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The ANFIS Approach Applied to AUV Autopilot Design 
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This paper describes the application of neurofuzzy 
techniques in the design of autopilots for controlling 
the yaw dynamics of an autonomous underwater 
vehicle. AutopiIots are designed using an Adaptive- 
Network-based Fuzzy Inference System (ANFIS), a 
chemotaxis tuning methodology and a fixed fuzzy 
rule-based approach. To describe the yaw dynamic 
characteristics of an autonomous underwater 
vehicle, a realistic simulation model is employed. 
Results are presented which demonstrate the superi- 
ority of the ANFIS approach. It is concluded that 
the approach offers a viable alternative method for 
designing such autopilots. 

Keywords: Autonomous underwater vehicles; Auto- 
pilots; Neurofuzzy control 

1. Introduction 

The running costs of manned submersibles and sup- 
port ship platforms for remotely operated vehicles 
are becoming increasingly high. As a consequence, 
to reduce financial overheads, considerable interest 
is now being shown in the development and 
construction of Autonomous Underwater Vehicles 
(AUVs) to undertake tasks such as ocean surveying 
for geological and biological reasons, pipeline 
inspection, explosive ordnance disposal and covert 
surveillance. For this type of vehicle to be truly 
autonomous, it is necessary for it to possess a 
reliable and robust onboard Navigation, Control and 
Guidance (NCG) system. A key element of the NCG 
system is the control subsystem, which is responsible 
for maintaining the vehicle on course. Several 

Correspondence and offprint requests to: Dr R. Sutton, Marine 
Technology Division, Institute of Marine Studies, University of 
Plymouth, Drake Circus, Plymouth PL4 8AA, UK. 

advanced control engineering concepts including H~ 
[1], sliding mode [2] and adaptive theories [3] are 
being employed in the design of autopilots, and 
have met with varying degrees of success. 

Artificial intelligence approaches are now also 
being introduced into the design process. Autopilots 
formulated using fuzzy logic [4,5] and Artificial 
Neural Network (ANN) methods [6,7] have been 
reported, and shown to be endowed with commend- 
able robustness properties. Encouraged by such 
results, this paper considers the development of a 
course-keeping autopilot based on the innovative 
neurofuzzy methodology of Jang [8], known as the 
Adaptive-Network-based Fuzzy Inference System 
(ANFIS), which was successfully employed to pro- 
duce a control strategy for the classical inverted 
pendulum problem. 

With the ANFIS approach, implementation of the 
controller design differs in form from the more 
traditional ANN in that it is not fully connected, 
and not all the weights or nodal parameters are 
modifiable. Essentially, the fuzzy rule base is enco- 
ded in a parallel fashion so that all the rules are 
activated simultaneously, so as to allow network 
training algorithms to be applied. As in Jang's orig- 
inal work, here a backpropagation algorithm is used 
to optimise the fuzzy sets of the premises in the 
ANFIS architecture, and a least squares procedure 
is applied to the linear coefficients in the consequent 
terms. However, for this study a new cost function 
is introduced. For performance assessment purposes, 
comparisons are made with a fuzzy controller whose 
premises are tuned using a chemotaxis algorithm [9] 
and a fixed fuzzy rule-based autopilot. 

2. Modelling the AUV Dynamics 

Figure 1 shows the complete control authority of 
the AUV model. However, it should be noted that 
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Fig. 1, Control authority of the AUV. 

for this study the upper and lower canards are the 
only surfaces used to control its yaw dynamics. 
Dimensionally, the model represents an underwater 
vehicle which is 7 m long, 1 m in diameter and has 
a displacement of 3600 kg. 

The equation of motion describing the dynamic 
behaviour of the vehicle in the lateral plane is as 
follows [10]: 

E• = Fx + Gu (1) 
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and the state variables are V, R, ~b, P, 4~. For 
the interested reader, a nomenclature for the AUV 
parameters can be found at the end of the paper. 
To implement Eq. (1), use is made of an AUV 
MATLAB/Simulink simulation model supplied by 
the Defence Research Agency (DRA), Sea Systems 
Sector, Winfrith. The model, has been validated 
against standard DRA non-linear hydrodynamic code 
using tank test data and an experimentally derived 
set of hydrodynamic coefficients from the Institute 
of Oceanographic Science's AUTOSUB vehicle. In 
addition, the MATLAB/Simulink model structure 
also takes into account the dynamic behaviour of 
the canard actuators by describing them as first 
order lags with appropriate limiters. 

