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Conventional adaptive control techniques have, for 
the most part, been based on methods for linear or 
weakly non-linear systems. More recently, neural 
network and genetic algorithm controllers have 
started to be applied to complex, non-linear dynamic 
systems. The control of chaotic dynamic systems 
poses a series of especially challenging problems. 
In this paper, an adaptive control architecture using 
neural networks and genetic algorithms is applied 
to a complex, highly nonlinear, chaotic dynamic 
system: the adaptive attitude control problem (for a 
satellite), in the presence of large, external forces 
(which left to themselves led the system into a 
chaotic motion). In contrast to the OGY method, 
which uses small control adjustments to stabilize a 
chaotic system in an otherwise unstable but natural 
periodic orbit of the system, the neuro-genetic con- 
troller may use large control adjustments and proves 
capable of effectively attaining any specified system 
state, with no a priori knowledge of the dynamics, 
even in the presence of  significant noise. 
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1. Introduction 

The aim of this work is to demonstrate applications 
of techniques from neural networks and genetic 
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algorithms to specific problems of adaptive nonlinear 
control. In a previous paper [1], we gave various 
examples of neuromodels used to make short range 
predictions for smooth dynamic systems of various 
complexities. The underlying principle used to con- 
struct these models is to train networks to model 
an input-output map of the form 

(x(t), ~(t), ..., x(t - pat), Jc(t - pat)) 

--* (x(t + At), • + At)) (1) 

for some fixed p --> 1, where x(t) is the state of the 
system at time t, and the interval At is appropriately 
chosen. Thus, the model has as inputs the current 
state, and a number p of past states, and attempts 
to predict the state of the system a short time ahead. 
We call a neural network which acts in this way a 
Locally Predictive Net (LPN). The critical property 
of such models is the fact that, although trained on 
sample points from a single trajectory, the network 
is capable of accurate generalization on other, hith- 
erto unseen, trajectories. 

Building on the effectiveness of short range pre- 
diction using neuro-models, we recently proposed an 
adaptive neuro-genetic control architecture, a hybrid 
method of adaptive control using neural networks 
for modelling and genetic algorithms for control [2]. 
The neuro-genetic control system was demonstrated 
with reference to the attitude control problem for a 
rigid body (satellite) equipped with thrusters about 
each principal axis in the case of large slew angles, 
unknown dynamic characteristics, and stable and 
unstable target states. 

This technique was designed to be applied to 
the adaptive control of smooth nonlinear dynamic 
systems. In [2], the neuro-genetic control architec- 
ture was applied to the adaptive satellite attitude 
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control problem in various cases where no external 
forces act upon the system (including the case where 
the system is in a limit cycle). Control of many 
nonlinear systems poses serious difficulties for con- 
ventional control techniques, since most are appli- 
cable to linear systems, weakly nonlinear systems, 
or require various assumptions about the plant 
dynamics [3,4]. Other problems of conventional con- 
trol techniques appear when addressing physical 
effects such as friction, backlash, torque non-lin- 
earity (especially dead zone), high-frequency dynam- 
ics, and sensor noise [5]. Traditional adaptive control 
theory is based mainly around the model reference 
adaptive control method [6-9]. Despite the above, 
one must not underestimate or ignore conventional 
control (and adaptive control) theory, since it offers 
perhaps the only way of providing theoretical stab- 
ility guarantees for the control of certain classes 
of nonlinear (even chaotic) dynamic systems (for 
example, see Refs [10-13]). This work and other 
work in the neurocontrol area aims to achieve con- 
trol of dynamic systems for which existing control 
theory finds difficulties. However, for the time being, 
most of these new techniques cannot guarantee stab- 
ility with theoretical proof and are based in simul- 
ation results. One of the exceptions is the work of 
Narendra of Yale University in neural adaptive con- 
trol. His work is based in the classical adaptive 
control theory, but instead of matrices he uses neural 
networks [14-16]. In this paper, the hybrid neuro- 
genetic method introduced in [2] is further tested 
and evaluated for the control of chaotic dynamic 
systems. 

Due to their extreme sensitivity to small pertur- 
bations, chaotic dynamic systems pose radical con- 
trol system design problems, and the necessity of 
controlling such systems is usually avoided wherever 
possible. However, avoiding the problem is not 
always feasible (e.g. [17]); moreover, it has also 
been argued that in some situations designing a 
system to be chaotic might confer positive benefits 
[18]. 

