, defined by 

( D (P) I 6 7 u b[B (p') ) = f+ (p' + P)u + f - qu , 
1 
_ (O*(p, e)] 6y u 75 b [B(p')) 
1 

= Fo e* (p) + F+ (~* (p) p') (p' + p), 
+ F_ (e* (p) p') qu, 

1 
_ (D* (p, e)] 6 ~u b I B (p')) = Fv i e~,~t~ ~*~ (P) (P' + P)~ q~ 
l 

(1) 
(where q = p ' - p ,  e (p) is D*-meson polarization vector) 

are equal to f+ = ~ / ( m B  + too), Fo = 2 ] / ~  me 
and the others are equal to zero, which is true only 
at the limit rob, mccoy.  On the other hand c-quark 

is not heavy enough in the scale of the typical hadron- 
ic masses. For  example, the relativistic corrections [9] 
to the non-relativistic sum rules [10] for the calcula- 
tion of constant fo  are large. Hence, in [3] the accura- 
cy of this supposition is assumed to be too high. An- 
other source of uncertainty in [3], which is controlled 
by the parameter (roB-- mD)Z/(mB -I- ?r iD)  2 ~ 0.2, can also 
give a considerable error. 

QCD sum rules method [11] is based directly on 
the first principles of quantum chromodynamics. Its 
accuracy can also be obtained within the method. 
Here we represent the result of calculating the decays 
B--*D(D*)ev formfactors with the help of Q CD sum 
rules method for the three-point Green functions (see, 
e.g., [12] and references therein). 

From the sum rules for the three-point correlators 
we calculate the formfactors f+ ,  Fo, +,v which one 
needs for the evaluation of the total decay widths. 
In order to obtain their qZ-dependence for q 2 >  0 we 
use the independent sum rules for the derivatives of 
the formfactors at q2 =0.  This derivatives are small 
so we can work in the linear approximation in q2. 

Our results for formfactors (1) in the case of D*- 
meson are quite different from the estimates of [3] 
(and other papers [1, 2, 4, 5]), which leads to a lower 
B--*D*ev decay width. Taking into account the accu- 
racy of the experiment and the matrix element Vbc 
determination uncertainty we conclude that our result 
does not contradict the experimentally obtained 
value. As for the parameters characterizing the polar- 
ization of vector meson in the B ~ D * e v  decay, we 
obtain a good agreement with the recent A R G U S  
data [8]. 

In Sect. 1 we discuss the method and evaluate the 
phenomenological part of the sum rules. The theoreti- 
cal expressions for the correlators are derived in 
Sect. 2. Section 3 is devoted to the analysis of the sum 
rules obtained and at last in Sect. 4 we calculate the 
widths and other parameters of the decays. 
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1 The method 

For the evaluation of f§ in the decay B-~Dev  we 
considered the correlator 

/ / ,  (p, p', q) 
= i 2 I d x  dy  e 'P~- iv ' r (T{~  75 c(x), jv(o),  b-75 ~k(Y)})0, 

(2) 
and for the formfactors of the decay B ~ D * e v  we 
consider the correlators 
F~v~a(p, p', q)=i  2 ~ dx  d y e  ipx-ip'y 
�9 < T  (~7~ c(x), Jr'A(0), b-75 ~t(Y)})o, (3) 
where q = p ' - p ,  JV=67u  b, JA=~7 ,75  b, and ~(x) 
is the operator of the light quark (u, d). Here we ne- 
glect its mass. The decomposition of correlators (2), 
(3) into the Lorentz structures takes the form 

Hu = / / +  (P' + P), + / / -  qu, (4) 
A t t t t F~v=F o g,~ + F~ P u p ~ + F2 p u p v + F3 P u p ~ + F4 p ~ p u,(5) 

FuV = Fv i e ~ ~ ,, ~ p , p'~. (6) 

For our purposes we need only the amplitudes / /+,  
Fo,+, v (where I+=�89 which correspond to 
the formfactors f+,  Fo, +, v. f -  and F_ are inessential 
due to smallness of electron mass. For each amplitude 
/ /+,  F~ we have the following dispersion relation' 

1 pi(s, s', Q2) ds ds' 
ffi(p2, p,2, Qz)_  (27z) 2 ~ ( s - p 2 ) ( s ' - p  '2) 

+ subtraction terms, (7) 

where p~ is a corresponding spectral density, Q2= 
_q2 >0. According to QCD sum rules method the 
left hand side must be calculated at large Euclidean 
m o m e n t a  p2, p,2 with the help of Wilson operator 
product expansion (OPE). 