As can be seen in Eq. (1), the roll cross-coupling 
dynamics are included. However, control of the roll 
channel is not considered here. 

3. Neurofuzzy Autopilot Design 

As mentioned above, the fuzzy controller design 
used in this study is based on the ANFIS. Func- 
tionally, there are almost no constraints on the mem- 
bership functions of an adaptive network except 
piecewise differentiability. Structurally, the only 
limitation on network configuration is that it should 
be of feed-forward type. Due to these minimal 
restrictions, the adaptive network's applications are 
immediate and immense in various areas. 

If it is assumed that the fuzzy inference system 
under consideration has multiple inputs and one 
functional output (D, then the fuzzy rule-based algor- 
ithm may be represented in the first order Sugeno 
form, as shown below [11]: 

Rule 1: I fx  is Al and y is BI thenf~ = p l x  + q~y + rl 

Rule 2: I fx  is A2 and y is B2 then f2 =p2x + q2Y + r2 

Rule n: I fx  is An and y is B~ then f,, =pnx + q,y + r,, 

The corresponding ANFIS architecture is shown in 
Fig. 2. 

The node functions in the same layer are of the 
same function family as described by the following: 

Laye r  1. Every ith node in this layer is an adaptive 
node with a node output defined by 

01,  i = ts (2) 

where x is the input to the general node and Ai is 
the fuzzy set associated with this node. In other 
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Fig. 2. The ANFIS architecture. 

words, outputs of this layer are the membership 
values of the premise part. Here, the membership 
functions for Ai can be any appropriate para- 
meterised membership functions. Here Ai is charac- 
terised by the generalised bell function 

1 

1 + k\~l / 

where {a~, bi, ci} is the parameter set. Parameters 
in this layer are referred to as premise parameters. 

Layer 2. Every node in this layer is a fixed node 
labelled II, which multiplies the incoming signals 
and outputs the product or T-norm operator result, 
e.g. 

02,  i = W i = ]~LAi(X ) X /xBi(Y), i = 1, 2 (4) 

Each node output represents the firing strength of a 
rule. (In fact, any other T- norm operators that 
perform the fuzzy AND operation can be used as 
the node function in this layer). 

Layer 3. Every node in this layer is a fixed node 
labelled N. The ith node calculates the ratio of the 
ith rules' firing strength to the sum of all rules' 
firing strengths: 

Wi 
0 3 i  = l ' ~  1 - -  , i = 1, 2 (5) 

' W1 +142 2 

For convenience, outputs of this layer are called 
normalised firing strengths. 

Layer 4. Every ith node in this layer is an adaptive 
node with a node function 

O4,i = l~2"~ii = 142i(pix + qiY + ri) (6) 

where ~i is the output of layer 3 and {p~, qi, r~} is 
the parameter set. Parameters in this layer are 
referred to as consequent parameters. 

Layer 5. The single node in this layer is labelled 
E, which computes the overall output as the sum- 
mation of incoming signals: 

Zw4 
05,i = overall output = "~ r  - i (7) 

i E Wi 
i 

Thus, an adaptive network that has exactly the same 
function as a Sugeno fuzzy model may be con- 
structed. 

4. Chemotaxis Tuned Autopilot 
Structure 

The structure of the chemotaxis tuned autopilot is 
similar to that described in Section 3 and depicted 
in Fig. 2 for the ANFIS architecture. However, there 
are dissimilarities. In this case, the nodes in Layer 
4 are static, and therefore are not modifiable. Also, 
during the tuning process, input data are only fed 
forward through the network in order to generate 
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an error function. The chemotaxis algorithm is then 
applied to optimise the premises. 

