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Abstract. Although the phenomenon of shock wave reflec- 
tion was discoverexl more than a hundred years ago, active 
research related to this phenomenon still goes on in many 
countries in the world (e.g., Australia, Canada, China, Ger- 
many, Israel, Japan, Poland, Russia and United States of 
America). As a matter of fact the research activity increased 
so drastically in the past decade and a half that a spe- 
cial scientific meeting dedicated to better understanding the 
reflection phenomena of shock waves, namely "The Interna- 
tional Mach Reflection Symposium" was initiated in 1981 
and was held since then in the major research centers ac- 
tively involved in the research of shock wave reflections. 
In the present paper the status of the research of the phe- 
nomenon of shock wave reflection will be discussed in 
general, and unresolved problems and future research needs 
will be pointed out. 
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1. Introduction and historical background 

Probably the first scientist to notice and record the phe- 
nomenon of shock wave reflection was the distinguished 
philosopher Ernst Mach who reported his discovery as early 
as 11878. In his ingenious experimental study which was 
recently repeated aald demonstrated by Krehl and van der 
Geest (1991), he rea:orded two different shock wave reflec- 
tion configurations. The first, a two shock wave configura- 
tion, is known as regular reflection, and the second, a three 
shock wave configuration, was later named after him, and 
is known today as Mach reflection. 

Intensive research of the shock wave reflection phe- 
nomenon was re-initiated in the early 1940's by von Neu- 
mann (1943a and 1943b). Since then it has been realized 
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that the Mach reflection wave configuration can be further 
divided into more specific wave structures. 

A general illustration of various shock wave reflections 
is given in Fig. 1. In general, the reflection of shock waves 
can be divided into regular reflection (RR) or irregular 
reflections (IR). The RR wave configuration consists of two 
shock waves: the incident shock wave - i, and the reflected 
shock wave - r. These two shock waves intersect at the 
reflection point, which is located on the reflecting surface. 
All the other wave configurations which are obtained when 
an incident shock wave reflects over an oblique surface are 
termed irregular reflection - IR. The IR can be divided, in 
general, into two categories: yon Neumann reflection - vNR 
and Mach reflection - MR. The MR wave configuration 
consists of three shock waves, namely: the incident shock 
wave - i, the reflected shock wave - r, the Mach stem - m, 
and one slipstream - s. These four discontinuities intersect at 
a single point called the triple point, which is located above 
the reflection surface. The reflection point is at the foot of the 
Mach stem where it touches the reflecting surface. Colella 
and Henderson (1990) recently hypothesized that there are 
cases in which the reflected shock wave - r degenerates 
to a compression wave near the triple point. In such cases 
the reflection is not an MR. They termed it von Neumann 
reflection - vNR. 

Following the re-initiation of the investigation of the 
shock wave reflection phenomenon in the early 1940's, 
Courant and Friedrichs (1948) indicated that, theoretically, 
three different types of MR are possible, depending on the 
direction of propagation of the triple point. If  the triple 
point moves away from the reflecting surface, then the 
MR is called direct, DiMR; if it moves parallel to the 
reflecting surface, then it is called stationary, StMR; and 
if it moves toward the reflecting surface, then it is called 
inverse, InMR. (Courant and Friedrichs originally termed 
it inverted Mach reflection). The existence of these three 
types of MR was later validated experimentally by Ben- 
Dor and Takayama (1986/7). Since the InMR is an MR in 
which the triple point moves towards the reflecting surface, 
it terminates as soon as its lriple point interacts with the 
reflecting surface. The termination of the InMR leads to the 
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Fig. I.  The various shock wave reflections 

formation of a new wave configuration, first mentioned by 
Ben-Dor and Takayama (1986/7). The wave configuration 
of this reflection consists basically of an RR followed by 
an MR. Since it is formed following the termination of an 
InMR, and since it has the basic structure of an RR, it is 
called transitioned regular reflection - TRR. 

While experimentally investigating the reflection phe- 
nomenon, Smith (1945) noted that in some cases he observed 
a kink in the reflected shock wave of the MR. However, 
only after White (1951) discovered a new type of reflec- 
tion which he called double Mach reflection, DMR, was the 
wave configuration observed by Smith (1945), i.e., an MR 
with a kink in the reflected shock wave, recognized as yet 
another type of reflection. Throughout the past 50 years it 
has been referred to as a complex Mach reflection, as op- 
posed to the simple Mach reflection with a reflected shock 
wave without a kink. However, since the so-called simple 
Mach reflection is not simple at all, it was later renamed and 
is known today as single Mach reflection - SMR. Similarly, 
since the so-called complex Mach reflection is less complex 
than some of the other reflection configurations and since, as 
will be shown subsequently, its wave configuration can be 
viewed as an intermediate wave configuration between the 
SMR and the DMR, it is called transitional Mach reflection 
- TMR, as originally suggested by Professor I. I. Glass. 

The reflection structure discovered by White (1951) was 
termed double Mach reflection - DMR, because its structure 
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consists of two triple points. Ben-Dor (1981) showed that 
the trajectory angle of the second triple point, X', could be 
either larger or smaller than the trajectory angle of the first 
triple point, X, depending on the initial conditions. Lee and 
Glass (1984) termed the DMR when X' > X as DMR+ and 
the DMR when X' < X as DMR- .  Lee and Glass (1984) 
also argued that there are conditions for which the second 
triple point could be located on the reflecting surface, i.e., 
X'=0. Such a reflection configuration was termed by them 
as a terminal double Mach reflection - TDMR. 

