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This paper presents research into the application of 
the fuzzy ARTMAP neural network model to the 
diagnosis of cancer from fine-needle aspirates of 
the breast. Trained fuzzy ARTMAP networks are 
differently pruned so as to maximise accuracy, sensi- 
tivity and specificity. The differently pruned networks 
are then employed in a 'cascade' of networks 
intended to separate cases into 'certain' and 'sus- 
picious' classes. This mimics the predictive behav- 
iour of a human pathologist. The fuzzy ARTMAP 
model also provides symbolic rule extraction facili- 
ties and the validity of the derived rules for this 
domain is discussed. Additionally, results are pro- 
vided showing the effects upon network performance 
of different input features and different observers. 
The implications of the findings are discussed. 
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1. Introduction 

Neural networks potentially have great value in 
medical decision-support applications. Unlike expert 
systems, they bypass the difficult and time-con- 
suming knowledge acquisition process [1] by learn- 
ing complex associations directly from domain 
examples. This provides the opportunity for a neural 
network decision-support tool to adapt to perform 
the same task under varying conditions. This occurs, 
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for example, because of differing demographic con- 
ditions or clinical procedures from region to region, 
or because procedures may vary over time owing 
to advances in medical knowledge or technology. 

A large and ever-growing body of work now 
exists on applying neural networks to various medi- 
cal classification tasks, e.g. the diagnosis of epilepsy, 
diagnosis of low back disorders, early diagnosis 
of myocardial infarction, classification of thyroid 
disorders and identification of Alzheimer's diseased 
tissue [2-6]. For a general introduction to artificial 
neural network applications in medicine, see else- 
where [7-9]. 

The main thrust of this work has been in the use 
of feedforward networks to learn the association 
between evidence and outcome. Primarily, the Multi- 
Layer Perceptron (MLP) and Radial Basis Function 
(RBF) network classes have been employed [10,11]. 
Both the MLP and the RBF have been shown to 
be rich enough in structure so as to be able to 
approximate any (sufficiently smooth) function with 
arbitrary accuracy [12,13]. In addition, it can be 
shown that, for one-from-many classification prob- 
lems, attainment of the minimal value of a variety 
of cost functions with respect to the weights yields 
an estimate of the posterior (class conditional) prob- 
abilities required for the implementation of a Baye- 
sian classifier [14]. Thus, given sufficient data, com- 
putational resources (the MLP, in particular, does 
not scale well with problem size) and time (non- 
linear optimisation which is non-linear in the 
parameters may be time-consuming to perform, 
numerically), it is possible to estimate the Bayes- 
optimal classifier to any desired degree of accuracy, 
directly and with no prior assumptions on the proba- 
bilistic structure of the data. However, despite this 
attractive property, there are two drawbacks with 
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these classes of feedforward networks in addition to 
the caveats given above. 

First, these networks require artificial termin- 
ation of training, since they are susceptible to new 
but irrelevant data over-writing useful existing 
associations, and thus degrading general classi- 
fication performance. However,  this requirement 
compromises the adaptability of a neural network. 
New data are not always irrelevant, sometimes it 
reflects significant changes in the classification 
domain which requires new associations to be 
learned. This is called the stability-plasticity 
dilemma: 'How can a learning system be designed 
to remain plastic, or adaptive, in response to sig- 
nificant events, and yet remain stable in response 
to irrelevant events?' [15]. 

The MLP and RBF networks do not cope well 
with this dilemma. The termination of learning once 
a pre-determined level of performance has been 
achieved sacrifices plasticity for the sake of stability. 
In non-stationary classification domains (i.e. when 
the underlying statistics of the population are chang- 
ing with time), these networks cannot incrementally 
acquire new associations as the environment 
changes. Instead, they must be completely retrained 
on new domain data, losing all previously learned 
associations even though some may still be useful 
(and will be reacquired alongside the new associ- 
ations with retraining). Furthermore, when retraining 
with additional data there is no guarantee that the 
previous network's topology, learning parameters, 
etc. will still provide a good solution. It is possible 
that significant changes to the network will be 
needed when it is re-derived. (For a detailed dis- 
cussion on this issue with regard to feedforward 
networks, see Sharkey and Sharkey [16].) 

Many medical domains are non-stationary to a 
greater or lesser extent, for example, owing to 
changes in clinical procedures. Furthermore, the 
artificial termination of learning means that a neu- 
ral network trained on data from one site is likely 
to perform the same task sub-optimally using data 
from another site because of variations in local 
conditions. Thus, it would be desirable if such a 
network could be 'fine-tuned' to its changed 
operating conditions by incremental learning of 
cases from the new site. In general, causality 
dictates that it is not possible to know a pr ior i  
whether or not a domain is stationary. 

The second problem stems from a common gen- 
eral criticism of the neural network paradigm that 
the rules governing the predicted outcome are 
obscure. This can lead to a strong resistance to 
acceptance of a network's predictions by potential 
users. This is particularly true for medical domains. 

For example, a diagnosing clinician using a neural 
network decision-support tool has to be convinced 
that the underlying model captures the salient 
features of the domain and that the system is further 
able to offer an explanation of its diagnoses in 
user-comprehensible (i.e. symbolic) terms. However, 
attempts to extract domain rules from feedforward 
networks have met with limited success, with, so 
far, no completely general method published (see 
elsewhere [17] for a review). 

In this paper, we describe the application of a 
powerful, but relatively little-used, neural network 
model, fuzzy ARTMAP, to a medical decision- 
support task - assisting a pathologist in the diagnosis 
of breast cancer. Fuzzy ARTMAP is a neural net- 
work model, using both feedforward and feedback, 
which is not susceptible to the two criticisms cited 
above and has other desirable properties for this 
task (and medical classification tasks in general, see 
Downs et al. [18]). This is not to say that fuzzy 
ARTMAP is a panacea, it too has shortcomings, 
some of which are investigated here. We concentrate 
here on the ability of the neural network to divulge 
the set of rules it abstracts during the training 
process. 

Fuzzy ARTMAP, while allowing real valued input 
data, is not required for binary valued inputs. Thus, 
the entirely binary system known as ARTMAP [19] 
would have sufficed here (except when we come to 
include patient age, as featured in Section 6.1). 
However, our objective is to investigate the applica- 
bility of the system in a real domain and therefore 
the more general network architecture is discussed 
and used. It is worth noting that there is a slight 
computational advantage in implementing the fuzzy 
system even for binary domains because only one 
set of weights has to be maintained rather than the 
two required for ARTMAP. 

The structure of the remainder of this paper is as 
follows. Section 2 introduces the diagnostic problem 
and considers some previous work in this domain. 
Section 3 describes the fuzzy ARTMAP neural net- 
work model, avoiding the detailed mathematical 
approach which is amply presented elsewhere, and 
instead attempting to explain how and why the 
network works. It then goes on to present associated 
activities such as voting strategies for overcoming 
certain problems of the architecture, and finally the 
extraction of production rules. Section 4 provides 
basic performance results using fuzzy ARTMAP. 
Section 5 evaluates the rules derived from the 
trained networks and Section 6 provides further 
performance results investigating the effect of vari- 
ations in input features. Section 7 provides an over- 
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all discussion, some conclusions and suggestions for 
further work. 

2. Background to the Diagnostic 
Problem 

2.1. Breast Cancer 

Breast cancer is a common disease affecting 
approximately 22,000 women yearly in England and 
Wales, and is the commonest cause of death in the 
35-55 year age group of the same population [20]. 
The primary method of diagnosis is through micro- 
scopic examination by a pathologist of cytology 
slides derived from fine needle aspiration of breast 
lesions (FNAB) [21]. The acquisition of the neces- 
sary diagnostic expertise for this task is a relatively 
slow process. (A trainee pathologist in the UK 
requires at least five years study and experience 
before being allowed to sit the final professional 
pathology examinations for membership of the Royal 
College of Pathologists.) 

Large studies of the cytopathologic diagnosis of 
FNAB have shown a range of specificity (probability 
of correctly diagnosing a benign turnout or lesion) of 
diagnosis of 90%-100% with a range of sensitivities 
(probability of correctly diagnosing a malign lesion) 
from 84%-97% [22]. These studies have been 
produced in centres specialising in the diagnosis of 
breast disease by pathologists with a special interest 
in breast cytopathology. In less specialised centres, 
such as district general hospitals, when a diagnostic 
FNAB service is being set up, the performance is 
in the lower range of those values with a specificity 
of 95% and a sensitivity of 87% [23]. There is thus 
scope for an artificial intelligence decision-making 
toot for this domain to assist in training junior 
pathologists and to improve the performance of 
experienced pathologists. 