5.  T r a i n i n g  A l g o r i t h m s  

5.1. The Hybrid Learning Rule 

This learning rule was based upon the hybrid learn- 
ing rule of Jang. The system is simulated using the 
dynamic model and data is collected across a tra- 
jectory. This training data is used to compare the 
system trajectory with the desired trajectory, and so 
form the error measure to be used for training of 
the adaptive network parameters. The error measure 
chosen was the integral square of heading error over 
time (ITSE) with a rudder square component added 
to ensure efficient control effort: 

E = X [4'd - 4 ' J  + t,(a)qt (8) 

The parameters to be altered are the fuzzy para- 
meters of both the premise and consequent layers. 
The hybrid learning rule employs the backpropag- 
ation method to update the fuzzy premise para- 
meters, and the recursive least squares method to 
update the fuzzy consequent parameters. 

Writing the premise membership function of Eq. 
(3) as 

1 
Ix,j(x) = f i x  - c~i\=l (9) 

1 + [ t ~ )  J b'a 

then Eq. (9) now represents the jth membership 
function on the ith input universe of discourse, 
where a,j governs the width of set, b 0 governs the 
flatness of the bell function and c o is the centre of 
the set on the ith input universe of discourse. There- 
fore, the learning rule for a general parameter may 
be described as follows: 

OE~ 00~ 

n=l  

OE n O02n OOln 

= -T~ . OO2n O01n OaiJ 
n=i  

(10) 

where ~ is the learning rate, E~ is the error measure, 
P is the number of samples in the trajectory, and 
O~ is the output of Layer 1. If the function O~ = 

00~ is a straightforward flaij) is differentiable then Oa~ 

calculation. This was the motivation for choosing 
the set functions described by Eq. (9). 

The main difficulty is in the calculation of 

R. Sutton and P. d. Craven 

OEn/OO2n. Considering the AUV model as the final 
layer in the adaptive network, this calculation 
becomes simple for this layer: 

005,, - 05n (Tn -- O5n) 2 t ~- p ( O 4 n )  2 (11) 

P 

-- ~ -2(Tn - 05~)t (12) 
n= 1 

There are no adaptable parameters in the vehicle 
model layer. The next layer, Layer 4, is the one that 
produces the defuzzified output. The computation of 
OE,,/OO4n u s e s  a backpropagation of OE,,/O05~: 

#(5) 
OE~ _ OE,, 00~ (13) 

OO4n- E OOn~n O04n 
tT~=l 

where #(5) is the number of nodes in Layer 5. 
Hence, 

OE,, OE~ O05n 
- (14) 

O04n OO5n OOan 

as #(5) = 1. Now O05JOO4n may be written as 

OOs~ dO 
- -  - (15) 
O04n dS~ 

whereby the function relating 4, to 6~ is non-linear 
and the derivative (or Jacobian) is approximated by 

OOsn Os(n) - Os(n - 1) 
(16) 

OO4n -- 0 4 ( / / )  - -  04(n -- l )  

The only layer to be adapted using the backpropag- 
ation method is the first layer. Hence, continuing 
the above process for each layer, the following 
learning rules for each individual parameter within 
Layer 1 are determined: 

~ OE~ O0=~ 
Aaij = -  ~'l" O02n O01n 

n=l 

[ 2bija~2% 1 ) ( X _ _ C i j ) a 2 b i j  (X__Cij)2bij ] 

OE,, O02n 
Ab~ = -  ~" O0=n O01n 

rt=l 

-2a}% (x-co)2%a~% (x-cij)2% In x-c i j  

(17) 

(a~iJ (x-cii)2b~J + (x -cij)2<ja2~,~} = 

P OEn O02n 
Ac i j=-  ~1" ~ O0=n O01n 

n=l  

(18) 
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-2bijai}bij (Cij--x)(Zbij-1)aZbij (-(x-cij))2bij 1 
(19) 

It is given that if an adaptive network's output is 
linear in some of the networks parameters, then 
these linear parameters can be identified by the well 
documented least-squares method. Considering the 
case of one network output 

output  = F([, S) (20) 

where f is the vector of input variables and S is 
the set of parameters. If there exists a function H 
such that the composite function H - F  is linear in 
some of the elements of S, then these elements can 
be identified by the least-squares method. More 
formally, if the parameter set S can be decomposed 
into two sets 

S = $ 1 @ $ 2  (21) 

(where @ represents direct sum) such that H .  F is 
linear in the elements of $2 then upon applying H 
to Eq. (20) yields 

H(output )  = H .  F(i ,  S) (22) 

which is linear in the elements of S=. Now given 
values of elements of S~, P training data can be 
collected for input into Eq. (22), which yields the 
matrix equation 

