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Abstract: Many problems of optimization involve the minimization of an objective function on a 
convex cone. In this respect we define a concave gauge function which will be used in interior point 
methods. 

Application are given in particular on the space of real symmetric matrices. 
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1 Introduction 

People working in convex analysis and opt imizat ion are familiar with convex 
gauge functions. A convex gauge function is associated to a closed convex set 
C verifying the following properties: 0 ~ int(C) and 2x e C for all x e C and 
2 e [0, 1]. In  a similar way, a concave gauge function is also associated to a 
closed convex set C but now this set verifies the two properties: 0 ~ C and 2x e C 
for all x ~ C and 2 > 1. The domain  of a concave gauge function is the cone 
generated by C; a special case is when the value of  this function goes to 0 when 
x goes to the boundary  of the cone, we speak then of a barrier gauge function. 
Barrier functions can be used in optimality problems where the objective func- 
tion is to be minimized on the cone. Indeed, potential functions, in the same 
spirit that  the Karmarka r ' s  potential function, can be derived from barriers 
functions and be used for interior point  methods.  

The paper is organized as follows. In section 2, we first recall some results on 
sets and cones then, we introduce concave gauge functions and we give some of 
their properties. Section 3 deals with the subdifferentiability of these functions. 
We give some examples first in section 4 on the Euclidean space R n, next in 
section 5 on the space of  real symmetric matrices and finally in section 6 on the 
Lebesgue space L2(I2) where 12 is a compac t  set of  R ~. In  section 7, we define 
potent ia l  gauge functions and give condit ions for which these functions are 
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convex. Examples are given in section 8. In section 9, we study the quasi- 
convexity of potential gauge functions and finally, in section 10, we consider an 
example of a class of potential gauge functions on the space of real symmetric 
matrices. 

Throughout  this paper, we use the following notation. Given E a reflexive 
Banach space, its topological dual E' is also a reflexive Banach space for the 
n o r m  

IITII =sup{l<T,x>l:  Ilxll ~ 1} , T e e '  

where (T, x )  is the value of T at x. 
Let C be a subset of E. We denote by int(C), cl(C), Bd(C), and cony(C) the 

interior, the closure, the boundary and the convex hull of C respectively. If A is 
an n x n real matrix, A t, trace(A) and det(A) are the transpose, the trace and the 
determinant of A respectively. If A is symmetric positive definite and p s R we 
set A p = Qt diag((2~ . . . . .  2p)t)Q where 21 . . . . .  2~ are the n positive eigenvalues of 
A and Q is an orthogonal matrix such that A = Qt diag((21 . . . . .  2n)~)Q. I fx  s R n, 
x = diag(x) is the real n x n matrix such that X,, i = 0 i f / # j  and Xi. ~ = x, for 
all i s  {1 . . . . .  n}. Finally, we denote by the closure of some function f ,  the 
smallest upper semi continuous function which is greater than f.  

2 Concave Gauge Functions and Duality 

For C, K c E, define 

C ~ = { x * s E ' : ( x * , x ) > l , v x s C }  

and 

K + = { x * s E ' : ( x * , x ) > 0 ,  V x s K }  ; 

then C m is a closed convex set and K § is a closed convex cone. If K is a 
nonempty closed convex cone then K ++ = K. 

Denote by c~(c~,), the class of nonempty closed convex sets C of E(E') such that 

0 r  and C =  U 2 C .  

Assume that C s ~ and let K be the closure of the cone generated by C, i.e., 
/ \ 

K =  c l ( L ) 2 C ~ .  Then C * s ~  ', K + is the closure of the cone generated by C a 
\z~o / 
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and C e �9 = C. F o r  all these results on the duality between sets and  cones see for 
instance Ruys-Weddepoh l  1-17], Tind 1,18] and references herein. 

Given  C ~ c~, define q~c by qgc(X ) = inf{(x*,  x ) :  x* ~ c e } .  Then C = {x ~ E: 
qJc(X) >-- 1 }, and  q>c is concave,  upper  semi cont inuous,  positively homogeneous  
and nonnegat ive  on its domain .  Conversely,  given tp a function having these 
properties,  set C --- {x ~ E: q~(x) > 1} then C ~ c~ and q> = ~o c. 

Not ice  that  dom(~o) = {x ~ E: ~0(x) > - ~ }  = {x ~ E: ~o(x) > 0} and is the 
closure of  the convex cone generated by C and, 

{x s E: ~o(x) > 0} = U 2 c  . 
2 > 0  

We set 

K = d o m ( t p )  and / s  . 

The  function q~ is called a concave gauge function of C and by extension of K;  
it verifies the following properties.  

Proposition 2.1: 

i) r is the closure o f  the function r  = sup{2 > O: x 6 ).C} 
ii) Triangular inequality: 

~o(x + y) >_ ~o(x) + ~o(y) , 

iii) ~0 is K-monotone, that means 

for all x ~ E and for all y e E . 

qg(x + y) > q~(x) , for all x ~ E and for all y ~ K , 

and 

q~(x + y) > q~(x) for all x ~ K and for all y e ~; . 

Proof." 

i) Let x ~/~,  then the set d = {2:2 ~ (0 + ~ )  and  x ~ 2C} is non  empty.  Since 
C e r = C, then (x* ,  x )  _> 2 for all x* ~ C e and for all 2 ~ d. Consequent ly  
O(x) <_ ~o(x). 



46 A. Barbara and J.-P. Crouzeix 

Suppose for contradiction that r < q~(x) and let 2 = q~(x), then x r 2C. Let 
I = {tx: t ~ [0, 1]}. Then I is a convex compact set which does not intersect 2C. 
Hence, according to separation theorems, there exist a s E' - {0} and e s R such 
that (a, t x ) <  ~ < (-2a, y )  for all y s C and for all t s [0, 1]. Therefore, we 
deduce that e > 0, 2e- la  e C a and (2e- la ,  x )  < 2. Then 

= q)(x) = inf{(x*,  x ) :  x* ~ C ~ } <_ (2o~-1a, x )  < i 

which is absurd. 
ii) According to (i) we have 

(x*, x + y)  _> (x*, x )  + ~(y) for all x ~ E, for all y e E and for all x* e C ~ 

and so ~(x + y) > ~(x) + ~(y). 
iii) is a consequence of (ii). [] 

Just after the submission of this paper, we have been aware of some works 
by Balan [1], [2], Calvaire [5] and Calvaire-Fitzpatrick [6] in mathematical 
physics. In particular Balan has introduced what he calls pseudo-superadditive 
norms and superadditive norms in order to characterize Minkowski-space time. 
The Minkowskian norm I1" II, is defined by 

II(t, x)ll, = x / t  2 - tlxll 2 if(t, x) e K 

where K = {(t, x) e N x N3: t 2 > ilxl12}. K is called the light cone. Pseudo- 
superadditive and superadditive norms are closely related to concave gauge 
functions. Indeed, following Balan a real function f is said to be a pseudo- 
superadditive norm on a convex cone K if the following properties hold: 

p ( x ) > O  for a l l x e K ,  

p ( 2 x ) = 2 p ( x )  for a l l x ~ K  and 2 > 0 ,  

p ( x + y ) > p ( x ) + p ( y )  for allx,  y e K  . 

