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A b s t r a c t .  An experrimental  and numerical study was 
made of converging cylindrical shock waves. The goal 
of the present study was to clarify the movement and 
instability of the converging cylindrical shock waves. Ex- 
periments were conducted in an annular shock tube of 
230 mm o.d. and 210 mm i.d. connected to a cylin- 
drical test section of 210 mm diameter. Double expo- 
sure holographic interferometry was used to visualize 
the converging cylindrical shock waves. Incident shock 
Mach numbers ranged between 1.1 and 2.0 in air. A 
numerical simulation was conducted using the TVD fi- 
nite difference scheme. It was found in the experiments 
that although the initial shock wave configuration looked 
cylindrical, it was gradually deformed with propagation 
towards the center and finally showed mode-four in- 
stability. This is at t r ibutable to the existence of initial 
disturbances which were introduced by the struts which 
supported the inner tube of the annular shock tube. This 
trend was significant for stronger shock waves indicating 
that  at the last stage of shock wave convergence the 
initial perturbations of the converging cylindrical shock 
wave were amplified to form the triple point of Mach 
reflection. The numerical results correctly predicted the 
experimental trend. 

K e y  words :  Converging cylindrical shock wave, Sta- 
bility, Holographic interferometry, TVD finite difference 
scheme 

1. I n t r o d u c t i o n  

Stability of converging cylindrical shock waves is one 
of the unsolved problems of shock wave dynamics as- 
sociated with shock wave focusing. Converging cylindri- 
cal and spherical shock waves are known to produce 
high temperatures and pressures at the center of con- 
vergence. Recently shock wave focusing has been used 

for various interesting scientific and engineering applica- 
tions (Takayama 1990). 

The first analytical work concerning converging shock 
waves was done by Guderley (1942). He obtained a self- 
similar type solution for the convergence of the cylin- 
drical and spherical shock waves. Experimentally, Perry 
and Kantrowitz (1951) produced converging cylindrical 
shock waves using a unique annular shock tube hav- 
ing an axisymmetric tear drop shaped inner core. Since 
then, many research works have been reported an this 
problem; experimentally (Wu et al. 1977; Takayarna et 
al. 1987) and theoretically or numerically (Gardiner et 
al. 1982; Itoh and Abe 1984; Demmig and Hehmsoth 
1989; Watanabe 1989). However, the physics of converg- 
ing shock waves and particularly initiation of instability 
of the converging shock waves has not yet been clarified, 
since this behavior is primarily dependent on nonlinear 
characteristics of shock waves (Watanabe 1989). 

In this paper the converging cylindrical shock waves 
were generated by using a co-axial annular shock tube 
which had annular structure, similar to that of Perry 
and Kantrowitz (1951). The co-axial annular shock tube 
enabled transformation of a planar shock wave to a con- 
verging cylindrical shock wave. The whole sequence of 
shock convergence was successfully visualized with dou- 
ble exposure holographic interferometry. To interprete 
the experimental results, a numerical simulation, using 
the TVD finite difference scheme, was conducted and 
good agreement was obtained between the experiment 
and numerical simulation. Based on the numerical re- 
sults, the relationship between intensity of the initial 
disturbance and shock wave distortion was discussed in 
some detail. 

2. E x p e r i m e n t a l  s e t u p  

2.1. Shock tube and test section 

A 50 mm i.d. shock tube was used to produce planar 
Offprint requests ~o: K.Takayama shock waves. This was connected to a co-axial annu- 
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Fig. 1. Annular shock tube 

lar shock tube. The annular shock tube consisted of 
two co-axial tubes having an inner and outer diame- 
ter of 210 mm and 230 mm, respectively as shown in 
Fig. 1. The inner tube was supported by two sets of four 
equiangularly distributed struts from the outer tube and 
its upstream part had a conical section whose apex an- 
gle was 45 ~ The struts were 18 mm o.d. cylinders. The 
clearance between the inner and outer tubes was ad- 
justed to be 10.0 • 0.02 mm. The blockage ratio of 
the struts to the annular shock tube cross section was 
0.12. The co-axial annular section was 500 mm long. 
It was expected that  a longer straight co-axial section 
was preferable to at tenuate the non-uniformities of the 
shock wave caused by the struts and the cone tip. As 
a mat ter  of fact, the present longer co-axial section was 
more effective to at tenuate the shock wave than those 
used in previous works (Perry and Kantrowitz 1951; Wu 
et al. 1977). 