The most important performance metric in this 
domain is not overall diagnostic accuracy but speci- 
ficity. This is because the pathologist's prime con- 
cern is to avoid false positive predictions (diagnosing 
benign lesions as malignant) since these may result 
in unnecessary surgery such as mastectomy or wide 
local excision of the lesion. False negatives are 
tolerated because, if the clinical suspicion of malig- 
nancy remains, the surgeon will then take further 
samples for additional testing by the pathologist. 
(Indeed, false negatives are inevitable within this 
domain since some aspirations fail to locate a malig- 
nant lesion and extract nearby healthy tissue.) 

In the cytodiagnosis of FNAB there are some 
observable features which are cited as being 

important in the recognition of malignant cells. A 
'canonical' list is provided byWel l s  et al. [24], 
although this publication does not attribute weights 
to these features or indicate the significance of 
combinations of these features. Ten of the features 
described by Wells et al. are utilised in this research. 
The medical definitions are shown in the appendix, 
together with the abbreviations by which they will 
be referred to throughout this paper. As a general 
guideline, the features NAKED, FOAMY and 
APOCRINE are regarded as indicators of a benign 
outcome and all other features are indicative of 
malignancy. (However, some interactions between 
conjunctions of features are possible, see Section 
5.2.) 

2.2. Previous Work on Decision Support for 
this Domain 

Some expert systems have been described which 
attempt to use human observations of features in 
FNAB and then apply computers to process these 
observations and attach weight to the presence and 
combination of features. Heathfield et al. [25] 
describe a rule-based expert system with rules 
derived from cytopathological textbooks and dis- 
cussions with pathologists but they do not give any 
results for the performance of the system on a test 
set of data. A Bayesian belief network has been 
developed by Hamilton et al. [26]. The conditional 
probability matrices relating each observed feature 
to the diagnosis were defined by a cytopathologist. 
The network was tested using 40 cases, it is difficult 
to assess the results because four categories of diag- 
nosis were used (benign, malignant, atypical, prob- 
ably benign and suspicious), but 6% of the true 
benign cases and 9% of the true malignant cases 
were assigned to an equivocal category. Wolberg 
and Mangasarian [22] have produced a large study 
with a 420 case training set and 215 case test 
set, and they have used a user-modified computer- 
generated decision tree, the multi-surface method of 
pattern separation and a connectionist system with 
a back-propagation learning algorithm. Nine cytolog- 
ical features were observed and given a scalar value 
of 1-10. On the test data set the decision tree 
method gave a specificity of 97% with a sensitivity 
of 93%, the connectionist network a specificity of 
99% and a sensitivity of 97%, the multi-surface 
separation method produced 100% specificity and 
sensitivity. However, some cases (such as cancer 
judged to have been missed by the aspirating needle) 
were excluded before analysis. 

In previous work by the authors [27, 28], the 
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ARTMAP neural network model was applied to this 
task using a 313 item training set and a 100 item 
test set. Various configurations of the model gave 
an accuracy of 94%-95%, a sensitivity of 90%- 
96%, and specificity of 92%-99% (for full details, 
see the earlier work [27]). Atypical cases were not 
removed prior to measuring system performance. 
The model was shown to perform at least as well 
as an expert human pathologist and displayed diag- 
nostic accuracy very close to the optimum possible 
for the domain. In this paper, we present further 
results using a new ARTMAP configuration with a 
revised and expanded data set. The present work 
also corrects some minor flaws in the methodology 
of our previous papers. 

3. Adaptive Resonance Theory 

Adaptive resonance theory, or ART [29] represents 
a family of neural network models originally 
developed from the competitive learning paradigm 
with the intention of overcoming the stability-plas- 
ticity dilemma [30]. This was achieved by utilising 
feedback between layers of input and category nodes 
in addition to the standard feedforward connections 
of competitive learning. Thus, in ART models, an 
input pattern is not automatically assigned to the 
category that is initially maximally activated by that 
input. Instead, if the feedback process rejects the 
initial categorisation, a search process is initiated 
which terminates when a category node with an 
acceptable match to the input is found. If no such 
node exists, a new category node is formed to 
classify the input. 

It should also be noted that ART models usually 
employ a localist representation for category nodes 
owing to the so-called 'winner-take-all' competitive 
learning dynamics. Although biologically implaus- 
ible, this feature does have the advantage of facilitat- 
ing symbolic rule extraction from a trained network 
(see Section 3.5). Furthermore, localisation results 
from a simplification used to obtain the compu- 
tational models and is not inherent in adaptive reson- 
ance theory p e r  se (e.g. see Carpenter [31]). 

Since ART was an outgrowth of competitive 
learning~ initial models developed from it employed 
unsupervised learning. Examples of such models 
include ART 1 [29] which is restricted to the classi- 
fication of binary input patterns, and fuzzy ART 
[32] which generalises ART 1 so as to classify both 
analogue and binary patterns. More recently, ART 
models employing supervised learning have been 
developed which are based upon these earlier models 
and so retain their self-organising properties. 

Fuzzy ARTMAP [33] is one such model, based 
upon fuzzy ART. It is thus a self-organising, super- 
vised learning, neural network model for the classi- 
fication of both analogue and binary patterns. Fuzzy 
ARTMAP consists of three modules, two fuzzy 
ART systems called ARTa and ARTb, and a related 
structure called the map field. During training, input 
patterns are presented to ARTa together with their 
associated teaching stimuli at ART b. Associations 
between patterns at ARTa and ARTb are then formed 
at the map field. During testing, supervisory inputs 
at ARTb are omitted, and instead the inputs at ARTa 
are used to recall a previously learned association 
with an ARTb pattern via the map field. 

However, fuzzy ARTMAP does not directly 
associate inputs at ARTa and ART b. Rather, such 
patterns are first self-organised into prototypical cat- 
egory clusters before being associated at the map 
field. Hence, generalised associations are formed. If 
the ART a category cluster selected through self- 
organisation does not match with the teaching cate- 
gory at ARTb, the map field generates a re-set at 
ARTa, forcing the input to be re-classified to an 
appropriate ARTa category prototype. If no such 
prototype exists, a new cluster is automatically cre- 
ated for classification of the input. Thus, it can be 
seen that supervision of learning is only employed 
when self-organisation leads to a classification error. 

Sections 3.1 and 3.2 give a fuller description of 
the operation of the unsupervised ART network and 
the supervised fuzzy ARTMAP system, respectively. 
For those readers whose primary interest lies in the 
application of the technology, these subsections can 
be skipped without loss. 

3.1. ART Operation 

The major components of the ART 1 model are 
depicted in Fig. 1. These components can be grouped 
into two subsystems: the attentional and orienting 
subsystems. The F~ and F2 field represent layers of 
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Fig. 1. Schematic of  generic ART architecture. 

- \  ) 



A Decision Support Tool for the Diagnosis of Breast Cancer 151 

nodes in the attentional subsystem, we will refer 
them as the matching and category layers, respect- 
ively. Each node in F~ is connected to every node 
of F2 through a set of bottom-up weights. Similarly, 
each node in F2 is connected to nodes in F1 through 
top-down weights. In addition, the set of nodes 
comprising the F2 field are completely connected. 
The nodes in F~ and F2 fields are used to encode 
patterns of Short-Term Memory (STM) activity, 
while the weighted connections between the nodes 
in the F~ and F2 fields are used to store Long-Term 
Memory (LTM) traces. 

The orienting subsystem receives input from the 
input and the F~ field. It will generate a reset signal 
to the F2 field whenever the input pattern is not 
matched closely enough to the pattern of STM 
activity across the F~ field. 

When the F~ field is activated by an input pattern, 
I, a pattern of activation is generated across the 
nodes of F1. This pattern represents a pattern in 
STM. This STM activity across the F 1 field gener- 
ates an output vector from the field F 1 and sends 
an inhibitory signal to the orienting subsystem. The 
network is designed such that this inhibitory signal 
exactly cancels the excitatory effect of the signal 
from I, so that the orienting subsystem remains 
inactive and only the attentional portion of the ART 
network is active. The output vector is multiplied 
by the bottom-up LTM traces (matrix of adaptive 
weights), and the result is a bottom-up input vector, 
which is supplied to the F2 field. Next, a competition 
cycle occurs among the F2 field nodes, so that only 
the node receiving the maximal input remains active 
(winner-take-all), generating an STM activity vector 
across the F2 field. This STM activity across the F2 
field generates an output vector which is multiplied 
by the top-down LTM traces to generate a top- 
down input to the F1 field. This pattern is called a 
learned expectation or top-down template. 