In summary there are ten different wave configurations 
which are associated with the reflection of a shock wave 
over an oblique surface, namely: RR, vNR, StMR, InMR, 
TRR, SMR, TMR, DMR+, D M R -  and TDMR. Schematic 
drawings of these ten reflection configurations are shown 
in Fig. 2 which for the reader's convenience is arranged 
in a way similar to that of Fig. 1. For more details the 
interested reader is referred to the book entitled Shock Wave 
Reflection Phenomena which was recently published by Ben- 
Dor (1991). 

Although, as stated in the introduction, the research ac- 
tivity related to the shock wave reflection phenomenon con- 
tinues for more than one hundred years there are still many 
doubts regarding past findings, numerous open and unsolved 
questions, and in our opinion vast ground for future research. 
This will be presented in detail in the following sections. 
Owing to the fact that the reflection phenomenon, as re- 
ported in various publications in the past decades, depends 



on whether the flow field under consideration, is steady, 
pseudo-steady or unsteady, in the following, the discussion 
will also be divided into steady, pseudo-steady, and un- 
steady reflections. Naturally, the most treated one, namely, 
the reflection in pseudo-steady flows, will be presented first. 

2. The transition criteria between the various refiection 
configurations 

2.1. Pseudo-steady/lows 

Since the discovery of the reflection phenomenon, major at- 
tention was put on determining the transition criteria between 
the various reflection configurations. All the proposed crite- 
ria were based on either the two- or the three-shock theories 
which were originally formulated by yon Neumann (1943a 
and 1943b). In his formulation, yon Neumann assumed that: 
1. the flow field is steady, 
2. the fluid is ideal, i.e., inviscid (# = 0) and thermally 

non-conductive (k = 0), 
3. the gas obeys the equation of state of a perfect gas, i.e., 

P = pRT, 
4. the discontinuities at the vicinities of the reflection point 

of a regular reflection and the triple point of a Mach 
reflection are straight, and as a consequence, the flow 
states bounded by the discontinuities are uniform, and 

5. the contact discontinuity of the MR is infinitely thin, i.e., 
it is a slipstream. 
Based on these simplifying assumptions (for details see 

Ben-Dot 1991) the two-shock theory consists of a set of 9 
equations and 13 parameters, namely Po, P~, P2, To, 7'1, T2, 
U0, U1, [72, r r 01, and 02 and the three-shock theory 
consists of a set of 14 equations with 18 parameters, namely 
Po, P1, P2, P3, To, T1, T2, T3, Uo, U1, g2, U3, r r 
r 01, 02, and 03. The parameters Pi, Ti, and Ui are the 
pressure, the temperature, and the flow velocity in state (i), 
respectively, r is the angle of incidence of the flow on the 
shock wave across which it enters to state (1), and 0~ is the 
flow deflection angle while passing through the shock wave 
and entering state (i). In both theories i = 0 is the flow 
state ahead of the incident shock wave, i = 1 is the flow 
state between the incident and the reflected shock waves, 
and i = 2 is the flow state behind the reflected shock wave. 
The additional flow state, in the case of a Mach reflection, 
behind the Mach stem is i = 3. 

The above brief presentation of the two- and three-shock 
theories clearly implies that in order to solve the appropriate 
equations four of the parameters must be known. The 4 
parameters which are usually chosen are Po, To, Uo and r 

The presently accepted set of transition criteria, which 
are all based on either the two- or the three-shock theories, 
is shown schematically in Fig. 3, which for the reader's 
convenience is again arranged similarly to Figs. I and 2. 

The parameter determining whether the reflection is reg- 
ular (RR) or irregular (IR) is the flow Mach number behind 
the reflected shock wave in the vicinity of the reflection point 
and with respect to it, namely M~. As long as M~ > 1 the 
reflection is an RR. Thus, the R R = I R  transition criterion, 
which is also known as the "sonic" criterion is: 

M R = 1. (1) 
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Fig. 3. Schematic summary of the transition criteria between the various 
types of shock wave reflection configurations 

It should be noted here that other R R = I R  transition cri- 
teria, (i.e., the "detachment" and the "mechanical eqiuilib- 
rium" criteria) have been suggested. However, as discussed 
in Ben-Dor (1991), there is little doubt that the most ap- 
propriate RR,-~-IR transition criterion in pseudo-steady flows 
is the "sonic" criterion given by (1). This criterion is also 
obtained by applying Hornung et al's (1979) "length scale" 
concept for the RR=IR  transition. 

If the reflection is an IR then it can be either a Mach 
reflection (MR) or a yon Neumann reflection (vNR) depend- 
ing on the angle of incidence between the reflected shock 
wave and the flow that passes through it, r in the vicinity 
of the triple point and in a frame of reference attached to it. 
The reflection is an MR as long as r < 900. Consequently, 
the MR~-vNR transition occurs when 

r = 90 ~ (2a) 
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Note that when $2---90 ~ the flow passing through the re- 
flected shock wave is not deflected. However since the flow 
behind the reflected shock wave must be parallel to the 
slipstream, it is obvious that the above condition for the 
MR=vNR transition can also be written as 

~ = 90 ~ , (2b) 

where w~ is the angle between the reflected wave and the 
slipstream in the vicinity of the triple point. 

