
ZOR - Methods and Models of Operations Research (1993) 37:31-58

The Quickest Flow Problem

RAINER E. BURKARD, KARIN DLASKA, AND BETTINA KLINZ

Institut f/ir Mathematik, TU Graz, Kopernikusgasse 24, 8010 Graz, Austria

Abstract: Consider a network JV = (G, c, ~) where G = (N, A) is a directed graph and c o and vlj,
respectively, denote the capacity and the transmission time of arc (i, j) e A. The quickest flow problem
is then to determine for a given value v the minimum number T(v) of time units that are necessary
to transmit (send) v units of flow in JV from a given source s to a given sink s'.

In this paper we show that the quickest flow problem is closely related to the maximum dynamic
flow problem and to linear fractional programming problems. Based on these relationships we
develop several polynomial algorithms and a strongly polynomial algorithm for the quickest flow
problem.

Finally we report computational results on the practical behaviour of our metholds. It turns out
that some of them are practically very efficient and well-suited for solving large problem instances.

1 Introduction

Flow Problems on networks belong to the most studied problems of mathe-

matical programming. T h e y have numerous applicat ions in practice since
highway, rail, electrical, communica t i on and many other physical networks

pervade our everyday lives. In m a n y applicat ions of flow problems not only the
amount of f low to be t ransmit ted bu t also the time needed for the t ransmiss ion

plays an essential role. This leads to so-called dynamic f low problems where a
transmission (traversal) time is a t tached to each link (arc) of the network. (See
also the classical work of Fo rd and Fulkerson [15], and the survey paper of

Aronson [5].)
In our paper we treat a special type of dynamic flow problems. Let G = (N, A)

be a directed graph with node set N and arc set A and X = (G, c, z) be the

associated network where a capacity c o and a nonnegat ive integer t ransmiss ion
time z~j are at tached to every arc (i, j) ~ A. Thereby cii represents the ma x i mum

n u m b e r of flow units that can be sent on arc (i,j) per time unit, and iff~i uni ts of

Partial financial support by the Air Force Office of Scientific Research under grants AFOSR-
89-0512 and AFOSR-90-0008 is gratefully acknowledged by the first author.

0340-9422/93/1/31 - 58 $2.50 �9 1993 Physica-Verlag, Heidelberg

32 R.E. Burkard et al.

flow start at time t ~ N O in node i and are sent to node j along the arc (i, j), they
arrive there at time t + z~j. Adopting the usual convention, we denote the number
of nodes in N by n and the number of arcs in A by m. Further, let the source s
and the sink s' be two distinguished nodes in N.

The quickest flow problem (QFP) now consists in finding in Jff a (dynamic)
flow f of given value v from s to s' which sends the given v units of flow from s
to s' in the minimum number T(v) of time units. The flow f has to obey the flow
conservation constraints in all intermediate nodes (r s') and the capacity
constraints on all arcs. Both groups of constraints have to hold for the whole
transmission period, i.e. for t = 0, 1 T(v).

Possible areas of application of this model include evacuation problems
(see e.g. Hamacher [19] and Chalmet, Francis and Saunders [11]) and data
transmission problems in communication networks.

A similar problem, the quickest path problem (QPP), was recently treated by
Chen and Chin 1-12] and Rosen, Sun and Xue [36]. These authors were interested
in a path in JV" from s to s' along which the given amount v of flow can be
transmitted in the shortest possible time. Whereas in the (QPP) only one path
can be used for the transmission of flow, we allow in the (QFP) simultaneous
transmission of flow on different but not necessarily (node- and arc-) disjoint paths
from the source to the sink. The latter problem is addressed in Burkard, Dlaska
and Kellerer [8].

This paper is organized as follows: In Section 2 we set up a mathematical
model for (QFP) and relate it to the classical maximum dynamic flow problem.
Motivated by the close relationship between maximum dynamic and quickest
flows we study in Section 3 the value of a maximum dynamic flow for the given
time interval [0, T] as a function of T. In Section 4 we first describe two
pseudopolynomial-time algorithms for finding quickest flows in networks, and
then we propose several polynomial-time algorithms which are based on the
results of Section 3. The computational results presented in Section 5 show that
some of these algorithms seem also to be well suited for solving the (QFP) in
practice. Theoretically, one can do even better. So, we derive in Section 6 a
strongly polynomial-time algorithm based on results of Megiddo [28, 29].
Finally, we close the paper with some concluding remarks in Section 7.

2 Quickest Flows

Let G = (N, A) be a given directed graph and let ./V = (G, c, z) be the associated
network with source s and sink s', integer capacities c 0 and nonnegative integer
transmission times z~j. Further, let I r := [0, T] be a discrete time interval
(containing only integer-valued points) with T ~ N o and let denote Ns the set
N\{s, s'}.

The Quickest Flow Problem 33

Definition 1: A dynamic flow of value v, v �9 ~, from s to s' is a mapping
f : A x I T --} r~ o fulfilling the following properties

t = O (s,j)~A (i,s)~A

(~ fii(t)-- ~ A,(t--zk,))=O Vi�9 , Vt �9 T (2)
(i , j) ~ A (k, i) ~ A

~ (~ f ~ , j (t) - - ~ f i s , (t - - z i s ,)) = - - v (3)
t = O (s',j)~A (i,s')~A

0 <_ flj(t) <_ cij V(i,j) �9 A , Vt �9 I r (4)

where for notational convenience we assume throughout that f0(t) = 0 for t < 0.
fq(t) denotes the flow that leaves node i along arc (i, j) at time t. []

Equation (1) describes that the flow which leaves the source s in the time interval
IT totals v. Exactly this flow arrives during this time in the sink s', confer (3). The
equations (2) describe that at any time t the flow which arrives in an intermediate
node i# s,s' also leaves this node at this time. (4) expresses the capacity
constraints at any time t. (Note that our model is a discrete dynamic flow problem
where a flow of f~j(t) is allowed to start at node i at any time t �9 IT.)

Definition 2: A quickest flow in Jff from s to s' for a given flow value v is a dynamic
flow fulfilling (1)-(4) where T = T(v) is minimum. Thus the quickest flow problem
can be stated as

(QFP) min T = T(v)

s.t. (1)-(4) . []

The quickest flow problem is closely related to the maximum dynamic flow
problem (MDFP) as introduced by Ford and Fulkerson [15]. The maximum
dynamic flow problem asks for a dynamic flow of maximum value v = v(T) in a
given time interval [0, T]. In contrast to the (QFP), this problem can be written
as linear program. In a certain sense (QFP) is the inverse problem of (MDFP).
Hence it seems to make sense to investigate possible connections between
quickest flows and maximum dynamic flows.

34 R.E. Burkard et al.

In the following we denote by T(v) the transmission time of a quickest flow of
given value v, v ~ N, and by v(T) the value of a maximum dynamic flow in the
given time interval [0, T], T ~ No. For notational convenience we further define
v (- 1) := 0. The following straightforward lemma expresses the close relation-
ship between maximum dynamic and quickest flows.

Lemma 1: Let f be a dynamic flow of value v in the time interval [0, T], T > O. I f

v (T - 1) < v (5)

then f is a quickest flow of ~alue v, and for the minimum transmission time T(v)
we get

T(v) = T . (6)

Our approach for solving the quickest flow problem will mainly rely on
Lemma 1. The minimum transmission time T(v) can be determined as follows.
From the definition of v(T) it follows that v < v(T(v)). In view of the conditions
(5) and (6) of Lemma 1 also v(T(v) - 1) < v must hold. Thus, T(v) equals the
minimum T such that v(T) >_ vl In order to compute the quickest flow itself, we
determine a maximum dynamic flow f Tt~) for the interval [0, T(v)] and decrease
its value to v in ease that v(T(v)) > v.

