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Abstract. Whitham's approximation for handling shock 
wave propagation in area changes (reductions) in a duct was 
checked in comparison with a numerical solution. Also the 
Whitham approximation for shock wave propagation from 
a constant cross-sectional duct to a duct of a smaller cross- 
sectional area was studied and compared with a numerical 
solution. It was found that for modest incident shock Mach 
numbers and modest area reductions the Whitham approxi- 
mation provided a fair solution for the shock Mach number 
and for the post-shock pressure. For higher shock Mach 
numbers and/or area reductions, large discrepancies exit be- 
tween the approximate and exact solutions. A wider range 
of applicability of the Whitham approximation is found for 
the monotonical area reduction case; it is quite narrow for 
the passage of a shock wave from a wider to a narrower duct 
case. In addition, the effect of the extent of the area change 
region on the time required for reaching a quasi-steady flow 
was studied. It was shown that the longer the area change 
segment is, the longer it takes to reach a quasi-steady flow. 
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1. Introduction and theoretical background 

When a shock wave propagating in a constant cross-sectional 
duct encounters an area change, it will experience changes 
in its strength. These changes, an increase or a decrease, in 
the pressure jump across the shock wave front (and in all 
other flow properties) depend on whether the cross-sectional 
area of the duct is decreasing or increasing. The ability to 
calculate accurately the post-shock flow properties when the 
incident shock wave, in a duct, experiences area changes 
is of great importance since such flows appear in many 
engineering problems. For example, in the exhaust system 
of internal combustion engines; shock wave propagation in 
channels like coal mines or defense trenches; jet engines, 
etc. 
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The solution for the post shock flow field will be avail- 
able upon solving the conservation equations for mass, mo- 
mentum, and energy, which, for an inviscid non-conductive 
one-dimensional flow, are: 

Op 0 1 dA  
0~ + ~x (pu) = (1) - -  -PU A dx ' 

O ~XXO (pU2 + p )  2 1 dA ~Ou) + (2) 
= - p u  ~4 d x '  

Oe 0 1 d A  
+ -~z (ue + u P )  = - u ( e  + P ) A  dx (3) O---t 

where the variables p, u, P,  e, x, t, and A denote the density 
,flow velocity, static pressure, total energy per unit volume 

- -  + pu a, distance, time, and the local cross-sectional 
7 - 1  
area of the duct, respectively. 

Using the presently available numerical schemes and 
computers, the solution of 

(1)-(3) can easily be achieved. A few examples will 
be shown subsequently. Thirty years ago, solving equations 
(1)-(3) was beyond reach, and therefore, one had to use 
approximations. One of the better approximate solutions 
proposed for handling shock wave propagation in ducts 
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Fig. I.  Schematic description, in the (x, t) plan, of  a shock wave entering 
an area change segment in a duct 
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with area change, is that proposed by Whitham (1974). His 
approximation (Whitham 1974) is essentially as follows: 

The envisioned initial conditions are a uniform post- 
shock flow in a uniform cross-sectional duct, the shock being 
positioned at the entrance to a smoothly converging segment 
of the duct; the pre-shock initial condition is quiescent gas. 
Let the shock propagate in the positive x direction so that 
C+ characteristics in the (x, t) plane reach the shock while 
carrying the uniform value of the Riemann invariant R+ 
corresponding to the post-shock initial conditions, and the 
C_ characteristics starting at the shock trajectory carry the 
Riemann invariant R_ corresponding to the flow at the post- 
shock side of the shock front. A schematic description of 
these waves/characteristics is given in Fig. 1. By neglecting 
the interaction of the C+ and 6'_ characteristics in the (x, t) 
region adjacent to the shock trajectory (i.e., the interaction 
leading to a non-uniform R+ arriving at the shock), the 
compatibility relation along C+ reduces to a single ordinary 
differential equation for the shock Mach number M as 
a function of the duct cross-section A(x). This ordinary 
differential equation is referred to by Whitham as the "Area 
Rule". For a perfect gas we have 

1 dA M 
A dM - M 2 - 1 ),(M) (4) 

( _ _  2 1 % # 2 ) (  1 )  
whereA(M)=  1 + 3 / + 1  1 + 2 # + ~ 5  and 

#2 = (~  -- 1) M2 + 2 

27 M2 - (7 - 1)" 
The solution to this ordinary differential equation, with 

Ao and M0 being the initial constant, cross-sectional area 
and shock Mach number, respectively, is 

A 
- -  = f ( M )  (5) 
Ao 

i 

) 
Equations (4)-(5) offer a direct relation between the 

shock Mach number and the local duct cross-sectional area. 
Once the shock Mach number is known the post-shock 
flow properties can easily be calculated from the Rankine- 
Hugoniot relations. 

It is of interest to check the error involved in using 
Whitbarn's approximation for two different cases: first, for 
a duct in which, at a given distance, changes monotonically 
the cross-sectional area; second, for the case of two ducts 
of different cross-sections which are connected to a section 
of monotonically changing area. In a numerical solution the 
effect of the extent of the area change segment will also be 
investigated. 