Since a stationary Mach reflection (StMR) and an in- 
verse Mach reflection (InMR) cannot occur in pseudo-steady 
flows, the MR in pseudo-steady flows is always a direct 
Mach reflection (DiMR). Once the condition for the exis- 
tence of a DiMR is met, the value of the flow Mach number 
in state (2), behind the reflected shock wave of a DiMR in 
the vicinity of the triple point, T, and with respect to it, 
i.e., M T, becomes the significant parameter in determining 
the particular type of the DiMR. As long as M T < 1, the 
reflection is a single Mach reflection (SMR), characterized 
by a curved reflected shock wave along its entire length. The 
fact that the reflected shock wave is curved along its entire 
length implies that a physical length scale is communicated 
through state (2) up to the triple point (from which the 
reflected shock wave emanates). This communication path 
is possible only as long as M T < 1. When the flow in state 
(2) in the vicinity of the triple point becomes supersonic, 
i.e., M T > 1, the communication path is blocked by a su- 
personic flow zone, and the reflected shock wave develops 
a straight portion, terminated by a kink in it, which most 
likely indicates the point along the reflected shock wave 
which has been reached by the comer-generated signals. A 
direct Mach reflection with a kink in its reflected shock 
wave is a transitional Mach reflection (TMR). Thus, the 
SMR~TMR transition criterion is, 

M T = 1. (3) 

Once a kink is formed in the reflected shock wave, the 
value of the flow Mach number, in state (2), behind the 
reflected shock wave of a DiMR with respect to the kink, K, 
i.e., M~, becomes the significant parameter in determining 
whether the reflection remains a transitional Mach reflection 
(TMR) or changes to a double Mach reflection (DMR). As 
long as M2 g < 1, the reflection is a TMR, characterized by 
a centered compression wave at the kink. When the flow 
in state (2) becomes supersonic with respect to the kink, 
K, M2 g > 1, the compression waves converge into a shock 
wave, and the kink changes into a triple point, the second 
triple point, T ~. Thus, the TMR~---DMR transition occurs 
when 

T I M K = M 2 = 1. (4) 

It should be noted that since a TMR is formed and a 
straight portion is developed in the reflected shock wave, the 
flow in state (2) is most likely uniform between the triple 
point, T, and the kink, K. 

The DMR can be either a positive double Mach reflection 
(DMR+) or a negative double Mach reflection (DMR-) 
depending on whether the trajectory angle of the first triple 

point, X, is larger or smaller than that of the second triple 
point, X'. Thus the DMR+~---DMR- transition occurs at: 

X = X'. (5) 

Once the condition for the onset of a DMR- is met, 
the reflection could be a terminal double Mach reflection 
(TDMR). This occurs if 

X' = 0. (6) 

Shirouzu and Glass (1986) proposed an additional nec- 
essary condition for the SMR~--TMR transition. Using basic 
gasdynamic arguments they concluded that 

wi~ > 90 o (7) 

is a necessary condition for the SMR=TMR transition. Here 
~ is the angle between the incident and the reflected shock 
waves in the vicinity of the triple point. 

By applying the two- and three-shock theories while 
imposing the above listed transition criteria the correspond- 
ing transition lines can be obtained. The R R ~ I R  transi- 
tion line is calculated by applying the two-shock theory 
at the reflection point and requiring that (1) is satisfied. 
The vNR~--MR and the SMR~TMR transition lines are 
calculated by applying the three-shock theory at the first 
triple point and requiring that (2a) and (3) be satisfied, re- 
spectively. The TMR=DMR, the DMR+~--DMR-, and the 
D M R - = T D M R  transition lines are calculated by applying 
the three-shock theory at the first and the second triple points 
and requiring that (4), (5) and (6) are, respectively, satisfied. 

Note that in order to apply the three-shock theory at the 
second triple point, the relative motion of the second triple 
point with respect to the first triple point must be known. 

Based on the assumption that the horizontal velocity of 
the second triple point is identical to that induced by the 
incident shock wave, Law and Glass (1971) showed that the 
velocity of the kink (of a TMR) or the second triple point 
(of a DMR) with respect to the first triple point is 

vT P0 
= - - �88 + 62 - 01), (8) 

Pl 

where p is the density and Vs is the incident shock wave 
velocity. This relation was found by Bazhenova, Fokeev and 
Gvozdeva (1976) to be very good in the range 0w < 400 
and poor to fairly good elsewhere. Based on their findings 
it is evident that there is a need for a better model relating 
the motion of the second triple point to that of the first 
one. Furthermore, as long as the Law and Glass (1971) 
assumption is used, it is clear that an inherent error is 
introduced into calculations and results which are based on 
it. 

By applying the two- and three-shock theories for the 
above listed transition criteria the reflection domains in the 
(M0, q~l) plane can be obtained. Here Mo is the flow Mach 
number ahead of the incident shock wave, i.e., Mo -- uo/ao, 
where a0 is the local speed of sound ahead of the incident 
shock wave. 

As shown by many investigators and summarized by 
Ben-Dor (1991) the comparison of experimental results with 
the above listed transition criteria in the (Mo,4~1) plane 



revealed that the transition lines could be considered as 
sufficiently good from an engineering point of view only, 
i.e., the reflection configurations, as well as their associated 
properties, can be predicted a priori quite well as long as 
the initial conditions (M0 and ~bl) are not too close to the 
transition lines. There is l i t t le  doubt that from a scientific 
point of view the transition lines as calculated using the 
above transition criteria are still far from being accurate. 

In addition to the lack of perfect agreement between 
theory and experiments, scientists have been reporting since 
the late 1940's (see Birkhoff 1950), that RR and MR wave 
configurations were: observed in parameter domain where 
the two- and three.shock theories have no real solutions. 
Unfortunately, when treated separately each of these two 
paradoxes was referred to as the von Neumann paradox. 
For clarity purposes we will refer to the persistence of 
RR beyond its theoretical limit as determined by the two- 
shock theory as the 1st von Neumann paradox, and to the 
persistence of MR beyond its theoretical limit as determined 
by the three-shock theory as the 2nd von Neumann paradox. 

The question whether or not the existence of these two 
paradoxes, as well as the above mentioned lack of perfect 
agreement between 1:he reported experimental results and the 
transition lines arising from the above presented transition 
criteria, could be atu~ibuted to the fact that the transition lines 
were calculated using oversimplified two- and three-shock 
theories, is yet to be answered. 