In the theory of dynamic flows so-called temporally repeated flows are of
special interest. Let g: A ~ No be a static (classical) flow of value 101 from s to
s' in the network Jff. (I.e. we require flow conservation at each intermediate
node ~ s, s' and the usual capacity constraints gij < clj for all (i, j) ~ A.) Now we
decompose the flow g into flows gl, ..-, gr along paths P1, . . . , Pr from the source
s to the sink s'. Let Igkl designate the value of the flow along path Pk and Z(Pk)
the transmission time of path Pk, i.e. the sum of the transmission times of the arcs
along Pk" It is easy to see that by repeating the path flows gk along the
corresponding paths (T - Z(Pk)+ 1) times, we get a feasible dynamic flow
provided that T >_ maxl<_k<rZ(Pk). A dynamic flow f obtained in this way is
called a temporally repeated flow (TRF). A simple calculation yields that the
value of this TRF f induced by the static flow g is equal to

v i= ~ (T + 1 --z(Pk))']gkl = (T + 1)'lg[- ~ Tug~j �9
k = l (i , j) ~ A

(7)

According to Ford and Fulkerson [15] there is always a maximum dynamic
flow that is temporally repeated. Based on formula (7), these authors have further
shown that a maximum dynamic flow for a given period [0, T] can be computed

The Quickest Flow Problem 35

efficiently by solving a minimum cost circulation problem. (Introduce a return
arc (s', s) with capacity cs,s = oo and cost ds,s = - (T + 1) and define the
remaining costs as d 0 := z 0 for (i,j) ~ A.) Denote this minimum cost circulation
problem by (M C C P) r .

The close relationship between maximum dynamic and quickest flows as
described in Lemma 1, motivates now to take a closer look at the structure of
the value v(T) of a maximum dynamic flow, regarded as function of T, T e N o.

3 The Value Function of Maximum Dynamic Flows

In this section we will frequently refer to static flows that induce a TRF of
maximum value for a given time interval. Therefore, let ~ r denote the class of
all static flows that induce for the interval [0, T] a TRF of maximum value
(= v(T)). (In general we will have I fr > 1 and the value of flows in the class fgT
will not necessarily be unique.) Furthermore, let To be the length of the shortest
path from s to s' with respect to the transmission times. Obviously To--
min{T _> 0 : v(T) > 0}.

The following lemma is an immediate consequence of the foregoing discussion
on temporally repeated flows.

Lemma 2: For all T > T O we have

v (T - 1) < v(T) . (8)

Proof'. For T = T O relation (8) is an immediate consequence of the definition of
To. Let T > To. Consider a static flow g r-1 ~ far-1 and denote again by Igr-l l
its value. Obviously, 9 r - I induces a TRF of value v (T - 1) + [gr-~l for the
interval [0, T] since each path in the decomposition of g r-~ can be used once
again (cf. (7)). As v(T) is the value of a maximum dynamic flow for the interval
[0, T], we get v(T) > v (T - 1) + Igr-l l > v(T -- 1). []

The following connection between v(T + 1), v(T) and the values Igrl can now
be obtained easily.

Lemma 3: Let gr ~ ~r and gT+l ~ (~r+l. Then the following two properties hold
for all T >_ 0:

]gTI ~ IgT+ll (9)

36

and

R. E. Burkard et al.

v(T) + IgTI < v(T + 1) _< v(T) + IgT+ll . (1o)

Observe that (9) holds independently of the choice of the flows gr and gr+l.
(Recall that the value of flows in the class f#r is not necessarily unique.)

Proof: The monotonicity of]gTi is a direct consequence of formula (7). The left
part of relation (10) has already been shown above.

To prove the right hand side of (10), we apply the same kind of argument as
in the proof of Lemma 2, but now in the other direction. Consider a static flow
gT+I ~ ~T+I. gT+I induces a TRF of value v(T + 1) - [gr+~[for the interval
[0, T] (confer again formula (7)). Now we obviously must have

v(T + 1) - Igr+ll _< v(T) .

Rearranging yields the relation to be proven. []

From Lemma 3 it follows that some kind of convexity property holds for v(T).
For T > 0 let A(T) denote the difference v(T) - v(T - 1). Further let gm,x be an
arbitrary maximum (static) flow in the network ~Ar and denote by Igma~l its value.
By combining Lemma 2 and Lemma 3, we can now show:

Theorem 1:

(i) The value function v(T) of a maximum dynamic f low is a monotone increasing
function. For T > T O it even increases strictly.

(ii) zl(T) is monotone increasing, i.e. for all T > 0 we have

A(T + 1) _> A(T) . (11)

(iii) A(T) can attain only values from the set {0, 1, . . . , Igmax[}-

Proof: Property (i) has already been proven in Lemma 2. To show (ii), note that
relation (10) yields the following bounds for A(T), T > 0, where g r ~ f~r and
g T-1 ~ ~ T - , :

IgT-'l ~ A(T) < [gTI . (12)

Observing relation (9) completes now the proof of (ii).

The Quickest Flow Problem 37

Since g r is a static flow on X we obviously have 0 _ [g r] _< [g.,.x] for all T _> 0,
so (12) implies 0 _< A(T) <_ [g.,.x[. Thus property (iii) follows from the integrality
of the values A(T). []

Remark I: Regarding T as a parameter in the minimum cost circulation problem
(MCCP)T introduced in Section 2 yields a special parametric cost linear
programming problem, v(T) equals then the negative of the optimal value
function of problem (MCCP)T and the slope of the optimal value function equals
the negative of the flow on the return arc (cf. formula (7)). Since the optimum
value function of such a parametric problem is continuous, piecewise linear and
concave (see e.g. Murty [31]), all properties of v(T) mentioned in Theorem 1 can
now be obtained in a non-combinatorial way as well. Of course, we are still
interested only in the values of v(T) for integer arguments, but treating this
function as a continuous instead of as a discrete function simplifies many of the
definitions and arguments of the next section, and therefore we will adopt to this
convention for the rest of the paper.

The following result will be helpful for solving (QFP):

Lemma 4:

(i) Let g# e f~f for T >_ O. Then Ig#[is a subgradient of v(T) at T = T.

(ii) Further,/fO -f e argmin{Igl: g e fgf} and T > 0 then

v(7 "~) = v(ar - 1) + i ~ 1 . (13)

This means that IJa~l is the left-hand-side derivative of v(T) at T = T, or in
other words A(T) = [gr[.

Proof: From formula (7) we know that v(7 ~) = (7 ~ + 1). Igl - 2(i.j)eA'Cij'gij for
any static flow g ~ fgT. It follows directly from the notion of a subgradient that
Igrl is indeed a subgradient of v(T) at T = T. Assertion (ii) is an immediate
consequence of the fact that the left-hand-side derivative at T = ~ is simply the
smallest subgradient at this point. []

Up to now we still do not know how to compute a quickest flow. But from
Lemma 1 and the subsequent discussion we know that in order to solve the
quickest flow problem for a given flow value v, we have to find the minimum
integer T for which v(T) > v holds. This can now be done efficiently by using the
properties of v(T) stated in Theorem 1. The details will be given in the next
section.

38 R.E. Burkard et al.

4 Algorithms for Finding Quickest Flows

The key problem underlying the computation of the minimum transmission
time is a typical parametric search problem: We have given a problem in the
formulation of which a parameter occurs and try to find the smallest (largest)
value of this parameter such that a certain property is fulfilled. Problems of
this type have already been dealt with many times in literature. One field of
application that is particularly important from the point of view of this paper is
the rather popular parametric approach in fractional programming (see e.g.
Ibaraki [21] and Megiddo [28]). This close relationship between fractional
programming and the (QFP) is no mere coincidence since (QFP) can indeed
be formulated as a linear fractional program. (T can be written as quotient of
two linear functions of the flow variables go, cf. (7).)

So some of the ideas we are going to propose can already be found in the
literature on the parametric approach in fractional programming. (For details
the interested reader is referred to the papers by Ibaraki [21] and Schaible and
Ibaraki [40], the monograph by Schaible [39] and the references given therein.)
What we try here is first to emphasize the combinatorial side of the (QFP) and
secondly to use additional properties of the (QFP) which accelerate the general
algorithms.

In the following we will first describe two pseudopolynomial algorithms for
the (QFP), where the second of these algorithms is already known from the
literature. Thereafter we will propose several polynomial algorithms, and in
Section 6 we shall even point out a strongly polynomial method.

