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The Quickest Flow Problem 

RAINER E. BURKARD, KARIN DLASKA, AND BETTINA KLINZ 

Institut f/ir Mathematik, TU Graz, Kopernikusgasse 24, 8010 Graz, Austria 

Abstract: Consider a network JV = (G, c, ~) where G = (N, A) is a directed graph and c o and vlj, 
respectively, denote the capacity and the transmission time of arc (i, j) e A. The quickest flow problem 
is then to determine for a given value v the minimum number T(v) of time units that are necessary 
to transmit (send) v units of flow in JV from a given source s to a given sink s'. 

In this paper we show that the quickest flow problem is closely related to the maximum dynamic 
flow problem and to linear fractional programming problems. Based on these relationships we 
develop several polynomial algorithms and a strongly polynomial algorithm for the quickest flow 
problem. 

Finally we report computational results on the practical behaviour of our metholds. It turns out 
that some of them are practically very efficient and well-suited for solving large problem instances. 

1 Introduction 

Flow Problems on networks belong to the most  studied problems of mathe-  

matical  programming.  T h e y  have numerous  applicat ions in practice since 
highway, rail, electrical, communica t i on  and  many  other physical networks 

pervade our  everyday lives. In  m a n y  applicat ions of flow problems not  only the 
amount of f low to be t ransmit ted  bu t  also the time needed for the t ransmiss ion 

plays an essential role. This leads to so-called dynamic f low problems where a 
transmission (traversal) time is a t tached to each link (arc) of the network.  (See 
also the classical work of Fo rd  and  Fulkerson  [15], and  the survey paper  of 

Aronson  [5].) 
In  our  paper  we treat a special type of dynamic  flow problems. Let G = (N, A) 

be a directed graph with node set N and  arc set A and  X = (G, c, z) be the 

associated network where a capacity c o and  a nonnegat ive  integer t ransmiss ion 
time z~j are at tached to every arc (i, j )  ~ A. Thereby cii represents the ma x i mum 

n u m b e r  of flow units  that can be sent on arc (i,j) per time unit,  and  iff~i uni ts  of 
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flow start at time t ~ N O in node i and are sent to node j  along the arc (i, j), they 
arrive there at time t + z~j. Adopting the usual convention, we denote the number 
of nodes in N by n and the number of arcs in A by m. Further, let the source s 
and the sink s' be two distinguished nodes in N. 

The quickest flow problem (QFP) now consists in finding in Jff a (dynamic) 
flow f of given value v from s to s' which sends the given v units of flow from s 
to s' in the minimum number T(v) of time units. The flow f has to obey the flow 
conservation constraints in all intermediate nodes ( r  s') and the capacity 
constraints on all arcs. Both groups of constraints have to hold for the whole 
transmission period, i.e. for t = 0, 1 . . . . .  T(v). 

Possible areas of application of this model include evacuation problems 
(see e.g. Hamacher [19] and Chalmet, Francis and Saunders [11]) and data 
transmission problems in communication networks. 

A similar problem, the quickest path problem (QPP), was recently treated by 
Chen and Chin 1-12] and Rosen, Sun and Xue [36]. These authors were interested 
in a path in JV" from s to s' along which the given amount v of flow can be 
transmitted in the shortest possible time. Whereas in the (QPP) only one path 
can be used for the transmission of flow, we allow in the (QFP) simultaneous 
transmission of flow on different but not necessarily (node- and arc-) disjoint paths 
from the source to the sink. The latter problem is addressed in Burkard, Dlaska 
and Kellerer [8]. 

This paper is organized as follows: In Section 2 we set up a mathematical 
model for (QFP) and relate it to the classical maximum dynamic flow problem. 
Motivated by the close relationship between maximum dynamic and quickest 
flows we study in Section 3 the value of a maximum dynamic flow for the given 
time interval [0, T]  as a function of T. In Section 4 we first describe two 
pseudopolynomial-time algorithms for finding quickest flows in networks, and 
then we propose several polynomial-time algorithms which are based on the 
results of Section 3. The computational results presented in Section 5 show that 
some of these algorithms seem also to be well suited for solving the (QFP) in 
practice. Theoretically, one can do even better. So, we derive in Section 6 a 
strongly polynomial-time algorithm based on results of Megiddo [28, 29]. 
Finally, we close the paper with some concluding remarks in Section 7. 

2 Quickest Flows 

Let G = (N, A) be a given directed graph and let ./V = (G, c, z) be the associated 
network with source s and sink s', integer capacities c 0 and nonnegative integer 
transmission times z~j. Further, let I r  := [0, T]  be a discrete time interval 
(containing only integer-valued points) with T ~ N o and let denote Ns the set 
N\{s, s'}. 
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Definition 1: A dynamic flow of value v, v �9 ~, from s to s' is a mapping 
f :  A x I T --} r~ o fulfilling the following properties 

t = O  (s,j)~A (i,s)~A 

( ~ fii(t)-- ~ A,(t--zk,))=O Vi�9 , Vt �9  T (2) 
( i , j )  ~ A (k, i) ~ A 

~ (  ~ f ~ , j ( t ) - - ~  f i s , ( t - - z i s , ) ) = - - v  (3) 
t = O  (s',j)~A (i,s')~A 

0 <_ flj(t) <_ cij V(i,j) �9 A , Vt �9 I r (4) 

where for notational convenience we assume throughout that f0(t) = 0 for t < 0. 
fq(t) denotes the flow that leaves node i along arc (i, j) at time t. []  

Equation (1) describes that the flow which leaves the source s in the time interval 
IT totals v. Exactly this flow arrives during this time in the sink s', confer (3). The 
equations (2) describe that at any time t the flow which arrives in an intermediate 
node i#  s,s' also leaves this node at this time. (4) expresses the capacity 
constraints at any time t. (Note that our model is a discrete dynamic flow problem 
where a flow of f~j(t) is allowed to start at node i at any time t �9 IT.) 

Definition 2: A quickest flow in Jff from s to s' for a given flow value v is a dynamic 
flow fulfilling (1)-(4) where T = T(v) is minimum. Thus the quickest flow problem 
can be stated as 

(QFP) min T = T(v) 

s.t. (1)-(4) .  [] 

The quickest flow problem is closely related to the maximum dynamic flow 
problem (MDFP) as introduced by Ford and Fulkerson [15]. The maximum 
dynamic flow problem asks for a dynamic flow of maximum value v = v(T) in a 
given time interval [0, T]. In contrast to the (QFP), this problem can be written 
as linear program. In a certain sense (QFP) is the inverse problem of (MDFP). 
Hence it seems to make sense to investigate possible connections between 
quickest flows and maximum dynamic flows. 
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In the following we denote by T(v) the transmission time of a quickest flow of 
given value v, v ~ N, and by v(T) the value of a maximum dynamic flow in the 
given time interval [0, T], T ~ No. For notational convenience we further define 
v ( -  1) := 0. The following straightforward lemma expresses the close relation- 
ship between maximum dynamic and quickest flows. 

Lemma 1: Let f be a dynamic flow of value v in the time interval [0, T], T > O. I f  

v ( T -  1) < v (5) 

then f is a quickest flow of ~alue v, and for the minimum transmission time T(v) 
we get 

T(v) = T .  (6) 

Our approach for solving the quickest flow problem will mainly rely on 
Lemma 1. The minimum transmission time T(v) can be determined as follows. 
From the definition of v(T) it follows that v < v(T(v)). In view of the conditions 
(5) and (6) of Lemma 1 also v(T(v) - 1) < v must hold. Thus, T(v) equals the 
minimum T such that v(T) >_ vl In order to compute the quickest flow itself, we 
determine a maximum dynamic flow f Tt~) for the interval [0, T(v)] and decrease 
its value to v in ease that v(T(v)) > v. 