The outline of this paper is as follows. Following 
the introduction, Sect. 2 gives a brief description of 
the neuro-genetic control architecture introduced in 
[2]. In Sect. 3 this is contrasted with the OGY 
method, one of the principal techniques used to 
control chaotic systems. Section 4 describes the sat- 
ellite attitude control problem in a test case where 
perturbing torques induce chaotic motion and results 
for this case are presented in Sect. 5. Section 6 
includes results for a more difficult test case in 
which chaotic perturbations are combined with the 
introduction of noise into the sensor system of the 

satellite. In Sect. 7 some aspects of the choice of 
objective function are discussed. 

In all the examples presented, it is assumed that 
the dynamics are initially unknown to the controller 
which is required to adapt to the observed responses 
to control signals. 

2. The Adaptive Neuro-Genetic 
Control Architecture 

One major problem with the various schemes for 
direct inverse control using neural networks is that 
the inverse kinematic problem is frequently ill posed, 
i.e. there are many control inputs which might pro- 
duce a given sensed response. In general, if any 
plant state has an inverse image that is a non- 
convex region in control space, then there exist sets 
of samples in the region whose average is outside 
the region. Therefore any learning procedure for an 
inverse net whose effect is to average over conflict- 
ing control signals (network outputs) for a given 
system state (network inputs) would be incorrect. 
Whilst such methods of direct learning inverse kin- 
ematics may be very effective in particular situations 
they cannot stand as a general methodology [3,19]. 

Jordan and Rumelhart [19] used a different type 
of inverse control to face the problem of non- 
uniqueness of inverse models. In their approach, 
they first train a forward model of the plant (able 
to give an estimation ~9[t] of the actual output y[t] 
of the plant) and then they train a neural network 
controller by propagating back the errors y*[t] - y[t[ 
of the system (where y*[t] is the desired response) 
through the forward model. In their work, when 
they deal with plants that are required to follow a 
particular trajectory, they use a modified algorithm, 
equivalent to that of backpropagation-through-time 
[20,21]. A similar approach was taken by Kawato 
et al. [22-24] and Psaltis [25]. Generally, however, 
it is not always possible to reach a desired next 
state, from any other dynamic system state (unless 
some planning is involved), and therefore their 
methods are not generally applicable to control prob- 
lems. In particular, such an approach cannot be 
applied directly (although it can be modified) to the 
attitude control problem where the goal is to reach 
a target state starting from an initial state. 

Another potential pitfall is that, even for smooth 
dynamic systems, suitable solutions to the inverse 
kinematics may be discontinuous functions of time. 
This is illustrated by many of our simulation results 
for the attitude control problem. If the initial angular 
velocities are large the controller tends to produce 
very rapidly varying control torques, despite the fact 
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that the progression towards the goal state is quite 
smooth. As the angular velocities become smaller 
the control torques tend to become much smoother. 
Whilst these discontinuities do not make impossible 
for a neural network to learn such a functional 
transformation, they do make it very much harder 
(and more time-consuming) to efficiently train such 
a network. 

For this reason we proposed [2] an alternative 
two part architecture. This paper does not give the 
full details of the algorithm, as these can be found 
elsewhere [2]. However, below we describe the main 
operation of the hybrid neural and genetic architec- 
ture. 

The first part of  the architecture is a LPN neurom- 
odel that learns to predict a future system state 
given the few last states and control inputs (Fig. 1). 
Earlier results on neuromodelling [1,26], and the 
example given in [2], indicate that this is a realistic 
prospect. The time scale for such a prediction might 
be as high as 0.5-1 s. 

With this predictive capability we can now evalu- 
ate a large number of  hypothetical control inputs 
and select the best. This is not done directly, but 
by using a genetic algorithm to explore the space 
of hypothetical control inputs at any given moment 
and the LPN predictor to evaluate any member of  

Control torque 

about x axis 

16 bits 

Control torque 

about y axis 

Conlroltorque 

about z axis 

16 bi~ " l "  16 b i t s ~  

Fig. 2. The individual chromosomes for the Genetic controller. 

the current population (of hypothetical control 
inputs). 

Normally, the evaluation phase (computing the 
fitness of a member  of the population) is the most 
time consuming aspect of the genetic algorithm, but 
a hardware neural network can be used for this 
phase (or as new much faster learning algorithms 
appear, these can be used), thus allowing the evalu- 
ation of many thousands of sets of control inputs 
over the relevant prediction interval which may be 
a significant fraction of a second. 