It is said to be a superadditive norm if in addition: 

p ( x ) = O  if and only if x = 0  . 

Hence a pseudo-superadditive norm extended by upper semicontinuity to the 
closure of K is a concave gauge function of this set. 
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Some of  the examples we give in this paper  appear  also in Calvaire [5]. 
Calvaire-Fitzpatrick [6] have used superadditive norms to characterize Lorenz 
spaces. 

In the same manner ,  we define concave gauge functions on the dual space E'. 
Let q~ be a concave gauge function on E, then C = {x �9 E: q~(x) _> 1} �9 ~ and 
C a �9 if'. We set qja = ~Oc," Since C a a = C, a thoroughly  symmetric duality 
exists between q~ and q~a. In particular ~o a a = q~. 

Definition 2.1: Let K be a closed convex cone in E such that int(K) ~ ~ and r a 
concave gauge function verifying the following properties, 

i) dom(qg) = K,  
ii) q~(x) = 0 for all x �9 Bd(K), 

then ~o is called a concave barrier function of K. 

Remark: A concave  gauge function is not  necessarily a concave barrier function 
of its domain,  take for instance: 

i fx  �9 [0, +0o)" , 

if not  . 

Then dom r = [0, + ~ ) " ,  ~o is a concave gauge but not  a concave barrier func- 
tion of [0, + ~ ) " .  

Proposition 2.2: Let q~ be a concave gauge function on E and C = {x �9 E: q~(x) > 
1}. Then 

i) x* e C a if and only if for all x e dom(qg) (x*, x )  > ~o(x), 
ii) ( - q 0 * ( x * )  = 5 ( - x * ,  Ca) for  all x* �9 E', 

iii) Let r �9 ( - ~ ,  0) u (0, 1) and s be such that 1/r + 1/s = 1. Then for all x* e E', 
if  r �9 (0, 1) 

= 

L + ~  

if ~ o a ( - x  *) > 0 , 

if not 

and if r ~ ( -00 ,  O) 
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fr - - 1  e s  , 

(~')*(X*) = ~ ( e  
) ( - x  ) 

L + o o  

i f  - x *  ~ K + 

o t h e r w i s e  . 

Proof." 

i) By definition of C ~ 

x* e C ~ if and only if (x*, x )  > q~(x) for all x such that q~(x) > 1 

and by positive homogeneity 

x* e C ~ if and only if (x*, x )  - q~(x) > 0 for all x ~ d o m  ~o . 

ii) By definition of the conjugate (-q~)*(x*) = sup{(x*, x )  + tp(x): x ~ d o m  q~}. 

Since q~ is positively homogeneous, 

(-tp)*(x*) = ~ O  i f ( x * , x ) + q ~ ( x ) < O f o r a l t x ~ d o m q ~  , 

L§ otherwise . 

Hence 

(-~o)*(x*) = ~ 0  if - x *  e C ~ , 

L + ~  otherwise . 

r 
iii) Set e = ~]. Then (-etp")*(x *) = sup{(x*, x )  + eq~(x): x ~ d o m  q~}. Since q~ 

is positively homogeneous 

( 'e~o')*(x*) = sup{k(x*, x )  + ek'~o~(x): ~o(x) > O, k > O} >_ 0 . 

It follows that ( - eq~r)*(x *) = + ~ if there exists x e dora q~ such that  (x*, x )  > 0. 
Assume that x* e - -K  + (i.e. (x*, x )  < 0 for all x ~ d o m  q~). 

For  x ~ E such that  tp(x) > 0, define ~(x) = sup{k(x*, x )  + ekrq~(x): k > 0}. 
Assume that r e (0, 1). Then 
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a(x) = 1-7 r ( ( - x * ,  x)/q~(x)) s 
r -  

49 

and then 

[ m r  
( -~o ' )* (x*)  = ~ 7 -  [ sup{(  - x * ,  x)/~o(x): ~o(x) > 0}] ~ 

1 - r  
- ( ~ e ) , ( _  x , )  . 

r s 

Finally assume that  r ~ ( - o o ,  0). Then  

r - 1  , 
~(x) = ~ ( ( -  x , x ) / ~ ( x ) )  ~ 

and then 

r -- 1 [ s u p { ( - x * ,  x)/tp(x): q~(x) > 0}] s 
(~ ' )* (~*)  = ( 2 7 ~  

r - 1  
= (_r)--~(q,e)S(-x *) . [ ]  

Now,  let E and  G be two reflexive Banach spaces, let K be a closed convex 
cone of E and  let g: G --+ E, 

Definit ion 2.2: g is said to be K - concave i f  f o r  all x* ~ K + the func t ion  x ~-* 

(x*,  g(x ) )  is concave, g is said to be K-usc  i f  f o r  all x* ~ K + the func t ion  x 

(x*,  g(x ) )  is upper semi continuous. 

Remark:  I t  is easy to see that  g is K - concave if and only if for all (x, y) e G 2 and 
for all t ~ [0, 1] 

g( tx  + (1 - t)y) - tg(x) - (1 - t)g(y) e K . 

Proposi t ion 2.3: Le t  q~ be a concave gauge func t ion  such that dom tp = K.  
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i) I f  g is K --  concave then q~ o g is concave on G. 
ii) I f  g is K - use then q~ o g is upper semi continuous on G. 

Proof:  

i) Suppose g K - concave. Then, for all t ~ I-0, 1] and (x, y) ~ G z we have 

gCtx + (1 - t)y) - tg(x)  - (1 - t )g(y)  ~ K 

N o w  q~ is concave and K , m o n o t o n e  therefore 

qg(g(tx + (1 - t)y)) >_ q~(tg(x) + (1 - t )g(y))  > tqg(g(x)) + (1 - t)q~(g(y)) . 

ii) Let x ~ G then r o g(x)  = inf{(x*, g(x)):  q3e(x *) _> 1}. Since g is K - use 

then q~ o g is upper  semi cont inuous functions as the inf imum of upper  semi 
cont inuous  functions. [ ]  

Proposi t ion 2.4: L e t  q~ be a concave gauge func t ion  on R" such that  dora ~o = 

[-0, + ~ ) " .  L e t  91, 92 . . . . .  9 ,  be n concave gauge func t ions  defined respect ively  on 

E l ,  E 2 . . . .  , E .  n re f lex ive  Banach spaces. 