An axisymmetric 900 bend was connected to the 
end of the co-axial annular section to turn the shock 
wave into a stabilized converging cylindrical shock wave 
(Takayama et al. 1987). Configurations of the bend sig- 
nificantly affected the movement and instability of the 
converging cylindrical shock waves near the center of 
convergence. In our previous preparatory experiments 
on shock propagation over two-dimensional 900 bends 
(Takayama et al. 1977), we found that  an optimum 900 
configuration existed which smoothly transformed the 
shock waves and was a smoothly converging and diverg- 
ing shape. It was also found that  a smoothly curved bend 
was more preferable than a sharp 900 bend. However, 
in the present series of experiments, a simple smoothly 
curved bend was used. Then the radial gap between the 
outer and inner corners of the bend was 10 mm. The 
radii of the inner and outer corners of the bend were 
2.5 mm and 12.5 mm, respectively. 

A 130 mm o.d. glass observation window was in- 
stalled in the outside wall of the test section. A 130 mm 
o.d. aluminum plated glass mirror was placed on the 
inside wall, with the coated surface facing the flow. The 
gap between the mirror and window was 10 mm. For the 

experiments, the test gas was air at initial pressures that  
ranged from 5 kPa to 100 kPa. In order to measure the 
incident shock Mach number, two pressure transducers, 
Kistler 603B, were placed on the outer annular section at 
a 200 mm interval. The time differences between these 
pressure signals were measured with a digital counter 
and then average shock Mach numbers were calculated. 
Incident shock Mach numbers ranged from 1.1 to 2.0 in 
air. 

2.2. Holographic interferomctry 

Figure 2 shows a schematic diagram of the holographic 
interferometric system which is similar to a conventional 
shadowgraph method except for the addition of a refer- 
ence beam. This system was very similar to Twyman- 
Green interferometry (Takayama 1983). The optical sys- 
tem consisted of two paraboloidal schlieren mirrors of 
300 mm diameter and 3 m focal length A, a 6:4 beam 
splitter which transmits 60 % of light intensity and re- 
flects 40 % of light intensity BS, mirrors M which adjust 
the light path lengths of the object beam and the ref- 
erence beam to be as close as possible and lenses L 
which focus the image of the test section onto a holo- 
graphic film. By combining different image focus lenses, 
the magnification of the image of the test section on the 
film was arbitrarily chosen. In the present experiment it 
was about 0.5. 

A holographic double pulse ruby laser R (Apollo 
Lasers Inc. 22DH 25 ns pulse duration and 2 J/pulse) 
was the light source. The ratio of the light intensity of 
reference and object beams was adjusted to range from 
2:1 to 3:1 by using neutral density filters or by changing 
the angle of the diverging object beam through the beam 
splitter to the paraboloidal mirror. The angle between 
object and reference beams was designed to be about 
20 ~ and the path difference between these beams was 
adjusted to be less than 50 mm. The holographic film 
was 100 mm x 125 mm sheet film, AFGA 10E75. It 
was processed with Kodak D-19 developer to double 
exposures for 4.5 min at 293 K and to single exposures 
for 8 min, fixed with Fuji-super fixer for 5 min and rinsed 
in running water for 15 min. 