In the theory of dynamic flows so-called temporally repeated flows are of 
special interest. Let g: A ~ No be a static (classical) flow of value 101 from s to 
s' in the network Jff. (I.e. we require flow conservation at each intermediate 
node ~ s, s' and the usual capacity constraints gij < clj for all (i, j) ~ A.) Now we 
decompose the flow g into flows gl, ..-, gr along paths P1, . . . ,  Pr from the source 
s to the sink s'. Let Igkl designate the value of the flow along path Pk and Z(Pk) 
the transmission time of path Pk, i.e. the sum of the transmission times of the arcs 
along Pk" It is easy to see that by repeating the path flows gk along the 
corresponding paths ( T -  Z(Pk)+ 1) times, we get a feasible dynamic flow 
provided that T >_ maxl<_k<rZ(Pk). A dynamic flow f obtained in this way is 
called a temporally repeated flow (TRF). A simple calculation yields that the 
value of this TRF f induced by the static flow g is equal to 

v i=  ~ (T + 1 --z(Pk))']gkl = ( T +  1)'lg[- ~ Tug~j �9 
k = l  ( i , j )  ~ A 

(7) 

According to Ford and Fulkerson [15] there is always a maximum dynamic 
flow that is temporally repeated. Based on formula (7), these authors have further 
shown that a maximum dynamic flow for a given period [0, T] can be computed 
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efficiently by solving a minimum cost circulation problem. (Introduce a return 
arc (s', s) with capacity cs,s = oo and cost ds,s = - ( T  + 1) and define the 
remaining costs as d 0 := z 0 for (i,j) ~ A.) Denote this minimum cost circulation 
problem by ( M C C P ) r .  

The close relationship between maximum dynamic and quickest flows as 
described in Lemma 1, motivates now to take a closer look at the structure of 
the value v(T) of a maximum dynamic flow, regarded as function of T, T e N o. 

3 The Value Function of Maximum Dynamic Flows 

In this section we will frequently refer to static flows that induce a TRF of 
maximum value for a given time interval. Therefore, let ~ r  denote the class of 
all static flows that induce for the interval [0, T]  a TRF of maximum value 
(= v(T)). (In general we will have I fr > 1 and the value of flows in the class fgT 
will not necessarily be unique.) Furthermore, let To be the length of the shortest 
path from s to s' with respect to the transmission times. Obviously To-- 
min{T _> 0 : v(T) > 0}. 

The following lemma is an immediate consequence of the foregoing discussion 
on temporally repeated flows. 

Lemma 2: For all T > T O we have 

v (T  - 1) < v(T) . (8) 

Proof'. For  T = T O relation (8) is an immediate consequence of the definition of 
To. Let T > To. Consider a static flow g r-1 ~ far-1 and denote again by Igr-l l  
its value. Obviously, 9 r - I  induces a TRF of value v ( T -  1) + [gr-~l for the 
interval [0, T]  since each path in the decomposition of g r-~ can be used once 
again (cf. (7)). As v(T) is the value of a maximum dynamic flow for the interval 
[0, T], we get v(T) > v (T  - 1) + Igr-l l  > v(T  -- 1). []  

The following connection between v(T  + 1), v(T) and the values Igrl can now 
be obtained easily. 

Lemma 3: Let  gr ~ ~r  and gT+l ~ (~r+l. Then the following two properties hold 
for  all T >_ 0: 

]gTI ~ IgT+ll (9) 
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v(T) + IgTI < v(T + 1) _< v(T) + IgT+ll . (1o) 

Observe that (9) holds independently of the choice of the flows gr  and gr+l. 
(Recall that the value of flows in the class f#r is not necessarily unique.) 

Proof: The monotonicity of ]gTi is a direct consequence of formula (7). The left 
part of relation (10) has already been shown above. 

To prove the right hand side of (10), we apply the same kind of argument as 
in the proof of Lemma 2, but now in the other direction. Consider a static flow 
gT+I ~ ~T+I. gT+I induces a TRF of value v(T + 1) - [gr+~[ for the interval 
[0, T] (confer again formula (7)). Now we obviously must have 

v(T + 1 ) -  Igr+ll _< v(T) . 

Rearranging yields the relation to be proven. [] 

From Lemma 3 it follows that some kind of convexity property holds for v(T). 
For T > 0 let A(T) denote the difference v(T) - v(T - 1). Further let gm,x be an 
arbitrary maximum (static) flow in the network ~Ar and denote by Igma~l its value. 
By combining Lemma 2 and Lemma 3, we can now show: 

Theorem 1: 

(i) The value function v( T) of  a maximum dynamic f low is a monotone increasing 
function. For T > T O it even increases strictly. 

(ii) zl(T) is monotone increasing, i.e. for all T > 0 we have 

A(T  + 1) _> A(T) . (11) 

(iii) A(T) can attain only values from the set {0, 1, . . . ,  Igmax[}- 

Proof: Property (i) has already been proven in Lemma 2. To show (ii), note that 
relation (10) yields the following bounds for A(T), T > 0, where g r ~ f~r and 
g T-1 ~ ~ T - ,  : 

IgT-'l ~ A(T) < [gTI . (12) 

Observing relation (9) completes now the proof of (ii). 
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Since g r is a static flow on X we obviously have 0 _ [g r] _< [ g.,.x] for all T _> 0, 
so (12) implies 0 _< A(T) <_ [g.,.x[. Thus property (iii) follows from the integrality 
of the values A(T). [] 

Remark I: Regarding T as a parameter in the minimum cost circulation problem 
(MCCP)T introduced in Section 2 yields a special parametric cost linear 
programming problem, v(T) equals then the negative of the optimal value 
function of problem (MCCP)T and the slope of the optimal value function equals 
the negative of the flow on the return arc (cf. formula (7)). Since the optimum 
value function of such a parametric problem is continuous, piecewise linear and 
concave (see e.g. Murty [31]), all properties of v(T) mentioned in Theorem 1 can 
now be obtained in a non-combinatorial way as well. Of course, we are still 
interested only in the  values of v(T) for integer arguments, but treating this 
function as a continuous instead of as a discrete function simplifies many of the 
definitions and arguments of the next section, and therefore we will adopt to this 
convention for the rest of the paper. 

The following result will be helpful for solving (QFP): 

Lemma 4: 

(i) Let g# e f~f for T >_ O. Then Ig#[ is a subgradient of v(T) at T = T. 

(ii) Further,/fO -f e argmin{Igl: g e fgf} and T > 0 then 

v(7 "~) = v(ar - 1) + i ~ 1  . (13) 

This means that IJa~l is the left-hand-side derivative of v(T) at T = T, or in 
other words A(T) = [gr[. 