Def ine q /by ,  

O(x) = q~(gl(xl) ,  g2(x2) . . . . .  g . ( x . ) )  f o r  all x = (x 1, x 2 . . . .  , x , )  e I-I Ei 

then ~k is a concave gauge func t ion  on I q  Ei and ~k ~ is given by 

@*(x*)  ~ �9 ~ ~ �9 �9 �9 , = q) (gx (x l  ), g2 (x2), . . . ,  ge. (x*))  f o r  all x*  = ( x l ,  x a, . . . ,  x* )  ~ l I E, 

where  E'I , E'2 . . . . .  E', are respect ive ly  the topological  dual spaces o f  E 1, E 2 . . . . .  E, .  

Proof." Let K = [0, + ~ ) "  and  g be defined by g(x)  = ( g l ( x l ) ,  g2(x2) . . . . .  g, (x . ) ) .  
Then  ~0 o g is positively homogeneous  and positive on its domain  which is equal  
to l i  dora gv Since g is K -  concave and K -  usc, q~ o g is a concave gauge 
function on 1-I E,. Let x* = (x* . . . . .  x* )  E dora ~ ,  then 

~ke(x *) = i n f{~  ( x * ,  x , ) :  (~(gl(Xl) . . . . .  gn(Xn)) >_ 1} 

= i n f{~  (x*,  x,) :  tp(y) _> 1, g,(x,) > y, f o r  all i) , 
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and by duality 

Oe(x*) = sup {~  y,z i + ~ inf{(x*, x,) + g,(x~): xi ~ domg,}} 
( y , z ) e K  2 

= sup{~ yiz~ - zi(--g)~(--x*/zl): z ~ int(K) and y 6 K} 

= sup{~ y,zi: g~(x*) > z~ for all i and q~(y) >_ 1} 

= sup{~  y ,g? (x* ) :  q)(y) >_ l}  

= q,.(g~(x~;) . . . .  , g e ( ~ . ) ) .  

51 

[] 

3 Subdifferential of Concave Gauge Functions 

Let us recall that the subdifferential of a concave function ~ is defined as 

dff(x) = {x*: 4(x) + (x*, y - x)  > 4(y), for all y ~ E} . 

Then we have the following result: 

Theorem 3.1: Let q~ be a concave gauge function and C = {x e E: ~0(x) k 1}. Then 

i) x* ~ c3r if and only if (x*, x )  = q~(x) and x* ~ C a, 
ii) q3(x)tpe(x *) < (x*, x), for all x ~ dom ~o, x* ~ dora ~o% 

iii) Assume that (x*, x )  > 0 then the three following statements are equivalent. 

~o(x)~oe(x *) = ( x * ,  x 5  , 

x/q~(x) e ~ o ~ ( x * )  , 

x*/~o~(x *) ~ t~o(x) . 

Proof." 

i) Assume that x* e c3r then for all y e E 

r  <_ r  + ( x * ,  y - x )  . 
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Set first y = 0 and next y = 2x then ~o(x) > (x*, x)  and q~(x) < (x*, x). 
Hence q~(x)= (x*, x)  and q~(y)< (x*, y)  for all y e E. It follows that 
x* e C e. The converse part is immediate. 

ii) Let x ~ dom q) and x* e dom q~e, then (x*, x)  _> 0. Thus the inequality holds 
when q~e(x*) = 0. 

Suppose now tpe(x *) > 0. Since (o(x) = inf{(y*, x): q~e(y,) > 1}, then (x.) 
q~(x) _< ~0e~,) ,  x and the result follows. 

iii) is a direct consequence of (i). [] 

4 Application to the Euclidean Space 

In the different examples of this section, we shall frequently use the following 
result of P. Newman [16], Crouzeix [7-1. 

Proposition 4.1: Let f be a quasiconvex positively homogeneous function on •n, let 
us denote by D the domain of f ,  and assume it to be non empty, l f  f is lower semi 
continuous at every point of D and if one of the two following conditions is true, 
then f is convex. 

i) f (x)  >_ 0 for every x. 
ii) f(x) < 0 for every x belonging to ri(D). 

Remark 4.1: The result remains true for any reflexive Banach space E by replacing 
condition ( i i )by the following statement: "cl({x ~ E: f ( x ) >  0}) is dense in 
dora(f)". 

Example 4.1: Let a e (0, +0o) n and let r be defined as follows 

j'(l-I x~,) 1/~ i fx  e [0, +o0)" , 
r 

otherwise 

where ct = ~ a i. 



Concave Gauge Functions and Applications 53 

Proposition 4.2: 

i) r is a concave barrier function on [0, +co)", 

ii) IS(x) = ~ r for all x �9 ~", 

iii) I]x~ '  < for all (x, y) e (0, +oo)", (4.1) 

the equality holds, if and only if there exists a real 2 > 0 such that x = 2y. 

Proof." 

i) Clearly i is upper semi continuous, positively homogeneous on its domain 
[0, ~)n, positive on (0 + oo)" and satisfies if(x) = 0 for all x �9 Bd([0, +~)").  
Furthermore the function ~ defined by 

( ( x ) = ( ( 1 / ~  a~)~'ai lnxi  - if i fx  �9 (0, +oo)" , not 

is concave. Hence i is quasiconcave and then concave according to proposition 
4.1. 

ii) Let x* �9 (0, +~)" .  Then 

l e ( x  *) = inf{~ xix*: ~(x) >_ 0} . 

we are faced with a classical convex minimisation problem. A point x is an 
optimal solution if and only if there is 2 �9 [0, + ~ )  such that 

I 
x * - 2 a l / x i = O  for a l l i � 9  . . . .  ,n} , 

"~ E ai In x i = 0 . 

Hence xi = 2ai/x* and 2 = (1/ i (a))~(x*)  and finally for all x* �9 (0, + ~ ) "  

l * ( x  *) = ( ~  a i / i (a ) ) i ( x* )  �9 

By continuity, we extend the result on [0, +~)" ;  outside we know that l e ( x  *) = 
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iii) The last result which appears here as a direct consequence of theorem 3.1 
is a well known result, see for instance theorem 3 in Gaffke and Krafft [11-]. [] 

Example 4.2: For p e (--m, O) u (0, 1) let ~p be defined by 
ifp E (0, 1) 

[(y. x/') ~/p 

G(x) = 10_~ 

i f x e K a n d x r  , 

i fx = 0 , 

otherwise 

and for p < 0 

( (V  xe)l/p if x e int(K) , 

if x E Bd(K) , 

otherwise . 