AO = B (23) 

where 3 ~ is an unknown vector whose elements are 
parameters in $2. This equation represents the stan- 
dard linear least-squares problem and the best sol- 
ution for ~, which minimises 1~4~ - BII 2, is the 
Least-Squares Estimator (LSE) 3 ~* 

~ *  = (ArA) - l  A r B  (24) 

where A r is the transpose of A and (ArA) 1 A r is 
the pseudo-inverse of A if AVA is non-singular. The 
recursive LSE formula can be employed by letting 
the ith row vector of matrix A defined in Eq. (23) 
be aT and the ith element of B be b~r; then 5 ~ can 
be calculated iteratively as follows: 

J~i+l "~i "t- S i + l a i +  1 T _ T = (bi+l ai+1~i), (25) 

T 
Siai+ l ai+ 1Si 

S i + l  : S i  r ' (26) 
1 +ai+ 1 Siai+ 1 

i=O ,  1 , . . . , P -  1 
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where the least-squares estimator 5 ~* is equal to ,~p. 
The initial conditions needed to bootstrap Eqs (25) 
and (26) are ~o = 0 and So = yI where 7 is a 
positive large number and I is identity matrix of 
dimension M • M. 

Consequently, the gradient descent method and 
the least-squares method have been combined to 
update the parameters in an adaptive network. Each 
epoch consists of a forward pass in which inputs 
are presented, matrices A and B are calculated and 
the consequent parameters are updated via the recur- 
sive least-squares method. Additionally, each epoch 
consists of a backward pass in which the derivative 
of the error measure with respect to each nodes 
output is propagated from the output to the input 
of the network architecture. At the end of the back- 
ward pass, the parameters of the premise layer are 
updated by the gradient descent method. 

5.2. Chemotaxis Algorithms 

The main disadvantage of backpropagation is the 
tendency for the search to become trapped in a local 
minimum on the error surface. The more complex 
the network, the more likely this is to happen, as 
the error surface is increasingly multi-dimensional 
and therefore irregular, with more local minima into 
which the partially trained network can fall. An 
alternative is to use less guided methods to search 
the parameter space. Such random methods are vir- 
tually guaranteed to find a global solution, but train- 
ing times may be somewhat extended as there is 
little direction in the search. 

The chemotaxis algorithm was inspired by obser- 
vations of the movement of bacteria in a chemical 
environment, hence 'chemo' - chemical and 'taxis' - 
movement [9]. In the presence of an irritant, bacteria 
would move randomly away in any direction which 
reduced the irritation, until this direction took them 
into an area where the irritation began to increase 
again. A new, random direction would then be 
chosen and if this again led to less irritation, the 
bacteria would head in the new direction, otherwise 
another random direction would be tried. In time 
the bacteria would be located at the global minima, 
furthest from the source of irritation. This behaviour 
may be transformed into a general search algorithm 
for an optimum sets of weights or parameters. The 
increase/decrease in irritation may be characterised 
by an increase/decrease in a suitable cost function 
for the optimisation, and by converting this better/ 
worse situation into a reinforcement signal, accord- 
ing to 
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r(t) = 1, better 

r(t) = 0, worse (27) 

the chemotaxis search algorithm may be classed as 
a reinforcement learning technique. The algorithm 
is summarised in Table 1. 

Given sufficient training time, the algorithm 
should converge to a global minimum of the cost 
function, although given the random nature of the 
search an extended training period may be necessary. 

and ~0~ and ~) are elements of the appropriate uni- 
verses of discourse with membership functions of 
~ei ( ~ )  and IXce~ (q)) respectively. 

Thus, in general, the N rules contained within the 
algorithm of the fixed fuzzy rule based autopilot 
may be expressed as 

Rule 1: If E 1 and CE 1 then Z 1 =f(Et, GEl) else 

Rule 2: If E2 and CE2 then Z2 =fiE> fEz) else 

6. Fixed Fuzzy Rule-Based Autopilot 
Design 

When in operation, such an autopilot uses fuzzy 
rules to interpret its input data and to generate an 
appropriate control output. Within the context of an 
AUV autopilot and its internal structure the rules 
may take the form: 

If yaw error (i),) is negative and yaw rate (q)) 
is positive, then canard demand is flO,, ~5)- 

where, the terms 'negative' and 'positive' are fuzzy 
sets and canard demand is some function of ~ 
and ~). 