4.1 Pseudopolynomial Algorithms

Since v(T) is an increasing function, one approach for computing the minimum
integer T for which v(T) > v holds, would of course be to solve the parametric
minimum cost circulation problem (MCCP)T starting from T = 0 and to stop
as soon as v(T) >_ v. Unfortunately, by adding a return arc (s', s) with infinite
capacity and cost - (T + 1) to the famous pathological networks of Zadeh [42],
we get for each k > 2 an instance of type (MCCP)r with n = 2k + 2 nodes,
b = 2 k - 3 breakpoints (= slope changes of the optimal value function) and
maximum static flow value Igmaxl = 2k -1- 2 k - 2 - - 2. (Note that both b and Ig~axl
are exponential in n.) These facts can be proved by similar ideas as in Carstensen
[10] and Ruhe [38]. It follows that the parametric approach suggested above
yields only a pseudopolynomial method for (QFP).

Another pseudopolynomial algorithm for the (QFP) has already been de-
scribed in Hamacher [19] and is based on the following results: A dynamic flow
for the interval [0, T] is termed earliest arrival flow (EAF) if the amount of flow

The Quickest Flow Problem 39

that has already arrived in the sink s' until time t is maximum for all t, t = 0,
1 T. An EAF for the time interval [0, T] is always a quickest flow for the
value v = v(T), see Jarvis and Ratliff [23]. (Note the similarities to Lemma 1.)
We now start to compute an EAF by a method given by Minieka [28]. As soon
as for the first time a dynamic flow with value > v is arrived, we terminate and
determine the minimum T such that the EAF for [0, T] has value > v. This T
obviously equals the minimum transmission time T(v). As up to Ig,,axl shortest
augmenting paths have to be found, where again I g,,ax[is the value of a maximum
static flow, this approach yields again only a pseudopolynomial algorithm for
the (QFP),

In the sequel we will suggest several classes of polynomial-time algorithms for
solving the quickest flow problem.

4.2 Polynomial Search Methods on the T-Axis

Since v(T) is monotone increasing and T attains only integer values, a binary
search method with respect to T suggests itself. One starts with an interval
[Tt, T,] such that v(Tl) < v and v(T.) > v, thus T(v) ~ [Tl, T.]. Then one computes
the mid point of this interval, say T~, and tests by computing v(Tc) whether one
is already finished or has to continue the search to the left respective to the right
of T~.

Although by using this method the search interval gets halved at each iteration,
the convergence of this method is rather slow in practice. In the sequel we will
describe how the decrease of the interval can be accelerated by exploiting the
convexity of v(T).

4.2.1 An Improvement of Pure Binary Search

To simplify the exposition, we first introduce the following notations (see Fig. 1):
Let Lv be the line parallel to the T-axis at height v, where v is the value of the
quickest flow to be determined. Assume further that T(v) ~ [Tt, T.]. Then we
denote by v(Tl, T~) the value of T where the chord ch(Tt, T~) through the points
(Tl, v(Tl)) and (T~, v(T.)) crosses the line Lv. Further, let us denote by L~,,pp(~) an
arbitrary supporting line to v(T) at the point (~ v(~)) and by a(Ls.pp(~)) the
T-coordinate of the intersection point of this supporting line with the line Lv. (If
v(T) is differentiable at point (~, v(7~)), then the tangent at this point is the unique
supporting line, otherwise any subgradient at this point can be taken as slope of
the supporting line Lsupp(T).)

Assume it is known that T(v) ~ [Tt, T.]. Then the following improved bounds
follow immediately from the convexity of v(T) (see also Figure 1):

40 R.E. Burkard et al.

v(T)

Tl

' i
, m T

t r(,,) t t r,,
7(Tt, T,,) .'(L.,~(TL)) o'(Ls.,~(T.))

Fig. 1. Improved lower and upper bounds: v(T) is drawn as bold line

[~(T, 7.)1 <_ T(v) (14)

and

T(v) <_. [min{a(Ls,pp(T~)), a(Ls.pp(T,))}] . (15)

Observe that bound (15) is obtained from a Newton-like step and bound (14)
is stimulated by the regula falsi. These two bound improvement steps enormously
improve the practical efficiency of pure binary search, provided they are applied
in each iteration, of the binary search. In the following some aspects of the
algorithm sketched above will be discussed in some more detail.

In (15) supporting lines to v(T) at T = T t, respective at T = T~, and hence
subgradients of v(T) at these points are needed. Using the right-hand-side
(the left-hand-side) derivative ofv(T) at T = Tl (at T = T,) obviously leads to the
tightest upper bounds, but has the disadvantage of requiring a substantially
larger computational effort than using the subgradient that results as a by-
product in the evaluation of v(T) (confer Lemma 4) for free,

As initial values for Tt and T~ respectively, we can take

(16)

The Quickest Flow Problem

and

41

Iv-_ T. := T l +]gZ]] , (17)

where g ~ denotes a static flow that induces a TRF of maximum value for T = T~.
The validity of the lower bound (16) follows from the definition of T o (no flow
can reach the sink for T < To) and from the fact that [g,.,~l is an upper
bound on the differences A(T) = v(T) - v(T - 1) which implies that at least
[(v - v(O))/lg,,,~[] time units are necessary for achieving v(T) > v. The correct-
ness of the upper bound (17) can be seen by a similar argument. Since Igzl is a
subgradient of v(T) at T = T t, it follows that A(T l + 1) > I~1. Due to the mono-
tonicity of A(T), we hence need at most [(v - v(r3)/Igq] additional time units in
order to increase v(T) from its current value v(T~) to v.

Analysis of the Improved Binary Search Algorithm

(i) The computation of an initial interval [Tz, T,] for T(v) by means of(16) and
(17) essentially amounts to solving one shortest path problem and one
maximum flow problem. Then two minimum cost circulation problems for
computing v(Tl) and v(T,) have to be solved.

(ii) In each step of the binary search a minimum cost circulation problem has
to be solved in order to evaluate v(T~) for the midpoint T~ = [(Tl + T,)/2J.
All other operations including the bound improvement steps can be per-
formed in constant time.

(iii) It is straightforward to observe that there are at most min{[log v] + 1,
[g,,,x]} iterations. (The length of the search interval is at least halved in
each iteration and the length of the initial interval is ___ v as can be seen from
(16) and (17). Furthermore, v(T) has at most [g,,ax [linear pieces of non-zero
slope.)

Hence, we get O(min(log v, [gm,x[)" MIN(n, m)) as overall complexity of the
above algorithm, where MIN(n, m) denotes the number of steps that are necessary
to solve a minimum cost circulation problem on a network with n nodes and m
arcs. The currently best known strongly polynomial algorithm for the minimum
cost circulation problem due to Orlin [32] basically solves O(m log n) shortest
path problems w.r.t, nonnegative weights and yields therefore MIN(n, m)=
O(m log n(m + n log n)).

The improved binary search algorithm determines the minimum transmission
time T(v) and an associated optimal static flow gr(V) ~ fir(v). The quickest flow
itself can then be found in O(nm) additional steps. (Decompose g r(~) into at most
m path flows and construct the associated temporally repeated flow. In case that

42 R.E. Burkard et al.

this TRF has value > v, a new dynamic flow of value v can easily be obtained in
O(m) time - e.g. by appropriately modifying the given TRF in the last transmis-
sion period.) Thus the (QFP) can be solved in O(min(log v, Igmu~l)'MIN(n, m))
time, i.e. in polynomial time.

4.2.2 An Interpolation-Based Algorithm

In large practical problems it occurs very rarely that T(v) locates around the
midpoint T~. As remedy Ibaraki [21] proposed an interpolation approach which
can be adapted to the (QFP) as follows: We compute an interpolation function
~(T) for v(T) and choose the minimum integer T for which O(T) > v as next test
point T~. By this approach one hopes to find better estimates for the minimum
transmission time, but the price one has to pay for the practical improvement is
the theoretical shortcoming that now one cannot guarantee any longer the
([log v] + 1) upper bound on the number of iterations.