Proposition 4.3: Set q be such that l ip + 1/q = 1. Then 

i) r is a concave gauge function, 
ii) ~pe = ~q, 

iii) ( ~ x f ) l / p ( ~ y ~ )  TM < ~ x , y i f o r  all (x, y) ~ (0, +00) 2". 

Proof: First assume that p ~ (0, 1), then ~p is positively homogeneous, upper 
semi-continuous and positive on the interior of its domain which is equal to 
[0, +co)". Since (~ is concave, ~p is quasiconcave and then, according to proposi- 
tion 4.1, concave. Hence ~p is a concave gauge function. 

Let x* e (0, +oo)" and set C = {x: ~,(x) > 1}. Then ~ ( x * )  = inf{(x*, x): 
x s C}. Since the function x ~ (x*, x )  is inf-compact on C, there exists y ~ C 
such that 

~ ( x * )  = (x*, y )  . 

According to Kuhn-Tucker theorem, there exists 6 s [0, +oo) such that 

x* - 6(~" yf)~/P-~ YP-~e = 0 (1) 
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and 

a( p(y) - 1) = o 

with e = (1, 1 . . . . .  ly  and Y = diag(y). Since x* =~ 0, we get 6 ~ 0, thus 

{,(y) = 1 . (2) 

Set 2 = 6 ( ~ y f )  */p-1. Then (1) implies y =  2-1/{P-I)X*I/~P-t)e with X * =  
diag(x*). So by replacing y by the expression above,  we obtain  the following 
equali ty 

and f rom (2) we get 

1 = ~ yP = 2 -p/{p-*~ ~ Xi p/(p-1) , 

that  means  2 = (y'x*q) TM with 1/p + 1/q = 1. So 

{~(x*) = r for all x* e (0, +or)"  

and (ii) follows by continuity.  
The  case when p < 0 is obta ined  by duality. 
(iii) is a direct consequence of theorem 3.1. [ ]  

Remark: {p is a concave barr ier  function of K if and only if p e ( - 0 %  0). 

Example 4.3: Let us now consider {_~ defined by 

~- oo = ~ mini xl if X e K , 

L - o o  otherwise . 

Proposition 4.4:4-00 is a concave gauge function and r = ~1, where 

~l(x*) = ~ x* for all x* e 10, +oo)" . 
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Proof." ~_ ~ is a concave gauge function as being the infimum of concave gauge 
functions.  

Let x* e [0, + ~ y  then the following optimisation problem 

r  = inf{(x*, x) :  ~(x) > 1} 

= i n f{ (x* ,x ) :x l  > 1 Vi~ {1 . . . . .  n}} . 

admits for a unique optimal solution (1, 1, . . .  1), thus, r174 = ~ x*. []  

5 Application to the Space of Real Symmetric Matrices 

Set E be the space of n x n symmetric matrices and ~ be the cone of the n x n 
symmetric positive semi definite matrices. As usual, we define 

(A,  B)  = trace(AB) for all A, B E E . 

Given A e E, with eigenvalues d I < d 2 < "-" < d~, we set d(A) be the vector of R ~ 
whose components are dl, d2 . . . . .  dn. 

Theorem 5.1: Let ~: R n ~  R be such that r  r for any permutation 
matrix H.  We define f : E ~ ~ by f (A)  = r 

i) I f  ~ is a concave gauge function on R ~, then f is a concave gauge function on 
E and 

f ~ ( B )  = ~(d(B))  for all B ~ E . 

ii) I f  ~ is a convex gauge function on R ~, then f is a convex gauge function on 
E and 

f~ = ~~ for all B ~ E . 

Remark: It was proved by J. M. Ball [3] that if r is convex on [0, +oo) n, f is 
convex (see also Marques and Moreau [13-1 for a generalization). 
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Proof." 

i) Clearly ~,(~o) satisfies the condition on permutation matrices, therefore f e 
is well defined. 

Let A e E and set 

g(A) = inf{trace(AB): B ~ E, ~e(d(B)) > 1} 

Then 

g(A) = inf{trace(PtDPB): B ~ E, ~(d(B))  > 1} 

inf{trace(DB): B ~ E, r >__ 1} 

inf{trace(Q'DQA): Q ~ (9., .4 = diag(6), 6 ~ R" and ~ ( 6 )  > 1} 

where (9. is the set of the orthogonal matrices, D = diag(d(A)) and P e O. are 
such that A = PtDP. 

Notice that for all Q ~ E trace(Q'DQ'4) = (R(Q)d(A), fi) with R(Q) = (qij).2 
Then g(A) = inf{~(R(Q)d(A)): Q ~ (9.} and then g(A) < ~(d(A)). Now R(Q) is 

a doubly stochastic matrix for all Q s 0., therefore, using the following theorem 
(Birkhoff [4], Von Neumann [16]) 

"A doubly stochastic matrix is a convex combination of permutation matrices" 
there exist tl, t2 . . . . .  t,. m positive reals and I-I1, I-I2 . . . . .  1-I.  m permutation 
matrices such that 

t i = l  and R ( Q ) = ~ , t  i l l ,  �9 

Since ~ is concave we get 

~ ( R ( Q ) d ( A ) )  > ~ t,~(H, d(A))  = r  . 

Hence g(A) = f(A). By duality we obtain 

inf{trace(AB): B ~ E, ~(d(B)) > 1} = ~3(d(A)) 

and the result follows. 
ii) Set g(A) = sup{trace(AB): B ~ E, ~~ <_ 1}. Then in the same manner 

as above one has on the one hand 
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g(A) = sup{~(R(Q)d(A)): q e (9.} >_ ~(d(A)) 
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and on the other hand, using again the Birkhoff-Von Neumann theorem, 

g(A) = {(d(A)) . 

Hence by duality we get 

~~ = sup{trace(AB): B e E, {(d(B)) <_ 1} 

and (ii) holds. [] 

Example 5.1: Let r be defined by 

f ( d e t X )  TM i fX  ~ .  , 
r  

\ o o -  otherwise . 

Then q~(X) = r where ~ is the concave gauge function defined in example 
4.1. Hence we have the following result. 