Now, both the bottom-up input pattern I and the 
top-down pattern perturb the F 1 field. The nodes-in 
F~ (and F2 as well) are designed so that they can 
become active only if two out of three sources of 
input are active. This feature is called the 2/3 rule. 
Thus, only those nodes receiving signals from both 
I and F2 remain active. At this point, the F1 field 
tries to match the top-down signal against I, gener- 
ating a new STM activity vector. If there is a 
significant mismatch between bottom-up and top- 
down inputs at the F~ field, this new STM activity 
results in a new output activity from the F~ field 
which causes attenuation in the total size of the 
inhibitory signal from F~ to the orienting subsystem. 
As a result, if this attenuation is sufficiently great, 
the orienting subsystem is engaged and a reset signal 

is released which inhibits the STM activity at the 
F2 field. This inhibition leads to the elimination of 
the top-down input terminating the mismatch. 
Hence, the initial STM activity is reinstated across 
the F1 field. Once again, this STM activity across 
the F~ field generates an output from the F 1 field 
which produces the same bottom-up input at the F2 
field as before. Since the node initially chosen in 
the Fa field remains inhibited, a new node in the 
F2 field is chosen. If once more the top,town input 
significantly mismatches the bottom-up at the F 1 

field, then a search for an appropriate F2 field node 
is continued until a node is found that matches the 
input pattern, |, to the degree of accuracy required 
by the level of the attentional vigilance, P, or a 
previously uncommitted F2 node is found, or the 
system capacity is exhausted and cannot accommo- 
date I. 

If a reset signal is not generated by the orienting 
subsystem, then the network settles down into a 
resonance state of STM activation. It is then that 
the LTM traces learn any information about the 
input pattern because the resonant state persists long 
enough for learning to occur; hence the term Adapt- 
ive Resonance Theory. For full details of ART 
operation see elsewhere [29,32]. 

3.2. Fuzzy ARTMAP Operation 

Fuzzy ARTMAP makes use of the operations of 
fuzzy set theory instead of the classical set theory 
that governs the dynamics of ARTMAP. A FAM 
network consists of two fuzzy ART modules, ARTa 
and ARTb, connected by a map field as shown in 
Fig. 2. During supervised learning, an input pattern 
vector a is fed to ART, with its target vector b to 
ARTb. ARTa and ARTb cluster their input vectors 
independently. An intervening map field (Fab) adapt- 
ively associates predictive antecedents in ARTa with 
their consequents in ART b. 

In ARTa, an input vector a first registers itself at 
the Fla layer in complement-coded format, i.e. 
A = (a, l-a), to avoid the category proliferation prob- 
lem. This pattern vector is fanned-out to all the 
nodes in the F2a layer via a set of long term memory 
weights. The response of each F2a node is based 
upon a fuzzy choice function 

[A A wa:il 
+ IWo- I 

where wa~ is the weight vector of the jth F2a node, 
% is the choice parameter of ARTa and the fuzzy 
'and' operator (/~) and the norm [.I are defined as: 

(x/~ Y)i = min (xi, Yl) and rxl - -  Ixil E9] 
i 
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Fig. 2. A schematic diagram of the fuzzy ARTMAP network. 

The maximally activated node is selected as the 
winner and all other nodes are suppressed in accord- 
ance with the winner-take-all competitive structure. 
The winning Fza node then feeds back its weight 
vector to Fla. This weight vector represents the 
category prototype of the winning node and is used 
for comparison with the input vector against a vigil- 
ance threshold. Resonance is said to occur if the 
vigilance test is satisfied, i.e. 

IA A Wa-JI 
>-- Pa Ial 

where Pa is the vigilance parameter of ARTa and 
wa_j is the winning, Jth, node in F2a. Otherwise, a 
mismatch signal is sent to F2, to reset the winning 
node for the rest of the pattern matching cycle. The 
input vector A is now re-transmitted to F2a to select 
a new winner. This search cycle ends when the 
current category prototype is able to meet the vigil- 
ance test or a new node is recruited in F2a with the 
input pattern coded as the prototypical weight vector. 
An entirely parallel set of operations takes place in 
ART b, with obvious re-labelling of vectors. 

After resonance has occurred in ARTa and ARTb, 
a predictive signal is sent from the winning F2a node 
to the map field. If this prediction is disconfirmed by 
the winning node in F2b, i.e. the map field vigilance 
test fails, a control strategy called match-tracking is 
initiated. Match-tracking increases Pa to a value 
which triggers a search in ART,. Thus, Pa is made 
slightly greater than IA /~ wa_j I / IAI to cause the 
ARTa vigilance test to fail. In such a way, match- 
tracking provides a means to select a node in F~a 

which fulfils both the ARTa and the map field 
vigilance tests. If such a node does not exist, F2a is 
shut  down for the rest of the input presentation. 

Additionally, input patterns are initially 'pre-pro- 
cessed' by complement coding, such that each input 
feature also has its complement passed to the fuzzy 
ARTMAP input layer. (The fuzzy ARTMAP input 
layer is thus twice the length of the original input 
vector). Complement coding is necessary to help 
reduce proliferation of category clusters in ART 
models. With purely binary data, complement coding 
ensures that the vector received by the fuzzy ART- 
MAP input layer always has a fixed number of true 
bits (equal to the length of the original input vector). 

Training in fuzzy ARTMAP almost always results 
in multiple category clusters forming at ARTa, for 
each teaching category present at ARTb, with each 
such cluster encoding multiple input exemplars (i.e. 
each ARTa cluster represents a significant sub-region 
of the overall state space covered by a particular 
teaching category). Hence, fuzzy ARTMAP in- 
stantiates a many-to-one mapping between ART a 
input patterns and their actual classification. For full 
details of fuzzy ARTMAP, see Carpenter et al. [33]. 

3.3. Simplified Fuzzy ARTMAP 

Simplified fuzzy ARTMAP (henceforth abbreviated 
to SFAM) is a 'streamlined' version of fuzzy ART- 
MAP intended to be more computationally efficient 
than a full implementation but with a minimal loss 
of computational power [34]. Figure 3 gives a dia- 
grammatic representation of the model; circled lines 
denote adaptive weight connections, arrowed lines 
show processing flow. The teaching stimulus has a 
dashed arrow to indicate its variable status - if it 
is present learning occurs, if it is absent prediction 
takes place instead. 

The model does not self-organise teaching inputs 
at ARTb, but instead encodes these patterns directly. 
(Thus, unlike fuzzy ARTMAP, the ARTb module in 
SFAM is not a complete fuzzy ART system.) This 
is based on the observation that in most pattern 
classification tasks the teaching stimuli themselves 
do not need to be further categorised since they 
directly represent distinct, known classes, e.g. one- 
from-many classification. 

In addition, SFAM converts all but one of the 
three user-changeable parameters in fuzzy ARTMAP 
to constants whose values are the usual default 
settings of the original parameters. (For the benefit 
of those familiar with the ARTMAP models, the 
category choice parameter, a, is fixed to be near- 
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Fig. 3. Simplified fuzzy ARTMAP. 

equal to zero and the learning rate, b, is set to its 
maximum value of one-so-called fast learning.) The 
only remaining user-changeable parameter is the 
baseline vigilance for the ARTa module, Oa. This 
determines how close a match is required between 
an ART~ input pattern and a category cluster proto- 
type before accepting the input as a member of the 
cluster. This parameter (indirectly) controls the size 
of the category clusters that will form, since the 
higher it is set, the closer acceptable matches must 
be, and the smaller the coverage of the state space 
each cluster will have. Generally, higher vigilance 
provides better classification performance, although 
this must be balanced against the potential prolifer- 
ation of category clusters, providing poor data com- 
pression and leading the network to become little 
more than a 'look-up table' [35]. Additionally, with 
small training sets and/or high-dimensional input 
vectors with many features, high vigilance can lead 
to incomplete coverage of the feature space by 
the network. 