Obviously, O(T) should share as many properties with v(T) as possible. Hence
the interpolation function ~(T) should be a convex, monotone increasing,
continuous function for which furthermore the function values and subgradients
at both endpoints of the current search interval should coincide with the
corresponding values o f the original function v(T). Suppose it is known that
T(v) E [T~, Tu]. Further, let gt and g~ be static flows such that the associated flow
values Ig*l a n d Ig~l are subgradients of v(T) for T = T~ and T = T~, respectively.
After some empirical experimentations Ibaraki came up with the following form
for ~(T):

I~lg Ul .(T~ - T) + a(T~ - T) b + v(T~)
~3(T) := [g"l (T~ - T) + v(T~)

if IgU[~ ~(v) ,
otherwise , (18)

where

~ (v) . - v (T~) - v (Tt) b . -]g~[- Igul a : = r - Ig u]

T~ - T, ' ~ (v) - Ig"l ' (T~ - T~) b-1 "

4.2.3 A Newton-Type Algorithm

Another very popular approach for solving non-linear equations is Newton's
method which in our case works as follows: We choose a T (~ as initial guess for
T(v) (e.g. T ~~ :-- Tt given in (16)). Then we iteratively compute a sequence T (k)
according to

The Quickest Flow Problem 43

T (k+l) := a(L~.pp(T~k))) for k >_ 0 . (19)

That m e a n s T (k+l) is set to the value of T for which the supporting line Lsupp(T (k))
crosses the horizontal line L~. We can stop this process as soon as in some
iteration q either v (T tq)) = v or IT tq-~) - Ttq) I < 1 holds. Upon termination the
minimum transmission time T(v) is known to be equal to [Tt~)].

How many iterations does this method need in the worst case? Obviously, the
number of different non-zero slopes of v (T) and hence [gr~,~[provides a trivial
upper bound for the number of iterations. But, observe that this bound is not
polynomial as [g,.~l can in the worst case become as large as n .c . , . x , where e . ~
denotes the largest of the capacities cij. However, by using similar arguments as
McCormick and Ervolina [27] and Radzik [35] we get the following polynomial
bound:

L e m m a 5: N e w t o n ' s me thod as described above needs at most

O(log v + log 10m~l) (20)

i terations.

Proof : For k _> 0 let g~k) E (~T(k) be the static flow that results from the computa-
tion of v(T) at T = T ~k) and assume that Ig(*)[is chosen as slope of the supporting
line Ls.pp(T~k)). From (19) we now get T ~k) - T ~k+~) = (v (T ~k)) - V)/(]g~k)[) for
k > 1. Noting that v(T) = (T + 1). [g[- ~ i , i) ~ a z i j . g o f o r g ~ f#T (confer formula
(7)) this implies

v (T ~k+a)) - v 101~+1)1
_ 1 (21)

v (T ~k)) - v [g(k)[

It follows from (21) that depending on whether the rate 19<k+a)l/lgtk)[is >_ 1/2 or
< 1/2, either the sequence (v (T ~k)) - v) or the sequence lgtk)l decreases by at least
1/2. It ~akes at most [log Lg,~xb] iterations to decrease Ig~k)l from its initial value
Igtl)l < Igmax[to 1. Further, at most [log(Ig,,,~l" v)] + 1 iterations are necessary
to decrease v (T tk)) - v from its initial value (v (T ~1)) - v) < v. Ig~l)l < v'lg,,ax[
(confer formula (7)) to a value less than 1. Summing up yields the desired
bound. []

R e m a r k 2: By a more careful choice of T c~ the bound (20) can be improved to
O(log Zlm. x + log v) with Amax = min {v, I g,.~xl} being an upper bound for A (T(v)),

44 R.E. Burkard et al.

the slope of the line segment on which the minimum transmission time T(v) is
located. We simply have to choose T I~ such that there is a supporting line of
slope A,,a~ at T (~ Then obviously we have [g~l)[< Am,~ and the improved bound
follows immediately from the proof of the lemma above.

Recently Rote [37] has given a refined analysis of the Newton approach for
general linear fractional programming. Applying his result to our case yields the

following upper bound for the number of iterations: O (log v/log (l + logv_ ']']
log

Hence, for v = Ig,,a~] '~ Newton's algorithm is asymptotically faster than the
binary search algorithm on the T-axis discussed before. This follows also from
the work of Radzik [35].

Further search methods which have not been mentioned here, such as a
method based on the reoula falsi can be found in Schaible and Ibaraki [40].

4.3 Searching on the Set of Differences

As mentioned before we know that A(T(v)) is bounded above by A r e a x =

min{lg,..~[, v}. Consequently, applying binary search to the set of differences
(slopes) results in only O(log A,.a~) iterations as opposed to O(log v) iterations
that are needed by the binary search approach on the T-axis discussed above.

Observe that an initial interval [A z, Au] for A(T(v)) can be determined rather
easily. Let [Tz, T,] be an initial interval for T(v) and compute static flows g~ �9 ~r,
and g" �9 ~ru, respectively. Then set At := [g~l and A, := min{Ig"l, v}.

The key problem that remains to be solved is now to determine for a given
difference (slope) Ac the interval of T-values for which v(T) has slope Ac. In the
following we will describe an efficient method for that very purpose. For the ease
of exposition we start with the following definitions:

Definition 3: Let z] > 0 be a given difference. Then we denote by J2 := (_T, T] the
interval of all T such that A(T) = J for all integer T �9 J j . []

Definition 4: Let g be a static flow on the network X and let dq := zgj denote the
cost of arc (i,j). Then we denote by X ~ = ((N, Ag), c g, d g) the residual network
with respect to the flow g. There A ~ denotes the set of residual edges, and c~ and
d~ are the residual capacity and residual cost of arc (i, j) e A o, respectively. []

If the interval J~ is empty, then the difference J never occurs, i.e. the function
v(T) has no segment of slope J. Otherwise, it follows that v(T) has slope J
for T �9 [_T, T]. The following lemma can be used to compute the interval J~
efficiently.

The Quickest Flow Problem 45

Lemma 6: Let g be a static flow on the network Y which has minimum cost among
all flows of value A > O, where the costs d o are given by the transmission times z~.
Further, let Pa be a shortest path from the source s to the sink s' in Jffg with respect
to the costs d~ and P2 be a shortest path from s' to s, respectively.
Then the bounds of the interval J3 can be computed as follows:

_ T : = - E d ~ - 1 and T : = ~ d ~ - 1 . (22)
(i , j)~ P2 (i , j)~ P1

Proof: Since the value of a static flow g f ~ c~f is a subgradient of v(T) at T = 7 ~
(see Lemma 4), computing the interval d3 reduces to computing the interval of
all values of T such that the min cost flow g of value J belongs to the class fqT.
This is of course a classical problem from sensitivity analysis. Given the circula-
tion 0 obtained from the flow g by adding a return arc with flow Ig[, we want to
determine the smallest and the largest value of T, _T and T, respectively, such that

is an optimal solution to problem (MCCP)r.
Applying the classical negative cycle theorem (see e.g. Ahuja et al. [2]), yields

that ~ is optimal as long as the residual network Y~ contains no negative cycle.
Since jffo contains no negative cycle due to the optimality of g (the shortest paths
P1 and P2 are thus well defined), a negative cycle C in X ~ must contain either
(s', s) or (s, s'), the only arcs not present in Yg. Hence we have to distinguish the
following two cases for the cycle C:

1. C consists of the arc (s', s) followed by a path P from s to s'. Since d~ = ds, ~ =
- (T + 1), its cost d(C) is then given by

d(C):=-(T+ 1)+ ~ d~. (23)
(i,j) ~ P

2. C consists of the arc (s, s') followed by a path P' from s' to s. Due to
dffs, = -dss, = T + 1 we have

d(C):=(T+ 1)+ ~ d~ . (24)
(i,j) e P '

Requiring d(C) > 0 for the expressions (23) and (24) yields

T_< E d ~ - I and T > -- E d~- - i .
(i,j) ~ P (i,j) e P '

The most stringent restrictions on T result by using for P path P1, the shortest
path from s to s', and for P' path 1192, the shortest path from s' to s. []

46 R.E. Burkard et al.

The method described above not only computes the interval JJc, but also
yields the line segment of v(T) having slope Ac in case it exists. Let T* be the
value of T for which this line segment crosses the horizontal line Lv. In case
T* ~ J~o we are finished (T(v) = IT*I). If however T* < _T, the current slope zl c
is obviously too large, while if T* > T, it is too small. Let c~ := min~i,j)~pr c~
denote the residual capacity of the paths P,, r = 1, 2 defined in Lemma 6. Then
in the first case (T* < T) we set zJu := z/c - c~ and in the latter case we set
/ll := Zic + c~ and continue the binary search accordingly.