The right hand (phenomenological) side is ob- 
tained by saturating (7) with the lowest mesonic reso- 
nances. The double Borel transformation [-11, 13] 
over variables p2, p,2 will suppress both the higher 
resonances contribution to the right hand side of (7) 
and the higher power corrections contribution to the 
left hand side of the sum rules. 

To obtain the phenomenological part we saturate 
correlator (2) by B- and D-mesons and correlator (3) 

by B- and D*-mesons. Thus we find: 
ii(~h)(p2, p,2, Q2) 

f v  fB mD2 msZ f+ (Q2) 
m~ mb (pZ _ m 2) (p,2 _ m2), 

~ o ( p  h) n 2 , §  ~ , p ' 2 ,  Q 2 )  

f ,  m2. m 2 Fo ' + (Q2) 

go.rob (p2 _ m~.) (p' 2 _ m2), 

r~.~(p ~, p, ~, &)  
2fn 2 2 rno. m,  Fv(Q 2) 

= g . ,  m~ (p~-  rag,) (p '~ -  m~)' (8) 

3O 
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/ 
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Fig. l. Integration region in (7) when Q2=0. So, s~-continuum 
thresholds 

where the residues are defined in a standard way: 
(01 ~ 7u 75 c ]D(p)) = ifD p, (and similar for B-meson), 

(01 ~Tu c ID*(p,e)=mZ~*eu(p). Quark masses are 
gD* 

equal to me= 1.35 GeV, mb=4.8 GeV. The residues 
were found from QCD sum rules: f o =  170 MeV, fn 
= 130 MeV [-9], gD.=9 [14]. 

2 Theoretical calculation of  the correlators 

The theoretical part of the sum rules is calculated 
by means of OPE at short distances. The coefficient 
functions of various operators can be evaluated with 
the help of fixed point gauge technique [15]. We cal- 
culate the operator expansion for (2) and (3) up to 
the operators of dimension six in the lowest order 
in c%. We use the analytical calculations system HE- 
CAS developed at IHEP [16]. 

We start from the perturbative contribution (unit 
operator of the OPE), which is given by bare quark 
loop. For each amplitude II+, Fo, F+, Fv the corre- 
sponding spectral density in (7) can be obtained by 
substituting the propagators 1/(p 2 - m  2) by 
- 2 g i 6 ( p 2 - m  z) in the initial Feynman integrals for 
the correlators. The integration region in (7) for per- 
turbative contribution is shown in Fig. 1. As usual 
we parametrize the contribution of higher states in 
the phenomenological part of the rules assuming that 
the corresponding spectral density is equal to the per- 



turbative spectral density starting from s > So, s'> s'o. 
If we subtract this contribution from both sides of 
the sum rules we get a corresponding integration re- 
gion in (7) (in the theoretical part of the rules) which 
is shown in Fig. 1. The lines that define this region 
are given by the formulas 

sl,2(s)=�89 s (m2+m2+Q2)+(mb_m ~ - Q  ) 

S 2 
.~_ - - m c  2 2 2 2 2 _ ~  /(mc +mb +Q ) --4mr m 2. 

z m  c 

The parameters So and s; are the so-called contin- 
uum thresholds which must be found from the numer- 
ical analysis of the sum rules�9 

The spectral densities we are interested in have 
the following form: 

p + (s, S', Q2)= 2~33/2 [(A' s + m~ m b A) ( s -  s' + Q 2) 

+(As'+rn~ mb A')(s'-s+Q2)] (9) 
for decay B--*Dev, and for B-oD*ev 

po(s, s', Q2)= 2231/2 (m~ A' +mb A) 

+ 3 K ~  2 ( s ' A 2 W s A  ' 2 - A  A '  u),  

p+(s, s', Q2)= 2@3/2 [m~(2s'A-uA') 

+mb(2SA'--uA +4AA'  + 2A2)] 
9rob 

+ ~7~- [4s s ' A A ' - - u ( s A ' 2 + s ' A  2 

+ 2sA A')+ 2s2(A '2 + s'A)], 
pv(s, s', Q2) 

3 
= /~3/2- [m~(uA'--2s'A)+mb uA --2sA')], 

where 
~c=(s+s'+Q)2-4s s', u = s + s ' + Q  2, 
A = s - m  2, A'=s'--m 2. 