In order to further emphasize this point it should be noted 
that while the existing R R = I R  experiments do not agree 
with the transition line as calculated from the two-shock 
theory and (1), they agree excellently with the experimental 
" sonic" transition line, for further details see Lock and 
Dewey (1989). 

In our opinion some clarification to this question could 
be obtained through CFD by solving the full set of the 
governing equations including viscous, thermal conduction, 
and real gas effects. Unfortunately, such numerical comput- 
ing capability does not exist yet. However, in view of the 
extremely fast developments in CFD capabilities it is our 
belief that such code will eventually evolve in the future. 

It should be noted here that viscous, thermal conduction, 
and real gas effect.,; are non-self-similar effects as they 
depend on the Reynolds, Prandtl, and Mach numbers of 
the flow. Hence the use of the classical two- and three- 
shock theories, whicla were de veloped under a steady flow 
assumption, is yet to be justified in pseudo-steady reflections. 

In addition, it should be noted that the additional nec- 
essary condition for the SMR~-TMR transition, given by 
(7), was checked experimentally by Shirouzu and Glass 
(1976) (i.e., for a variety of gases air, N2, 02, Ar and CO2) 
and found to be correct beyond any doubt. The fact that 
the calculated transition line arising from it fails to clearly 
distinguish between the SMR- and the TMR-experiments 
clearly indicates that the three-shock theory upon which it 
is based is oversimplified. 

In order to obtain the reflection in the (Ms, 0~) plane, 
which is more useful since in pseudo-steady reflections the 
incident shock wave Mach number, Ms, and the reflecting 
wedge angle, Ow, are the known pammet ers, the following 
transformation should be made 
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Ms = M0 sin q)l (9) 

0~ = 900 - (~a + X)  

where X, the first triple point trajectory angle, is 

(10) 

X = 0 in the RR domain 

X ~ 0 in the IR domain. 

However, since X is an unknown parameter, one faces a 
situation in which the three-shock theory in terms of the 
known parameters in pseudo-steady flows, consists of a set 
of 14 equations with 19 parameters (X in addition to the 18 
parameters listed earlier) of which only four are known as 
initial conditions, namely: Ms, 0w, Po and To. 

Consequently, in order to get useful solutions using the 
pseudo-steady three shock theory an additional equation is 
required. Using the following simplifying assumption: 
1. the Mach stem is straight, 
2. the Mach stem is perpendicular to the reflecting wedge 

surface, and 
3. the triple point originates from the leading edge of the 

reflecting wedge 
Law and Glass (1971) suggested the following relation 

X = 900 - 4~ (11) 

as the additional equation required to complete the pseudo- 
steady three-shock theory. 

Unfortunately, comparisons of the experimentally mea- 
sured triple point trajectory angles with those predicted 
theoretically clearly indicated that the model suggested by 
Law and Glass for predicting X was not sufficiently good. 
Hence a better model f or predicting the first triple point 
trajectory angle is required. 

Owing to the fact that the analytical model for predicting 
the first triple point trajectory angle, X, is not sufficiently 
good, it is obvious, that an inherent error is introduced 
when the transition lines are transformed from the (M0, Or) 
plane to the (Ms, Ow) plane. However, when comparing 
the transition lines in the (M0, ~ba) and the (Ms, Ow) planes 
with experimental results, surprisingly in many cases the 
agreement with the transition lines in the (Ms, Ow) plane is 
better than that with the transition lines in the (&to, 4q) plane, 
in spite the inherent error which is introduced in obtaining 
the transition lines in the (Ms, 0w) plane. This peculiar fact 
clearly indicates that calculations based on von-Neumann's 
classical two- and three-shock theories are not sufficiently 
good. 

As mentioned earlier, in spite of the clear disagreement 
between the experimental results and the appropriate tran- 
sition lines, the transition criteria, as summarized in Fig. 3, 
cannot be discarded on these grounds since the transition 
lines were calculated using oversimplified two- and three- 
shock theories, i.e., theories which neglect viscous, thermal 
conduction, and non-equilibrium real gas effects. 

The R R ~ I R  transition criterion, given by (1), implies 
that the flow behind the reflected shock wave of an RR is 
always supersonic. This in tum implies that the reflected 
shock wave, in the vicinity of the reflection point, must be 
straight, in contradiction to reported RR-photographs which 
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clearly shock curved reflected shock waves near the reflec- 
tion points. Hence is the sonic criterion indeed the R R ~ I R  
transition criterion? If yes, then how can the existence of a 
curved reflected shock wave be explained? 

2.2. Steady flows 

Unlike pseudo-steady flows, in the case of steady flows only 
two reflection configurations are obtainable, namely the RR 
and the SMR. 

The RR= S M R transition criterion in steady flows is dif- 
ferent from that in pseudo-steady flows. Based on the "length 
scale" concept of Hornung et al. (1979), the RR=SMR Wan- 
sition occurs at the point where the deflect ion angle satisfies 
the following expression : 

01 - 02 = 03 = 0. (12) 

Note that the condition given by (12) is identical to that 
of the "mechanical equilibrium" criterion for the R R ~ I R  
transition. 

Unfortunately, the transition line arising from the condi- 
tion given by (12) has not been compared with experiments 
in a wide range of flow parameters and a variety of gases. 
Hence there is a definite need to conduct a comprehensive 
experimental investigation in steady flows in order to have 
enough evidence to be in a position to either accept or re- 
ject this transition criterion. In addition, it should be noted 
here that unlike pseudo-steady flows, the parameters in the 
three-shock theory which are usually chosen as known pa- 
rameters, namely P0, To, U0, and r are indeed known in 
steady flows, as they are the initial conditions. Hence in 
steady flows there is no need for an additional equation 
,e.g. (11), like in pseudo-steady flows, to complement the 
three-shock theory. 