Proof: From formula (7) we know that v(7 ~) = (7 ~ + 1). Igl - 2(i.j)eA'Cij'gij for 
any static flow g ~ fgT. It follows directly from the notion of a subgradient that 
Igrl is indeed a subgradient of v(T) at T = T. Assertion (ii) is an immediate 
consequence of the fact that the left-hand-side derivative at T = ~ is simply the 
smallest subgradient at this point. []  

Up to now we still do not know how to compute a quickest flow. But from 
Lemma 1 and the subsequent discussion we know that in order to solve the 
quickest flow problem for a given flow value v, we have to find the minimum 
integer T for which v(T) > v holds. This can now be done efficiently by using the 
properties of v(T) stated in Theorem 1. The details will be given in the next 
section. 
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4 Algorithms for Finding Quickest Flows 

The key problem underlying the computation of the minimum transmission 
time is a typical parametric search problem: We have given a problem in the 
formulation of which a parameter occurs and try to find the smallest (largest) 
value of this parameter such that a certain property is fulfilled. Problems of 
this type have already been dealt with many times in literature. One field of 
application that is particularly important from the point of view of this paper is 
the rather popular parametric approach in fractional programming (see e.g. 
Ibaraki [21] and Megiddo [28]). This close relationship between fractional 
programming and the (QFP) is no mere coincidence since (QFP) can indeed 
be formulated as a linear fractional program. (T can be written as quotient of 
two linear functions of the flow variables go, cf. (7).) 

So some of the ideas we are going to propose can already be found in the 
literature on the parametric approach in fractional programming. (For details 
the interested reader is referred to the papers by Ibaraki [21] and Schaible and 
Ibaraki [40], the monograph by Schaible [39] and the references given therein.) 
What we try here is first to emphasize the combinatorial side of the (QFP) and 
secondly to use additional properties of the (QFP) which accelerate the general 
algorithms. 

In the following we will first describe two pseudopolynomial algorithms for 
the (QFP), where the second of these algorithms is already known from the 
literature. Thereafter we will propose several polynomial algorithms, and in 
Section 6 we shall even point out a strongly polynomial method. 

4.1 Pseudopolynomial Algorithms 

Since v(T) is an increasing function, one approach for computing the minimum 
integer T for which v(T) > v holds, would of course be to solve the parametric 
minimum cost circulation problem (MCCP)T starting from T = 0 and to stop 
as soon as v(T) >_ v. Unfortunately, by adding a return arc (s', s) with infinite 
capacity and cost - ( T  + 1) to the famous pathological networks of Zadeh [42], 
we get for each k > 2 an instance of type (MCCP)r with n = 2k + 2 nodes, 
b = 2 k - 3 breakpoints (= slope changes of the optimal value function) and 
maximum static flow value Igmaxl = 2k  -1- 2 k - 2  - -  2. (Note that both b and Ig~axl 
are exponential in n.) These facts can be proved by similar ideas as in Carstensen 
[10] and Ruhe [38]. It follows that the parametric approach suggested above 
yields only a pseudopolynomial method for (QFP). 

Another pseudopolynomial algorithm for the (QFP) has already been de- 
scribed in Hamacher [19] and is based on the following results: A dynamic flow 
for the interval [0, T] is termed earliest arrival flow (EAF) if the amount of flow 
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that has already arrived in the sink s' until time t is maximum for all t, t = 0, 
1 . . . . .  T. An EAF for the time interval [0, T] is always a quickest flow for the 
value v = v(T), see Jarvis and Ratliff [23]. (Note the similarities to Lemma 1.) 
We now start to compute an EAF by a method given by Minieka [28]. As soon 
as for the first time a dynamic flow with value > v is arrived, we terminate and 
determine the minimum T such that the EAF for [0, T] has value > v. This T 
obviously equals the minimum transmission time T(v). As up to Ig,,axl shortest 
augmenting paths have to be found, where again I g,,ax[ is the value of a maximum 
static flow, this approach yields again only a pseudopolynomial algorithm for 
the (QFP), 

In the sequel we will suggest several classes of polynomial-time algorithms for 
solving the quickest flow problem. 

4.2 Polynomial Search Methods on the T-Axis 

Since v(T) is monotone increasing and T attains only integer values, a binary 
search method with respect to T suggests itself. One starts with an interval 
[Tt, T,] such that v(Tl) < v and v(T.) > v, thus T(v) ~ [Tl, T.]. Then one computes 
the mid point of this interval, say T~, and tests by computing v(Tc) whether one 
is already finished or has to continue the search to the left respective to the right 
of T~. 

Although by using this method the search interval gets halved at each iteration, 
the convergence of this method is rather slow in practice. In the sequel we will 
describe how the decrease of the interval can be accelerated by exploiting the 
convexity of v(T). 

4.2.1 An Improvement of Pure Binary Search 

To simplify the exposition, we first introduce the following notations (see Fig. 1): 
Let Lv be the line parallel to the T-axis at height v, where v is the value of the 
quickest flow to be determined. Assume further that T(v) ~ [Tt, T.]. Then we 
denote by v(Tl, T~) the value of T where the chord ch(Tt, T~) through the points 
(Tl, v(Tl)) and (T~, v(T.)) crosses the line Lv. Further, let us denote by L~,,pp(~) an 
arbitrary supporting line to v(T) at the point (~  v(~)) and by a(Ls.pp(~)) the 
T-coordinate of the intersection point of this supporting line with the line Lv. (If 
v(T) is differentiable at point (~, v(7~)), then the tangent at this point is the unique 
supporting line, otherwise any subgradient at this point can be taken as slope of 
the supporting line Lsupp(T).) 

Assume it is known that T(v) ~ [Tt, T.]. Then the following improved bounds 
follow immediately from the convexity of v(T) (see also Figure 1): 
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v(T) 

Tl 

' i 
, m T 

t r(,,) t t r,, 
7(Tt, T,,) .'(L.,~(TL)) o'(Ls.,~(T.)) 

Fig. 1. Improved lower and upper bounds: v(T) is drawn as bold line 

[~(T, 7.)1 <_ T(v) (14) 

and 

T(v) <_. [min{a(Ls,pp(T~)), a(Ls.pp(T,))}] . (15) 

Observe that bound (15) is obtained from a Newton-like step and bound (14) 
is stimulated by the regula falsi. These two bound improvement steps enormously 
improve the practical efficiency of pure binary search, provided they are applied 
in each iteration, of the binary search. In the following some aspects of the 
algorithm sketched above will be discussed in some more detail. 

In (15) supporting lines to v(T) at T = T t, respective at T = T~, and hence 
subgradients of v(T) at these points are needed. Using the right-hand-side 
(the left-hand-side) derivative ofv(T) at T = Tl (at T = T,) obviously leads to the 
tightest upper bounds, but has the disadvantage of requiring a substantially 
larger computational effort than using the subgradient that results as a by- 
product in the evaluation of v(T) (confer Lemma 4) for free, 

As initial values for Tt and T~ respectively, we can take 

(16) 
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Iv-_ T. :=  T l +  ]gZ] ] , (17) 

where g ~ denotes a static flow that induces a TRF of maximum value for T = T~. 
The validity of the lower bound (16) follows from the definition of T o (no flow 
can reach the sink for T < To) and from the fact that [g,.,~l is an upper 
bound on the differences A(T) = v(T) - v(T - 1) which implies that at least 
[(v - v(O))/lg,,,~[] time units are necessary for achieving v(T) > v. The correct- 
ness of the upper bound (17) can be seen by a similar argument. Since Igzl is a 
subgradient of v(T) at T = T t, it follows that A(T l + 1) > I~1. Due to the mono- 
tonicity of A(T), we hence need at most [(v - v(r3)/Igq] additional time units in 
order to increase v(T) from its current value v(T~) to v. 

Analysis of the Improved Binary Search Algorithm 

(i) The computation of an initial interval [Tz, T,] for T(v) by means of(16) and 
(17) essentially amounts to solving one shortest path problem and one 
maximum flow problem. Then two minimum cost circulation problems for 
computing v(Tl) and v(T,) have to be solved. 