As well as its capabilities for continuous learning 

and symbolic rule extraction, SFAM has a number 
of other useful properties for medical pattern classi- 
fication tasks: first, as noted earlier, the model has 
only one user-changeable parameter, the baseline 
vigilance of the ARTa module. SFAM can thus be 
easily tuned to a particular task. Second, successful 
learning can occur with only one pass through the 
data set (termed single-epoch training). This is dem- 
onstrated within this paper, since all the results we 
describe were achieved by means of single-epoch 
training. Third, the model does not perform optimis- 
ation of an objective function and is not therefore 
prone to the problem of local minima as occurs 
with feedforward networks using backpropagation. 
Also, the problem of selecting the appropriate num- 
ber of hidden units does not occur. This is because, 
as described previously, SFAM self-organises its 
own structuring of the data, automatically creating 
new category clusters for itself as and when they 
become needed. Fourth, the model is able to dis- 
criminate rare events from a 'sea' of similar cases 
with different outcomes owing to the feedback 
mechanism based on top-down matching of learned 
categories to input patterns. This is again in contrast 
to feedforward networks using backpropagation 
where weights are refined by a process which effec- 
tively averages together similar cases and thus fails 
to acknowledge rare events. SFAM is therefore suit- 
able for domains where the distribution of data 
items is skewed between different categories. This 
is demonstrated within the present application 
domain (see Section 4.1). 

Additionally, there are a number of supplementary 
features of our approach which require some 
explication. 

3.4. Voting Strategy 

The formation of category clusters in ARTMAP 
models is affected by the order of presentation of 
input data items [33]. Thus, the same data presented 
in a different order to separate SFAM networks can 
lead to the formation of quite different clusters 
within the two networks. This subsequently leads to 
different categorisations of test data, and thus differ- 
ent performance scores. This effect is particularly 
marked with small training sets and/or high-dimen- 
sionial input vectors, where the input items may not 
be fully representative of the domain, and with 
single-epoch training. Sensitivity to order of presen- 
tation is not a problem of adaptive resonance theory 
alone. Indeed, in humans, the well known psycho- 
logical effects of primacy and recency reflect pre- 
cisely this ordering dependence. Rather the effect 
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results from causal (on-line) learning where data 
enters the problem as it appears in nature, and its 
order is outwith the control of the experimenter. It 
is thus important in on-line learning to consider the 
ensemble of all possible learning experiments to 
understand the underlying behaviour of the system. 
Such effects are hidden when developing feedfor- 
ward networks off-line because an artificial ensemble 
is created by multiple randomised data presentations 
during training. On-line training of an MLP may 
well lead to a different solution from one trained 
on a different ordering of the same data. 

Order dependence can be compensated for by the 
use of a voting strategy [33]. This works as follows: 
a number of SFAM networks are trained on different 
orderings of the training data. During testing, each 
individual network makes its prediction for a test 
item in the normal way. The number of predictions 
made for each category is then totalled and the one 
with the highest score (or the most 'votes') is the 
final predicted category outcome. The voting strat- 
egy can provide improved SFAM performance in 
comparison with the individual networks. Further- 
more, other voting methods can be used (see 
Section 3.4). 

3.5. Symbolic Rule Extraction 

Most neural networks suffer from the opaqueness 
of their learned associations [36]. In medical 
domains, this 'black box' nature may make clin- 
icians reluctant to utilise a neural network appli- 
cation, no matter how great the claims made for its 
performance. Thus, there is a need to supplement 
neural networks with symbolic rule extraction capa- 
bilities to provide explanatory facilities for the net- 
work's 'reasoning'. The ARTMAP models have 
been endowed with such capabilities [37]. The act 
of rule extraction is a straightforward procedure 
compared with that required for feedforward net- 
works since there are no hidden units with implicit 
meaning. In essence, each category cluster in ARTa 
represents a symbolic rule whose antecedent is the 
category prototype weights and whose consequent 
is the associated ARTb category (denoted via the 
map field). 

3.6. Category Pruning 

An SFAM network often becomes 'over-specified' 
on the training set, generating many low-utility 
ARTa category clusters which may represent noise 

or rare but unimportant cases, and subsequently 
provide poor-quality rules. The problem is parti- 
cularly acute when a high ARTa baseline vigilance 
level is used during training. To overcome this 
difficulty, rule extraction involves a 'pre-processing' 
stage of category pruning. This involves the deletion 
of these low utility nodes. 

Pruning is guided by the calculation of a Confi- 
dence Factor (CF) between nought and one for each 
category cluster, based upon a node's usage and 
accuracy. The usage score for an ARTa node is 
simply the number of training set exemplars it 
encodes, normalised through division by the 
maximum number of exemplars encoded by any 
node with the same category outcome. (Hence, there 
will be at least one node for each different category 
class which has a maximal usage score of one.) 
The accuracy score for a node is calculated as the 
proportion of predictions that are correct which the 
node mades on a prediction data set independent of 
the training data. This score is then normalised, 
similarly to the usage calculation, through division 
by the maximum proportion of correct predictions 
made by any node with the same outcome. (Thus, 
there will be at least one node for every category 
class which has a maximal accuracy score of one). 
The confidence factor for a node is then calculated 
as the mean of its usage and accuracy scores. All 
nodes with a confidence factor below a user-set 
threshold will be pruned. Full details of the process 
are given in Carpenter and Tan [37]. 

The pruning process can provide significant 
reductions in the size of a network. In addition, it 
also has the very useful side-effect that a pruned 
network's performance is usually superior to the 
original, unpruned net on both the prediction set 
and on entirely novel test data. This is because the 
removal of the low-utility nodes caused by over- 
specification on the training set improves the general 
performance of the network. 

In the original formulation of the pruning process, 
a uniform CF threshold is used to select nodes for 
deletion, irrespective of their category class. In this 
application, we have generalised the pruning process 
to allow separate CF thresholds for nodes belonging 
to different category classes. This allows us to vary 
the proportion of the state-space covered by different 
categories. For example, by increasing the CF 
threshold for nodes with positive outcomes the rela- 
tive proportion of such nodes is decreased and thus 
the sensitivity of the network is reduced. (The same 
effect can also be achieved of course by decreasing 
the CF threshold for nodes with negative outcomes.) 
This is useful for medical domains since it allows 
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an ARTMAP network to be pruned so as to trade 
sensitivity for specificity and vice versa. 

3.7. SFAM Cascade 

The generalisation of the category pruning process 
described above allows a novel 'cascaded' con- 
figuration of SFAM networks to be employed as 
shown in Fig. 4. This consists of three layers, a 
network pruned so as to maximise sensitivity, 
another pruned so as to maximise specificity, and a 
third layer consisting of a set of uniformly pruned 
networks (which maximise accuracy) operating by 
the voting strategy. (The network cascade described 
here is a slightly simplified version of that first 
presented in Downs et al. [38] which was used there 
for the early diagnosis of heart attacks.) 

The first two layers are intended to identify those 
cases which have a very high certainty of being 
classified correctly, with the sensitive network being 
used to 'trap' the negative cases and the specific 
network capturing the positive cases. The intuition 
behind this is that a network which displays very 
high sensitivity will rarely make false negative pre- 
dictions and so any negative predictions made by 
that network are very likely to be correct. Con- 
versely, a highly specific network will make very 
few false positive predictions, and so its positive 
predictions have a high certainty of being correct. 

The cascade, therefore, operates as follows: An 

Input Data 

l 
Sensitive Networks 

Malignant I Prediction 

Specific Networks 

Benign IPredietion 

Accurate Networks 
(voting) 

/- , , .  

Benign > High Certainty 

Prediction Benign 

Malignant ~ High Certainty 

Prediction Malignant 

Majority Majority 
Malignant Benign 

Fig. 4. Cascaded SFAM configuration for breast cancer diagnosis. 

input data item is first presented to the sensitive 
network. If this yields a benign (negative) verdict, 
this is taken as the final category prediction. If not, 
the data item is next presented to the specific net- 
work. If this yields a malignant (positive) verdict, 
this is taken as the ultimate category prediction. 
Otherwise the final prediction of the category class 
of the input is obtained by majority verdict from 
the uniformly pruned nets, with a lower certainty 
of the prediction being correct than with the previous 
two layers. The cascade mimics the behaviour of a 
human pathologist in this domain in that some 
diagnoses are reported as 'certainly' correct, while 
others are labelled as 'suspicious' (and will thus 
require a second opinion and/or further test samples). 

4. Bas ic  F i n d i n g s  

4.1. Data 

The total data set for the application comprised 600 
patient records each consisting of 10 binary-valued 
features (see appendix). Each record was derived 
from microscopic observation of FNAB specimens 
by an expert pathologist (of Consultant status with 
10 years experience in the field). The samples were 
taken from patients referred to the Royal Hallam- 
shire Hospital, Sheffield, UK with symptomatic and 
screening-detected breast lesions in 1993. The distri- 
bution of categories within the data was slightly 
skewed but represents the prior probabilities of 
adequate specimens received in the laboratory - 215 
cases were malignant, the remaining 385 benign (i.e. 
35.8% malignant, 64.2% benign). This data differs 
therefore from that used in our previous work 
[27, 28], in that the previous data set was artificially 
biased to represent approximately equal numbers of 
each outcome, rather than the actual distribution 
across outcomes within the domain. (Additionally, 
the extra data in the current work allows perform- 
ance to be measured on a test set that is independent 
of the prediction data set used to guide category 
pruning.) 