By defining universes of discourse for yaw error 
( ~ )  and yaw rate (q)) as E and CE, and describing 
the output in the Sugeno first order form, such rules 
may be expressed as 

If Ei and CEi then Z/=  f ( E  i CEi) 

where the fuzzy subsets E~ and CEi are 

E~ = (4,,, t*~, ( 00 )  c E 

CEi : (~JE,~CEi (Q])) C C E  

Table 1. The chemotaxis algorithm. 

1. Simulate the system with an initial set of 
parameters. 

2. Generate some small random changes in the 
parameters and re-simulate the system. 

3. If the system's performance has improved with 
the new set of parameters, retain the changes and 
re-apply. This is essentially assuming that the 
local cost function gradient will continue to be 
negative in the local area. 

4. If the system's performance has worsened, return 
to step 2. 

5. Continue until the system has reached an 
acceptable level. 

1 

Rule N: If EN and CE N then ZN = flex, CEN) 

To elicit the canard demand output (6,) then 

wi = Ei(O0 A CEi(ip) 

Z wiZi 

~ct - i 
wi 

i 

Results and Discussion 

(28) 

(29) 

In the previous sections, the development of three 
nine-rule Sugeno type fuzzy autopilots has been 
discussed. First, the hybrid learning algorithm of 
Jang was applied to the task of tuning the premise 
and consequent parameters of a fuzzy autopilot 
based on a revised cost function (Eq. (8)), which 
was employed to account for control effort 
reduction. Secondly, the chemotaxis algorithm was 
applied to the task of tuning the premise parameters 
of a fuzzy autopilot only, whilst the consequent 
parameters remained fixed as equally spaced single- 
tons. Finally, a fixed rule base fuzzy autopilot was 
described. This design was included as a means of 
comparing and assessing the performance of the 
chosen neural network tuning methods. 

To adapt the fuzzy parameters of the autopilots, 
the ANFIS and chemotaxis autopilots were encoded 
as adaptive network architectures. Tuning of the 
network parameters then took place over a series of 
positive and negative course changes of 40 ~ at a 
surge velocity of 7.5 knots. This method was con- 
sidered effective and necessary to ensure rule base 
symmetry. 

Resulting from this tuning regime the 7.5 knot, 
the ANFIS autopilot was taken as: 
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if q*~ is N and (0 is N then 8 = -1 .4619  
6~-0.8922(0 + 0.6559 

if ~ is N and (0 is Z then 3 = - 0 . 4 9 1 6 ~ - 0 . 8 8 3 3  
(0 -0 .0502  

if ~, is N and (0 is P then 3 = -0 .5074  
< -0.8987(0 -0 .6972  

if ~ is Z and (0 is N then 8 = -0 .4542  
0, -0 .1090(0 +0.7879 

if 4'~ is Z and (0 is Z then 6 = 0.0000q,~+0.0000 
(0 +0.0000 

if  ~0~ is Z and (0 is P then 6 = -0 .4542qJo-0.1090 
(9 -0 .7879  

if q,~ is P and (0 is N then 6 = -0.5074~0~ -0 .8987 
+0.6972 

if ~0~ is P and (0 is Z then 8 -- -0.4916+~ -0 .8833 
(0 +0.0502 

if ~ is P and (0 is P then 6 = - 1 . 4 6 1 9 ~  -0 .8922  
(0 -0 .6559  

Again, it should be noted that the only parameters 
for adaption within the chemotaxis tuned autopilot 
were the premise parameters, and thus the syntax 
for the final fuzzy autopilot was the same as the 
fixed rule based fuzzy autopilot: 

if ~ is N and (0 is N then 6 = +25.00 

if t)~ is N and ~0 is Z then 8 = +18.75 

if ~0~ is N and ~ is P then 6 = +12.5 

if ~ is Z and (0 is N then 8 = +6.25 

if t)~ is Z and ~0 is Z then 8 = 0.00 

if ~ is Z and ~0 is P then 6 = -6 .250  

if t)~ is P and (0 is N then 8 = - 12.5 

if ~ is P and ~ is Z then 8 = - 18.75 

if qt~ is P and qt is P then 8 = -25 .00  

By using simplified fuzzy if-then rules of this form, 
the difficulty experienced in assigning appropriate 
linguistic terms to the nonfuzzy consequents is avo- 
ided. Indeed, it can be proven that under this form 
of fuzzy if-then rule the resulting fuzzy inference 
system has unlimited approximation power to match 
any non-linear functions arbitrarily well. 