Proposition 5.1: 

i) cp is a concave gauge function, 

ii) ~p~(X) = {n(d~t X)l/" if X e ~ 
- otherwise. 

iii) (det X) TM <_ (1/n)trace(X) for all X ~ ~, 
and the equality holds, if and only if, there exists a real )~ > 0 such that 
X = 2I,, 

iv) det X <_ cn for all X ~ ~ with c = suplA~al. 
i 

v) Let J/r the space of the real n x n matrices; then we have 

]det A] <_ n n / 2 c  n 

where c = sup IA~j]. 
i , j  

for all A ~ ~[~ 
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Proof: The proofs of (i) and (ii) are obtained by Using theorem 5.1. 
(iii) and (iv) are direct consequences of theorem 3.1 and proposition 4.2. Finally 
(v) is obtained from (iv) by setting B = AA t. 

Example 5.2: Set fp(A) = r for all A e E and p 6 [ - o %  0) w (0, 1], where 
r is the function defined in example 4.2 and 4.3. 

Notice that fp(A) = (trace(AP))l/P for all A ~ int(~). 
Using theorem 5.1 and proposition 4.3 we obtain the following result. 

Proposition 5.2: Let p e ( - ~ ,  0) u [0, 1] and q be such that 1/q + 1/q = t. Then 

i) fp is a concave gauge function, 
ii) f ~  = f e, 

iii) Minkowsky inequality: 

( trace(AP) )I/P(trace(B~) ) 1/~ < trace(AB) 

for all A, B E int(~). 

Remark: The concavity of fp and the above Minkowsky inequality have been 
proved by Gaffke and Krafft [11]. 

Corollary 5.1: (trace(C)) 2 <_ trace(A-1)trace(CAC) for all A ~ ~ and C ~ E. 

Proof." Set B = C 2, p = - 1, q = 1/2 and use the above Minkowsky inequality. 
[] 

6 Example of Concave Gauge Functions on Infinite Dimensional Spaces 

Let g2 be a compact set of ~". We consider E = L2(~"2). 

For p ~ ( - ~ ,  0) w (0, 1), let (p be defined by 
ifp e (0, 1) 

i f f >  0 , 

otherwise 
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and if p < 0, 
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(v ( f )  = 0 

i f f  >_ 0 and 1/f  �9 L - v ( ~ Q )  , 

i f f  _> 0 and 1/f  r L-P(g2) , 

. ~ otherwise . 

We recall that  LP(I2) = L2(Q) when p �9 (0, 1). 

Proposition 6.1: Set q be such that lip + 1/q = 1. Then. 

i) ~p is a concave gauge function, 
ii) (~ = (~, 

iii) suppose that p < O, then for 
Igl �9 Lq(12) 

all f,  g E LZ(f2) such that l/Ifl ~ L-P(I2), 

( ~ ", Xlp / "~ llq 

IflP) t~lgl') -< ~lfgl- 

Proof." First assume that  p e (0, 1), then (p is positively homogeneous  and posi- 
tive on its domain.  Let us prove now that (p is upper  semi continuous,  i.e, the set 

{ A = f : f � 9  fP >_ 1 

is closed in L2(g2). 
L e t f ,  be a sequence o fA a n d f  �9 L2(12) such that  lim,~+~ (~a If. - f t2 )  1/2 = 0. 

Since (SafP) x/p < k(~af2)  I/2 where k = (mes(I2)) 2-p/2p we get lim,.+~ (~ If. - 
f ly)  lip = 0 and then lim,_~+~ (Saf ,  P) lip = ( ja fP)  lip _> 1, i.e, f �9 A. Hence (p is 
upper semi continuous.  

(p is quasiconcave because (~ is concave. But c l ({ f  �9 LP(t2):f > 0}) = dom(() 
= { f  ~ L~(f2):f > 0}, so (v is concave according to remark 4.1. Hence (v is a 
concave gauge function. 

Let  f ~ L 2(f2). Then  
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Hence, by duality, 

Set a(2, f )  = inf{~a(fg - 2gP): g ~ LZ(I2), 9 > 0} and suppose that f > 0. Then 
if 1If ~ L-q(t2) we get a(2, f )  = (1/qpq/P)2-q/P~af q and then ~ ( f )  = (~afq) l/q, 
else ~(2, f )  = - ~  and then ~ ( f )  = 0. 

Suppose now that f is such that m e s ( B ( f ) ) ~  ~ where B ( f ) =  {x ~ g2: 
f (x )  <, 0}. 

Set 

�9 f 0  i f x C B ( f ) ,  

gn(X) ~ n/(mes(B(f)) 1/q if x ~ B ( f )  . 

Then Sag, f = n ~ a f  goes to - o o  when n goes to + ~ .  That  means ( ~ ( f )  = 
So = 

Now the case p < 0 is obtained by duality. 
(iii) is a direct consequence of theorem 3.1. []  

7 Potential Gauge Functions and Convexity 

Let K be a dosed convex cone of E such that cl(K) = K and tp be a concave 
gauge function such that dom(tp) = K. Given (p, q) e (0, ~)2, we define f as 
follows, 

f (x ,  t) = tP/(~o(x)) ~ for all x e /~  and t ~ (0, oo) 

extended by lower semi-continuity to the boundary of K • [0, ~) .  Then f is 
called a potential gauge function of K associated to q~. We are interested in the 
convexity o f f .  

Let e* ~/s and set g2,, = {x ~ E: x ~ K, (e*, x )  = 1}. 

Theorem 7.1: 

i) Assume that p = q. Then f is convex on g2e, x [0, +oo) if and only if  for all 
x* ~ E' the function O~(x*, #) = (epe(x * + Ite*)) p is convex in It on the set 
Ie,(x*) = {It ~ R: x* + Ite* e K+}. 
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ii) Assume that p > q, set r = q/p and s such that 1/r + 1/s = 1. Then f is 
convex on s x ['0, +o r )  if and only if for all x* ~ E' the function 

1 - r  ~ , i G(x*, 2) = inf i ~ + ~ - ( q ~  (x + #e*))~21/P-~: # ~ le,(x* ) 

is concave in 2 on (0, + ~ ) .  
The proof  is based on the following result of Crouzeix [7-1, 

Theorem 7.2: Let  f be a quasiconvex function which is lower semi continuous at 
every point of  its domain D. Then f is convex if and only if the function 

F(x*, #) = sup{<x*, x>: f (x )  < p} 

is concave in #. 
Actually, this result was stated for E = R" the Euclidean space, but  it can be 

seen with the help of the proof, that  it remains true for any reflexive Banach 
space. 