2. Results and discussion 

The propagation of a shock wave in a duct having the geom- 
etry shown in Fig. 2a is studied. An approximate solution for 
M(x) is obtained by solving (4) and (5) for 1 < Au/A < 4 
and 1.25 < 3/lo < 4.0. An exact solution for M(x) can be 
obtained by a numerical solution of (1) to (3). To reach this 
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F i g .  2a-c. Description of investigated geometries: a interaction of a normal 
shock wave with an area reduction section; b passage of a normal shock 
wave from a large cross-sectional duct to a smaller cross-sectional duct 
through an area reduction segment; c passage of a normal shock wave 
from a small cross-sectional duct to a larger cross-sectional duct through 
diverging area section 

end the Random Choice Method (RCM) is adopted; this is 
a first order accuracy solution whose technical details are 
found in Glimm (1965), Chorin (1976), Sod (1977), and 
Colella (1982). In Fig. 3 the percentage difference in M(x), 
between the RCM solution and those obtained by using the 
Whitham area rule, is shown as a function of A~/A(x). The 
incident shock Mach number, Mo, appears as a parameter. It 
is apparent from Fig. 3 that for small values of A~/A and/or 
M0 the difference is relatively small and the Whitham area 
rule can safely be used, at least for engineering purposes. 
For example, when A~/A <_ 2 and M0 <_ 1.5 the error as- 
sociated with using the Whitham area rule is not more than 
3 %. It will reach about 9 % for A~/A = 4 and M0 = 4. In 
Fig. 4 the percentage difference in the flow static pressure, 
between the RCM solution and the Whitham approximation, 
is shown as a function of A~/A; Mo appears as a param- 
eter. It is apparent that errors in estimating the post-shock 
flow static pressure are higher than those observed in M(x). 
Now, for Au/A = 2 and M0= 1.5 the error associated with 
the usage of the Whitham approximation is about 6.5 % and 
for A~/A = 4 and M0 = 4 it reaches 17 %. 

Another configuration which appears in many engineer- 
ing problems is shown in Fig. 2b. In this configuration 
the incident shock wave is propagating from a uniform 
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Fig. 3. The percentage difference in the shock Mach number between the 
RCM solution and that obtained by the Whitbam area rule versus the duct 
area ratio 

Fig. 5. The percentage difference in the shock Mach number, at the smaller 
cross-sectional duct, between the RCM solution and that obtained by the 
Whitham area rule versus the duct area ratio 
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Fig. 4. The percentage difference in the flow static pressure between the 
RCM solution and that obtained by the Whitham area rule versus the duct 
area ratio 

cross-sectional duct to a smaller constant cross-sectional 
duct through an area change region. This problem was also 
solved, first by using the Whitham area rule and thereafter by 
the RCM. For the transition zone the following expression 
was used for the duct cross-section: 

E 1 1 A(z) = A~ exp In \ ~ j  (6) 
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Fig. 6. The percentage difference in the flow static pressure, at the smaller 
cross-sectional duct, between the RCM solution and that obtained by the 
Whitham area rule versus the duct area ratio 

where A~ is the duct cross-section at z = 0 and Ad is the 
duct cross-section at :c = 1. The I is length of the area change 
region. 

The difference between the RCM result and that obtained 
using the Whitham area rule for the shock Mach number 
is shown in Fig. 5 and for pressure in Fig. 6; both are in 
percent. It is apparent that the error associated with using the 
Whitham area rule is larger in the present case as compared 
with that obtained for similar conditions while using the 
geometry shown in Fig. 2a. This should be expected since 
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Fig.  7a ,b .  Spatial  dis tr ibutions of  a pressure and b flow veloci ty  for the 
interact ion o f  a no rma l  shock  wave  (M-0 = 1.8) wi th  diverging area 
(Au/Ad = 0.2).  A T  = 0 .01771 and  1/L = 0.1875.  
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Fig ,  8a ,b .  Spatial distributions of  a pressure and  b flow veloci ty  for  the 
interact ion o f  a normal  shock  wave  (M0 = 1.8) with d iverg ing  area  
(Au/Aa = 0.2). A T  = 0 .01771 and  I/L = 0.75.  
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Fig.  9a ,b .  Spat ia l  dis tr ibutions o f  a pressure and b f low veloci ty for the 
interact ion o f  a normal  shock  wave  (M0 = 1.8) wi th  d iverging area  
(A~,/Ad = 0.2).  A-r  = 0 .05 and  1/L = 0.75.  

the RCM solves for the transient flow resulting from the 
shock wave interaction with the involved area changes. 
The Whitham area rule ignores the initial interaction of the 
shock wave which emerges from the area change zone into 
the smaller cross-sectional duct Aa. For A~/Ae = 4 and 
Mo = 4 the approximate solution is almost 38 % off from 
the RCM solution. It is only 5 % off for A~/Aa = 1.5 and 
M0 = 1.25; see Fig. 6. 