Given sufficient training time, the resulting input 
fuzzy sets for all three autopilots were as shown in 
Fig. 3. Note the non-symmetrical nature of the tuned 
input fuzzy sets over the fixed fuzzy sets. This was 
due to computer truncation errors arising during the 
training process, and the approximate nature of the 
initial conditions required to bootstrap the calcu- 
lation of the sequential least squares estimate for 
the ANFIS tuned input membership functions. 

ANFIS, chemotaxis and fixed rule base error membershi ) functions 
1 

 o.8= 2 
E 0.6 
E " "  

"6 0.4 
.= 
~0 .2  

-o 

0 
-30 -20 -10 0 10 20 30 

yaw error input universe of discourse 
ANFIS, chemotaxis and fixed rule base derivative membership functions 

 o.8 I ~ ;ig 
/%' -1 - 

/ l  & "t 
"o 0 i \ ~  ~ "  "-.. 

-3 -2 -1 0 1 2 3 
yaw rate input universe of discourse 

- -  fixed rule base 
ANFIS training 
chemotaxis training 

- -  fixed rule base 
ANFIS training 
chemotaxis training 

Fig. 3. Input fuzzy sets for the three autopilots. 
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(a) ANFIS training 
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Fig. 4. Yaw responses, canard demands and velocity (surge) responses for the aatopilots. 

c~ ANFIS training 
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0 ' 3'0 40 50 >" 0 10 20 
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Fig. 5. Robustness testing of  autopilots for yaw control over a 
speed range. ~ 5 knots; - -  7.5 knots; - -  �9 10 knots. 

A qualitative assessment of the autopilot responses 
was provided by the AUV models responses to a 
series of random course changes, as shown in Fig. 
4. It can be seen from these results that each course 
changing manoeuvre corresponds to a reduction in 

AUV surge velocity. In particular, the largest course 
change of 100 ~ results in the greatest reduction in 
AUV surge velocity from the nominal value of 
7.5 knots, thus highlighting the realism of the model 
used throughout these simulations. 

Although Fig. 4 does not provide conclusive evi- 
dence of the ANFIS autopilot's superior performance 
over the chemotaxis and fixed rule base autopilots, 
it is apparent that the hybrid learning algorithm of 
the ANFIS technique leads to faster, more accurate 
responses. Additionally, the surge velocity profile of 
the ANFIS autopilot response is not significantly 
different to that of the fixed rule base fuzzy autopi- 
lot. Indeed, it would seem that the ANFIS tuned 
autopilot is somewhat more effective at the course 
changing task than the remaining two autopilots with 
improved response times and only minor increases in 
overshoot as a consequence. Further experiments 
into the selection of the control effort weighting 
parameter for the ANFIS cost function show that a 
suitable compromise can be achieved between course 
changing response time and canard activity. 

Testing each autopilot designed at 7.5 knots over 
the AUV speed envelope provided suitable insight 
into the robustness of each controller. Figure 5 
depicts the yaw responses of each autopilot to a 40 ~ 
course changing manoeuvre at 5, 7.5 and 10 knots. 

At 5 knots, the effectiveness of the canard control 
surfaces is significantly reduced due to the dimin- 
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Table 2. Performance assessment of the autopilots. 
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AUV Model ANFIS autopilot 

~, ~, TR Mp(t) 

Chemotaxis autopilot Fixed rule autopilot 

~, a, T,~ Mp(O 4,, a, T,~ M~(t) 