Now we proceed to the calculations of dimension 
3, 5, and 6-operators contributions. The quark con- 
densate contributions are: 

H<+Oq, > _ 0)0 mc+mb (10) 
= 2  ( -  (p2 _ m  2) (p,2 _ m  2) 

for B-*Dev, and 

[ ~/(mc+mb)2+O 2 1 ~ , 1 ], 
p2_m  p2--m } 

1 
F+ <~ *> = - �89 (tff 0)0 (p2 _ m 2) (p,2 _ m2), 

1 
Fv <~q'> = ( ~  0)0 (p2 _ m  2) (p,2 _mb 2) 

for the B ~ D *  transition. The contributions depend- 
ing on one of the variables p2 or p,2 turn into zero 
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f+ (&)-  

after Borel transformation and so they will be omitted 
further�9 We neglect the gluon condensate contribution 
since it contains a quark loop and must be small 
in comparison with the contribution from other oper- 
ators which have no loop suppression. 

Now let us calculate the contribution of the 
quark-gluon condensate g~ < ~ Guy auv 0)0 
= m ~ ( ~  0)0,  m2=0.8+0.2  GeV 2 [17]�9 For the tran- 
sition B ~ D this contribution is equal to 

{2(2mc+mb) 2(2mb+mr 
"\ rr,2 

3m2(mc+mb) 3mZ(mc+mb) + -~ 
r 3 r' r r '3 

m2(2m~+mb)+m~(2mb +m3+ 2(m~+mb ) Q2). (11) 
-+ 72 7 '2  

where we use the notations 2 2 7 t r=p --me, =p'2--m2. 
The corresponding expressions for B-~D* transition 
are given in the Appendix. 

As for the four-quark operators contribution, the 
vacuum dominance hypothesis [11] can be used to 
express their vacuum averages through the quark 
condensate. The expression for the ampl i tude/ /+  is 

rC , .  2 ( 1 2 m 3 c ( m c + m b )  m? ,>2_ 
81 ( 

12m~(mc 4m,~ 
+ + mb) + [m 2 (2 mc + rob) 

r r '4 7 3 7 2 

4mb 
+ m g (2 mb + m~) + 2 Q2 (mc + mb)] + r2 7, ~ 

�9 [m 2 (2 m~ + rob) + mE (2 mb + m~) + 2 Q 2 (m~ + rob) ] 

8mr 8mb(7m~--mb) -~ + 
7 3 7' 7 ~.,3 

12 12 8 
r 2 r' r r  '2 r 2/2[2mc(2mb+mc) 

+ 2 mb (2 rn~ + rob) + Q2]~. (1 2) 

The contribution of four-quark operators to other 
amplitudes is shown in the Appendix. 

Substituting (8)-(12) into (7) and applying the dou- 
ble Borel transformation (p2-*M2, p'2--*M'2) we get 
the following sum rule for the formfactor f+ : 

mc (m o 
fo fB m~ m g exp \~7-  + M,Z] 

1 ~ds ds' p+ (s, s', Q2) e-~/M2-~'/M'2 �9 --(~2~)2 

+ M  2 M,2 B H~:~-~, (13) 

where the last term is the Borel transform of the 
power corrections contribution. Note that we take 
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into account the renormalization of the quark con- 
densate (~p ~)o  in numerical analysis. The same ex- 
pressions can be obtained in the case of B ~ D * e v  
decay and we find the sum rules for the formfactors 

F0, +,v. 
To estimate the widths of the decays it is necessary 

to know the formfactors f+  (q2), Fo, +, v(q 2) (let us de- 
note them all by Fi(Q 2) for convenience) in the whole 
region 0 < q2 < z : : q m a x "  In order to find their behaviour 
as functions of q2 we use the sum rules for the deriva- 
tives dFi(QZ)/d Q2 at Q2=O. The last ones are ob- 
tained from the sum rules for the formfactors by tak- 
ing the derivative over QZ. Note, that when taking 
the derivatives one should consider the variations of 
the integration region in perturbative part  depending 
on Q2. These sum rules must be considered as inde- 
pendent ones. 