Proof  of  Theorem 7.1: Since ~o is a concave gauge function and p > q, ~o q/p is a 
concave function on K and then t - q~/P(x) is a convex function in (x, t). There- 
fore f is quasiconvex on K x [0, + ~ ) .  

Let (x*, t*) ~ E' x E and 2 e E. Set 

F(x*, t*, 2) = sup{<x*, x> + t ' t :  f (x ,  t) < 2, <e*, x> = 1, x ~/~, t > O} 

If 2 < 0, F(x*, t*, 2) = - o r .  
Assume now that 2 > 0. Then  

F(x*, t*, 2) = sup{(x*,  x> + t ' t :  t - 21/Pqg"(x) < O, (e*, x> = 1, x e /~ ,  t > O} . 

If t* < 0 

F(x*, t*, 2) = sup{(x*,  x ) :  (e*, x )  = 1, x ~/~} 

then F(x*, t*, 2) is concave on (--o0, +o0). 
Assume now t * >  0. Notice that F(t*x*, t*, 2 ) =  t*F(x*, 1, 2), hence it is 

enough to prove that F(x*, 1, 2) is concave in 2. 
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Now for 2 > 0, 

F(x*, 1, 2) = sup{(x*, x) + 21/P~p'(x): (e*, x )  = 1 and x ~/(}  , 

therefore by duality, 

F(x*, 1, 2) = inf{sup{(x*, x)  + 21/Pq~r(x) - #(e*, x )  + p: x ~/(}:  # e ~} 

i.e. F(x*, l ,  2 ) = i n f  p + 2 1 / p ( - q ~ ' ) * \  ~/~ ] : p e r  (6.1). 

I fp  = q i.e r = 1 then (proposition 2.3(ii))  

F(x*, 1, 2 ) =  inf{# ~ R: q)e( -x* +l~e*~ } \ -An ]> 1,-x*+pe*eK § 

= i n f { #  e ~ :  ~ o * ( - x  * + pc*) v > 2, - x *  + pc* e K + } 

= i n f { #  ~ ~ :  Ov(-x*, #) > 2, - x *  + #e* e K + } . 

Now {p ~ ~: - x *  + #e* r K +} is a closed convex cone of ~, therefore, there 
exists #o such that {# e ~ :  - x *  + pe* e K § } = [/Zo, + ~ ) .  Since e* e / ( + ,  then 
from the monotonicity of ~pe we deduce that Or(- x*,  p) is a strictly increasing 
function in # and then one to one from [/~o, + ~ )  to [0p(-x*,  #o), +~ ) .  Set 
0 ; 1 ( - x * ,  #) the inverse function of Op(-x*, p) in p then 

fo ; l ( - x  *, 2) if)~ e [0p(-x*,  #o), +oo) 
F(x*, 1, 2) ] 

t. #o otherwise . 

Now Op(-x*, #) is a convex function if and only if O;l(-x *, #o) is a concave 
function and then the result follows. 

Suppose now that p > q, i.e r s (0, 1) then (proposition 2.3(iii)) implies 

} F(x*, 1, 2) = inf p + ~ r - - ( q ~ * ( - x  * + #e*))s21/P-q: ~ e I~,(-x*) 

= G ( - x * ,  2) . [ ]  

Notice that a necessary condition for the convexity o f f  is that p _> 1. 
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8 Examples of Potential Gauge Functions on the Positive Orthant of R" 

In this section E = ~", K = [0, +oo)", e ~ int(K) and p ~ (0, +oo). 

Theorem 8.1: Let  a ~ int(K) and let f be defined by 

f ( x ,  t) = tP/1-- I X f  ai/~ai l f ( x ,  t) ~ ~'~e X [0, "t-O0) . 

Then f is convex on its domain if  and only if  p > ~ ai/min(a,). 

Proof: We apply theorem 7.1 (i) to the function q~ defined in example  4.1. Fo r  any 
x e ~" we are faced with the convexity in 2 of the function 

O(x, 2) = ( ~  ai/l~a(a))(1- I (x i + ~,ei)ai) p/Zai . 

Using the second order  character izat ion of convexity we must  have 

P / 2  ai >_ sup { ~  aiy~/(~, aiyi)2: y s int(K)} 
y 

i.e p > ~" ai/min(ai). [] 

Remark: In the case where ai = 1 for all i = 1 . . . . .  n the result has been estab- 
lished by Crouzeix,  Fer land  and Schaible [8]. 

We consider now for r e [ - o %  0) and  p e (0, +oo) the function 

f ( x ,  t) = (t/~,(x)) p if(x, t) e I2 e x [0, + ~ )  

where ~r is the function defined in example  4.2. Then we have 

Theorem 8.2: 

i) I f  r ~ ( - o %  O) and n > 2 then f is not convex on its domain. 
ii) Set M = maxi e~ and m = min i ei. I f  r ~ (0, 1) then f is eonvex on its domain 

- ] whenever p > 1 - r k \ m / r . 

iii) I f  r = - o o  then f is convex on its domain if  and only if  p >_ 1. 
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Proof." for r e ( - 0 %  0) w (0, 1), theorem 7.1(i) leads to analyse the convexity of 
the function 

Op(x, ,~) = (E  (x, + 2e,)*) ~/~ 

with 1/s + 1/r = 1. 

Using the second order  character izat ion of convexity we must  have 

p - s/(1 - s) > sup{g(y): y �9 i n t ( K ) }  = 

with g(Y)  = ~ e2y7 -2 ~ Y T / ( ~  e ,Y~- l )  2. 

i) A s s u m e  r ~ ( - 0 %  0). We shall prove  that  

sup{g(y):  y ~ i n t ( K ) }  = +oo  . 

For  this, set y( t )  = ((1 - t), t, t . . . . .  t)t for all t ~ (0, 1). Since s ~ (0, 1) we get 

l im g ( y ( t ) )  = (~"2 e2/(~"2 e,) 2) lira t -~ = + o r  . 
t ~ O  t ~ O  

Thus, for all r ~ ( - o o ,  O) and for all p e (0, +oo), the function f (x ,  t) = tP/~Pr(X) is 
not  convex. 

ii) Assume now r �9 (0, 1). Set zi = 1/yi ,  i ~ {1 . . . . .  n} and s' = - s .  Then 

= sup{ Z e Z z 2 + S ' ~  z]': L e ,z]  +s' = 1, z E [0, +oo)"} . 