5 Knots 83.18 33.86 9.76 2.86 
7.5 Knots 59.29 20.98 7.79 1.90 
10 Knots 46.02 13.90 7.51 1.32 

117.74 18.81 16.07 0.02 120.73 18.05 19.10 0.05 
86.53 10.09 12.78 0 88.98 11.06 15.91 0.02 
68.32 9.89 11.30 0 74.46 7.94 13.53 0.02 

ished hydrodynamic forces acting on them. Intuit- 
ively, one would expect increased rise times as a 
consequence of this. During the simulations, the 
chemotaxis tuned autopilot produced some oscillat- 
ory responses about the set points of the validation 
track at the lower operating speed. At 10 knots, the 
response times of each autopilot were significantly 
reduced, often at the expense of increased overshoots 
and in general more oscillatory behaviour. The 
ANFIS autopilot fared exceptionally well with no 
evidence of steady state errors or unstable behaviour 
over the whole speed envelope of the AUV, showing 
good autopilot robustness to speed parameter vari- 
ation. 

On the basis of the qualitative performances, the 
ANFIS tuned autopilot was deemed the best at the 
required course changing manoeuvres, better than 
the chemotaxis tuned and fixed rule base autopilots. 

In the previous section, the qualitative perform- 
ance of each fuzzy autopilot was discussed. This 
section addresses the performances of each autopilot 
in a quantitative manner. As a means of measuring 
the accuracy and rudder activity of a given autopilot, 
the Integral Square Error (ISE) for the yaw error 
(~O~) and the canard demand (6E) are employed: 

q,o = (~d - 4,~ 2 dt (30)  
t l  

6E = (6s - 6a) 2 d t  (31) 
t l  

where ~bd and 6d represent desired yaw angle and 
canard demand, and ~bo and 8a represent actual yaw 
angle and canard demand, respectively. To assess 
the speed of response of the control system, the rise 
time (TR) was calculated for each fuzzy autopilot, 
and the peak overshoot (Me(t))  was calculated to 
assess the oscillatory nature of each response. Here, 
rise time is taken as the time to reach 99% of the 
desired 40 ~ course change, i.e. 39.6 ~ , and the peak 
overshoot is measured as a relative percentage of 
the 40 ~ course change demand. 

As the training took place at 7.5 knots, the robust- 

ness of each fuzzy autopilot was assessed by testing 
at training speed + / -  50%. Thus, Table 2 contains 
figures pertaining to 5, 7.5 and 10 knots. 

Summarised in Table 2 are the results for the 
three fuzzy autopilots. When operating at 7.5 knots, 
it appears the autopilot designed using the ANFIS 
technique was considerably more accurate than those 
of the chemotaxis tuned and fixed rule base auto- 
pilots. However, the minimum rudder demand was 
exercised by the chemotaxis autopilot (coinciding 
with a reduction of course error by 2.75%), the 
activity being 8.77% less than the fixed rule fuzzy 
autopilot, highlighting the convergence of the 
chemotaxis algorithm towards a more optimal prem- 
ise parameter set than those of the fixed rule base 
autopilot. As suggested in the previous section, the 
canard demands of the ANFIS tuned autopilot 
increased over the training period, but remained well 
within the limits of acceptability. Indeed, the canard 
demands produced by ANFIS training were much 
sharper than those of chemotaxis tuning. 

At 5 knots, the autopilot developed using chemo- 
taxis had approximately the same accuracy as the 
fixed rule base fuzzy autopilot. Conversely, the 
ANFIS tuned autopilot was approximately 31.1% 
more accurate, but again, demanded increased canard 
activity, of approximately 87.6%. The canard 
responses of the ANFIS autopilot were deemed 
acceptable at this operating speed as the periods of 
canard saturation did not lead to unstable AUV 
behaviour. 

Finally, the increased effectiveness of the canard 
control surfaces at the higher operating speed of 10 
knots leads to reduced periods of canard saturation 
over the larger course changing manoeuvres. Again, 
the ANFIS autopilot was deemed the best, with the 
most impressive rise times and quite acceptable 
overshoots. 

8 .  C o n c l u s i o n s  

The work described in this paper demonstrates that 
yaw autopilots for AUVs may be designed using 
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Jang's  ANFIS approach. It is important to note that 
in this study, the design of the autopilot is the result 
of a fusion of neural and fuzzy techniques. However, 
a distinction exists, when compared to other neuro- 
fuzzy approaches, insofar as the autopilot itself is 
entirely fuzzy and the network style implementation 
of the working controller is merely a convenience. 
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