3 Numerical analysis of  the sum rules 

In the sum rules for the formfactors ~ in a wide range 
of the Borel parameters  M 2, m '2 (we vary M 2 and 
M '2 independently) and continuum thresholds So, s~) 
the quark condensate ( ~  ~b) o contribution is domi- 
nant, while the perturbative contribution is rather 
small. Nevertheless, the operator  expansion is reason- 
able because the power corrections convergence takes 
place. The choice of working region for M z, m '2 must 
be made on one hand from the condition of the con- 
t inuum contribution smallness and on the other hand 
from the condition of power corrections convergence. 
Namely, we demand the quark-gluon condensate con- 
tribution to be less than 50% of the quark condensate 
contribution (the four-quark operators contribution 
is small in all cases). As for the first condition, it 
allows the parameters  M z, M '2 to be too large, that 
is why they can go to the region, where the stability 
of our sum rules breaks down. The reason for it is 
that the approximat ion of the higher states contribu- 
tion in a standard way becomes untrue at large M 2, 
M '2. So we restrict ourselves to the region of M 2, 
M '2 where the stability of the sum rules is good. Pract- 
ically it is possible for all the sum rules for F~ to take 

2 _ _  Mmax- 7 GeV 2, M~ax = 15 GeV 2. 
As for the sum rules for the derivatives dFi/dQ 2, 

the quark condensate is absent here (except for 
dFo/dQ 2 - these sum rules can be treated in a similar 
way as the previous ones) so one can introduce a 
usual condition for the power corrections to be small 
(less than 50%) in comparison with the whole value 
of dFi/dQ 2. After taking the derivative d/dQ 2 we put 
Q2 =0.  

The continuum thresholds So, s~ are chosen from 
the condition for the sum rules to have the best stabili- 
ty in the allowed M 2, M'Z-region. The dependence 

on So, s~ is rather weak and for each case we can 
take So= 12 GeV 2, s~ = 4 0  GeV 2. 

For  example, we show in Fig. 2 and 3 the depen- 
dence of the formfactor f+ and its derivative versus 
the Borel parameters.  The curves for other formfac- 
tors and for dFo/dQ 2 are quite similar to those shown 
in Fig. 2. The qualitative behaviour of the curves for 
the derivatives of the formfactors F+, F v are similar 
to those in Fig. 3. In this way we find: 

f+ (0) = 1.0 _+ 0.2, 

d f + ( O ) _  (0.021+0.003) GeV -1, 
dQ 2 

dFo(O) _ (0.05 + 0.02) G e V -  1, Fo(0) = 6.2 _ 1.4 GeV, dQ 2 

F+ (0) = - (0.15 ___ 0.04) GeV - 1, (14) 

dF+(O) = 0.003 _ 0.001 G e V -  3, 
dQ 2 

Fv(0)=0.19_0.045 GeV 1, 

dFv(O) _ _ (0.004 +__ 0.0015) GeV 3. 
dQ 2 

For  comparison see the estimates of [3] which are 
f+ (q2max) ~ 0.88, V o (q2max) -'~ 6.5 GeV. 

One can represent q2-dependence of the formfac- 
tors in the form F/(q2)~_F/(0)(I+ z 2 q /qch,r,i), where 

2 (rnB + too) 2. Note, that 2 2 qmax/qchar~0.2 SO the q c h a r ,  i 

linear approximation of qZ-dependence for F~(q 2) is 
good. If we put qchar,2 i----xi(mn + mo) 2, results (14) can 
be represented in the form: x + -~ 1.3 for B ~ D* transi- 
tion and tCo-~ +2.6, K+_~l.3 for B ~ D *  transition. 
One can see that all x (excluding Ko) are close to 
1. It confirms the simple pole model for 
q2-dependence of the formfactors. The value K0 = 
+ 2.6 can be obtained in manypole model only. 
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4 Results and discussion 

Now in order to find the total width of the decays 
considered we must substitute formfactors (14) ob- 

[§ 3 

H 2 (GeV 2) 

0 , 0  . . . .  I . . . .  t . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I 

0 1 2 3 4 .5 8 7 B 9 10 11 12 

Fig. 2. Borel parameters dependence for formfactor f§ The 
curves are respected to values M'a=5 GeV 2 (1), M '2= 10 GeV 2 (2), 
M'2=20 GeV 2 (3). The working region of sum rule (13) is marked 
by brackets 
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Fig. 3. Borel  pa ramete r s  dependence  for der ivat ive  df+/dQ z. The 
curves are respected to values  M '2 = 5 GeV 2 (1), M '2 = 10 GeV z (2), 
M '2 = 20 GeV 2 (3). The work ing  region of respect ive sum rule is 
m a r k e d  by brackets  

tained into the formulas for the total widths which 
a r e  

G 2 .  5 

F(B ~D )  = 768r:~ [Vbc[ 2 0.4f+z(0) (15) 

for B-*Dev,  and 

G2m 5 
F(B ~ D* ) = ~ I Vbc 12 ( 1/m~ F 2 (0) + O. 9 F o (0) F+ (0) 

+0.3m~ F2 (0) +0.07m 2 F2 (0)). (16) 
for B ~ D * e v .  