In conventional photography, only information of 
light intensity which was reflected from or transmitted 
through an object is recorded on the film. Holographic 
interferometry is a technique in which the phase infor- 
mation of light which was reflected from or transmitted 
through an object can be recorded, in particular by 
overexposing the film with the reference beam. When 
a hologram thus constructed is illuminated again with 
the reference beam or a beam which can be equivalent 
to the reference beam, the image of the object is re- 
constructed as a real or virtual image (Caulfield 1979). 
To acheive this, a coherent monochromatic light source, 
a laser beam, is needed. Double exposure holographic 
interferometry quantitatively enables one to visualize 
shock wave phenomena. The fringes in a reconstructed 
holographic interferogram correspond to isopycnics. In 
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this technique, the first exposure is taken prior to the 
shock wave arrival at the test section while the second 
exposure is triggered by the shock wave. The variation 
of light intensity I and the order of the fringes are cor- 
related to the spatial phase change r y) as follows, 

I o( cos r y) (1) 

where r y) is the phase change. 
Since the object beam was reflected from the mirror 

on the inner wall and the object beam crossed the test 
section twice, the sensitivity was doubled. 

S -  2KLAp (2) 

where S, K, L, Ap and A are the fringe number, the 
Gladstone-DMe constant of 0.225 cma/g in air, the width 
of the test section (10 mm), density variation and wave- 
length of the light source, respectively. For reconstruc- 
tion an Argon-Ion laser (514.5 nm wave length and 1 W) 
was used. The distortion of reconstructed images due to 
the difference of wave length of the light between the 
experiment and reconstruction of holograms and also 
the difference of the optical arrangement between the 
experiment and reconstruction was negligibly small. 

3. Numer ica l  s imula t ion  

The TVD finite difference scheme (Harten 1983; Itoh 
and Takayama 1987) was applied to the two-dimensional 
unsteady Euler equations. Two computational models 
were considered as shown in Fig. 33. 

3.1. Computational model 

3.1.1. Simulation-1 

The computational region was the axisymmetric 90 ~ 
bend and the convergence region. However, in this model 

Simulation-- 1 Simulafion --2 

a Computational model 
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F i g .  3.  R e g i o n  of  n u m e r i c a l  s i m u l a t i o n  

no initial disturbances were considered, the computation 
was intended to predict the shock wave movement in the 
90 ~ bend and shock wave convergence in the test section. 
The initial shock Mach number ranged from 1.1 to 2.0. 

3.1.2. Simulation-2 

In this simulation, only the circular convergence region 
was considered and initial disturbances were superim- 
posed on the high pressure section and their influence 
on shock convergence was examined. 

3.1.3. Basic equations 

The conservation form of the Euler equations for inviscid 
compressible flow in Cartesian coordinates (z, y) can be 
expressed in general curvilinear coordinates (~, r/) as, 

00 0P 0a  
0/ + -bT + • + w = ~  (3) 

where the vector U represents the conserved quantities, 
and G represent numerical fluxes, and 1~ r represents 

an inhomogeneous term in the axisymmetric flow. 

U 1 F 

1 W 
(4) 
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where J is the Jacobian given as, 

J = 5~y  - 5y~/~. (5) 

PU2 + P G = puv 

t(e+p) J [(e 
(6) 

p /x ] 
P 2/x / 

W =  puvlz | 

where p, p, u, v, and e are the pressure, density, x- 
component velocity, y-component velocity and total en- 
ergy per unit volume, respectively_ In siren[orion-2, the 
inhomogeneous term W in (6) was excluded from the 
basic equations. However, the simulation was conducted 
in cylindrical coordinates. 

For a perfect gas the pressure is given by 

P (u 2 
P = ( 7 - 1 ) { e - 2 ,  + v2)} (7) 

where 7 is the ratio of specific heats and is constant, 
since real gas effects are neglected. 

However, when the transmitted shock arrives very 
close to the center, it becomes so strong that real gas 
effects will become significant. The influence of ioniza- 
tion on a converging strong Argon shock was studied 
numerically by Demmig and Hehmsoth (1989). 

3.2. Initial conditions 

In simulat ion-l ,  the initial Mach number ranged from 
1.1 to 2_0 to match the experimental conditions. The 
normal incident shock just upstream of the 900 bend 
was taken as the initial condition. 351 • 25 grid points 
were used. 