(ii) In each step of the binary search a minimum cost circulation problem has 
to be solved in order to evaluate v(T~) for the midpoint T~ = [(Tl + T,)/2J. 
All other operations including the bound improvement steps can be per- 
formed in constant time. 

(iii) It is straightforward to observe that there are at most min{[log v] + 1, 
[g,,,x]} iterations. (The length of the search interval is at least halved in 
each iteration and the length of the initial interval is ___ v as can be seen from 
(16) and (17). Furthermore, v(T) has at most [g,,ax [ linear pieces of non-zero 
slope.) 

Hence, we get O(min(log v, [gm,x[)" MIN(n, m)) as overall complexity of the 
above algorithm, where MIN(n, m) denotes the number of steps that are necessary 
to solve a minimum cost circulation problem on a network with n nodes and m 
arcs. The currently best known strongly polynomial algorithm for the minimum 
cost circulation problem due to Orlin [32] basically solves O(m log n) shortest 
path problems w.r.t, nonnegative weights and yields therefore MIN(n, m)= 
O(m log n(m + n log n)). 

The improved binary search algorithm determines the minimum transmission 
time T(v) and an associated optimal static flow gr(V) ~ fir(v). The quickest flow 
itself can then be found in O(nm) additional steps. (Decompose g r(~) into at most 
m path flows and construct the associated temporally repeated flow. In case that 
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this TRF has value > v, a new dynamic flow of value v can easily be obtained in 
O(m) time - e.g. by appropriately modifying the given TRF in the last transmis- 
sion period.) Thus the (QFP) can be solved in O(min(log v, Igmu~l)'MIN(n, m)) 
time, i.e. in polynomial time. 

4.2.2 An Interpolation-Based Algorithm 

In large practical problems it occurs very rarely that T(v) locates around the 
midpoint T~. As remedy Ibaraki [21] proposed an interpolation approach which 
can be adapted to the (QFP) as follows: We compute an interpolation function 
~(T) for v(T) and choose the minimum integer T for which O(T) > v as next test 
point T~. By this approach one hopes to find better estimates for the minimum 
transmission time, but the price one has to pay for the practical improvement is 
the theoretical shortcoming that now one cannot guarantee any longer the 
([log v] + 1) upper bound on the number of iterations. 

Obviously, O(T) should share as many properties with v(T) as possible. Hence 
the interpolation function ~(T) should be a convex, monotone increasing, 
continuous function for which furthermore the function values and subgradients 
at both endpoints of the current search interval should coincide with the 
corresponding values o f  the original function v(T). Suppose it is known that 
T(v) E [T~, Tu]. Further, let gt and g~ be static flows such that the associated flow 
values Ig*l a n d  Ig~l are subgradients of v(T) for T = T~ and T = T~, respectively. 
After some empirical experimentations Ibaraki came up with the following form 
for ~(T): 

I~lg Ul .(T~ - T) + a(T~ - T )  b + v(T~) 
~3(T) := [g"l (T~ - T)  + v(T~) 

if IgU[ ~ ~(v) , 
otherwise , (18) 

where 

~ ( v )  . -  v (T~)  - v (Tt )  b . -  ]g~[ - Igul a : =  r  - Ig u] 

T~ - T, ' ~ ( v ) -  Ig"l  ' (T~ - T~) b-1  " 

4.2.3 A Newton-Type Algorithm 

Another very popular approach for solving non-linear equations is Newton's 
method which in our case works as follows: We choose a T (~ as initial guess for 
T(v) (e.g. T ~~ :-- Tt given in (16)). Then we iteratively compute a sequence T (k) 
according to 
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T (k+l) := a(L~.pp(T~k))) for k >_ 0 . (19) 

That  m e a n s  T (k+l) is set to the value of T for which the supporting line Lsupp(T (k)) 
crosses the horizontal line L~. We can stop this process as soon as in some 
iteration q either v ( T  tq)) = v or IT tq-~) - Ttq) I < 1 holds. Upon termination the 
minimum transmission time T(v) is known to be equal to [ Tt~)]. 

How many iterations does this method need in the worst case? Obviously, the 
number of different non-zero slopes of v (T)  and hence [gr~,~[ provides a trivial 
upper bound for the number of iterations. But, observe that this bound is not 
polynomial as [g,.~l can in the worst case become as large as n .c . , . x ,  where e . ~  
denotes the largest of the capacities cij. However, by using similar arguments as 
McCormick and Ervolina [27] and Radzik [35] we get the following polynomial 
bound: 

L e m m a  5: N e w t o n ' s  me thod  as described above needs at most  

O(log v + log 10m~l) (20) 

i terations. 

Proof :  For  k _> 0 let g~k) E (~T(k) be the static flow that results from the computa- 
tion of v(T) at T = T ~k) and assume that Ig(*)[ is chosen as slope of the supporting 
line Ls.pp(T~k)). From (19) we now get T ~k) - T ~k+~) = (v (T  ~k)) - V)/(]g~k)[) for 
k > 1. Noting that v(T) = (T + 1). [g[ - ~ i , i ) ~ a z i j . g o f o r g  ~ f#T (confer formula 
(7)) this implies 

v ( T  ~k+a)) - v 101~+1)1 
_ 1 (21) 

v ( T  ~k)) - v [g(k)[ 

It follows from (21) that depending on whether the rate 19<k+a)l/lgtk)[ is >_ 1/2 or 
< 1/2, either the sequence ( v (T  ~k)) - v) or the sequence lgtk)l decreases by at least 
1/2. It ~akes at most [log Lg,~xb] iterations to decrease Ig~k)l from its initial value 
Igtl)l < Igmax[ to 1. Further, at most [log(Ig,,,~l" v)] + 1 iterations are necessary 
to decrease v ( T  tk)) - v from its initial value ( v (T  ~1)) - v) < v.  Ig~l)l < v'lg,,ax[ 
(confer formula (7)) to a value less than 1. Summing up yields the desired 
bound. []  

R e m a r k  2: By a more careful choice of T c~ the bound (20) can be improved to 
O(log Zlm. x + log v) with Amax = min {v, I g,.~xl} being an upper bound for A (T(v)),  
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the slope of the line segment on which the minimum transmission time T(v) is 
located. We simply have to choose T I~ such that there is a supporting line of 
slope A,,a~ at T (~ Then obviously we have [g~l)[ < Am,~ and the improved bound 
follows immediately from the proof of the lemma above. 

Recently Rote [37] has given a refined analysis of the Newton approach for 
general linear fractional programming. Applying his result to our case yields the 

following upper bound for the number of iterations: O (log v/log ( l + logv_ ']'] 
log 

Hence, for v = Ig,,a~] '~ Newton's algorithm is asymptotically faster than the 
binary search algorithm on the T-axis discussed before. This follows also from 
the work of Radzik [35]. 

Further search methods which have not been mentioned here, such as a 
method based on the reoula falsi can be found in Schaible and Ibaraki [40]. 

4.3 Searching on the Set of Differences 

As mentioned before we know that A(T(v)) is bounded above by A r e a  x = 

min{lg,..~[, v}. Consequently, applying binary search to the set of differences 
(slopes) results in only O(log A,.a~ ) iterations as opposed to O(log v) iterations 
that are needed by the binary search approach on the T-axis discussed above. 

Observe that an initial interval [A z, Au] for A(T(v)) can be determined rather 
easily. Let [Tz, T,] be an initial interval for T(v) and compute static flows g~ �9 ~r,  
and g" �9 ~ru, respectively. Then set At := [g~l and A, := min{Ig"l, v}. 