But zi < e/-1/(a+s'), i = 1 to n whenever ~ e l z  1+~' = 1, z e [0, +oo)"}; it follows 
that  

 <Ze l,x+s  e sl, 

S t 

But - r. The result then follows. 
l + s '  

iii) Suppose that  r = - o o  then ( theorem 7.1(i)) the result is equivalent  to the 
convexity in ). of the function 
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Or(x, 2) = ( ~  (x, + 2e,)) p 

i .ep>_ 1. [ ]  

9 Quasiconvexity of Potential Gauge Functions 

In this section we use the concept  of convexity index given first by Debreu  and 
K o o p m a n s  [10] and reformulated by Crouzeix and Lindberg [9], for studying 
condit ions which imply the quasiconvexity of  the function 

f (x)  = ~7=1 fi(xi) , xi ~ Xi , 

where x = (Xl, x2 . . . . .  x .)  and Xi is a finite dimensional  open convex set and f~ 
a real-valued non constant  function on X~ for all i = 1, 2 . . . .  , n. 

Let E be a reflexive Banach  space and C a non-empty  convex subset of E. Let  
f be a real-valued function on C and r~ defined on C by r~(x) = e-~f~); then, 
following Crouzeix-Lindberg  [9], the convexity index c( f )  of f is defined as 
follows 

"if there exists/~ < 0 such that  r, is not  convex, then 

c( f )  = sup{2 :2  < 0, r~ is convex} 

if not  

c( f )  = sup{2 :2  > 0, r x is concave}" . 

Theorem 9.1: Let F and G two reflexive Banach spaces. Assume that X and Y are 
non-empty open convex subsets of F and G respectively, f and 9 are non constant 
real-valued functions on X and Y respectively. 

We consider the function s on X x Y defined by 

s(x, y) = f (x)  + 9(Y) 

then s is quasiconvex if and only if c ( f )  + c(o) > O. 
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The  result was given by Crouzeix-Lindberg  [9] in the finite dimensional  case, 
but  it can be seen with the help of  the p roof  that  it remains true when F and G 
are reflexive Banach spaces. 

Let  K be a closed convex cone of E such that  cl(K) = K and ct(K, +) = K +. Let 
a ~ (0, + o r )  and one considers the function f (x ,  t) = t/99~(x) o n / <  x (0, +or) .  

Let  e �9 int(K+), we se t  

~ = { x e E : x e / ~ a n d ( e , x ) = l }  . 

Theorem 9.2: f is quasiconvex on ~ • (0, + ~ )  if and only if the function r is 
concave on ~2 e. 

Proof: Set h(t) = ~-1 lnt and O(x) = - In q~(x) then f is quasiconvex if and only 
if the function h(t) + g(x) is quasiconvex,  i.e ( theorem 9.1), 

c(h) + c(g) >_ 0 .  (1) 

N o w  e -;~h(t) = t -~'~-1 is convex for all 2 < - c t  < 0, therefore c(h) = - ~ .  So the 
condi t ion (1) means  that  c(9) > ~ > 0, i.e, e ~-')g~x) = ~o'(x) is concave on t~ e. [ ]  

Proposition 9.I: Given ~ a positive real and e �9 K +, q~ is concave on ~2~ if and only 
if the function 

O(x*, r) = sup{/t  + rl/~fp~(x * - /~e):  p �9 ~} 

is convex in r on the set [0, +oe) for all x* e E. 

Proof." According to theorem 7.2, q~" is concave on  Oe if and only if the function 

~(x*, r) = inf{(x*,  x ) :  x e / ( ,  (e, x )  = 1, ~0"(x) > r} 

is convex in r for all x* �9 E. 
I f r  �9 ( - o z ,  0] then ~k(x*, r) is a constant  function. 
I f r  e (0, + ~ )  then 

~(x*, r) = inf{(x*,  x ) :  x � 9 1 6 3  (e, x )  = 1, (p(x) >_ r TM} . 
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By duality 

O(x*, r) 

= sup 
(~, 2)e ~x[O, +Qo) 

sup 
(t~, ~)e Rx(O, +0o) 

x * - , u e e K  + 

{inf{(x*, x )  - 2q~(x) + 2r TM + It - #(e, x ) :  x �9  

= sup {it 

{ i t + 2 r ~ / ' - ) o s u p {  l *-2-+ite l } - x _ _  ,x  + ~0(x): x e /~  

+ 2r TM - 2(-~o)* -- : It �9 x 

= sup{it + 2r~/': It e l~, 2 �9 (0, +oo), q,*(x* - Ite) > 2} 

= sup{# + rt/~q~e(x * - Ite): It �9 l~} 

= 0(x*, r) . [ ]  

Now using proposi t ion 9.1 and theorem 7.2 we obtain the following result. 

Corollary 9.1." Given p, q e (0, +oo), the function tP/q~q(x) is convex on  H e X 
[0, +00) if  and only if the following conditions hold. 

i) The function 0(x*, r) = sup{# + rP/q~o~(x * - #e): It ~ ~} is convex on 
(0, +oo) in r, 

ii) the function F(x*, t*, 2) = sup{tt* - O(-x*,  t/21/p): t e (0, +oo)} is con- 
cave in 2 on the set (0, +oo). 

Example 9.1." Let ~p the function defined in examples 4.2 and 4.3. We set 
e = (1, 1 . . . .  ,1)  7 then we have the following result. 

Proposition 9.2: Assume that p �9 [ - ~ ,  O) then ~p is concave on the set ~2 e if and 
only if ct �9 [0, 1]. 

Proof: First assume p e ( - 0 %  0). Clearly Cp is concave o n  ~'~e for all ct �9 [0, 13. 
Suppose now ~ > 1. Let x �9 Oe and set tr = ~ x/', then the hessian of ~ in x is 

172~(X)  = c((p  - -  1)cr(~/P)-I  X ( p / 2 ) - I  ( I  - t T - l  b b t ~  
o~ i P X(p/2)-I 
1 - - p  } 

with b = Sp /2e ,  X = diag(x) and I the identity matrix. Notice that  [Ibtl 2 = a. 
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~ i s c ~ 1 7 6 1 7 6  

is positive semi-definite on ~ ,  i.e the matrix 

H = 

- p Xt-(p/2)e I - a-lbb t 
1 - p  

(XI-(P/2)e) t 0 

has at most one negative eigenvalue. 
Now recall some results on inertias of real symmetric matrices. Let M be a 

real symmetric q x q matrix. The inertia of M is the triple 

In(M) = (n(M), v(M), 6(M)) 

where n(M), v(M) and 6(M) are respectively the numbers of positive, negative 
and zero eigenvalues. Clearly re(M) + v(M) + v(M) + (3(M) = q. 