In simulation-2, this is equivalent to a cylindrical 
imploding shock tube problem having high pressure re- 
gions distributed around the outer boundary as shown 
Fig. 3b. The computational domain was a quarter sec- 
tion of the circular flow field. The high pressure section 
is assumed to he initially isothermal. The ratio of the 
high pressure to the initial low pressure was I(). The 
initial disturbance was given by excess pressure varia- 
tions which were expected to simulate the inflence of the 
disturbances caused by the struts. However, the present 
numerical model was fictitious since there is no cylindri- 
cal diaphragm which can be ruptured simultaneously in 
space and time. Nevertheless this model was useful to 
interpret the onset of instabilities. The numerical simu- 
lation was carried out for initial excess pressures of 10 %, 

50 % and 200 %, respectively. Mode numbers, m = 2, 4 
and 8 were studied. 401 • 151 grid points were used 

4. R e s u l t s  a n d  d i scuss ion  

~.1. Interferograms 

Sequential interferograms are shown in Fig. 4. For each 
Mach number, several experiments were repeated with 
identical initial condition. The repeatability of the inci- 
dent shock Mach number was maintained within -t-2.5 % 
for each nominal incident Mach number. Figures 4a-d, 
4e-h and 4i-m show reconstructed infinite fringe inter- 
ferograms for Me = 1.1, 1.5 and 2.0, respectively. The 
displayed elapsed time started when the transmitted 
shock wave passed the first pressure gauge, as seen in 
Fig. 1. 

4 . 1 . I . M , = 1 . 1  

In Fig. 4a, a 16 mm diameter cylindrical shock wave 
converged towards the center. Although the shock wave 
looked cylindrical, behind it a slight non-uniformity ex- 
isted since the fringe distribution was not cylindrical. 
The fringe distribution were quadrangularly disturbed 
which indicated the onset of mode-four instability. [n 
Fig. 4b, the shock wave was no longer cylindrical but was 
deformed, and the flow non-uniformity behind the shock 
wave became even more pronounced. The fringes looked 
like a four-leaf clover. One fringe shift corresponds to a 
density change of about 12 % of the standard condition. 
In Fig. 4c, as the shock wave propagated towards the 
center, the four-leaf clover shape became much clearer 
and showed that  the density non-uniformity was en- 
hanced. It was found that  the position of these clover 
leaves was directed to the position of the 4 struts located 
in section A in Fig. 1. 

Initially the effect of the disturbances caused by the 
struts on the shock wave and the flow field behind it was 
small as seen in Fig. 4a, however this effect was amplified 
as the shock wave converged in Fig. 4c. Figure 4d shows 
the reflected shock wave which becomes cylindrical with 
propagation outward and is known to be stable. Behind 
the reflected shock wave, the pressure and density is 
nearly uniform so that  few fringes can be seen. Near 
the convergence center a small cross shape can be seen. 
This is, as explained later, due to the remaining vortices. 
The vortices were produced hy the three shock conflu- 
ences and were evidence that  Mach reflection occurred 
near the center. Perry and Kantrowitz (1951) visualized 
shock convergence by shadowgraph and concluded from 
their photographs that  weak shock convergence was sta- 
ble. However, in Figs. 4c and 4d the converging shock 
wave could not be cylindrical and the vortices remained 
behind the reflected shock wave. This indicates that  the 
converging shock wave was not stable even for Me = l. 1. 
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Fig. 4a-rn. Interferograrns, a-d; Ms = 1.1, e-h; Ms = 1.5, i-m; Ms = 2.0 

4.1.2. Ms = 1.5 

In Fig. 4e, at an earlier stage, the converging cylindrical 
shock wave with 27 mm diameter is nearly cylindrical. 
Although in Figs. 4e-h, similar to Figs. 4a-d, the con- 
verging shock wave was initially nearly cylindrical, it 
was, with convergence towards the center, more signif- 
icantly disturbed again with mode-four instability. The 
shock wave very close to the center looked square as 
seen in Fig. 4f. Being initially negligibly small, the shock 
deformation grew larger with propagation. 