It is now easy to see that the time complexity of this algorithm is equal to
O(min(log v, log [gmaxl)'MIN(n, m)), where again M(n, m) is the time needed to
solve a minimum cost flow problem with n nodes and m arcs.

Unfortunately, in contrast to the binary search algorithm on the T-axis we did
not succeed in developing an interpolation approach for the above binary search
approach with respect to the slopes. The practical performance of the algorithm
described above can be improved, however, if we also maintain an interval
[Tt, TJ on the T-axis and use the subgradients at T~ and T~ for obtaining better
bounds z/~ and Au. We will give some more details on this hybrid approach in
the next section.

5 Numerical Investigations

5.1 Implementations

5.1.1 Implementation of the Polynomial Methods of Section 4

For solving the initial maximum flow problem and the shortest path problems
which occur as subproblems in our search algorithms we used efficient imple-
mentations from literature, more specifically we applied the max flow code
G O L D R M F of Derigs and Meier [13, 14] and the shortest path code L-
2QUEUE of Gallo and Pallottino [161 respectively.

At this time, it appears that the relaxation algorithm of Bertsekas and Tseng
[6] and the primal network simplex algorithm (see e.g. Grigoriadis [18]) are the
two fastest algorithms for solving the minimum cost network flow problem. For
our experiments we had available the code RELAXT of Bertsekas and Tseng [6]
and the primal simplex code NET of Ahrens and Finke [1]. Observe that for
evaluating v(T) for given T, it is essential that for different values of T, the
corresponding minimum cost circulation problems (MCCP)T differ only in the
cost of the return arc which is - (T + 1). Fortunately, both RELAXT and NET
are well suited for performing reoptimization, i.e. starting from a previous
optimal solution for a different T instead of recomputing from scratch.

The Quickest Flow Problem 47

In the final versions of our codes we applied NET, because in a first set of tests,
NET turned out to be considerably faster on problems of type (MCCP)r
than RELAXT, both when starting from scratch and when reoptimization was
applied. The main reason for the bad behaviour of RELAXT seems to be that
in instances of type (MCCP)r typically a small set of arcs, in particular the return
arc, has much higher cost than the remaining arcs. (After completion of our study
we learnt that now an improved relaxation code RELAXT-III with a possibly
better performance on problems of this type is available (see Bertsekas and Tseng
[7].)

Recall that for performing binary search on the slopes, an additional minimum
cost flow problem has to be solved in order to determine for a given slope J the
associated optimality interval J3, where for different values of J only the value
of the flow to be computed changes. The computational results of Ali, Padman
and Thiagaran [4] suggest that in such cases reoptimizing by an efficient
implementation of the dual simplex method is preferable to introducing artificial
high-cost arcs in the primal approach. As the relaxation method of Bertsekas
and Tseng can also handle the case of supply/demand changes in a straight-
forward way, we are again left with the choice between two different methods for
reoptimization.

5.1.2 Implementation of the Pseudopolynomial Methods of Section 4

The most natural way of implementing the parametric approach described in
Section 4 would be to solve the parametric minimum cost flow problem
(MCCP)r with a stra{ghtforward extension of the primal network simplex
method (for the general idea of the parametric simplex method see Murty [-31]).
Whereas in the general case in each step of the algorithm all O(m) non-basic arcs
have to be checked for their optimality (dual feasibility), in our case it suffices to
consider all arcs in the cocycle obtained by deleting the return arc from the basis
since the return arc is the only arc with a parametric cost.

There is, however, also a dual approach. According to Lemma 6, to each
segment of v(T) of slope J there corresponds a minimum cost static flow 0 of
value [g[= A. (If g has cost ~t~.J)~ A zijgij then the associated segment of v(T) lies
on the line (T + 1)[9[- ~t~.j)~a Zijgij.) Considering the flow value as parameter
leads to a flow problem with a parametric supply/demand vector which can be
solved by an extension of the dual network simplex method. While for general
parametric right-hand-side flow problems all n - 1 basic arcs have to tested for
their primal feasibility, in this special case it is enough to check only the arcs on
the unique path in the basis tree from the source s to the sink s'. (On all other
arcs the flow is independent of the parameter.)

So in principle, from a computational point of view the primal and the
dual parametric approach are equivalent when appropriately implemented.

48 R.E. Burkard et al.

Unfortunately, no matter whether we start from a primal or a dual code, the
necessary adaptions require a very detailed understanding of the nonparametric
code to be modified. As we already had available both a primal and a dual
parametric network simplex code from previous work (adaptions of NET of
Ahrens et al. [1] and of M ODAPT of Ali et al. [4], respectively), we thus decided
not to undertake a new implementation which pays attention to specializations
possible for our special problem in the computation of the optimality intervals.
In this situation it is natural to choose the dual code since it needs only O(n)
instead of O(m) time per computation of an optimality interval.

As the method based on Minieka's earliest arrival flow algorithm is essentially
nothing else than solving a minimum cost flow problem by the shortest augment-
ing path method, its implementation is very easy. We simply used the shortest
path code L-2QUEUE for successively obtaining a shortest path in the residual
network and updated the residual network and the value of the current flow
accordingly. Of course, there might exist more sophisticated implementations,
but it was only our aim to get some feeling on the behaviour of this algorithm.

5.2 Generation of Test Data

Basically we used two classes of networks. The first class of instances was
generated randomly by the code NETGEN of Klingman, Napier and Stutz [25].
For these instances it can be observed empirically that the number ofbreakpoints
of v(T) is linear in the number of arcs. In order to investigate the influence of the
number of breakpoints on the algorithms to be tested, the second class was
chosen to consist of the Zadeh based networks of Section 4 which yield an
exponential number of breakpoints.

All NETGEN problems used in this study are networks with one source, one
sink, no transshipment sources respective sinks, a cost range of 1-1000 and a
capacity range of 50-5000. In order to achieve a comparatively large number of
breakpoints, the total supply was always chosen as 10000 times the number of
nodes. In this way we generated four types of networks, referred as N1-N4 in
Table 1. These networks differ only in their number of nodes and arcs. For

\Table 1. Characteristics of the networks used in our experiments

Problem Id. # nodes

N1 200
N2 400
N3 400
N4 800

Z5 42

a r e s

2000
4000
8000
8000

422

breakpoints]g~.~]

3638.3 2021992.2
10494.6 4015579.6
19121.6 4050916.8
28180.8 8017503.4

1048573.0 1310718.0

The Quickest Flow Problem 49

Table 2. v-dependent problem data for the networks from Table 1

Problem ld.

Nla
Nlb
Nlc
Nld

N2a
N2b
N2c
N2d

N3a
N3b
N3c
N3d

N4a
N4b
N4c
N4d

Z5a
Z5b

10 s
109
5-109
10 lo

107
109
10 lo
1011

10 8
10 9
1010
1011

10 s

10 9

10 lo

1011

10 7

1011

T(v) A(T(v)) # (brps ~ T(v))

3956.2 66200.0 169.2
10380.2 209537.4 716.8
22334.4 450820.0 1751.2
31688.8 605261.0 2336.2

1834.6 16122.0 34.4
9860.2 221523.0 960.0

30186.2 662796.4 3576.8
101851.2 1746391.2 9058.8

2640.0 87797.8 311.0
7431.2 285623.4 1373.8

22359.4 926580.6 4958.2
71267.6 2682658.2 13839.0

3789.6 69068.2 256.8
10088.4 212246.8 1169.6
31192.6 643996.6 4598.6
99020.6 1952731.8 14720.0

3999.0 5000.0 4000.0
399999.0 500000.0 400000.0

each type of network we created five instances and all computa t ional results
reported below are results averaged over five runs each. Table 1 fur thermore
provides the max imum flow value Ig,,axl and the total number of breakpoints of
v(T) for the networks of types N 1 - N 4 .