2.3. Unsteady flows 

Unfortunately, the transition criteria in unsteady flows are 
not established at all. The most promising concept so far is 
the "length scale" concept of Hornung et al. (1979) which 
led to the correct I R ~ R R  transition criteria both in steady 
and pseudo-steady flows, and was shown by Ben-Dor and 
Takayama (1985, 1986/7), Ben-Dor, Takayarna and Dewey 
(1987), Takayama and Ben-Dor (1989) and Ben-Dor and 
Rayevski (1993); to be applicable to some unsteady reflec- 
tion phenomena. 

Due to the complexity of the governing equations of un- 
steady shock reflections, simple transition criteria, such as 
those presented earlier for steady and pseudo-steady flows, 
cannot be established. Consequently the transition lines be- 
tween the various reflection configurations should be estab- 
lished using numerical computations. The transition lines 
should be established at least for the following three cases 
which have been experimentally investigated quite exten- 
sively in the past decade and the details of which are given 
in Ben-Dor (1991): reflection of a planar shock wave off a 
concave cylinder, reflection of a planar shock wave off a 
convex cylinder, and reflection of a spherical shock wave 
off a plane surface. 
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Fig.  4. a a shock polar  combinat ion for which a Mach reflection is impos- 
sible, b schematic  illustration of  a yon Neumann reflection 

In the former two cases the dependence of the transition 
lines on both the radius of curvature of the cylindrical 
surfaces and their initial angles should also be investigated. 
Similarly, the dependence on the height from the plane 
surface where the spherical shock wave is generated should 
be investigated in the latter case. 

Once the tiansition lines are numerically established they 
should be compared with experiments. These comparisons 
could indicate bow good the numerical codes are in sim- 
ulating relatively simple unsteady reflection processes. As 
a further step, the numerical codes could be used to nu- 
merically predict the transition lines over more complicated 
specific geometries over which the reflection process is un- 
steady. 

3. The wave configuration of the various reflections 

3.1. Pseudo-steady flows 

For quite a few decades the scientific community has been 
trying to explain the so-called "yon Neumann paradox" 
which was first mentioned by Birkboff (1950). The 2rid yon 
Neumann paradox referred to the fact that Mach reflection 
(MR) wave configurations were observed experimentally 
for incident shock wave Mach numbers, M,, and reflect- 
ing wedge angle, 0w, for which yon Neumann's classical 
three-shock theory has no correct solutions (see Fig. 4a). 
Recently, based on numerical simulations, Colella and Hen- 
derson (1990) hypothesized that the experimentally observed 
wave configurations were not Mach reflections but belong to 



another type of reflection which they termed von Neumann 
refection - vNR. Hence, since the three-shock theory was 
never meant to be applied to the wave configuration of a 
vNR they concluded that the 2nd von Neumann paradox 
was not a paradox at all. 

Colella and Henderson (1990) claimed that their numer- 
ical study clearly indicated that the reflected disturbance 
at the triple point was not a shock wave but a "smoothly 
disturbed self-similar band of compression waves of fi- 
nite thickness," which according to Colella and Henderson 
(1990) "is too small to be resolved experimentally." They 
further explained that "as the compression waves retreat 
from the triple point they converge and steepen into a shock 
wave," as shown in Fig. 4b. "The distance over which 
this happens," according to Colella and Henderson (1990) 
is again "too small: to be resolved experimentally." How- 
ever, since the reflection as they claim is self-similar, the 
wave configuration of a vNR must grow linearly with time, 
and eventually the structure of the reflected disturbance, in 
the vicinity of the triple point, should reach a resolvable 
size. Especially in light of the modern flow visualization 
techniques which have extremely high resolution capabili- 
ties (see Takayama 1992). Since the structure described by 
Colella and Henderson (1990) has never been observed, one 
is left with the folh)wing question: does the von Neumann 
reflection as hypothesized by Colella and Henderson actually 
exist? If no, then what is the reflection that is obtained when 
the classical three-shock theory has no correct solutions? If 
yes, what is the ex~tct structure of the reflected disturbance 
in the vicinity of the triple point and how can it be observed 
experimentally? 

Except for the vNR, the other wave configurations shown 
in Fig. 2, have all been recorded experimentally. However, 
the actual existence: of one of them, namely the terminal 
double Mach reflection (TDMR) was doubted by many in- 
vestigators, who argued that the second triple point cannot 
touch the reflecting surface, since in reality a boundary layer, 
inside which the flow is subsonic, develops along the reflect- 
ing surface. Consequently, according to these investigators, 
the second triple point trajectory angle is always greater 
than zero, i.e., X I > 0. This argument was opposed by the 
claim that the bour~dary layer could be separated by the 
vortex that is induced by the curled contact discontinuity. 
Unfortunately, the unclear photographs of TDMR config- 
urations which have: been reported so far only add to the 
uncertainty as to whether a TDMR is indeed possible. The 
above mentioned fact, in addition to the fact that the flow 
is self similar and hence growing linearly with time, imply 
that if the so called TDMR is an underdeveloped negative 
DMR and if it is allowed to develop by generating it over 
sufficiently long reflecting surface, then it will eventually 
resemble a negative double Mach reflection wave configu- 
ration (DMR-).  Consequently the following questions are 
yet to be answered: ,:loes a terminal double Mach reflection 
actually exist? If yes, how can the second lriple point lie 
on the reflecting surface and what exactly is its structure? If 
no, then is the reflection reported so far as TDMR actually 
an undeveloped D M R - ?  

Although, as mentioned earlier, beside the vNR and the 
TDMR there are no doubts about the validity of the other 
wave configurations shown in Fig. 2, there are still many 
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unresolved questions, as outlined subsequently, regarding 
the nature of the various discontinuities consisting the 
wave configurations. 