The numerical factors in these formulas are the 
values of some dimensionless integrals over the phase 
space volume of the decays. For  simplicity we omit 
here the dependence of the formfactors on q2, which 
gives only small corrections. Of course, this correc- 
tions were taken into account in the final answer. 
The coefficient at the term ~ F 0 (0)F v (0) in (16) is equal 
to zero. 

Substituting (14) into (15) and (16) and using the 
experimental value for the B-meson lifetime rB 
= 1 . 4 2 . 1 0 - 1 2 8  we find for the branching ratios of 
the decays: 

B r ( B ~ D ) =  3.7%. ~ 2, 

(17) 
Vb c 2 

Br(B~D*)  = 6.4%- 0 . ~  . 

The experimental value of the second branching 
ratio is known to be Br(B--+D*)=(7 .0+l .2+l .9 )% 
[7]. This value is somewhat higher than our result 
(17), but if we take into account the uncertainty of 
the matrix element Vbc value and also the uncertainty 
in (17) connected with the accuracy of our results 
for the formfactors we see that our theoretical esti- 
mate does not contradict the experimental value. 
Note that the accuracy of our estimate of Br(B ~D * )  
(17) is of order 70% because of the partial cancellation 
of different terms in (16). 

Let us point out a significant difference between 
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our results and the estimates of [3]. We have obtained 
the probabilities of the transitions B ~ D  and B-+D* 
to be approximately equal to each other, while in 
[3] their ratio is 1:4. This disagreement is on the 
one hand due to our value of the formfactor F o which 
is about ~ 1.5 times smaller than the corresponding 
value from [3], and on the other hand due to the 
neglection formfactor F+ in [3]. Really the term, pro- 
portional to Fo F+ in (16), is rather large and has 
an opposite sign as compared with the term ~Fo z, 
which reduces significantly the width of the decay 
B--* D* ev. 

If one assumes the par ton formula for the total 
semileptonic width of B-meson decays 

G 2 m~ 
r~,-  (1%cl 2 0.5+1%,12), (18) 

1927r 3 

(we neglect b ~ u transition) to be true with the accu- 
racy ~ 1 0 % ,  and uses the experimental results 
B r ( B ~ X e v ) =  10%, it is possible to exclude Vbc and 
find Br(B ~O)  = (3.7 ___ 1.5)%, Br(B~D*) = (6.4_ 3.5)%. 
We see that our value for the branching ratios 
Br(B~D*ev)  is in agreement with the experimental 
data. Two transitions B ~ D  and B ~ D *  saturate the 
total width of the semileptonic transitions of B-meson. 
Note that it will be possible to compare our predic- 
tions with experiment soon because A RG U S  colla- 
boration is now working on the determination of the 
decay B ~ D e v width. 

For  the decay B ~ D * e v  it is also possible to deter- 
mine the polarization of the D*-meson. We have ob- 
tained the dependence of the asymmetry parameter, 
characterizing the polarization of D*-meson, a 
=2F(L) / f f  (T) -  1 (if(L) and F (r) are total widths of the 
decays to the states with longitudinal and transverse 
polarizations of D*-meson) on the cutoff in the energy 
of electron Ee (the events with electron energy less 
than Ee are not taken into account because of the 
large experimental uncertainties in this kinematical 
region). The curve presenting the dependence a(Ee) 
is shown in Fig. 4. For  Ee=l  GeV ct=0.1, and for 
Ee = 1.2 GeV we have ~t = 0.0, which corresponds to 
ff(L)/ff(r) = 0.55 and 0.50, respectively. These values are 
in a good agreement with the experimental data [8], 
although the accuracy of our prediction for the ratios 
ff(L)/ff(T) is not better than 100% (the accuracy of 
the experimental result [8] is rather low too). 

The distributions in the electron energy for each 
of the channels considered are shown in Fig. 5. Our 
curve for B ~ D *  transition is going considerably 
lower than in other models [1-5] for this decay. 