The key problem that remains to be solved is now to determine for a given 
difference (slope) Ac the interval of T-values for which v(T) has slope Ac. In the 
following we will describe an efficient method for that very purpose. For the ease 
of exposition we start with the following definitions: 

Definition 3: Let z] > 0 be a given difference. Then we denote by J2  := (_T, T] the 
interval of all T such that A(T) = J for all integer T �9 J j .  [] 

Definition 4: Let g be a static flow on the network X and let dq := zgj denote the 
cost of arc (i,j). Then we denote by X ~ = ((N, Ag), c g, d g) the residual network 
with respect to the flow g. There A ~ denotes the set of residual edges, and c~ and 
d~ are the residual capacity and residual cost of arc (i, j) e A o, respectively. [] 

If the interval J~  is empty, then the difference J never occurs, i.e. the function 
v(T) has no segment of slope J.  Otherwise, it follows that v(T) has slope J 
for T �9 [_T, T]. The following lemma can be used to compute the interval J~  
efficiently. 
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Lemma 6: Let g be a static flow on the network Y which has minimum cost among 
all flows of value A > O, where the costs d o are given by the transmission times z~. 
Further, let Pa be a shortest path from the source s to the sink s' in Jffg with respect 
to the costs d~ and P2 be a shortest path from s' to s, respectively. 
Then the bounds of the interval J3 can be computed as follows: 

_ T : = -  E d ~ - 1  and T : =  ~ d ~ - 1  . (22) 
( i , j )~  P2 ( i , j )~  P1 

Proof: Since the value of a static flow g f  ~ c~f is a subgradient of v(T) at T = 7 ~ 
(see Lemma 4), computing the interval d3 reduces to computing the interval of 
all values of T such that the min cost flow g of value J belongs to the class fqT. 
This is of course a classical problem from sensitivity analysis. Given the circula- 
tion 0 obtained from the flow g by adding a return arc with flow Ig[, we want to 
determine the smallest and the largest value of T, _T and T, respectively, such that 

is an optimal solution to problem (MCCP)r.  
Applying the classical negative cycle theorem (see e.g. Ahuja et al. [2]), yields 

that ~ is optimal as long as the residual network Y~  contains no negative cycle. 
Since jffo contains no negative cycle due to the optimality of g (the shortest paths 
P1 and P2 are thus well defined), a negative cycle C in X ~ must contain either 
(s', s) or (s, s'), the only arcs not present in Yg. Hence we have to distinguish the 
following two cases for the cycle C: 

1. C consists of the arc (s', s) followed by a path P from s to s'. Since d~  = ds, ~ = 
- ( T  + 1), its cost d(C) is then given by 

d(C):=-(T+ 1)+ ~ d~. (23) 
(i,j) ~ P 

2. C consists of the arc (s, s') followed by a path P' from s' to s. Due to 
dffs, = -dss, = T + 1 we have 

d(C):=(T+ 1)+ ~ d~ . (24) 
(i,j) e P '  

Requiring d(C) > 0 for the expressions (23) and (24) yields 

T_< E d ~ - I  and T >  -- E d~- - i  . 
(i,j) ~ P (i,j) e P '  

The most stringent restrictions on T result by using for P path P1, the shortest 
path from s to s', and for P' path 1192, the shortest path from s' to s. [] 
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The method described above not only computes the interval JJc, but also 
yields the line segment of v(T) having slope Ac in case it exists. Let T* be the 
value of T for which this line segment crosses the horizontal line Lv. In case 
T* ~ J~o we are finished (T(v) = IT*I). If however T* < _T, the current slope zl c 
is obviously too large, while if T* > T, it is too small. Let c~ := min~i,j)~pr c~ 
denote the residual capacity of the paths P,, r = 1, 2 defined in Lemma 6. Then 
in the first case (T* < T) we set zJu := z/c - c~ and in the latter case we set 
/ll := Zic + c~ and continue the binary search accordingly. 

It is now easy to see that the time complexity of this algorithm is equal to 
O(min(log v, log [gmaxl)'MIN(n, m)), where again M(n, m) is the time needed to 
solve a minimum cost flow problem with n nodes and m arcs. 

Unfortunately, in contrast to the binary search algorithm on the T-axis we did 
not succeed in developing an interpolation approach for the above binary search 
approach with respect to the slopes. The practical performance of the algorithm 
described above can be improved, however, if we also maintain an interval 
[Tt, TJ  on the T-axis and use the subgradients at T~ and T~ for obtaining better 
bounds z/~ and Au. We will give some more details on this hybrid approach in 
the next section. 

5 Numerical Investigations 

5.1 Implementations 

5.1.1 Implementation of the Polynomial Methods of Section 4 

For solving the initial maximum flow problem and the shortest path problems 
which occur as subproblems in our search algorithms we used efficient imple- 
mentations from literature, more specifically we applied the max flow code 
G O L D R M F  of Derigs and Meier [13, 14] and the shortest path code L- 
2QUEUE of Gallo and Pallottino [161 respectively. 

At this time, it appears that the relaxation algorithm of Bertsekas and Tseng 
[6] and the primal network simplex algorithm (see e.g. Grigoriadis [18]) are the 
two fastest algorithms for solving the minimum cost network flow problem. For 
our experiments we had available the code RELAXT of Bertsekas and Tseng [6] 
and the primal simplex code NET of Ahrens and Finke [1]. Observe that for 
evaluating v(T) for given T, it is essential that for different values of T, the 
corresponding minimum cost circulation problems (MCCP)T differ only in the 
cost of the return arc which is - ( T  + 1). Fortunately, both RELAXT and NET 
are well suited for performing reoptimization, i.e. starting from a previous 
optimal solution for a different T instead of recomputing from scratch. 
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In the final versions of our codes we applied NET, because in a first set of tests, 
NET turned out to be considerably faster on problems of type (MCCP)r  
than RELAXT, both when starting from scratch and when reoptimization was 
applied. The main reason for the bad behaviour of RELAXT seems to be that 
in instances of type (MCCP)r  typically a small set of arcs, in particular the return 
arc, has much higher cost than the remaining arcs. (After completion of our study 
we learnt that now an improved relaxation code RELAXT-III with a possibly 
better performance on problems of this type is available (see Bertsekas and Tseng 
[7].) 

Recall that for performing binary search on the slopes, an additional minimum 
cost flow problem has to be solved in order to determine for a given slope J the 
associated optimality interval J3, where for different values of J only the value 
of the flow to be computed changes. The computational results of Ali, Padman 
and Thiagaran [4] suggest that in such cases reoptimizing by an efficient 
implementation of the dual simplex method is preferable to introducing artificial 
high-cost arcs in the primal approach. As the relaxation method of Bertsekas 
and Tseng can also handle the case of supply/demand changes in a straight- 
forward way, we are again left with the choice between two different methods for 
reoptimization. 

5.1.2 Implementation of the Pseudopolynomial Methods of Section 4 

The most natural way of implementing the parametric approach described in 
Section 4 would be to solve the parametric minimum cost flow problem 
(MCCP)r  with a stra{ghtforward extension of the primal network simplex 
method (for the general idea of the parametric simplex method see Murty [-31]). 
Whereas in the general case in each step of the algorithm all O(m) non-basic arcs 
have to be checked for their optimality (dual feasibility), in our case it suffices to 
consider all arcs in the cocycle obtained by deleting the return arc from the basis 
since the return arc is the only arc with a parametric cost. 