However, the shock deformation can not grow in- 
finitely large and still be continuous. The large and 
continuous shock deformation induced, large and con- 
tinuous changes of flow variables along the shock front. 
However, this could not be true if the gradient of the 
flow variables became very large along the shock front. 
The large shock deformation, finally could not to be con- 
tinuous and the transition to Mach reflection occurred. 
In Fig. 4g, the larger shock deformation terminated and 

the triple points having a familiar three shock conflu- 
ence composed of an incident shock, a reflected shock, 
a Mach stem and a slip line are formed. This tendency 
was even more significant for stronger shock cases, for 
example Ms = 2.0. 

Figure 4h shows the reflected shock wave from the 
center. When the mode-four instability terminated and 
Mach reflection appeared, consequently at the triple 
points, the four pairs of slip lines or vortices appeared. 
These vortices collided mutually at the center and stayed 
at the center since the particle velocity behind the re- 
flected shock was so small. Similar phenomena existed 
in shock focusing experiments. When a planar shock 
wave reflected from a concave wall, the shock transition 
from Mach to regular reflection occurred along the con- 
cave wall. The regular reflection which was an outcome 
of the inverted Mach reflection, accompanied the sec- 
ondary triple point and a vortex. The secondary triple 
points behind regular reflections on the upper and lower 
wMls collided and at the focus region of the concave 



wall, the two secondary triple points and vortices from 
the upper and lower concave walls collided with each 
other and remained there. The final interaction of the 
secondary triple points and vortices formed a mush- 
room shape (Takayama and Ben-Dot 1986). Similarly 
in this case the four pairs of vortices finally formed 
a shape which looked like cross shaped mushrooms. It 
was concluded that the remains of the vortices at the 
center indicated that the converging cylindrical shock 
having larger deformation finally converted into Mach 
reflection. In previous converging cylindrical shock ex- 
periments (Perry and Kantrowitz 1951), shadowgraphs 
showed vortices which looked very irregular at the center 
of convergence even for weak shock waves. This again 
indicated that converging cylindrical shock waves were 
unstable. 

4.1.3. M, = 2.0 

In Fig. 4i, an already slightly disturbed cylindrical shock 
of mean diameter of about 12 mm converges towards 
the center. For this stronger shock wave case, the shock 
wave became non-cylindrical at a much earlier stage. 
The non-cylindrical deformation of the shock wave was 
again attributable to shock interaction with the struts 
which supported the inner co-axial annular tube. In 
weaker shock waves these disturbances seemed to be 
well suppressed, especially at the earlier stage but in the 
stronger shock case they always remained in the shock 
wave. In Fig. 4j they turned into Mach reflection. The 
three shock confluences, i.e. the converging cylindrical 
shock as an incident shock, the reflected shocks, straight 
Mach stems and slip lines were clearly seen. 

Figure 4k is a blow-up of the Fig. 4j. As marked, we 
can easily see the three shock confluence. Since in pre- 
vious experimental work, shadow or schlieren methods 
were mainly used, the non-uniformity of the flow behind 
the converging cylindrical shock wave was not easily 
detectable. It should be noted again that the present 
holographic interferometer was particularly useful to de- 
tect the earliest onset of instability in the flow preceding 
the deformation of the shock wave. In Fig. 4k, once the 
Mach reflections appeared, the triple point was self pre- 
served. These three shock confluence were predictable by 
solving the Rankin-Hugoniot relation for oblique shock 
waves. Figure 4k shows a typical mode-four instability. 
In Fig. 4m, the reflected shock wave diverged from the 
center and was again stable even for strong shock waves. 