It has been reported by some investigators (e.g., Ben- 
Dor 1978; Dewey and McMillin 1985a and 1985b) that 
the Mach stem of a Mach reflection is curved, and that its 
curvature could be either concave or convex. However, no 
criterion by which one can decide a priori what curvature 
will the Mach stem have has been forwarded yet. Hence, the 
criterion determining whether the Mach stem's curvature is 
concave or convex is yet to be determined. This question 
raises another one, namely: is there some, yet unknown, 
significance associated with this difference in curvature of 
the Mach stem? 

The nature of the contact discontinuity of a Mach reflec- 
tion wave configuration is also not clear yet. In early days, 
when von-Neumann (1943a, 1943b) developed his three- 
shock theory he regarded the contact discontinuity as an 
infinitely thin discontinuity, i.e., a slipstream, across which 
the pressure and the flow directions are identical. Dewey 
and McMillin (1985a), using an ingenious experimental 
technique, by which the velocity vectors were measured, 
reported that the flows on both sides of the contact discon- 
tinuity are not parallel. These findings, together with the 
undoubtful fact that the classical three-shock theory con- 
sistently fails in predicting the angles between the various 
discontinuities at the first triple point of a Mach reflection, 
as reported by Sternberg (1959) more than 30 years ago 
and reconfirmed recently by Ben-Dor (1987, 1990) raises 
the following questions: what is the exact nature of the con- 
tact discontinuity of a Mach reflection? Is it a slipstream as 
modelled by von-Neumann (1943a and 1943b) when he for- 
warded the classical three-shock theory? Or is it an angular 
diverging zone as hypothesized by Skews (1972) and later 
modelled by Ben-Dor (1990)? Or is it shear layer between 
two parallel jets, along which two boundary layer develop, 
as modelled by Ben-Dor (1987)? Or perhaps it is an angular 
mixing zone? 

Regardless of its nature, there are cases in which the 
contact discontinuity merges smoothly into the boundary 
layer along the wedge as shown in Fig. 5a while there 
are cases in which it curves forward as shown in Fig. 5b. 
Consequently, what is the criterion determining whether the 
contact discontinuity is curled or not? 

It has been suggested by some investigators (for details 
see Ben-Dor 1991) that the curling of the contact disconti- 
nuity is caused by its interaction with the compression wave 
which develops at the kink of the transitional Mach reflec- 
tion (TMR) or the second Mach stem of the double Mach 
reflection (DMR). Hence, do single Macb reflections always 
have contact discontinuities which smoothly merge into the 
boundary layer developing along the reflecting surface? Or 
alternatively, do transitional and double Mach reflections 
always have curled contact discontinuities? If yes, does the 
appearance of a curled discontinuity indicate the onset of a 
transitional Mach reflection even though a clear kink in the 
reflected shock wave is not visible? 

The above mentioned interaction of the second Mach 
stem of a double Mach reflection with the contact discon- 
tinuity emanating from the first triple point is yet another 
mystery from a gas dynamics point of view. Consider Fig. 6a 
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Fig.5. Schematic illustration of two MR wave configurations, a wi th  a 

contact discontinuity which merges smoothly into the wedge, b with a 
cuffed contact discontinuity 

Fig. 7. An enlarged photograph of a DMR illustrating the interaction of the 
second Mach stem with the first contact discontinuity (courtesy of Prof. I. 
I. Glass) 
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Fig. 6. Schematic illustration of two wave configurations of a double Mach 
reflection, a mt  terminating on s, b ral breaks down to a compression 
wave that goes around s 

where the wave configuration of a DMR is schematically 
drawn. Note how the second Mach stem, m~, emanating from 
the second triple point, T~, terminates at the point where 
it reaches the contact discontinuity, s. Since the acoustic 

impedances on both sides of the contact discontinuity are 
different, one should expect the shock wave ml to reflect 
from the contact discontinuity either as a shock or as a 
rarefaction wave. However, this is obviously not the case. 
Hence, what is the gas dynamic explanation for the above 
described interaction? Is the interaction always tailored so 
that the wave which reflects from the contact discontinuity 
is always an invisible Mach wave? In addition, the wave 
configuration shown in Fig. 5a implies that at point Q where 
the shock, ml, touches the contact discontinuity, s, there is 
a sudden jump in the pressure, from P2 to Ps on the upper 
side of the contact discontinuity. Consequently, how is this 
sudden change in the pressure on one side of the contact 
discontinuity balanced on its other side? Or alternatively, 
where is the Ixansmitted shock wave which is required to 
balance this kind of sudden pressure jump along interfaces? 

Some photographs (e.g., Fig. 7) suggest that there are 
cases in which the second Mach stem, ml, goes around 
the first contact discontinuity, s, and breaks down to a 
compression wave. This interaction is shown schematically 
in Fig. 6b. If this indeed is the case, then what is the nature 
of this interaction? 

The above discussed peculiar shock wave-contact dis- 
continuity interactions clearly suggest that the nature of the 
contact discontinuity of a Mach reflection is far from being 
understood and undoubtedly needs further investigation. 

The discussion in the previous section regarding the 
transition criteria between the various shock wave reflection 
configurations raises some questions regarding the possibil- 
ity of obtaining more complicated Mach reflection configu- 
rations. 

The onset of a kink in the reflected shock wave of a 
MR was attributed to the fact that the flow, in state (2), 
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Fig. 8. Schematic drawings of hypothesized shock wave reflection configu- 
r~ttions, which perhaps could be obtained at extremely high incident shock 
wave Mach numbers: a a double Mach reflection with a kink in the second 
reflected shock wave, b a triple Mach reflection 

behind the reflected shock wave became supersonic with 
respect to the firsl; triple point. If this is true then one 
may ask (consider Fig. 6a) whether or not a kink develops 
in the second reflected shock wave, rl, of a DMR when 
the flow behind the second reflected shock wave, in state 
(4), becomes supersonic with respect to the second triple 
point (i.e., M4 T1 > 1), or, whether or not the double Mach 

reflection terminates when M4 Tt = 1 to form a new type 
of Mach reflection'? The wave configuration of this new 
Mach reflection which was first hypothesized by Ben-Dor 
and Glass (1979) is shown in Fig. 8a. 