There is, however, also a dual approach. According to Lemma 6, to each 
segment of v(T) of slope J there corresponds a minimum cost static flow 0 of 
value [g[ = A. (If g has cost ~t~.J)~ A zijgij then the associated segment of v(T) lies 
on the line (T + 1)[9[ - ~t~.j)~a Zijgij.) Considering the flow value as parameter 
leads to a flow problem with a parametric supply/demand vector which can be 
solved by an extension of the dual network simplex method. While for general 
parametric right-hand-side flow problems all n - 1 basic arcs have to tested for 
their primal feasibility, in this special case it is enough to check only the arcs on 
the unique path in the basis tree from the source s to the sink s'. (On all other 
arcs the flow is independent of the parameter.) 

So in principle, from a computational point of view the primal and the 
dual parametric approach are equivalent when appropriately implemented. 
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Unfortunately, no matter whether we start from a primal or a dual code, the 
necessary adaptions require a very detailed understanding of the nonparametric 
code to be modified. As we already had available both a primal and a dual 
parametric network simplex code from previous work (adaptions of NET of 
Ahrens et al. [ 1] and of M ODAPT of Ali et al. [4], respectively), we thus decided 
not to undertake a new implementation which pays attention to specializations 
possible for our special problem in the computation of the optimality intervals. 
In this situation it is natural to choose the dual code since it needs only O(n) 
instead of O(m) time per computation of an optimality interval. 

As the method based on Minieka's earliest arrival flow algorithm is essentially 
nothing else than solving a minimum cost flow problem by the shortest augment- 
ing path method, its implementation is very easy. We simply used the shortest 
path code L-2QUEUE for successively obtaining a shortest path in the residual 
network and updated the residual network and the value of the current flow 
accordingly. Of course, there might exist more sophisticated implementations, 
but it was only our aim to get some feeling on the behaviour of this algorithm. 

5.2 Generation of Test Data 

Basically we used two classes of networks. The first class of instances was 
generated randomly by the code NETGEN of Klingman, Napier and Stutz [25]. 
For these instances it can be observed empirically that the number ofbreakpoints 
of v(T) is linear in the number of arcs. In order to investigate the influence of the 
number of breakpoints on the algorithms to be tested, the second class was 
chosen to consist of the Zadeh based networks of Section 4 which yield an 
exponential number of breakpoints. 

All NETGEN problems used in this study are networks with one source, one 
sink, no transshipment sources respective sinks, a cost range of 1-1000 and a 
capacity range of 50-5000. In order to achieve a comparatively large number of 
breakpoints, the total supply was always chosen as 10000 times the number of 
nodes. In this way we generated four types of networks, referred as N1-N4 in 
Table 1. These networks differ only in their number of nodes and arcs. For 

\Table 1. Characteristics of the networks used in our experiments 

Problem Id. # nodes 

N1 200 
N2 400 
N3 400 
N4 800 

Z5 42 

a r e s  

2000 
4000 
8000 
8000 

422 

# breakpoints ]g~.~] 

3638.3 2021992.2 
10494.6 4015579.6 
19121.6 4050916.8 
28180.8 8017503.4 

1048573.0 1310718.0 
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Table 2. v-dependent problem data for the networks from Table 1 

Problem ld. 

Nla 
Nlb 
Nlc 
Nld 

N2a 
N2b 
N2c 
N2d 

N3a 
N3b 
N3c 
N3d 

N4a 
N4b 
N4c 
N4d 

Z5a 
Z5b 

10 s 
109 
5-109 
10 lo 

107 
109 
10 lo 
1011 

10 8 
10 9 
1010 
1011 

10 s 

10 9 

10 lo 

1011 

10 7 

1011 

T(v) A(T(v)) # (brps ~ T(v)) 

3956.2 66200.0 169.2 
10380.2 209537.4 716.8 
22334.4 450820.0 1751.2 
31688.8 605261.0 2336.2 

1834.6 16122.0 34.4 
9860.2 221523.0 960.0 

30186.2 662796.4 3576.8 
101851.2 1746391.2 9058.8 

2640.0 87797.8 311.0 
7431.2 285623.4 1373.8 

22359.4 926580.6 4958.2 
71267.6 2682658.2 13839.0 

3789.6 69068.2 256.8 
10088.4 212246.8 1169.6 
31192.6 643996.6 4598.6 
99020.6 1952731.8 14720.0 

3999.0 5000.0 4000.0 
399999.0 500000.0 400000.0 

each type of  network we created five instances and all computa t ional  results 
reported below are results averaged over five runs each. Table 1 fur thermore 
provides the max imum flow value Ig,,axl and the total number  of breakpoints  of  
v(T) for the networks of types N 1 - N 4 .  

Since all networks of  the Zadeh type are of the same structure, we included 
only one particular instance from this class into our  set of test problems. The 
network which is referred to as Z5 in Table 1 is obtained by setting k :=  20. Note  
that  this network leads to 1048573 breakpoints  while having only 42 nodes. 

We still need to fix the amoun t  v of  flow to be transmitted. In order to 
investigate the influence of the size of  v on the difficulty of  comput ing  a quickest 
flow, we chose different values of  v for our  network types N 1 - N 4  and Z5. In this 
way we obtained 22 different problem types. Table 2 contains for each of these 
types the value v, the min imum transmission time T(v), the slope A(T(v)) of the 
segment on which T(v) lies, and finally in the last column, the number  of  
breakpoints  of the function v(T) which are to the left of T(v). 

5.3 Computational Results 

All our  codes including the network flow subroutines we used are written 
in Fort ran,  but  it should be ment ioned that  our  codes have been set up for 
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experimental purposes only. A first set of experiments led to the following 
findings: 

(1) For every single instance performing primal reoptimization from the very 
beginning outperforms clearly the variants where v(T) is computed each time 
from scratch or where reoptimization starts only at a later stage. 

(2) However, we found that for the other type of minimum cost flow problem 
where not the cost but the required flow value changes from iteration to 
iteration, the situation is far less favourable. Reoptimizing with the dual 
simplex algorithm from the very beginning turns out to be extremely 
inefficient - the resulting computation times are worse than those obtained 
by solving each problem from scratch by the primal simplex code. It seems 
to be very difficult, however, to find an appropriate criterion when to change 
over from the primal to the dual method. On the other hand, we found 
that the relaxation method of Bertsekas is better suited for performing 
reoptimization from the very beginning. Hence we used the method of 
Bertsekas in our final implementation of the binary search algorithm w.r.t. 
the slopes. 

(3) With the exception of instances with a very small number of breakpoints to 
the left of T(v) (about less than 50), the parametric method is much faster 
than the Minieka-based method. This is due to the fact that solving a shortest 
path problem is in general more expensive than performing a single pivot 
step. 

Let us now have a closer look at the second stage of our computational study. 
For notational convenience we will use the following abbreviations in the tables 
given below: MTBIN, INTPL and NEWT denote the three search methods 
on the T-axis, namely binary search on the T-axis coupled with improved 
lower and upper bounds, the interpolation approach of Ibaraki, and Newton's 
approach. Further, A BIN denotes the binary search on the slopes and A HYBR 
is a hybrid method based on A BIN. Finally, DUAL stands for the (dual) 
parametric method. 

In Table 3 below we report the computation times needed by the different 
methods for solving the problems of types N1, N2 and Z5. Table 4 contains some 
information on how many "basic steps" are performed by the various algorithms. 
For the search methods a basic step means one iteration, whereas for the 
parametric method it is more natural to treat one pivot as basic step. 