Since all networks of the Zadeh type are of the same structure, we included
only one particular instance from this class into our set of test problems. The
network which is referred to as Z5 in Table 1 is obtained by setting k := 20. Note
that this network leads to 1048573 breakpoints while having only 42 nodes.

We still need to fix the amoun t v of flow to be transmitted. In order to
investigate the influence of the size of v on the difficulty of comput ing a quickest
flow, we chose different values of v for our network types N 1 - N 4 and Z5. In this
way we obtained 22 different problem types. Table 2 contains for each of these
types the value v, the min imum transmission time T(v), the slope A(T(v)) of the
segment on which T(v) lies, and finally in the last column, the number of
breakpoints of the function v(T) which are to the left of T(v).

5.3 Computational Results

All our codes including the network flow subroutines we used are written
in Fort ran, but it should be ment ioned that our codes have been set up for

50 R.E. Burkard et al.

experimental purposes only. A first set of experiments led to the following
findings:

(1) For every single instance performing primal reoptimization from the very
beginning outperforms clearly the variants where v(T) is computed each time
from scratch or where reoptimization starts only at a later stage.

(2) However, we found that for the other type of minimum cost flow problem
where not the cost but the required flow value changes from iteration to
iteration, the situation is far less favourable. Reoptimizing with the dual
simplex algorithm from the very beginning turns out to be extremely
inefficient - the resulting computation times are worse than those obtained
by solving each problem from scratch by the primal simplex code. It seems
to be very difficult, however, to find an appropriate criterion when to change
over from the primal to the dual method. On the other hand, we found
that the relaxation method of Bertsekas is better suited for performing
reoptimization from the very beginning. Hence we used the method of
Bertsekas in our final implementation of the binary search algorithm w.r.t.
the slopes.

(3) With the exception of instances with a very small number of breakpoints to
the left of T(v) (about less than 50), the parametric method is much faster
than the Minieka-based method. This is due to the fact that solving a shortest
path problem is in general more expensive than performing a single pivot
step.

Let us now have a closer look at the second stage of our computational study.
For notational convenience we will use the following abbreviations in the tables
given below: MTBIN, INTPL and NEWT denote the three search methods
on the T-axis, namely binary search on the T-axis coupled with improved
lower and upper bounds, the interpolation approach of Ibaraki, and Newton's
approach. Further, A BIN denotes the binary search on the slopes and A HYBR
is a hybrid method based on A BIN. Finally, DUAL stands for the (dual)
parametric method.

In Table 3 below we report the computation times needed by the different
methods for solving the problems of types N1, N2 and Z5. Table 4 contains some
information on how many "basic steps" are performed by the various algorithms.
For the search methods a basic step means one iteration, whereas for the
parametric method it is more natural to treat one pivot as basic step.

The computation times displayed in Table 3 clearly indicate that contrary to
what one would expect from the worst case analysis in Section 4, the search
methods operating on the T-axis outperform the methods searching in the set of
slopes. There are two main reasons for the rather disappointing behaviour of the
methods A BIN and A HYBR. One is that the method we used for evaluating v(T)
for a given T = 7 ~ is far more efficient than the method for computing the interval
J3 for a given slope A. The other is that we did not succeed in finding for A BIN
an equally effective means for accelerating the decrease of the search interval as

The Quickest Flow Problem 51

Table 3. CPU-seconds on a VAX 4300

Id. MTBIN INTPL NEWT A BIN zl HYBR DUAL

Nla 6.026 5.982 6.274 9.296 10.158 2.110
Nlb 6.666 6.470 6.740 12.416 12.666 5.260
Nlc 6.270 6.214 6.558 14.742 11.710 10.946
Nld 6.488 6.024 6.198 15.534 12.462 14.586

N2a
N2b
N2c
N2d

15.500 14.588 15.636 18.742 20.536 4.230
33.856 31.606 35 .904 55.014 60.688 19.652
34.488 31.822 34 .306 64.466 60.644 53.368
34.462 34.480 33 .074 98.668 68 .842 134.028

0.260 0.180 0.370 0.910 0.580 5.510
0.270 0.210 0.270 1.390 0.750 554.180

Z5a
Z5b

Table 4. Number of basic steps

Id.

Nla
Nlb
Nlc
Nld

N2a
N2b
N2c
N2d

Z5a
Z5b

MTBIN INTPL

4.4 2.8
4.8 2.4
5.4 2.6
4.6 2.2

4.6 3.4
6.0 2.4
3.8 2.8
3.6 2.2

7.0 1.0
5.0 1.0

NEWT zt BIN L1HYBR DUAL

7.8 11.2 3.2 663.8
7.0 12.0 2.8 1501.4
6.0 11.4 2.0 2712.2
5.8 13.0 2.0 33351.4

8.4 10.6 3.0 650.2
8.0 14.2 3.0 2734.2
7.0 14.2 2.4 6264.8
4.6 13.4 1.8 12439.2

12.0 19.0 5.0 5034.0
6.0 18.0 2.0 500041.0

we have found for the T-search procedures. It turned out that the ma in idea

under ly ing the hybrid approach A HYBR, namely to ma in ta in besides the
interval [Az, Au] for the slope also an interval [Tz, T,] for T(v) and to use the
subgradients at Tz and T~ for improving the current slope bounds Az and Au,

hardly pays off. Of course, on one hand the n u m b e r of i terat ions can drastically

be reduced by this approach (see Table 4), but on the other hand the computa-
t ional effort per i terat ion increases significantly as for ob ta in ing the subgradients

at Tz and Tu, respectively, two addi t ional rain cost circulat ion problems have to
be solved.

If we compare the T-search methods among themselves, it turns out that in
most cases M T B I N and I N T P L are slightly faster than N E W T for a lmost all
problem instances, possibly except for those with a very large v. This is p robably
due to the choice of the init ial lower b o u n d Tz from (16) as start ing value T (~ in

the Newton iteration. It might well be the case that for smaller values of v, the

52 R.E. Burkard et al.

Table 5. Running times and number of basic steps of the most
efficient algorithms found so far

Id. MTBIN
it. CPU

N3a 5.2 54.220
N3b 5.8 75.596
N3c 5.6 72.936
N3d 2.8 83.406

N4a 5.0 113.216
N4b 5.6 190.184
N4c 6.4 197~078
N4d 5.4 189.628

INTPL
it. CPU

2A 49.256
2.4 72.116
2.4 69.738
2.8 78.182

DUAL
pivots CPU

1580.0 17.884
3542.6 41.864
8856.2 119.53

20209.8 359.990

2440.0 34.206
4844.8 74.660

11146.6 185.006
14721.0 507.280

2.6 112.708
2.0 186.970
2.4 184.490
2.4 192.404

results of NEWT can be improved by using a different T ~~ e.g. one can proceed
as described in Remark 2 in the previous section.

Further, note that the number of iterations of INTPL is remarkably small.
Due to the very uniform structure of v(T) for the Zadeh-networks it is even equal
to 1 for the problems Z5a and Z5b. However, in each iteration of INTPL a
nonlinear equation has to be solved which leads again to an increased effort
per iteration when compared to the simple binary search algorithm MTBIN.

Let us now compare the best search approaches, MTBIN and INTPL,
respectively, with the parametric method DUAL. In order not to draw wrong
conclusions, we additionally solved a set of larger quickest flow problems with
these three approaches. Table 5 contains the results of these runs.

It is easy to see that the behaviour of D U A L strongly depends on the number
of breakpoints of v(T) which are < T(v), while this number has almost no effect
on the two other methods. Note that independent of the problem size the number
of iterations in MTBIN and INTPL is almost constant. But D U A L gets worse
and worse the larger the number of breakpoints becomes. This effect is demon-
strated particularly well by the increase in the CPU-time from the Zadeh-
example Z5a to the Zadeh-example Z5b in Table 3.