4.2. Influence of the bend 

Figure 5 shows, for simulation-l, a numerical result of 
shock Mach number variation along the outer and inner 
walls and also along the center line of the 90 o bend for 
M, = 2.0. In Fig. 5, the ordinate is shock Mach number 
and the abscissa is a nondimensional distance along the 
bend, the origin O corresponds to the upstream uniform 
condition of the bend and the convergence center is des- 
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F i g .  5. S h o c k  M a c h  n u m b e r  v a r i a t i o n  

ignated as 1. Along the outer and inner walls and also 
along the center line, the shock Mach number increased 
with shock convergence. However, the shock Math num- 
ber did not vary monotonically but maxima existed dur- 
ing the convergence process. These maxima indicated 
that the shock wave was locally accelerated and deceler- 
ated repeatedly due to the fact that, after the incident 
shock wave passed through the 900 bend, the transmit- 
ted shock wave was reflected and diffracted between the 
upper and lower walls of the test section. The triple 
point on the transmitted shock, the so-called shock- 
shock, moved along the shock wave and was reflected 
repeatedly between upper and lower walls. Therefore, 
the slip lines which were remaining in the test section 
looked like zig-zag shapes. This trend was clearly observ- 
able in previous two-dimensional shock tube experiments 
(Takayama et al. 1977). The shock Mach number dis- 
tributions along the outer and inner walls shows several 
peaks. 

In the present holographic flow visualization, the 
converging shock wave was observed to have plausible 
thickness. This is attributable to the fact that the triple 
point exists on the converging shock wave and conse- 
quently the converging shock is curved. Therefore, when 
the collimated light passed through the test section par- 
allel to the shock wave, the deformed shock was ob- 
served to be thickened. This indicated that in using the 
annular shock tube, the cylindrical shock convergence 
process could be slightly three-dimensional. Therefore, 
the model in simulation-2 illuminated an example of 
simplified characters of the converging cylindrical shock 
waves. 

In the infinite fringe holographic interferograms, each 
fringe corresponds to isopycnics. Therefore, it is possible 
experimentally to evaluate the density distributions by 
counting fringe numbers as shown in Eq. (2). The eval- 
uated densities from the interferograms were compared 
with the computational isopycnics. Good agreement was 
obtained between the experiment and the computation 
but only in the vicinity of the convergence center. How- 
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ever, it was found that  agreement was poorer outside the 
convergence center. A number of false fringes existed in 
the interferograms. The false fringes did not correspond 
to the density variation but were thought to be caused 
by vibration of the test section which was induced when 
the incident shock hit the inner core of the annular sec- 
tion and consequently due to the surface deformation 
of the test section. As seen in Figs. 4, the false fringes 
increased in number with elapsed time. Unfortunately at 
the moment we are unable to separate these false fringes 
from the real density variation which were generated by 
the shock and the flow in the test section. 

a K P/P0 0nverging center ~bo~ 

! r = 15 mm ~ 
20 , l , L=~, f , ~ 

r = 30 mm 
i0 , ~ , e - - r - - q - - ,  -~ 

= 45 mm 
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i00 200 t 300 400(l~sec ) 

Ms=  1.1 

4.3. Pressure distribution 

Figures 6a, 6b and 6c show pressure measurements for 
Me = 1.i, 1.5 and 2.0, respectively. The pressure was 
measured 15 mm, 30 mm and 45 mm from the center. 
The pressure transducers, Kistler 603B had a 2.5 mm 
diameter pressure sensitive area and were placed on the 
outer wall of the test section. The experimental results 
were compared with the numerical simulations. Com- 
putational pressure histories at these points were eval- 
uated by integrating the computational pressures over 
several grid points which corresponded to an area equiv- 
alent to the sensitive area of the pressure transducers. 
Good agreement was obtained between the experiment 
and the computation. However, the computational max- 
imum pressures differ marginally from the experimental 
results, since in the present computation the initial dis- 
turbances were neglected and viscosity was not taken 
into account. 