The computation times displayed in Table 3 clearly indicate that contrary to 
what one would expect from the worst case analysis in Section 4, the search 
methods operating on the T-axis outperform the methods searching in the set of 
slopes. There are two main reasons for the rather disappointing behaviour of the 
methods A BIN and A HYBR. One is that the method we used for evaluating v(T) 
for a given T = 7 ~ is far more efficient than the method for computing the interval 
J3 for a given slope A. The other is that we did not succeed in finding for A BIN 
an equally effective means for accelerating the decrease of the search interval as 
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Table 3. CPU-seconds on a VAX 4300 

Id. MTBIN INTPL NEWT A BIN zl HYBR DUAL 

Nla 6.026 5.982 6.274 9.296 10.158 2.110 
Nlb 6.666 6.470 6.740 12.416 12.666 5.260 
Nlc 6.270 6.214 6.558 14.742 11.710 10.946 
Nld 6.488 6.024 6.198 15.534 12.462 14.586 

N2a 
N2b 
N2c 
N2d 

15.500 14.588 15.636 18.742 20.536 4.230 
33.856 31.606 35 .904  55.014 60.688 19.652 
34.488 31.822 34 .306  64.466 60.644 53.368 
34.462 34.480 33 .074  98.668 68 .842  134.028 

0.260 0.180 0.370 0.910 0.580 5.510 
0.270 0.210 0.270 1.390 0.750 554.180 

Z5a 
Z5b 

Table 4. Number of basic steps 

Id. 

Nla 
Nlb 
Nlc 
Nld 

N2a 
N2b 
N2c 
N2d 

Z5a 
Z5b 

MTBIN INTPL 

4.4 2.8 
4.8 2.4 
5.4 2.6 
4.6 2.2 

4.6 3.4 
6.0 2.4 
3.8 2.8 
3.6 2.2 

7.0 1.0 
5.0 1.0 

NEWT zt BIN L1HYBR DUAL 

7.8 11.2 3.2 663.8 
7.0 12.0 2.8 1501.4 
6.0 11.4 2.0 2712.2 
5.8 13.0 2.0 33351.4 

8.4 10.6 3.0 650.2 
8.0 14.2 3.0 2734.2 
7.0 14.2 2.4 6264.8 
4.6 13.4 1.8 12439.2 

12.0 19.0 5.0 5034.0 
6.0 18.0 2.0 500041.0 

we have found for the T-search procedures. It  turned out  that  the ma in  idea 

under ly ing  the hybrid approach A HYBR, namely  to ma in ta in  besides the 
interval  [Az, Au] for the slope also an  interval  [Tz, T,] for T(v) and  to use the 
subgradients  at Tz and  T~ for improving  the current  slope bounds  Az and Au, 

hardly pays off. Of course, on one hand  the n u m b e r  of i terat ions can drastically 

be reduced by this approach (see Table  4), but  on the other hand  the computa-  
t ional  effort per i terat ion increases significantly as for ob ta in ing  the subgradients  

at Tz and  Tu, respectively, two addi t ional  rain cost circulat ion problems have to 
be solved. 

If we compare  the T-search methods  among  themselves, it turns  out  that  in 
most  cases M T B I N  and  I N T P L  are slightly faster than  N E W T  for a lmost  all 
problem instances, possibly except for those with a very large v. This is p robably  
due to the choice of the init ial  lower b o u n d  Tz from (16) as start ing value T (~ in 

the Newton  iteration. It  might  well be the case that  for smaller values of v, the 
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Table 5. Running times and number of basic steps of the most 
efficient algorithms found so far 

Id. MTBIN 
# it. CPU 

N3a 5.2 54.220 
N3b 5.8 75.596 
N3c 5.6 72.936 
N3d 2.8 83.406 

N4a 5.0 113.216 
N4b 5.6 190.184 
N4c 6.4 197~078 
N4d 5.4 189.628 

INTPL 
# it. CPU 

2A 49.256 
2.4 72.116 
2.4 69.738 
2.8 78.182 

DUAL 
# pivots CPU 

1580.0 17.884 
3542.6 41.864 
8856.2 119.53 

20209.8 359.990 

2440.0 34.206 
4844.8 74.660 

11146.6 185.006 
14721.0 507.280 

2.6 112.708 
2.0 186.970 
2.4 184.490 
2.4 192.404 

results of NEWT can be improved by using a different T ~~ e.g. one can proceed 
as described in Remark 2 in the previous section. 

Further, note that the number of iterations of INTPL is remarkably small. 
Due to the very uniform structure of v(T) for the Zadeh-networks it is even equal 
to 1 for the problems Z5a and Z5b. However, in each iteration of INTPL a 
nonlinear equation has to be solved which leads again to an increased effort 
per iteration when compared to the simple binary search algorithm MTBIN. 

Let us now compare the best search approaches, MTBIN and INTPL, 
respectively, with the parametric method DUAL. In order not to draw wrong 
conclusions, we additionally solved a set of larger quickest flow problems with 
these three approaches. Table 5 contains the results of these runs. 

It is easy to see that the behaviour of D U A L  strongly depends on the number 
of breakpoints of v(T) which are < T(v), while this number has almost no effect 
on the two other methods. Note  that independent of the problem size the number 
of iterations in MTBIN and INTPL is almost constant. But D U A L  gets worse 
and worse the larger the number of breakpoints becomes. This effect is demon- 
strated particularly well by the increase in the CPU-time from the Zadeh- 
example Z5a to the Zadeh-example Z5b in Table 3. 

As far as the almost constant number of iterations needed by the search 
approaches of Section 4 is regarded, we have confirmed the findings which 
Ibaraki obtained in [21] for other types of fractional programming-problems. 
However, our problems, in particular the rather small Zadeh-examples, seem to 
be more difficult to solve as we need more iterations per problem than Ibaraki. 

Let us now try to answer the question which of the algorithms mentioned 
above is best suited for solving a given practical (QFP). Generally speaking, one 
can say that as long as the number of breakpoints to the left of T(v) is not too 
large, algorithm D U A L  is the winner, whereas otherwise it is recommended to 
use the methods MTBIN or INTPL. (See e.g. the change in the behaviour that 
occurs between v = 109 and v = 10 l~ for the NETGEN-examI31e N3.) 

Obviously, the algorithm D U A L  can be modified such that, depending on the 
size of v, it starts alternatively from the zero flow proceeding then from left to 
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right as it is done in our implementation or from a maximum flow proceeding 
from right to left. This will yield an improvement for cases where only a small 
number of breakpoints lies to the right of T(v). But note that in example N3c 
this is not the case. There the number of breakpoints to the left of T(v) is according 
to Table 2 approximately equal to 4958, which is only about a quarter of the 
total number of breakpoints of v(T) for this instance (confer Table 1). 

A closer investigation revealed that the main reason why DUAL is superior 
for not too large values of v is that in this approach only one almost trivial 
minimum cost flow problem (for the flow value 0) has to be solved from scratch 
while in the search procedures such as MTBIN and IN TP L we have to solve 
two minimum cost flow problems, one for T = T l and one for T = T~ at 
the beginning. Especially for the large NETGEN-example  it turned out that 
evaluating v(T) at the initial Tu is very expensive. (These problems get more and 
more difficult, the larger T becomes.) 

To conclude this section, let us point out that our primary objective in 
implementing the search methods of Section 4 was getting a low number of 
iterations and only the secondary objective was t o  minimize the CPU-times. 
During our investigations it turned out, however, that in many cases, the running 
times decrease if we use weaker but easier computable lower and upper bounds 
Tt and Tu, while usually as a consequence thereof the number of iterations 
increases. 