As far as the almost constant number of iterations needed by the search
approaches of Section 4 is regarded, we have confirmed the findings which
Ibaraki obtained in [21] for other types of fractional programming-problems.
However, our problems, in particular the rather small Zadeh-examples, seem to
be more difficult to solve as we need more iterations per problem than Ibaraki.

Let us now try to answer the question which of the algorithms mentioned
above is best suited for solving a given practical (QFP). Generally speaking, one
can say that as long as the number of breakpoints to the left of T(v) is not too
large, algorithm D U A L is the winner, whereas otherwise it is recommended to
use the methods MTBIN or INTPL. (See e.g. the change in the behaviour that
occurs between v = 109 and v = 10 l~ for the NETGEN-examI31e N3.)

Obviously, the algorithm D U A L can be modified such that, depending on the
size of v, it starts alternatively from the zero flow proceeding then from left to

The Quickest Flow Problem 53

right as it is done in our implementation or from a maximum flow proceeding
from right to left. This will yield an improvement for cases where only a small
number of breakpoints lies to the right of T(v). But note that in example N3c
this is not the case. There the number of breakpoints to the left of T(v) is according
to Table 2 approximately equal to 4958, which is only about a quarter of the
total number of breakpoints of v(T) for this instance (confer Table 1).

A closer investigation revealed that the main reason why DUAL is superior
for not too large values of v is that in this approach only one almost trivial
minimum cost flow problem (for the flow value 0) has to be solved from scratch
while in the search procedures such as MTBIN and IN TP L we have to solve
two minimum cost flow problems, one for T = T l and one for T = T~ at
the beginning. Especially for the large NETGEN-example it turned out that
evaluating v(T) at the initial Tu is very expensive. (These problems get more and
more difficult, the larger T becomes.)

To conclude this section, let us point out that our primary objective in
implementing the search methods of Section 4 was getting a low number of
iterations and only the secondary objective was t o minimize the CPU-times.
During our investigations it turned out, however, that in many cases, the running
times decrease if we use weaker but easier computable lower and upper bounds
Tt and Tu, while usually as a consequence thereof the number of iterations
increases.

6 A Strongly Polynomial Algorithm

In this section we will propose a strongly polynomial algorithm for the (QFP)
which relies on an ingenious idea of Megiddo [28] for solving linear fractional
programs. Throughout this section we will assume familiarity with Megiddo's
work. (A self-contained description can be found in Burkard, Dlaska and Klinz
I-9].)

Basically our aim is to solve the problem (MCCP)T for T = T(v), but
unfortunately we do not know T(v). Following Megiddo we can however proceed
as follows: We extend a strongly polynomial algorithm A for the minimum cost
circulation problem to the problem with parametric costs by extending the
operations of A from the set of reals to the set of affine-linear functions. For this
approach to work, the only operations on the arc costs algorithm A is allowed
to perform, are additions and subtractions of two costs, multiplications of an arc
cost with a real number and finally pairwise comparisons between arc costs.
Currently the best algorithm fulfilling these requirements has a time complexity
of O(m log n(m + n log n)) and is due to Orlin [32].

Let J be an initial interval such that T(v) ~ J. Megiddo's method now mainly
relies on the fact that as long as no comparisons involving the arc costs occur,

54 R.E. Burkard et al.

all steps of the algorithm can be performed immediately without knowing T(v).
If we arrive at a comparison between two parametric arc costs, we first determine
the critical value T* for which the two cost functions intersect. In case that T*
does not exist or lies outside of J, the result of the comparison is obviously
independent of T(v) and can be determined immediately. Otherwise, we compute
the function value v([T*]), e.g. by calling algorithm A as subroutine. The result
of this computation enables us to decide on which side of T* the value T(v) lies
and to update J. This process eventually will yield a circulation g such that g is
optimal over J and T(v) ~ J. Then T(v) can be obtained by a straightforward
computation.

It is easy to see that this algorithm determines the minimum transmission time
T(v) in O(m 2 log 2 n(m + n log n) 2) time. (There are at most O(m log n(m +
n log n)) comparisons in Orlin's min cost flow algorithm [32], and each com-
parison causes at most one call of Orlin's algorithm as subroutine.) Hence a
strongly polynomial time algorithm for the (QFP) running in O(m 2 log 2 n(m +
n log n) a) time follows.

It is worth-mentioning that the algorithmic scheme described above can be
sped up provided one succeeds in reducing the number of calls to algorithm A.
In 1-28, 29] Megiddo suggested several ways of achieving this aim for various
types of fractional programming problems.

It is not very difficult to derive from Megiddo's approach which is based on
exploiting parallelism an O(m z log 5 n(m + n log n)) time algorithm for solving
the (QFP). (There we apply a parallel variant of Orlin's min cost flow algorithm
which performs O(m log n) shortest path computations. Each of these shortest
path problems can be solved in O(log 2 n) time on a parallel machine with
O(n3/log n) processors.) Further details can be found in Megiddo [29] and in
Burkard et al. I-9].

An even better strongly polynomial algorithm for the (QFP) can be obtained
by observing that in the parametric minimum cost circulation problem (MCCP)r
the return arc is the only arc that has a parametric cost. Suppose we apply
Megidd0's original algorithm with Orlin's min cost flow algorithm as underlying
routine. The essential idea is now that due to the special property of the costs,
the shortest path problems that occur as subproblems in Orlin's min cost flow
algorithm can be solved directly as special parametric shortest path problems
without applying the scheme of Megiddo. A careful analysis of the results of
Young, Tarjan and Orlin [41] and Karp and Orlin [24] on special parametric
shortest path problems shows that in the case where all arcs except one have
constant costs, the associated optimal value function has at most n breakpoints.
Hence these problems are solvable asymptotically in the same time as already
needed for solving a single shortest path problem. (This has been observed
independently e.g. by Orlin [33] and Klinz and Tuy [26].) Therefore, each of the
O(m log n) shortest path computations necessary in Orlin's algorithm results in
a number of at most n - 1 critical values T* < T2* < "'" < T~*, r < n. Using at
most O(log n) calls to Orlin's algorithm [32] one can then determine the interval
[T*, T*+I] with T(v) m [T*, Tp*l]. Along these lines a n O(m 2 l og 3 n(m + n log n))

The Quickest Flow Problem 55

time algorithm for the (QFP) can be developed. (This algorithm was suggested
for the first time by Orlin [33] for solving a constrained maximum flow problem,
see also Ahuja and Orlin [3].)

Whereas Megiddo's method is apparently very effective from the theoretical
point of view, nothing seems to be known about its practical efficiency. Many
researchers suspect that due to the relatively large overhead necessary for making
the algorithm strongly polynomial, Megiddo-based algorithms will be inferior
to its just polynomial competitors for solving practical problems.

In the case of the (QFP) the polynomial methods of Section 4 are superior
to the Megiddo-based approach even from the point of view of worst case
complexity for all instances of reasonable size, i.e. more specifically if log Ama~ is
o(mlog 2 n), where Z~ma x = min{v, Igmaxl}. Thus it seemed to us that it does
not pay off to undertake the rather cumbersome and time-consuming task of
implementing Megiddo's method.

7 Summary and Concluding Remarks

In this paper we investigated a special dynamic flow problem, the quickest flow
problem (QFP). This problem in a certain sense is the inverse problem of the
classical maximum dynamic flow problem. Moreover, it turned out that the
(QFP) can be written as linear fractional program.

For a network with n nodes, m arcs and maximum static flow value Ig,.axl our
best polynomial algorithm for solving the (QFP) for a given value v runs
in O(m log n(m + n log n) log A,,ax) time where A,,ax = min{v, Ig,,,xl}. Further-
more, a strongly polynomial algorithm of time complexity O(m 2 log 3 n(m +
n log n)) can be obtained.

Finally, we conducted a computational study on the practical behaviour of
the various methods for solving the (QFP). The results obtained seem to provide
strong evidence that the best of the tested algorithms may well serve as an efficient
tool for solving large practical problems.

Despite the results on quickest flows presented in this paper and in the paper
by Burkard, Dlaska and Kellerer [8], there are still several open questions which
might deserve further research. Let us very briefly mention some of them.