The onset of the second triple point was attributed to the 
fact that the flow, in state (2), behind the reflected shock 
wave, became supersonic with respect to the kink. Hence if 
the wave configuration shown in Fig. 8a indeed materializes, 
does the kink, kl, shown in Fig. 8a change to a triple point 
if the flow behind r~ becomes supersonic with respect to kl 
to form a triple Math reflection as shown in Fig. 8b? 

Finally, if indeed the wave configurations shown in 
Figs. 8a and 8b do :materialize, provided the conditions for 
their formation are met, the question whether this sequence 
goes on forever is unavoidable. 

It should be mentioned here that in order to increase the 
flow Mach number, in state (4), behind the second triple 
point, the incident shock wave Mach number should be 
increased. This in turn will cause the internal degrees of 
freedom of the gas iinder consideration to excite. The exci- 
tation of the internal degrees of freedom, which as shown by 
Ben.-Dor (1991) significantly affects the flow around the sec- 
ond triple point, could make it impossible to reach the above 
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/7/////////; ~ / / / / / / / / J / / I  / I , I / I I / I  

Fig. 9. Schematic illustration of two theoretically possible MR wave con- 
figurations, in a steady flow, for identical initial conditions 

mentioned conditions for obtaining the above hypothesized 
transition criteria and reflection configurations. Hence can 
the above hypothesized transition criteria be actually met? 

As a final remark, we note that in addition to the above 
examples of unresolved questions and not completely under- 
stood phenomena regarding the transition criteria between 
the various reflections and their wave configurations (Ben- 
Dor, Takayama and Needham 1987), several questions have 
been raised recently regarding the nature of the triple point 
as well as its formation whether it is a hot spot? 

Recent experimental studies by Reichenbach (1985) and 
Schmidt (1989) raised some doubt about the commonly used 
assumption that the first triple point originates at the leading 
edge of the reflecting wedge. Hence where does the first 
triple point originate from and is its trajectory straight? 

Another, yet hardly investigated, phenomenon related 
to the triple point is its reflection mechanism from solid 
surfaces when it collides with them. 

As a final remark it should be noted that all the above 
questions which have been asked about the first triple point 
are of course relevant to the second triple point of a DMR 
as well. 

3.2. Steady flow 

Probably the only unclear question regarding the wave con- 
figurations of the possible shock wave reflections in steady 
flows is: how can one determine the length of the Mach 
stem of a steady Mach reflection? 

Consider Fig. 9, where the solid lines describe the four 
discontinuities of a steady MR-configuration with triple 
point, T, shock waves i, r, and m, and slipslleam, s. If 
one selects any point along the incident shock wave, i., and 
draws three lines from it parallel respectively to the reflected 
shock wave, r, to the Mach stem, m, and to the slipstream, 
s, then one has a new triple point T*, with its four dis- 
continuities. The two triple points, T and T*, as well as all 
the other triple points which could be obtained by choosing 
a different location for 1"* along the incident shock wave, 
completely satisfy the conservation equations given by von 
Neumann's classical three-shock theory. However, if an ex- 
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Fig. 10. Schematic illustration of Azevedo's (1989) model 
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Fig. 11. Predicted values of the Mach stem height as obtained by Azevedo 
(1989) and comparison with the experimental results of Homung and Robin- 
son (1982). a M0=2.84 and 3.49, b M0=3.98 and 4.96 

periment with the same initial conditions (i.e., M0 and 0w) 
is repeated, then only one reflection configuration out of 
the infinity of possible ones is always obtained. Thus, the 
classical three-shock theory is incapable of predicting the 
actual size of the MR since it is, inherently, independent of 
any physical length scale. 

Azevedo (1989) suggested an ingenious physical model 
for predicting the height of the Mach stem. Consider Fig. 10 

Fig. 12. Schanatic illustration of two possibilities of gmerating steady 
Mach reflections, a short reflecting wedge, b long reflecting wedge 

where a schematic drawing of a reflecting wedge, which 
generates an MR, is shown. Azevedo (1989) assumed that: 
the Mach stem, the slipstream, and the bottom surface form 
a one-dimensional converging nozzle, the throat of this con- 
verging nozzle is at the point where the leading characteristic 
of the expansion wave, generated by the shoulder of the re- 
fleeting wedge, intersects the slipstream (point E in Fig. I0), 
the tlow in region (3) is isentropic and reaches sonic condi- 
tions at the throat, and the gas is an ideal fluid, i.e., # = 0 
and k = 0. By applying the conservation laws of mass and 
linear momentum to the control volume shown in Fig. 10, 
Azevedo (1989) developed a simplified model capable of 
predicting the Mach stem height. 

The predicted values of the height of the Mach stem 
as obtained using Azevedo's model are shown in Figs. I Ia 
and 1 lb, together with the experimental results of Homung 
and Robinson (1982). The predicted results show a trend 
similar to that for the Mach stem height dependence on the 
angle of incidence in the experimental results. In addition, 
the R R ~ M R  transition angles, as predicted by Azevedo's 
analytical model, agree excellently with those predicted by 
the length scale criterion (compare value obtained for $1, at 
Lm=O and the corresponding arrowheads along the r axis 
which indicate the measured transition angles). Although the 
agreement between the predicted values for the Mach stem 
height and those obtained experimentally is far from being 
satisfactory, one must admit that, in general, the analytical 
predictions are surprisingly good in view of the oversimpli- 
fying assumptions upon which the analytical model is based. 
Furthermore, it should be noted that no other model capable 
of predicting the height of the Mach stem exists! 