6 A Strongly Polynomial Algorithm 

In this section we will propose a strongly polynomial algorithm for the (QFP) 
which relies on an ingenious idea of Megiddo [28] for solving linear fractional 
programs. Throughout  this section we will assume familiarity with Megiddo's 
work. (A self-contained description can be found in Burkard, Dlaska and Klinz 
I-9].) 

Basically our aim is to solve the problem (MCCP)T for T = T(v), but 
unfortunately we do not know T(v). Following Megiddo we can however proceed 
as follows: We extend a strongly polynomial algorithm A for the minimum cost 
circulation problem to the problem with parametric costs by extending the 
operations of A from the set of reals to the set of affine-linear functions. For  this 
approach to work, the only operations on the arc costs algorithm A is allowed 
to perform, are additions and subtractions of two costs, multiplications of an arc 
cost with a real number and finally pairwise comparisons between arc costs. 
Currently the best algorithm fulfilling these requirements has a time complexity 
of O(m log n(m + n log n)) and is due to Orlin [32]. 

Let J be an initial interval such that T(v) ~ J. Megiddo's method now mainly 
relies on the fact that as long as no comparisons involving the arc costs occur, 
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all steps of the algorithm can be performed immediately without knowing T(v). 
If we arrive at a comparison between two parametric arc costs, we first determine 
the critical value T* for which the two cost functions intersect. In case that T* 
does not exist or lies outside of J, the result of the comparison is obviously 
independent of T(v) and can be determined immediately. Otherwise, we compute 
the function value v([T*]), e.g. by calling algorithm A as subroutine. The result 
of this computation enables us to decide on which side of T* the value T(v) lies 
and to update J. This process eventually will yield a circulation g such that g is 
optimal over J and T(v) ~ J. Then T(v) can be obtained by a straightforward 
computation. 

It is easy to see that this algorithm determines the minimum transmission time 
T(v) in O(m 2 log 2 n(m + n log n) 2) time. (There are at most O(m log n(m + 
n log n)) comparisons in Orlin's min cost flow algorithm [32], and each com- 
parison causes at most one call of Orlin's algorithm as subroutine.) Hence a 
strongly polynomial time algorithm for the (QFP) running in O(m 2 log 2 n(m + 
n log n) a) time follows. 

It is worth-mentioning that the algorithmic scheme described above can be 
sped up provided one succeeds in reducing the number of calls to algorithm A. 
In 1-28, 29] Megiddo suggested several ways of achieving this aim for various 
types of fractional programming problems. 

It is not very difficult to derive from Megiddo's approach which is based on 
exploiting parallelism an O(m z log 5 n(m + n log n)) time algorithm for solving 
the (QFP). (There we apply a parallel variant of Orlin's min cost flow algorithm 
which performs O(m log n) shortest path computations. Each of these shortest 
path problems can be solved in O(log 2 n) time on a parallel machine with 
O(n3/log n) processors.) Further details can be found in Megiddo [29] and in 
Burkard et al. I-9]. 

An even better strongly polynomial algorithm for the (QFP) can be obtained 
by observing that in the parametric minimum cost circulation problem (MCCP)r 
the return arc is the only arc that has a parametric cost. Suppose we apply 
Megidd0's original algorithm with Orlin's min cost flow algorithm as underlying 
routine. The essential idea is now that due to the special property of the costs, 
the shortest path problems that occur as subproblems in Orlin's min cost flow 
algorithm can be solved directly as special parametric shortest path problems 
without applying the scheme of Megiddo. A careful analysis of the results of 
Young, Tarjan and Orlin [41] and Karp and Orlin [24] on special parametric 
shortest path problems shows that in the case where all arcs except one have 
constant costs, the associated optimal value function has at most n breakpoints. 
Hence these problems are solvable asymptotically in the same time as already 
needed for solving a single shortest path problem. (This has been observed 
independently e.g. by Orlin [33] and Klinz and Tuy [26].) Therefore, each of the 
O(m log n) shortest path computations necessary in Orlin's algorithm results in 
a number of at most n - 1 critical values T* < T2* < "'" < T~*, r < n. Using at 
most O(log n) calls to Orlin's algorithm [32] one can then determine the interval 
[T*, T*+I] with T(v) m [T*, Tp*l]. Along these lines a n  O(m 2 l og  3 n(m + n log n)) 
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time algorithm for the (QFP) can be developed. (This algorithm was suggested 
for the first time by Orlin [33] for solving a constrained maximum flow problem, 
see also Ahuja and Orlin [3].) 

Whereas Megiddo's method is apparently very effective from the theoretical 
point of view, nothing seems to be known about its practical efficiency. Many 
researchers suspect that due to the relatively large overhead necessary for making 
the algorithm strongly polynomial, Megiddo-based algorithms will be inferior 
to its just polynomial competitors for solving practical problems. 

In the case of the (QFP) the polynomial methods of Section 4 are superior 
to the Megiddo-based approach even from the point of view of worst case 
complexity for all instances of reasonable size, i.e. more specifically if log Ama~ is 
o(mlog 2 n), where Z~ma x = min{v, Igmaxl}. Thus it seemed to us that it does 
not pay off to undertake the rather cumbersome and time-consuming task of 
implementing Megiddo's method. 

7 Summary and Concluding Remarks 

In this paper we investigated a special dynamic flow problem, the quickest flow 
problem (QFP). This problem in a certain sense is the inverse problem of the 
classical maximum dynamic flow problem. Moreover, it turned out that the 
(QFP) can be written as linear fractional program. 

For a network with n nodes, m arcs and maximum static flow value Ig,.axl our 
best polynomial algorithm for solving the (QFP) for a given value v runs 
in O(m log n(m + n log n) log A,,ax ) time where A,,ax = min{v, Ig,,,xl}. Further- 
more, a strongly polynomial algorithm of time complexity O(m 2 log 3 n(m + 
n log n)) can be obtained. 

Finally, we conducted a computational study on the practical behaviour of 
the various methods for solving the (QFP). The results obtained seem to provide 
strong evidence that the best of the tested algorithms may well serve as an efficient 
tool for solving large practical problems. 

Despite the results on quickest flows presented in this paper and in the paper 
by Burkard, Dlaska and Kellerer [8], there are still several open questions which 
might deserve further research. Let us very briefly mention some of them. 

(1) In the context of evacuation models the following generalization of the 
quickest flow problem to the case of more than one source occurs (see Hamacher 
[19]): Given a network jIr with q > 1 sources s 1 . . . . .  s~ along with a number vsk 
for each source Sk, and one sink s', determine the minimum number of time units 
that are necessary to send vsk units of flow from the source s k to the sink s', for 
k = 1, . . . ,  q. To our knowledge no efficient algorithm for this problem is known. 
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(2) The perhaps most challenging research question related to quickest flows is 
to find a polynomial algorithm for the quickest flow problem with a better 
worst case complexity than the algorithms presented in our paper. Currently 
we are investigating whether some of the ideas which have proven successful 
for the minimum mean cycle problem (see Orlin and Ahuja [34]) and the 
maximum mean cut problem (see Iwano et al. [22]) can also be applied in 
our case. 

(3) Since the computational results of the previous section have shown that the 
number of iterations is on the average much smaller than predicted by our 
worst case bounds, the twofold question of finding tight worst case bounds 
and associated worst case examples arises. Such worst case examples would be 
of particular interest for the Newton approach, for the binary search algorithm 
with improved lower and upper bounds and finally above all for the interpolation 
algorithm. 

(4) In all our methods we have evaluated v(T) exactly. It is an interesting 
question from the point of view of both theory and practice whether computing 
only some kind of approximate min cost flow can help to improve the theoretical 
and/or practical efficiency of the search methods described in this paper. 
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