From the foregoing discussion it is clear that the 
Whitham area rule may safely be used for estimating the 
flow behind a normal shock wave propagating in a duct 
in which a monotonic smooth area reduction exists, and/or 
ducts of different constant cross-sections connected to an 
area reduction zone, provided that the area reduction ratio 
(Au/A or A~/Ad) and the incident shock Mach number 
(21//0) are relatively small, i.e., M0 _< 2 and Au/A _< 2 (the 
error in P is less that 8 %) or M0 _< 2 and A~/Ag <_ 1.25 
(again, the error in P is less than 8 %). 

The interaction of shock and/or rarefaction waves with 
area changes (reduction or enlargement) in ducts was studied 
by Greatrix and Gottlieb (1982), Gottlieb and Igra (1983), 
and Igra and Gottlieb (1985). In their work they have shown 
that the flow in the area change segment of the duct is ini- 
tially nonstationary. The required time for the nonstationary 
flow to become quasi-steady, and establish the predicted 
steady flow wave pattern, was shown to be dependent upon 
the incident shock wave strength (P2/P1) and the area ratio 
(A~/Ad). It is of interest to check how changes in the length 
of the area change region, (l), for a given incident shock 
wave strength and area ratio, affects the required time for 
establishing a quasi-steady flow in the area-change region. 
For reaching this goal one of the cases covered by Greatrix 
and Gottlieb (1982) was repeated, this time with two dif- 
ferent lengths. The case to be solved, using the RCM, is 
the interaction of a shock wave (M0 = 1.8) with an area 
enlargement (A~,/Ag = 0.2); see the geometry shown in Fig. 
2c. The first solution, shown in Fig. 7 is similar to that 
obtained by Greatrix and Gottlieb (1982); in the present 
case 1/L = 0.1875 where L is the total length of ducts. 
The obtained results for pressure and velocity are shown 
in the form of separate sets of spatial distributions at suc- 
cessive time levels for nondimensional pressure P/P1 and 
flow velocity u/ad. ag stands for the speed of sound. Each 
successive distribution is displaced upward slightly from the 
previous one, both for clarity and to produce the effect of 
a time-distance diagram. The nondimensional time interval 
between adjacent distributions is given by Ar = adAt/l, 
and the nondimensional value of Ar for each case is given 
in the figure caption. It is apparent from Fig. 7 that the 
expected stationary shock wave, in the area transition re- 
gion, is formed after a period of time equal to about 2OAr. 
The total computation time, covered in Fig. 7, is 38At. 
When the length of the area change segment was changed 
to IlL = 0.75, all other initial and boundary conditions re- 
mained unchanged, no stationary shock wave in the area 
change segment is found; see Fig. 8. Now the position 
of the shock wave is changing throughout the investigated 
time (38At) indicating that the expected quasi-stationary 
flow has not been reached, as yet. When computations were 
repeated, for the same initial and boundary conditions but 
for longer times, then the expected quasi-stationary flow 
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conditions and wave pattern were reached; see Fig. 9. In the 
present case, (1/L = 0.75) it takes almost four times longer 
to establish the expected quasi-stationary wave pattern, i.e., 
a stationary, normal, shock wave in the area change region 
of the duct. 

The fact that an increase in the extent of  the area change 
region has a marked effect on the time required for estab- 
lishing a quasi-stationary flow should have been expected. 
This is so since the term dA/dx has direct effect on all flow 
properties, see (1)-(3). In the present work the variations of  
A with changes in x are given by (6). Therefore, 

1 dA 7r In Ad . 7cx 
= - -  sm --~-. (7) 

A dx 21 

It is apparent from (7) that changes in 1 will have a pro- 
nounced effect on (dA/dx)/A which, in turn, affects the 
conservation equations, (1)-(3). Another way to explain the 
obtained numerical results is by transforming the governing 
equations (1)-(3) into a nondimentional form where x is 
proportional to 1 and the time is proportional to I/ad. There- 
fore, the transition time is proportional to the length of the 
area change segment, !. It should be noted however that in 
the two numerical results (Figs. 7 and 9) the ratio 1/L was 
not the same. Therefore, the numerical results shown in Fig: 
7 are only approximately replicated by those of  Fig. 9 since 
in the later case non-reflecting boundary conditions (inflow 
as well as outflow) were used to represent a long uniform 
duct on either side of  the area change segment. It should also 
be noted that, strictly speaking, the RCM solution is not an 
accurate solution to the considering problem since we are 
dealing with a two-dimensional flow. The RCM provides 
a good approximation to this two-dimensional flow prob- 
lem (shock wave interaction with area changes in ducts). 
How good is this approximation is a subject for a separate 
investigation. 

3. Conclusions 

It was shown that the interaction of shock waves of  moder- 
ate strength with a relatively small area change (area ratio) 

could safely be studied using the Whitham approximation. 
Specifically, the shock Mach number and all the flow proper- 
ties inside the area transition segment, or in the constant area 
duct behind the area transition segment could be evaluated. 
This would not be the case when the interaction of  strong 
shock waves with large area changes (large area ratios) is 
studied using the Whitham area rule. In such a case very 
large errors are expected and one should use an accurate, 
numerical, solution. It was also shown that the extent of 
the area transition segment has a marked effect on the time 
elapsed until the expected quasi-steady flow is reached. The 
longer is the area transition segment, the longer it takes to 
establish a quasi-steady flow. 
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