In many medical situations, the final diagnosis or 
outcome is difficult to confirm without unnecessary 
invasive procedures or a long period of time has to 
elapse to allow further manifestations of the disease 
to appear. In FNAB, the final outcome is relatively 
easy to confirm within a few months of the initial 
procedure. In this study, the majority of cases where 
a malignant diagnosis was made on FNAB had 
further excision of tissue (e.g. lumpectomy or 
mastectomy) and the final diagnosis was made by 
histological examination which has a specificity and 
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a sensitivity very close to 100%. In a few elderly 
patients, the tumour was not removed and the patient 
was treated by radiotherapy and chemotherapy, in 
these cases the clinical diagnosis of malignancy was 
secure since all were large tumours with clinical 
features of malignancy such as invasion through the 
skin. A benign outcome was confirmed by benign 
clinical features recorded at the time of aspiration, 
mammographic examination and absence of sub- 
sequent malignant specimens from the same area of 
the breast. 

It should also be noted that, as with almost 
all information gathered from a real-world medical 
domain, the data set possesses a degree of 'noise'. 
Specifically, some combinations of features do not 
always have the same outcome in every case 
(notably owing to flawed aspirations of malignant 
lesions). Analysis of the data set revealed the exist- 
ence of 16 such states, which collectively account 
for 365 cases. Assuming that the most frequent 
outcome should always be chosen when an ambigu- 
ous feature-state occurs will result in 22 of these 
cases being misclassified. This represents 3.7% of 
the total data-set, and, thus, the maximum possible 
diagnostic accuracy with this data is 96.3%. 

4.2. Method 

The total data were partitioned into three subsets; 
125 randomly selected items formed a prediction set 
of 44 malignant and 81 benign cases (i.e. 35.2% 
malignant, 64.8% benign), a further 100 randomly 
selected items formed a test set of 35 malignant and 
65 benign cases, the remaining 375 items formed the 
training set of 136 malignant and 239 benign cases 
(i.e. 36.3% malignant and 63.7% benign). 

Ten SFAM networks were then trained on differ- 
ent random orderings of the teaching data. Vigilance 
was set very high (0.9) during training in order to 
maximise classification performance. Vigilance was 
relaxed to 0.6 for all predictions to ensure that all 
cases were matched to an existing category cluster 
node (i.e. forced choice prediction). Performance on 
the prediction set was recorded for each network in 
order to calculate the accuracy ratings for each 
category node as a prerequisite to category pruning. 

The ten trained networks were then pruned in 
three separate ways. First, the 'standard' form of 
category pruning [37] was performed on the original 
networks, such that all nodes with a CF below 0.5 
were deleted from the networks to improve predic- 
tive accuracy. The original networks were then 
pruned using different CF thresholds for the malig- 
nant and benign nodes to produce pruned networks 

which maximised sensitivity. CF thresholds of 0.05 
for malignant nodes and 0.95 for benign nodes were 
employed, the criterion for setting the CF thresholds 
being a performance on the prediction set such that 
no network made more than one false negative 
prediction. A similar procedure was then conducted 
to produce 10 networks which maximised specificity. 
CF thresholds of 0.65 for malignant and 0.5 for 
benign nodes were sufficient to yield no more than 
one false positive for all networks on the predic- 
tion set. 

The cascade configuration shown in Fig. 4 was 
then derived from the pruned networks. Selection 
criteria were as follows: From the ten networks 
pruned for sensitivity, the one which had the highest 
specificity while maintaining 100% sensitivity on 
the prediction set was selected to form the first 
layer of the cascade. Similarly, from the 10 networks 
pruned for specificity, the one which had the highest 
sensitivity while maintaining 100% specificity on 
the prediction set was chosen to form the second 
layer of the cascade. Finally, from the uniformly 
pruned networks, the five with the highest individual 
accuracies on the prediction set were selected to 
form the third (voting strategy) layer of the cascade. 
Performance of the cascade was then measured on 
the test set. 

4.3. Results 

The performance of the network cascade on the test 
set is shown in Table 1, alongside the performance 
of the human consultant on the same set of cases. 
It can be seen that the overall performance of the 
cascade is very similar to that of the human pathol- 
ogist - in terms of numbers of cases, the cascade 
made two false positive predictions avoided by the 
consultant, but also made only three false negative 
predictions, compared with six made by the consult- 
ant. Additionally, the two false positive decisions 
were confined to the 'suspicious' layer of the cas- 
cade. The overall accuracy of the cascade can also 
be seen to be very close to the maximum possible 
for the domain (see Section 4.1). 

The top two layers of the cascade (representing 
'certain' decisions) showed almost perfect perform- 
ance, and covered a large proportion of the total 
test data (71%). Perfect performance was marred 
only by the occurrence of one false negative 
decision. Further examination of the details of this 
case revealed that the sample was very likely to 
have resulted from a flawed aspiration, which, as 
noted earlier, is an unavoidable feature of the 
domain. 
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Table 1. Performance of SFAM voting strategy cascade on 100 item test set. 
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Accuracy (%) Sensitivity (%) Specificity (%) 

'Certain' decisions 98.6 
'Suspicious' decisions 86.2 
Overall performance 95.0 
Consultant' s performance 94.0 

96.7 
60.0 
91.4 
82.9 

100.0 
91.6 
96.9 

100.0 

It should also be noted that standard category 
pruning produced a mean reduction in network size 
of 70.3%, from a mean of 91 category nodes in the 
unpruned networks to an average of 27 nodes in 
the pruned networks. 

5. Symbolic Rules 

5.1. General Discussion 

Rule extraction facilities provide two advantages 
which, taken collectively, should help to overcome 
reluctance to utilise a neural network decision- 
support tool. First, a domain expert can examine 
the complete rule set in order  to validate that the 
network has acquired an appropriate mapping of 
input features to category classes. Second, the sym- 
bolic rules provide explanatory facilities for the 
network's predictions during on-line operation. In 
the case of SFAM this corresponds to displaying 
the equivalent rule for the ARTa cluster node that 
was activated to provide a category decision. (In 
the case of the voting strategy, a number of such 
rules, one per voting network, would be displayed.) 
The diagnosing clinician is then able to decide 
whether or not to concur with the network's predic- 
tion, based upon how valid he or she believes the 
rule(s) to be. 

The specific rules discovered for this domain 
will be presented in Section 5.2. However, some 
discussion of their general nature is needed here 
since they differ somewhat from the production rules 
used in conventional decision support aids such as 
expert systems. Expert system rules are 'hard' - an 
input must match to each and every feature in a 
rule's antecedent before the consequent will be 
asserted. In ARTMAP models, the rules are 'soft' - 
recall that they are derived from prototypical cate- 
gory clusters which are in competition with each 
other to match to the input data. Exact matching 
between inputs and categories is not necessary; a 
reasonably close fit suffices. (The degree of inexacti- 
rude that is tolerated being determined by the value 
of the ARTa vigilance parameter.) This provides 

greater coverage of the state space for the domain, 
using fewer rules. 

Additionally, the rules are self-discovered through 
exposure to domain exemplars, rather than having 
been externally provided by a human expert. ART- 
MAP models are thus able to bypass the difficult 
and time-consuming knowledge-acquisition process 
found with rule-based expert systems [1]. However, 
collection of the data may itself be a non-trivial 
task in many medical domains. 

A drawback of this approach is that the rules 
are 'correlational' rather than causal, since SFAM 
possesses no underlying theory of the domain but 
simply associates conjunctions of input features with 
category classes. (Of course, this problem is not 
specific to the ARTMAP models but occurs with 
neural networks generally.) However, this difficulty 
is probably not of great importance from an appli- 
cations viewpoint since useful diagnostic perform- 
ance can often be achieved from correlational fea- 
tures without recourse to any 'deep' knowledge of 
the domain. 

A final general point concerns the learning rule 
in SFAM which governs the formation of category 
clusters, and hence the rules that will be derived 
from these clusters. Under the 'fast-learning' con- 
ditions with binary data used in this application, 
whenever an input is successfully matched to an 
existing category cluster node the new weights for 
that node are formed by taking the logical AND of 
the input pattern and the existing weights for that 
cluster [33]. This has the effect of deleting all 
features from the category cluster weights that are 
not also present in the input pattern. Hence, the 
weights tend to denote progressively more general 
clusters as they encode more input patterns and 
more features are deleted. Additionally, all features 
that are still present in the weights for a cluster 
once training ceases are known to have been present 
in all input vectors encoded by that cluster. 