As a final remark, it should be mentioned that Azevedo's 
model was developed for the case when the reflecting wedge, 
by which the incident shock wave is generated, is short and 
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Fig. 13. Schematic  illustration of the way by which the boundary layer over 
the bottom surface affects the structure of the reflected shock wave of a 
steady RR near the reflection point 

hence the reflected shock wave, r, interacts with the expan- 
sion wave, prior to any other interactions (see Fig. 12a). 
Therefore, Azevedo's model cannot be used for the case of 
a long reflecting w~ge ,  such as the one shown in Fig. 12b, 
where the reflected shock wave is reflected from the sur- 
face of the reflecting wedge prior to its interaction with 
the expansion wave. (Note that the interaction of r~ with 
s, as shown in Fig. 12b, which results in a reflected and 
a transmitted shock wave is the one which for some, yet 
unknown, reason does not occur in the supposedly equiva- 
lent case shown in Fig. 6a where ml terminats at s without 
any reflection or lransmitting any waves). The foregoing 
discussion clearly indicates that a physical length associated 
with the reflecting wedge, which is communicated by the 
expansion wave m the triple point, determines the actual 
height of the Mach stem. Whether this occurs in the way 
suggested by AzevtMo (1989) or in another way is yet to be 
clarified. 

Another issue regarding the wave structure in steady 
flow reflections which requires further investigation is the 
interaction of the incident shock wave with the bottom wall 
boundary layer and the formation of the reflected shock wave 
of a regular reflect ion. Consider Fig. 13 where the incident 
shock wave, i., is seen to interact with the boundary layer 
that develops alonE: the bottom wall. The formation of the 
reflected shock wave, r, and its structure near the reflection 
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Fig. 14. Schematic illustration of the wave configuration during the InMR~,~- 
TRR transition, a an InMR prior to its interaction with the reflecting surface, 
b an InMR at the moment  its triple collides with the reflecting surface, c a 
TRR which is formed after the InMR terminates 

point is seen to strongly depend on whether the boundary 
layer is laminar or turbulent. The details of this complicated 
interaction are yet to be investigated and clarified. 

3.3. Unsteady flows 

Unsteady flows give rise, in addition to the wave config- 
urations that appear in pseudo-steady flows, to some ad- 
ditional shock wave reflection configurations, namely; sta- 
tionary Mach reflection (StMR), inverse Mach reflection 
(InMR), and transitioned regular reflection (TRR). Since the 
wave configurations are continuously changing with time, 
questions like those asked earlier in the case of steady and 
pseudo-steady reflections cannot be asked in the case of un- 
steady reflections. However, in view of the earlier remarks 
regarding the unclear nature of the contact discontinuity of 
a triple point of a Mach reflection, the following interesting 
phenomena are pointed out. 

Consider Fig. 14 where the InMR=TRR is shown 
schematically. Figure 14a shows an InMR prior to the in- 
teraction of its triple point with the reflecting surface; an 
InMR at the moment when its triple point collides with the 
reflection surf ace is shown in Fig. 14b; and a TRR which 
is formed when the InMR terminates is shown in Fig. 14c. 
Note bow the contact discontinuity, Sl, of the new triple 
point, T*, reflects from the reflecting wedge. This reflec- 
tion, which could be termed as a regular reflection of a 
contact discontinuity is yet to be investigated. (Some details 
regarding the wave configuration of a TRR can be found in 
Ben-Dor and Elperin 1991). 

Some other interesting phenomena, related to the behav- 
ior of the contact discontinuity, are obtained when a planar 
shock wave reflects over a concave double wedge. It was 
shown by Ben-Dot, Dewey and Takayama (1987) that for 
concave double wedges having an gles 1 2 aw and 0w that satisfy 
the following condition 
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Fig, 15. The interaction process of an incident planar shock wave with a 
concave double wedge, a prior to the interaction of the two triple points, 
b at the moment the two triple points interact, c the resulted configuration 
after the interaction is completed 

1 2 t~ 
0 w + 0 w < 0w 

where 0~ is the pseudo-steady R R ~ I R  transition wedge 
angle for the incident shock wave under consideration, the 
reflection process is as follows: first the incident shock wave 
reflects as a MR over the first reflecting surface; then the 
Mach stem of this MR reflects as a secondary MR over the 
second reflecting surface as shown in Fig. 15a; at a later 
time the two triple points of these two MR's coalesce at 
point C (see Fig. 15a) to result in the configuration shown in 
Fig. 15b where six discontinuities, four shock waves and two 
contact discontinuities, originate from a single point; finally, 
the wave configuration shown in Fig. 15c is obtained. 

The termination of the first contact discontinuity, sl, at 
the point where it meets with the second reflected shock 
wave, rz, as shown in Fig. 15a, the six discontinuities con- 
fluence, shown in Fig. 15b, and the interaction of the two 
contact discontinuities, s3 and s4, as shown in Fig. 15c, to 
form a new contact discontinuity, ss, are all clear demon- 
stration of interesting and quite puzzling interactions which 
are yet to be investigated and understood, e.g., how can 

the flow bounded by the slipstreams sl and s2 be parallel 
simultaneously to these two slipstreams? 

4. Conclusions  

It was demonstrated in the foregoing discussion that although 
the shock wave reflection phenomena have been investigated 
quite intensively in the past five decades, there are still 
many open questions and unresolved problems regarding the 
reflection phenomena in steady, pseudo-steady and unsteady 
flows. Additional unsolved problems and suggested research 
topics can be found in Ben-Dor (1991). It is hoped that the 
present paper will encourage the gasdynamic community 
to continue its effort for better understanding of the shock 
wave reflection phenomena. 
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