4.4. Numerical simulation with initial disturbances 

Figure 7 shows the isopycnics for Ms = 2.0 obtained 
in simulation-2 and with an initial excess pressure of 
100 %. In experiments, positions of triple points were 
maintained in an angular sense. ]n the numerical simu- 
lation in Figs. 6b and 6c, triple points collided mutually 
and reflected as if the triple points were moving in a 
circumferential direction. The isopycnics which looked 
like four-leaf clover shapes also looked to be rotating. It 
is somehow different to compare the present numerical 
results with the experimental result in Fig. 4, simply 
because there are some differences in initial conditions 
between the experiment and the simulation. However, it 
is clear that  the initial disturbance are amplified with 
shock convergence and finally turn into Mach reflection. 

Figure 8 shows the pressure distribution along the 
shock front for various initial disturbances, that  is, ini- 
tial excess pressures. The ordinate is pressure ratio re- 
ferred to the initial pressure and the abscissa is the 
circumferential angle. In Fig. 8a, the converging shock 
waves were not significantly disturbed but the pressure 
behind it was gradually enhanced with propagation. At 
t5 = 72 #s, only the reflected shock showed some 
non-uniformity. In Fig. 8b, the excess pressure is 50 %, 
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the initial disturbance propagated circumferentially and 
was amplified. The broken line in Fig. 8b shows a tra- 
jectory of the non-uniform part which is initially moving 
outwards and then reflected by accompanying the dis- 
tinct pressure jumps. This means that  Mach reflection 
occurred. It is found that  high overpressure appeared at 
the converging center. This trend was also seen in Fig. 5 
where the shock converged at the center. 

Comparatively uniform pressure appeared behind the 
reflected shock which agreeed well with the experiment, 
since in the  experiment only a few fringe shifts existed 
behind the reflected shock. In Fig. 8c, in the case of 
200 % of excess pressure, a drastically sharp pressure 
rise was seen which corresponded to the formation of 
Math reflection as seen in Fig. 4i-m. It was found that 
the bigger the initial disturbance is, the higher the peak 
pressure ratio is. For a given initial shock Math number 
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with a small initial disturbance, this averaged pressure 
along the shock front was enhanced and its distribution 
became comparatively uniform. When the initial distur- 
bance was larger, the averaged pressure along the shock 
wave was not as high as the weak initial disturbance 
case but the peak pressure at the center was enhanced. 

The four struts at B in Fig. 1 also contributed to the 
final instability mode. However, as mentioned above, the 
instability caused by stronger initial disturbances grew 
faster than by weaker the ones. As the disturbances 
caused by the struts in position B were attenuated with 
propagation more quickly than those by the struts from 
position A. Therefore, the contributions by the struts 
in the position B became negligibly small to the final 
instability mode and only the influence from the struts 
in position A were dominating to the final instability 
mode. 

4.5. Shock wave distortion 

4.5.1. Measurement from interferograms 

In ideal cylindrical shock convergence, the cylindrical 
shape was always maintained and the final shock con- 
vergence at the center produced high pressure and tem- 
perature. However, it is not easy to achieve this condition 
physically. In the present series of experiments, we saw 
that the initial disturbance of the shock wave, however 
small it may have been, was gradually amplified with 
convergence. Figures 9a-c, d-f and g-i show distortions 
of the converging shock waves from the cylindrical shape, 
which were evaluated from the interferograms shown in 
Fig. 4, for M~ ---- 1.1, 1.5 and 2.0, respectively. The ordi- 
nate is the deviation AR of a deformed shock wave from 
its averaged radius R~ normalized with mean radius of 
the converging shock. The abscissa is the circumferen- 
tial angle 0/21r. The deviation of the radii was found to 
always have four coherent peaks. The four peaks grew 
with shock convergence. This is due to the growth of the 
mode-four instabilities associated with the struts. Small 
initial disturbances caused by the struts were transfered 
to the test section and at an earlier stage, deformed 
very slightly, the cylindrical shock wave. This instability 
grows with shock convergence. For M, = 1.1 the initial 
deformation was so small that  at this stage the shock 
wave was cylindrical as shown in Fig. 9a. However, shock 
deformation grows later to a noticeable level as shown 
in Fig. 9c. 