5.2. SFAM Rules for the Domain 

Rule extraction from the uniformly pruned networks 
yielded 44 distinct rules, 12 with benign outcomes 
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Table 2. Benign rules extracted from uniformly pruned SFAM networks. 
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Rule 1 Rule 2 Rule 3 Rule 4 
5 Occurrences 5 Occurrences 5 Occurrences 4 Occurrences 
Mean CF = 1.00 Mean CF = 0.57 Mean CF = 0.52 Mean CF = 0.53 
IF IF IF IF 

NOSYMPTOMS NAKED FOAMY APOCRINE 
THEN THEN NUCLEOLI THEN 

BENIGN BENIGN THEN BENIGN 
BENIGN 

Rule 5 Rule 6 Rule 7 Rule 8 
4 Occurrences 4 Occurrences 3 Occurrences 3 Occurrences 
Mean CF = 0.50 Mean CF = 0.50 Mean CF = 0.52 Mean CF = 0.52 
IF IF IF IF 

PLEOMORPH 3D FOAMY PLEOMORPH 
THEN FOAMY APOCRINE SIZE 

BENIGN THEN THEN APOCRINE 
BENIGN BENIGN THEN 

BENIGN 

Rule 9 Rule 10 Rule 11 Rule 12 
2 Occurrences 2 Occurrences 2 Occurrences 2 Occurrences 
Mean CF = 0.77 Mean CF = 0.53 Mean CF = 0.52 Mean CF = 0.50 
IF IF IF IF 

FOAMY NAKED FOAMY 3D 
THEN FOAMY PLEOMORPH NAKED 

BENIGN THEN SIZE NECROTIC 
BENIGN APOCRINE THEN 

THEN BENIGN 
BENIGN 

(shown in Table 2) and 32 with malignant outcomes 
(shown in Table 3). Rules are ranked within each 
table by number of occurrences within the five 
networks and by the mean value of their certainty 
factor. The rules which the Consultant pathologist 
involved in this study did not consider to be in 
accord with standard diagnostic criteria are shown 
in bold within the tables. 

Of the 44 rules extracted from the trained SFAM 
networks, 39 were in complete agreement with pub- 
lished canonical lists [24]. The majority of the rules 
for a malignant diagnosis consisted of combinations 
of  the features ICL, 3D, NUCLEOLI,  PLEOMORPH 
and SIZE with other features appearing less fre- 
quently. Most cytopathologists agree that the nuclear 
features of increased nuclear size (SIZE), multiple 
prominent nucleoli (NUCLEOLI) and variation in 
nuclear size (PLEOMORPH) are the most im- 
portant diagnostic features of malignancy in FNAB 
[24,39,40]. Rule 17 for malignant diagnoses is inter- 
esting in that it only contains one feature, the pres- 
ence of intracytoplasmic lumina; one specific type 
of breast carcinoma, lobular carcinoma, often pro- 
duces cells which do not have prominent nuclear 
abnormalities but which do have these abnormal 

cytoplasmic inclusions [41]. Rule 29 for malignant 
diagnoses gives only the feature of increased nuclear 
size but most cytopathologists require other nuclear 
abnormalities to be present before making an 
unequivocally malignant diagnosis, with increased 
nuclear size alone a cytopathologist would probably 
assign the case to a suspicious category. In the 
benign rules, the features PLEOMORPH and SIZE 
appeared together twice which taken alone would 
be suggestive of malignancy but in these rules they 
were in combination with the feature APOCRINE. 
Apocrine change in breast epithelial cells produces 
large cells with abundant cytoplasm but the nucleus 
is also enlarged which would produce positive obser- 
vations of the features PLEOMORPH and SIZE 
without prominent multiple nucleoli (NUCLEOLI). 
Apocrine change could also have led to the pro- 
duction of benign rule 5 where PLEOMORPH is 
the only feature since a few cells with apocrine 
change in the specimen would trigger this positive 
observation without also triggering APOCRINE 
because the majority of epithelial cells did not show 
apocrine change. This circumstance arises because 
of the binary nature of the definitions used in this 
study, a coding scheme with more gradation for 
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Rule I Rule 2 Rule 3 Rule 4 

5 Occurrences 5 Occurrences 5 Occurrences 4 Occurrences 

Mean CF = 0.94 Mean CF = 0.60 Mean CF = 0.59 Mean CF = 0.99 

IF IF IF IF 

3D DYS 3D ICL 

NUCLEOLI ICL NUCLEOLI 3D 

PLEOMORPH NUCLEOLI PLEOMORPH NUCLEOLI 

SIZE PLEOMORPH SIZE PLEOMORPH 

THEN SIZE NECROTIC SIZE 

MALIGNANT NECROTIC THEN THEN 

THEN MALIGNANT MALIGNANT 

MALIGNANT 

Rule 5 Rule 6 Rule 7 Rule 8 
4 Occurrences 4 Occurrences 4 Occurrences 4 Occurrences 

Mean CF = 0.75 Mean CF = 0.73 Mean CF = 0.64 Mean CF = 0.59 

IF IF IF IF 

DYS NUCLEOLI PLEOMORPH ICL 

NUCLEOLI PLEOMORPH SIZE = TRUE 3D 

PLEOMORPH SIZE THEN FOAMY 

SIZE THEN MALIGNANT NUCLEOLI 

THEN MALIGNANT PLEOMORPH 

MALIGNANT SIZE 

NECROTIC 

THEN 

MALIGNANT 

Rule 9 Rule 10 Rule 11 RuIe I2 

4 Occurrences 4 Occurrences 4 Occurrences 4 Occurrences 

Mean CF = 0.58 Mean CF = 0.58 Mean CF = 0.56 Mean CF = 0.55 

IF IF IF IF 

ICL ICL DYS 3D 

FOAMY NUCLEOLI 3D NAKED 

PLEOMORPH PLEOMORPH FOAMY NUCLEOLI 

SIZE SIZE NUCLEOLI PLEOMORPH 

THEN THEN PLEOMORPH SIZE 

MALIGNANT MALIGNANT SIZE THEN 

NECROTIC MALIGNANT 

THEN 

MALIGNANT 

Rule 13 Rule 14 Rule 15 Rule 16 
3 Occurrences 3 Occurrences 3 Occurrences 3 Occurrences 

Mean CF = 0.79 Mean CF = 0.69 Mean CF = 0.68 Mean CF = 0.62 

IF IF IF IF 

3D FOAMY FOAMY 3D 

FOAMY NUCLEOLI NUCLEOLI FOAMY 

NUCLEOLI PLEOMORPH PLEOMORPH PLEOMORPH 

PLEOMORPH SIZE SIZE SIZE 

SIZE THEN NECROTIC NECROTIC 

THEN MALIGNANT MALIGNANT THEN THEN 

MALIGNANT MALIGNANT 

Rule 17 
3 Occurrences 

Mean CF = 0.60 

IF 

ICL 

THEN 

MALIGNANT 

RuIe 18 Rule 19 Rule 20 

3 Occurrences 3 Occurrences 2 Occurrences 

Mean CF = 0.57 Mean CF = 0.53 Mean CF = 0.67 

IF IF 1F 

ICL ICL ICL 

3D NAKED 3D 

NUCLEOLI FOAMY NUCLEOLI 

PLEOMORPH NUCLEOLI THEN 

SIZE PLEOMORPH MALIGNANT 

NECROTIC SIZE 

THEN THEN 

MALIGNANT MALIGNANT 
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Rule 21 Rule 22 Rule 23 Rule 24 