(1) In the context of evacuation models the following generalization of the
quickest flow problem to the case of more than one source occurs (see Hamacher
[19]): Given a network jIr with q > 1 sources s 1 s~ along with a number vsk
for each source Sk, and one sink s', determine the minimum number of time units
that are necessary to send vsk units of flow from the source s k to the sink s', for
k = 1, . . . , q. To our knowledge no efficient algorithm for this problem is known.

56 R.E. Burkard et al.

(2) The perhaps most challenging research question related to quickest flows is
to find a polynomial algorithm for the quickest flow problem with a better
worst case complexity than the algorithms presented in our paper. Currently
we are investigating whether some of the ideas which have proven successful
for the minimum mean cycle problem (see Orlin and Ahuja [34]) and the
maximum mean cut problem (see Iwano et al. [22]) can also be applied in
our case.

(3) Since the computational results of the previous section have shown that the
number of iterations is on the average much smaller than predicted by our
worst case bounds, the twofold question of finding tight worst case bounds
and associated worst case examples arises. Such worst case examples would be
of particular interest for the Newton approach, for the binary search algorithm
with improved lower and upper bounds and finally above all for the interpolation
algorithm.

(4) In all our methods we have evaluated v(T) exactly. It is an interesting
question from the point of view of both theory and practice whether computing
only some kind of approximate min cost flow can help to improve the theoretical
and/or practical efficiency of the search methods described in this paper.

Acknowledgement: We would like to thank Prof. Agha I. Ali for kindly making his code MODAPT
available to us. Moreover, we are grateful to G/inter Rote for valuable discussions that lead to an
improvement of a first draft of this paper, and to Prof. James B. Orlin for a discussion on the strongly
polynomial algorithm mentioned in Section 6.

References

[1] Ahrens JH, Finke G (1980) Primal transportation and transshipment algorithms. Zeitschrift
far Operations Research 24:1-32

[2] Ahuja RK, Magnanti T, Orlin JB (1989) Network Flows. In: GL Nemhauser et al. (eds.),
Handbooks in OR & MS, Vol. 1, North Holland, Amsterdam, 211-369

I-3] Ahuja RK, Orlin JB (1991) Scaling algorithms for the constrained maximum flow problem, talk
presented at the 14-th International Symposium on Mathematical Programming, Amsterdam

[4] All AI, Padman R, Thiagaran H (1989) Dual algorithms for pure network problems. Operations
Research 37:159-171

[5] Aronson JE (1989) A survey on dynamic network flows. Annals of Operations Research
20:1-66

[6] Bertsekas DP, Tseng P (1988) The relax codes for linear minimum cost network flow problems.
Annals of Operations Research 13 : 125-190

1-7] Bertsekas DP, Tseng P (1990) RELAXT-III: A new and improved version of the RELAX code,
LIDS Report P-1990, Laboratory for Information and Decision Systems, MIT, Cambridge,
MA

[8] Burkard RE, Dlaska K, Kellerer H (1991) The quickest disjoint flow problem. Technical Report
189-91, Institute of Mathematics, University of Technology, Graz, Austria

The Quickest Flow Problem 57

[9] Burkard RE, Dlaska K, Klinz B (1991) The quickest flow problem. Technical Report 188-91,
Institute of Mathematics, University of Technology, Graz, Austria (also available as Rutcor
Research Report RRR # 57-91, Rutgers University, New Brunswick, N J, 1991)

[10] Carstensen PJ (1983) Complexity of some parametric integer and network programming
problems. Mathematical Programming 5:64-75

[11] Chalmet LG, Francis RL, Saunders PB (1982) Network models for building evacuation.
Management Science 28: 86-105

[12] Chen YL, Chin YH (1990) The quickest path problem. Computers and Operations Research
17:153-161

[13] Derigs U, Meier W (1989) Implementing Goldberg's max-flow algorithm, a computational
investigation. Zeitschrift f/it Operations Research 33 : 383-403

[14] Derigs U, Meier W (1990) Goldrmf/Goldnet-max-flow program. European Journal of
Operational Research 46: 260

[15] Ford LR, Fulkerson DR (1962) Flows in Networks, Princeton University Press, New Jersey
[16] Gallo G, Pallottino S (1988) Shortest path algorithms. Annals of Operations Research 13:3-79
[17] Gibbons A, Rytter W (1988) Efficient Parallel Algorithms, Cambridge University Press,

Cambridge
[18] Grigoriadis MD (1986) An efficient implementation of the network simplex method. Mathe-

matical Programming Study 26: 83-111
[19] Hamacher HW (1983) Min cost and time minimizing dynamic flows, Research Report No.

83-16, Industrial & Systems Engineering Department, University of Florida, Gainesville
[20] Hamacher HW (1989) Temporally repeated flow algorithms for dynamic min cost flows,

Proceedings of the 28-th IEEE Conference on Decision and Control
[21] Ibaraki T (1983) Parametric approaches to fractional programs. Mathematical Programming

26:345-362
[22] Iwano K, Misono S, Tezuka S, Fujishige S (1990) A new scaling algorithm for the maximum

mean cut problem. IBM Research Report RT 0049, Tokyo, Japan
[23] Jarvis JR, Ratliff DH (1982) Some equivalent objectives for dynamic network flow problems.

Management Science 28:106-109
[24] Karp RM, Odin JB (1981) Parametric shortest path algorithms with an application to cyclic

staffing. Discrete Applied Mathematics 3:37-45
[25] Klingman D, Napier A, Stutz S (1974) Netgen: A program for generating large scale capacitated

assignment, transportation and minimum cost flow problems. Management Science 20:
814-821

[26] Klinz B, Tuy H (1991) Minimum concave-cost network flow problems with a single nonlinear
arc cost, Technical Report 191-91, Institute of Mathematics, University of Technology, Graz,
Austria

[27] McCormick TS, Ervolina TR (1990) Computing maximum mean cuts, UBC Faculty of
Commerce Working Paper 90-MSC-011, Vancouver, BC

[28] Megiddo N (1979) Combinatorial optimization with rational objective functions. Mathematics
of Operations Research 4: 414-424

[29] Megiddo N (1983) Applying parallel computation algorithms in the design of serial algorithms.
Journal of the A. C. M. 30:852-865

[30] Minieka E (1973) Maximal, lexicographic, and dynamic network flows. Operations Research
21:5t7-527

[31] Murty KG (1983) Linear Programming, John Wiley & Sons, New York
[32] Orlin JB (1988) A faster strongly polynomial minimum cost flow algorithm, Proc. 20-th Annual

Syrup. Theory of Computing 377-387
[33] Orlin JB (1992) Private communication
[34] Odin JB, Ahuja RK (1992) New scaling algorithms for the assignment and minimum mean

cycle problems. Mathematical Programming 54:41-56
[35] Radzik T (1991) Minimizing capacity violations in a transshipment network, Technical Report,

Computer Science Department, Stanford University, CA

58 R.E. Burkard et al.

[36] Rosen JB, Sun S-Z, Xue G-L (1991) Algorithms for the quickest path problem and the
enumeration of quickest paths. Computers and Operations Research 18:579-584

1-37] Rote G (1991) Private communication
[38] Ruhe G (1991) Al#orithmic Aspects of Flows in Networks, Mathematics and Its Applications,

Volume 69, Kluwer Academic Publishers, Doortrecht
[39] Schaible S (1978) Analyse und Anwendungen yon Quotientenprogrammen - Ein Beitrag zur

Planung mit Hilfe der nichtlinearen Programmierung, (in German), Mathematical Systems in
Economics 42, Verlag Anton Hain, Meisenheim am Glan

[40] Schaible S, Ibaraki T (1983) Fractional programming. European Journal of Operational
Research 12: 325-338

[41] Young NE, Tarjan RE, Orlin JB (1991) Faster parametric shortest path minimum-balance
algorithms. Networks 21 : 205-221

[42] Zadeh N (1973) A bad network problem for the simplex method and other minimum cost flow
algorithms. Mathematical Proflramming 5:255-266

Received: November 1991
Revised version received: April 1992