In conclusion let us stress once more that our 
study of the decays B ~ D e v ,  B ~ D * e v  in the present 
paper is based on the standard assumptions of QCD 
sum rules method and do not use any model-depen- 
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Fig. 4. The asymmetry parameter ct dependence on electron energy 
cut-off Ee in decay B~D*ev. Experimental values are taken from 
E8] 

SO- 
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0.0 O.S hO t.S 2.0 2.5 
E, (geV) 

Fig. 5. The electron spectra for decays B~Dev (1), B~D*ev (2) 
and for their sum (3) 

dent assumptions.  But this approach  does not  allow 
to achieve the accuracy  higher than 2 0 , 3 0 %  for our  
formfactors  and that  leads to the accuracy of  order  
50% for the decay widths. 

The results of  our  paper  for B--*Dev decay were 
independent ly  obta ined by Bayer and Grozin  [18] 
with the same method.  Their results are in agreement  
with ours. 
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Appendix 

Here we represent the expressions for quark-g luon  
and four-quark  condensate  contr ibut ions  to the am- 
plitudes F/ defined by (5) and (6) in the case of  B 
~ D* ev decay. 

Co < ~ ' >  = - g~ < ~  G.~ o.~ 0>o 
12 

.{3m~ 
\r 3 r' (mff +m2 + 2mc rob+Q2) 

+ 3m2rr,3 (rnc2 + m  b2 +2m~ m b + Q  2) 

1 
+ r 2 / 2  [3rn~ mb(mff+m2+Q 2) 

+ 2((m 2 + m~ + Q2)2_ m 2 m2)] 

1 
+ r 2 r' I-3 m~ (rn c + mb) + 2 (m 2 + Q2)] 

1 1-3mb(3mc+mb)+4(mff+Q2)]_r@), 
+ r r '2 

F <~q'> = g ~  (tffG~ a ~  ~b)o 
+ 12 

[3m~ 3m~ 2 
�9 ~r~r 'q" r r '3 r / 2  

1 2 2 2QZ)), 
+ r ~ - r ,  2 (2me + 2 m b  - m e  mb+ 

/ 

Fv <r162 = --~ g, ( ~ Guv auv 0)o 
[3m 2 3m~ 2 

"lr~7' +~3r '3 + r r '2 

+ r2~2 (2m~ + 2m2-mc  mb + 2Q2)), 

Fo<4,o>2_ 4n 81 C~s (tff 0 ) 2  

[4(2mc--mb) 2(7rob-- 8me) 
"\ ~ r '  t-- rr,2 

+ 3 m ~ ,  2+m2+2mcr%+Q2) 
r 4 r' [me 

3m~, 2 
+ r / 4  (mc +mb +2m~ m b + Q  2) 

1 
+ r3 r, ~ [3 m~ z m b (m 2 + m z + Q2) 

2 m~)] + 2mc((ma~ + m~ + Q2)2 _ me 

1 
+ r~Xr, 3 [-3me m~(mZ~+m~+Q 2) 

+ 2mb((m~ + m~ + Q2)2 _ m~ m~)] 



mc 1 2 1 2 1 + r 3 r' ( 7mc + 6rob + 9mc rob+ 16Q z) 

mb 2 + ~  (16m~ + 15m2--3m~ mb+ 16Q 2) 

1 
r z r,2 [2mc(mZ+Q2)-6mb(m~+Q 2) 

+mc mb(llm~+mb)]), 

F+<q,o>~ 4re [3m~ 3m~ 
=   <00>2 77r r / 4  

me +r~gr,2 (2m2 + 2mi--mc mb + 2Q 2) 

mb (2mg+2m2 m ~mb+2Q2 ) 
-t- r2 r, ~ 

14me lOmb 2(2mb--mc)] 
+ r 3 r' -+- ~ -t- r2 r, 2 ] .  

Fv<r - 2= - 2/3m~ 3m~ 
81 ~*(~ ~ ) o  ~r 4 r' + r r '4 

mc ( 2 m Z + 2 m 2  m c m b + 2 Q 2 )  
+ r 3 r ,2 

mb 
+ r~7;5-r, 3 (2m~ +2m 2 --m~ mb+ZQ 2) 

14m~ 14rob 2(2mb--mc)~ 
+ r~Tr, +~3r,3 + r2r,2 1" 
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