2 Occurrences 2 Occurrences 2 Occurrences 2 Occurrences 

Mean CF = 0.62 Mean CF = 0,62 Mean CF = 0.62 Mean CF = 0.60 

IF IF IF IF 

DYS NUCLEOLI  ICL DYS 

ICL P L E O M O R P H  F O A M Y  NUCLEOLI  

NUCLEOLI  SIZE NUCLEOLI  P L E O M O R P H  

P L E O M O R P H  NECROTIC P L E O M O R P H  SIZE 

SIZE = TRUE THEN SIZE NECROTIC 

THEN M A L I G N A N T  THEN THEN 

M A L I G N A N T  M A L I G N A N T  MALIGNANT 

Rule 25 

2 Occurrences 

Mean CF = 0.57 

IF 

ICL 

P L E O M O R P H  

SIZE 

THEN 

M A L I G N A N T  

Rule 26 

2 Occurrences 

Mean CF = 0.59 

IF 

ICL 

F O A M Y  

THEN 

M A L I G N A N T  

Rule 27 Rule 28 
2 Occurrences 2 Occurrences 

Mean CF = 0.55 Mean CF = 0.53 

IF IF 

DYS DYS 

F O A M Y  ICL 

NUCLEOLI  3D 

P L E O M O R P t t  NUCLEOLI  

SIZE P L E O M O R P H  

NECROTIC SIZE 

THEN THEN 

M A L I G N A N T  M A L I G N A N T  

Rule 29 
1 Occurrence 
Mean CF = 0.63 
IF 

SIZE 
THEN 

MALIGNANT 

Rule 30 Rule 31 Rule 32 

1 Occurrence 1 Occurrence 1 Occurrence 

Mean CF = 0.59 Mean CF = 0.56 Mean CF = 0.53 

IF IF IF 

DYS ICL DYS 

3D 3D ICL 

NUCLEOLI  NAKED 3D 

P L E O M O R P H  F O A M Y  NUCLEOLI  

SIZE NUCLEOLI  P L E O M O R P H  

THEN SIZE SIZE 

M A L I G N A N T  THEN NECROTIC 

M A L I G N A N T  THEN 

M A L I G N A N T  

each feature could circumvent this problem. Benign 
rules 3, 6 and 12 are not in complete accord with 
published cytopathological knowledge and these 
cases would probably have been assigned to a sus- 
picious category by a cytopathologist. 

6. Further Results 

This section presents results concerning investi- 
gations into the effects upon SFAM performance of 
employing both different input features and different 
observers to derive the features. It follows up issues 
raised in Downs et al. [28]. 

6.1. Effect of Different Input Features 

In this section, we consider three variations of the 
'standard' set of input features used to obtain the 
results described in Section 4: 

1. The removal of the 'FOAMY' feature (repre- 
senting the presence of foamy macrophages in 
the background of the slide). In previous work 
[28], it was observed that there was disagreement 
as to the utility of this feature in making a 
diagnosis. This variation therefore attempts to 
resolve this issue by determining if removal of 
the 'FOAMY' feature has an adverse effect upon 
network performance. 

2. The addition of an 'AGE' feature, representing 
the patient's age. (The age feature was encoded 
for input to SFAM by dividing the patient age 
in years by 100 in order to yield a value in the 
range 0-1.) The motive for including this feature 
is that after menopause the breast atrophies, and 
thus the proportion of epithelial cells drops. Aspi- 
rates are expected therefore to show fewer and 
smaller epithelial cells. Hence, patient age is a 
potentially useful diagnostic indicator. 

3. The addition of a binary 'NOISE' feature, derived 
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from whether or not the laboratory number of 
the sample was odd or even. This variation is 
intended to investigate the robustness of SFAM 
in the face of irrelevant data. 

To compare the effect of different input features, 
the SFAM network configuration and experimental 
method were changed from the procedure described 
in Section 4.2. This earlier method was intended to 
optimise SFAM performance for use of the model 
as a decision-support tool. This goal was achieved, 
with a diagnostic accuracy very close to the 
maximum possible for the domain. However, com- 
parison of the effects of different input features 
requires a non-optimal baseline performance in order 
to detect any improvements caused by input feature 
variations. The following changes in the experi- 
mental method were therefore adopted, all for the 
purpose of lowering the baseline SFAM performance 
with the standard set of input features: 

1. Category pruning was omitted. This also allowed 
an expanded test set to be created, by merging 
the prediction and test sets described in Section 
4.2 into a single 225 item test set. 

2. Vigilance was set at zero during training of the 
networks. This change was further necessitated 
by the fact that a uniform non-zero vigilance 
level can have a slightly different effect upon 
two SFAM networks which have different sized 
input vectors [42[. 

3. The full SFAM cascade was not employed in 
measuring performance. Instead, a simpler three 
network voting strategy was used. 

The futl description of the experimental method is 
as follows. Ten SFAM networks were trained on 
different random orderings of the 375 item teaching 
data set described in Section 4.2, using single-epoch 
training with a vigilance level of zero. These net- 
works used the 10 'baseline' standard input features 
described previously in the appendix. Performance 
of each individual network was then recorded on 
the new 225 item test set. The three networks with 
the highest individual accuracy were then selected 
to form a three network voting strategy. The voting 

strategy performance of these networks was then 
recorded on the test set. 

The procedure described in the above paragraph 
was then repeated using the three variations in the 
network input features outlined previously. SFAM 
results with the three input feature variations were 
then compared with the baseline results across all 
performance metrics (i.e. accuracy, sensitivity and 
specificity) using McNemar's test [43]. 

The performance with the three input feature vari- 
ations in comparison to the standard input feature 
set is shown in Table 4. It can be seen that the 
deletion of the 'FOAMY' feature led to a small drop 
in overall accuracy because of reduced specificity. 
However, none of the differences across the three 
metrics was statistically significant (McNemar's test, 
p > 0.1). The addition of the 'AGE' feature led 
to an increase across all performance metrics in 
comparison to the baseline. These increases were 
all statistically significant (McNemar's test; accuracy 
p < 0.001, sensitivity p < 0.05, specificity p < 
0.01). The addition of the 'NOISE' feature did not 
cause a deterioration in performance in comparison 
to the baseline. Indeed, it led to a slight increase 
in accuracy owing to higher specificity. However, 
neither difference was statistically significant 
(McNemar's test, p > 0.1). 

6.2. Effect of Different Observers 

In previous work [28], performance of the SFAM 
network appeared to degrade badly in the face of 
'noisy' input data provided by an inexperienced 
junior pathologist. It is thus possible that SFAM's 
utility as a decision-support tool is limited by the 
quality of the input data, being suitable for use by 
senior pathologists but vulnerable in the face of 
incorrect feature assignments made by junior pathol- 
ogists. In this subsection therefore, this issue is 
investigated further by studying the performance of 
SFAM using input feature observations provided by 
several different pathologists. 

A test set of 50 cases (25 malignant and 25 
benign) was employed which was entirely inde- 

Table 4. Effect of different input features on SFAM performance. 

Input features Accuracy (%) Sensitivity (%) Specificity (%) 

BASELINE 10 85.3 84.8 85.6 
-FOAMY 82.2 87.3 79.5 
+AGE 94.2 94.9 93.8 
+NOISE 87.6 84.8 89.0 
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pendent of the 600 item data set described pre- 
viously in Section 4.1. The presence or absence of 
the ten standard input features (see the Appendix) 
for each case was then rated by six different pathol- 
ogists, all working separately and with no knowledge 
of clinical data apart from patient age. One of these 
pathologists had provided the original 600 item data 
set. Of the six pathologists, two were of consultant 
status (each with over 10 years experience of inter- 
preting FNAB), three were senior registrars (each 
with six years experience) and one a senior house 
officer (two years experience). All pathologists 
reported FNAB in their daily work but those below 
consultant status would have had their reports scruti- 
nised by a consultant pathologist who might modify 
the report after examining the cytological prep- 
arations. 

Voting strategy performance of the five uniformly 
pruned networks trained previously to form the third 
layer of the SFAM cascade (see Section 4) was 
recorded for each of the six pathologist's obser- 
vations. The results with the observations from the 
pathologist who had provided the original training 
data served as the baseline for comparison with the 
other five pathologists' observations (observer 1 in 
Table 5). The results for all three performance met- 
rics were compared using McNemar's test. 

The performance of SFAM with the six sets of 
observations is shown in Table 5. It should be noted 
that the small size of the data set used here means 
that the differences between observers may appear 
somewhat exaggerated since, in percentage terms, a 
single false case alters specificity or sensitivity by 
4% and accuracy by 2%. 

General performance of the SFAM networks held 
up well across all observers, with no more than four 
misclassifications for all but one observer's data 
(seven misclassifications with observer 4). Somewhat 
surprisingly, the networks performed slightly better 
than the baseline with two observers (numbers 3 
and 5). Furthermore, the observation set showing 
the worst performance had only four extra misclassi- 
fications in comparison to the baseline. There were 
no statistically significant differences between the 

baseline observation set and any of the other obser- 
vation sets across any performance metric 
(McNemar's test, p > 0.1). 

7. Discussion and Conclusions 

The performance of the SFAM cascade described 
in Section 4.3 indicates that the architecture has 
useful potential value as a decision-support tool for 
this domain. Performance is very close to the 
domain optimum, despite only utilising single-epoch 
training on a skewed data set. Furthermore, the 
cascade served to isolate a large proportion of cases 
where the network's predictions were very likely to 
be correct, and, very importantly, avoided any false 
positives within this subset of the test data. 