For M~ = 1.5, this trend was more pronounced. The 
initial disturbances already existed at R~ = 27 mm and 
were gradually amplified as shown Figs. 9d-f. The typ- 
ical example was seen in Figs. 9g-i for M, = 2.0. The 
small deformation grew to the extent that  small pertur- 
bation theory does not apply. The larger deformation 
of the converging shock wave finally formed the Mach 
reflection. In Fig. 9i, the flat topped shock deformation 
clearly indicated discontinuities of the Mach reflection 
as seen in Fig. 4k. It is concluded that the converging 
cylindrical shock wave is unstable even for weak shock 

waves and the initial small shock deformation grew with 
shock convergence and resulted in the deterministic non- 
linear behavior of triple point formation. The present 
sequential observation of shock deformation can be used 
directly to obtain time and spacial variations of the flow 
properties behind the converging shock. 

4.5.2. Amplification 

Figure 10 summarizes the amplification of the shock 
wave distortion. The experimental results were taken 
from Fig. 9. The ordinate is AR/R,,, deviation of the 
shock wave A R  normalized with mean radius of the 
converging s h o c k / ~  and the abscissa is the mean radius 
R~ normalized with the characteristic length which is the 
radius of the observation section Rd = 65 mm. In Fig. 10 
a small shock deformation existed and increased rapidly 
when the shock wave was inside the range Ra/Rd > 0.2. 
This change of deviation of the radius was related to 
the transformation of small perturbations to the triple 
point. Further it is found that  the dimensionless shock 
deformation seems to be independent of the incident 
Mach number. The solid line is an empirical curve fit. 

The effect of mode numbers of 2, 4, and 8 on the 
amplification of the shock deformation is compared in 
Fig. 11. AR/R~ is plotted against the mean radius 
R~/Rd. It is readily seen that  there is a trend that  
the smaller the mode number, the larger the shock de- 
formation is when the shock travels inside the range 
R~/Rd < 0.5. However, the trend was not consistent 
between the modes 2 and 4 at Ra/Rd = 0.01. This is 
because the present computational  evaluation of shock 
deformation became less accurate when the shock was 
at Ra/Rd = 0.01 as the corresponding shock radius 
was 0.65 mm. This was nearly beyond the limit of the 
present computational  resolution. In the present com- 
putation the initial excess pressure for all the initial 
disturbances for mode numbers 2, 4 and 8 was 100 %. 

Therefore, as seen in Fig. 11, if various mode numbers 
having non-equal initial disturbances coexisted, a smaller 
mode number and larger initial disturbance would con- 
tribute to the final disturbance more strongly than any 
other combinations of mode number and initial distur- 
bance. In our experiments (Takayama et al. 1987) in 
addition to the two pairs of 4 supporting struts, twelve 
pins of 4 m m  diameter were placed equiangularly at the 
90 o corner and the shock convergence was again observed 
by double exposure holographic interferometry. We saw 
that at first a mode-twelve instability appeared immedi- 
ately after the 900 corner. However, carefully observing 
the interferometric fringes near the center at the final 
stage of convergence, we found that  the mode-twelve 
instability merged into a mode-four instability. That  is, 
overlapping with the remaining fringes of the mode- 
twelve instability, again a mode-four instability became 
dominant.  The present numerical study can explain our 
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previous observation of why the mode-four instability 
having a stronger initial disturbance overtook the weaker 
mode-twelve disturbances. 

5. C o n c l u s i o n s  

The results obtained are summarized as follows; 

1. Holographic interferometry is particularly useful to 
observe the early onset of instability in the flow field 
preceding the deformation of the shock wave. 
2. Initial small perturbations of the shock wave grew 
with shock propagation and, at the final stage, resulted 
in the formation of triple points. 
3. Following the convergence, the flow non-uniformity 
behind the shock wave showed the onset of a mode-four 
instability which was due to the struts supporting the 
inner tube of the annular shock tube. 
$. The bigger the initial disturbance is and the smaller 
the mode number is, the bigger the amplification of the 
shock wave distortion is. 
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