Now assume that A is a r x r matrix, B a r x q matrix, C a q x q matrix. 
Assume in addition that A and C are symmetric and A is non-singular. Let M 
be the symmetric (r + q) x (r + q) matrix 

M =  Bt 

The matrix C -  B'A-1B is called the Schur complement of A in M and is 
denoted by M/A. The following formula was given by Haynworth [12] 

In(M) = In(A) + In(M/A) . 

It follows that 

In(H)= In I c t -  ~ -  - 1  a-lbb t + I n  - ~ x 2 - ' + ~  l a  

clearly, the inertia of/~I - a  - P a-lbb t) \ is (n - 1, 1, 0). Then r is concave on 
1 p \ / 

~e if and only if 

- P > sup{~ x~-P ~ x•: x ~ (0, +oo)", Z'xi = 1} . 
s - l -  
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Set x(t)  = (1 - t, t/n - 1, . . . ,  t/n - 1)t for all t �9 (0, 1), then since p < 0 one 
has 

lira Z xZ-P Z Y f  = lim (1 - t) p + (n - 1)l-Pt p = +0o . 
t-~O t-~O 

So for all ~ > 1, the function ~ is not  concave on ~ .  
Suppose  now p = - ~ .  According to propos i t ion  9.1 the function ~ is con- 

cave on ~ if and only if the function 

0(x, r) = sup{u + rl/~( Z x, - n~)l# <_ min,(x3) 

is convex on [0, + ~ )  in r for all x �9 R". 
N o w  

f r l / ' (~,  xi - mini(xi)n) + mini(xi) i f r  �9 [0, 1/n ~] , 
O(x, r) 

L + ~ otherwise , 

and the result follows. [ ]  

Example  9.3: Let a �9 (0, + ~ ) "  be such that  ~ a ;  = 1 and ~0 the function defined 
by ~o(x) = I-I x~' for all x �9 (0, + ~ ) " .  Let  ct �9 [~, then we have the following result. 

Proposi t ion 9.2: The  funct ion  ~o ~ is concave on ~ i f  and only i f  a � 9  
[0, 1/(1 - mini(ai))]. 

Proof." Clearly (example 4.1) q~" is concave on fie for all a e [0, 1]. Suppose now 
a > 1. Let x �9 (2e, then the hessian of ~o" in x is 

V2~o~(x) = - - g q g = ( x ) X - 1 A 1 / 2 ( I  - -  g b b , ) A 1 / 2 X  -1 

with X = diag(x), A = diag(a), b = A 1/2e and I the identity matrix.  
~p" is concave on ~ if and only if the matr ix  

( I-~bbt Xob ) 
/4 = \ (Xb) t 
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/ 
has at most one negative eigenvalue. Now In(H) = (n - 1, 1, O) + In ( - ~ a~x 2 + 

k 
~ - 1 ( ~  aix~)2 ' therefore ~o ~ is concave on O.  if and only if 

> s u p { ~  a,x2: x e (0, +oo) n, ~ aix , = 1} = 1/min,(ai) 
~ - 1 -  

and the result follows. 

10 Potential Gauge Functions on the Space of Real Symmetric Matrices 

Set E the space of real n x n symmetric matrices. For  all A e E, d(A) is the vector 
of eigenvalues of A defined as in section 5. 

Let K be a closed convex cone of ~ such that int(K) # ~ and int(K § # ;~. 
Set 

L =  { A e E : d ( A )  E K }  , 

clearly, L is a closed convex cone of E such that int(L) # ~ and int(L § v~ ~ .  
Let B e int(L+), we set 

ITva = {A e E: A ~ int(K) and trace(BA) = 1} 

and 

f2a(8) = {x e R": x e int(K) and <d(B), x)  = 1} . 

Notice that d(B) e int(K+). Let p, q e (0, +oo), one has the following result. 

Theorem 10.1: Let  ~o be a concave barrier function of K such that q~(I-[ x) = tp(x) 
for any permutation matrix 1--[. We define g: E ~ [ - o o ,  +oo] by g(A) = q~(d(A)). 
Then 

i) g is a concave barrier function of L, 
ii) /f the function f (x ,  t) = tP/~pq(x) is quasiconvex(convex) on ~d(~ x (0, + ~ )  

then the function g(A, t) = tP/gq(A) is quasieonvex(convex) on W B x (0, +oo). 
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Proof'. 

i) It follows straightforwardly from theorem 5.1 that  9 is a concave barrier 
function of L. 

ii) Suppose that  f(x,  t) is a quasiconvex function on ~dtB) X (0, + ~ )  then 
(theorem 9.2) ~o p/~ is concave on g]dt~) and then (theorem 1 Marques- 
Moreau [13_]) 9 p/q is concave on I~ s. Thus (theorem 9.2) h(A, t) is quasi- 
convex on Wn by (0, +co). 

Suppose now f(x,  t) convex on ~ts~ x (0, +oo). Set on the one hand 

F(x*, t*, 2) = sup{<x*, x> + t*t:f(x, t) _< 2, (x, t) 6 ~dtB) X (0, +00)} 

for all (x*, t*) ~ R" x • and on the other hand 

H(A*, t*, 2) = sup{<A*, A> + t't: h(A, t) < 2, (a,  t) ~ ff'B • (0, +oo)} 

for all (A*, t*) ~ E x R. Let us prove that 

H(A*, t*, 2) = F(d(A*), t*, 2) . 

Notice that  F(x*, t*, 2) is convex in x*. and F(I- [ x*, t*, 2) = F(x*, t*, 2) for any 
permutat ion matrix H .  

It follows that 

H(A*, t*, 2) = sup{F(R(Q)d(A*), t*, 2): Q ~ (9.} 

where (9, and R(Q) are defined as in section 5. Then 

H(A*, t*, 2) _> F(d(A*), t*, 2) . 

Now (Birkhoff-Von Neuman's  theorem) for all Q e (9, there exist s 1, s 2 . . . . .  

s,, ~ [0, + ~ )  and I-I1,1-[2, . . . ,  I-I., permutat ion matrices such that 

Z si = l and R(Q) = Z s, I-]i �9 

therefore 
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F(R(Q)d(A*), t*, 2) < ~ s,F(I-[i d(A*), t*, 2) = F(d(A*), t*, 2) 

a n d  then  

H(A*, t*, 2) = F(d(A*), t*, 2) . 

Since  f (x ,  t) is c o n v e x  on  (2~ m x (0, + o e )  we  o b t a i n  ( t h e o r e m  7.1) F(x*, t*, 2) 

c o n c a v e  in 2 and  then  the  resul t  fo l lows  f r o m  the  a b o v e  i nequa l i t y  and  t h e o r e m  

7.1. [ ]  
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