Additionally, the model was shown to have self- 
discovered a generally valid set of rules for the 
domain, with only five rules from a set of 44 
considered not to be 'canonical'. It is interesting to 
note that all but one of these five rules had a mean 
CF factor very close to the threshold for pruning. 
We therefore believe it is possible that the networks 
were 'under-pruned' in this application and that a 
slightly higher CF threshold for pruning (e.g. 0.55) 
would have almost entirely eliminated all dubious 
rules, as well as providing a more compact overall 
rule set. However, balanced against this is the need 
to avoid 'over-pruning' where useful category nodes 
are deleted resulting in degraded system performance 
and incomplete coverage of the state space for the 
domain. This is therefore an area for future work. 
A further interesting related piece of future work 
might be to use expert knowledge as a 'post-pro- 
cessor' for pruning, by deleting only those rules 
above the standard pruning threshold which are 
considered to be invalid by the domain expert, and 
recording any subsequent effects upon system per- 
formance. 

The rule discovery aspect of SFAM can be seen 
as a knowledge engineering facet of the model - 
confirming that a network behaves in a way that is 
acceptable to a domain expert in order to enhance 

Table 5. Effect of different observers on uniformly pruned SFAM performance. 

Observer Accuracy (%) Sensitivity (%) Specificity (%) 

1 94 100 88 
2 92 92 92 
3 96 100 92 
4 86 84 88 
5 96 100 92 
6 94 92 96 
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confidence in the use of the model as a decision- 
support tool. Conversely, our experiments with vari- 
ations in the input features illustrate a machine 
learning facet-establishing the utility of different 
diagnostic features which may be at odds with the 
'received wisdom' of domain experts. Specifically, 
our results indicate that patient age should be 
regarded as a useful diagnostic feature, whereas the 
presence of foamy macrophages is not perhaps as 
useful as is conventionally claimed. Furthermore, 
the SFAM was shown to be robust in the face of 
an irrelevant input feature which did not degrade 
system performance (see also Goodman et al. [44] 
for another experiment concerning fuzzy ART- 
MAP's noise resistance in a different medical 
domain - the prediction of the length of hospital 
stay of pneumonia patients). 

Our findings with different observers providing 
the network inputs also showed the SFAM network 
to be quite robust across potential variations caused 
by subjectivity in feature assignments made by dif- 
ferent pathologists. This is somewhat at odds with 
our previous findings [28]. The previous study, 
which showed a marked decrease in performance 
with an inexperienced observer, only used two 
observers and the inexperienced observer had 18 
months experience compared with a minimum of 
two years in this study. This is therefore an area 
where more research is needed in order to establish 
the limits of and reasons for SFAM's apparently 
variable robustness, probably requiring a larger vol- 
ume of data providing feature ratings from a variety 
of pathologists of different levels of experience. The 
aptitude of individuals for pattern recognition and 
visual discrimination tasks varies and larger numbers 
of inexperienced observers are required before any 
firm conclusions about the system's performance 
with very junior pathologists can be made. Unfortu- 
nately, the collection of data for such a study is a 
non-trivial task. Evidently, an objective method for 
feature extraction would enhance the utility of the 
current system and this remains an area for future 
work. 

A problem with studies where human observers 
are used to make observations which are then used 
in a decision-support system is the separation of 
observational and interpretative processes. In the 
cytodiagnosis of FNAB in a routine (non-teaching) 
setting, pathologists rarely express their decisions in 
component observations and the diagnosis is made 
by a process which is largely subconscious and is 
the result of training the natural neural networks of 
the human brain by observation of past specimens 
and knowledge of their diagnosis/outcome. Since the 
pathologists in this study knew the 'canonical' lists 

of features for the diagnosis of FNAB it is possible 
that their observations may have been biased if they 
made a diagnosis of the specimen whilst recording 
the observed features. The presence of five extracted 
rules which do not correspond with the 'canonical' 
lists is evidence against this as is the evidence that 
the SFAM voting strategy cascade produced a better 
overall performance than the human who made the 
observations which the SFAMs used. The separation 
between observations and diagnosis could be 
improved by selecting microscopic fields of view in 
specimens, digitising them and then displaying them 
to observers in random order so that fields from the 
same specimen were not in an unbroken sequence, 
but this would require numerous images for each 
specimen (since some of the definitions are based 
on the presence or absence of a feature in all cells 
of the specimen) and the resolution of the best 
digitised images is still not as great as those viewed 
directly through the microscope. 

In this study, verbal definitions of observed fea- 
tures were used and the observers were just given 
these with no additional training and no sample 
images. The reliability of observations, especially 
among trainee pathologists, could be improved by a 
more visually-based input system such as a range 
of sample images for each feature displayed on 
a computer screen with a cursor controlled input 
scale [45]. 

We are also considering the development of a 
modified version of SFAM with a more sophisticated 
matching technique between input cases and cate- 
gory clusters. In SFAM, each true input feature 
contributes equally to the match with a category 
prototype. We envisage introducing a variable 
weighting for features, which attaches more impor- 
tance to individual features that are considered to 
be (a) very strongly predictive for the domain and 
(b) most easily identified by an inexperienced path- 
ologist. This should increase the robustness of an 
SFAM-based decision-support tool when used by an 
inexperienced pathologist, by effectively building a 
priori expert knowledge into SFAM. 

Another area for future work is to automate the 
CF threshold selection process for the differential 
category pruning described in Section 3.6. In the 
present implementation, the CF thresholds were 
'hand-set' by the system's designer to achieve the 
desired changes in network performance. However, 
this is a laborious trial-and-error process which con- 
trasts poorly with the general ease of tuning of the 
basic SFAM model. 

Finally, an important area for future work is 
to investigate the claimed potential for incremental 
learning with the SFAM model. The relatively small 
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size of the data set did not allow such a study to 
be made in this application. However, were further 
data for the domain to become available, the existing 
networks could be trained on this new data without 
the necessity also to retrain with the original data. 
It should be noted though that there are a few 
caveats to this statement. Specifically, the voting 
strategy and category pruning are essentially 'off- 
line' learning processes which cannot immediately 
be employed in conjunction with continuous (case- 
by-case) learning. The voting strategy requires ran- 
domisation of the ordering of input data which 
obviously disrupts its original temporal order. Simi- 
larly, the category pruning process requires a 'batch'  
of input data to form the prediction set. However, 
these features can still be feasibly employed in the 
less stringent circumstance of incremental learning 
on a batch of new data, rather than on-line learning 
on a case-by-case basis. For example, suppose a 
further 125 of the most recent hospital cases were 
to become available for the domain. This could 
form a new prediction set and the existing 125 item 
prediction set would be freed to serve as further 
training data. This new training data could then be 
randomised and applied to the ten existing unpruned 
networks. Category pruning could then occur on the 
basis of performance on the new prediction set. This 
would yield new pruned networks to be employed 
in the SFAM cascade which should be adapted to 
the most recent data while still retaining useful older 
associations, without having to have undertaken 
extensive retraining from scratch. 
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Nomenclature 

DYS: 

ICL: 

3D: 

NAKED: 

FOAMY: 

NUCLEOLI: 

PLEOMORPH: 

SIZE: 

NECROTIC: 

APOCRINE: 

True if majority of epithelial cells are 
dyhesive, false if majority of epithelial 
cells are in cohesive groups. 
True if intracytoplasmic lumina are 
present, false if absent. 
True if some clusters of epithelial 
cells are not flat (more than two 
nuclei thick) and this is not due to 
artefactual folding, false if all clusters 
of epithelial cells are flat. 
True if bipolar 'naked' nuclei in 
background, false if absent. 
True if 'foamy' macrophages present 
in background, false if absent. 
True if more than three easily visible 
nucleoli in some epithelial cells, false 
if three or fewer easily visible nucleoli 
in epithelial cells. 
True if some epithelial cell nuclei 
with diameters twice that of other 
epithelial cell nuclei, false if no 
epithelial cell nuclei twice the 
diameter of other epithelial cell nuclei. 
True if some epithelial cells with 
nuclear diameters at least twice that of 
lymphocyte nuclei, false if all 
epithelial cell nuclei with nuclear 
diameters less than twice that of 
lymphocyte nuclei. 
True if necrotic epithelial cells present, 
false if absent. 
True if apocrine change present in all 
epithelial cells, false if not present in 
all epithelial cells. 