Of  itself the GA is very simple (see Fig. 3), and 
is described in full detail in [2]. The control signals 
are represented by binary strings (Fig. 2), with sim- 
ple bit string manipulations for crossover and 
mutation. A variety of  implementations could be 
used for the GA, ranging from execution by a serial 

~N~Training signal 

f 

f 

x(t) 

NN-Model  

u(t) PLANT x(t+l) 

Fig. I. Building the neuromodel for the plant, x(t) represents the 
state of the plant at time t, u(t) if the control inputs vector to 
the plant, and e is the error between plant state and predicted 
model state at time t + 1. 

population_size := 50; 

generation := 1; 

Initialize population with random binary strings; 

while generation < 100 do 

Find the two best individuals of current population; 

Copy the two best individuals to new population; 

for i = 1 to population_size - 2 step 2 do 

Select two individuals based on fitness; 

Probabilistically mutate the two individuals; 

Probabilistically perform crossover; 

if crossover_performed then 

Copy the two offspring into new population; 

else 

Copy the two (mutated) individuals into new 

population; 

endif 

endfor 

generation :--- generation + 1; 

endwhile 

Fig. 3. Pseudocode of the genetic algorithm for the attitude con- 
trol problem. 
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processor to gate arrays with additional memory and 
processors (to provide a stack, for example). Given 
that the evaluation time per member of the popu- 
lation is very fast, the rest of the GA is quite 
simple. The particular implementation chosen would 
depend heavily on the system to be controlled and 
the speed of events in the real world. 

We call this mixture of techniques a neuro-genetic 
control architecture. The learning phase of the neu- 
ral network can be likened to basic mastery of 
motor control to the extent that one can predict the 
immediate consequences of any given set of actions. 
The genetic component of the system is analogous 
to a series of 'mind experiments', using many of 
these predictions to choose an actual set of control 
signals. 

The sequence of events is thus (see Fig. 4), 
t = kAt (with At = 0.01 in the simulations): 

At step k -  1: controller applies u * ( k -  1)--LPN 
predicts xq(k). 

At times between k - 1  and k: based on this 
prediction, the genetic algorithm tries to choose u* 
(k) so as to optimize x(k + 1). The genetic algorithm 
uses the LPN to predict the result xq(k + 1) of 
hypothetical control inputs uh(k), and hence evaluate 
the fitness of uh(k). 

At step k: controller applies u*(k). LPN predicts 
xq(k + 1). 

3. Chaotic Systems and the OGY 
Method 

An entirely different method for controlling chaos 
is based on recent work by Ott, Grebogi and Yorke 
[18] (OGY). This method differs in significant 
respects from the neuro-genetic control architecture 

xq(k)-- ~ LPN 

u~k)~-~ t Genetic 
controller 

x~k+l) 

> u'~k) 

u*(ko 1) 
I x(k) _i PLANT 1 u,(k)_~ LPN 

Fig. 4. The adaptive neuro-genetic architecture. 

xq (k+~) 

described above. A full review of the OGY method 
and other related techniques to control chaos are 
given in Ref. [27], but it seems worthwhile to briefly 
consider the differences between our method and 
the OGY algorithm. 

In our earlier work on neuromodelling [1], input- 
output models such as (1) were constructed from 
observations along a trajectory of the system. The 
success of these neuro-modelling results almost cer- 
tainly arises from the ability of a parametric model 
of the type (1) to capture the invariant features of 
the dynamics of the system rather than any particular 
properties of neural networks per se. In these mod- 
els, all variables of the dynamic system were used 
to construct the models. 

The OGY method is based on the key observation 
that a chaotic attractor typically has embedded 
within it an infinite number of unstable periodic 
orbits. To apply the method one must make the 
following assumptions [18,28]: 

1. The dynamics of the system can be represented 
as derived from an n-dimensional nonlinear map 
(e.g. by a surface of section or time one return 
map). The map is given by ~n+l = f(~,,c), where 
c is an accessible system parameter. This para- 
meter is considered available for external adjust- 
ment with the aim of achieving control. 

2. There is a specific periodic orbit of the map 
which lies in the attractor and around which we 
wish to stabilize the dynamics. 

3. There is a maximum perturbation 6Cmax in the 
parameter c around the nominal value Co. 

4. The position of the periodic orbit is a function 
of p, but the local dynamics about it do not vary 
much with the allowed small changes in c. 

These assumptions imply that for the control of a 
chaotic system the OGY method must be able to 
construct an accurate Poincar6 map of the 
dynamic system. 

To apply the method, one first has to locate the 
unstable fixed points of the chaotic system. A local 
linear approximation of the map f (around the 
desired periodic trajectory) is then constructed, by 
observing iterates of the map near the desired orbit. 
To control the system, the technique attempts to 
confine the iterates of the map to a small neighbour- 
hood of the desired orbit. Once the system passes 
near the desired orbit the control input c is changed 
from Co to c o + ~c. In this way, the location of the 
orbit and its stable manifold (associated with the 
unstable fixed point) is changed so as the next state 
will be forced back towards the stable manifold of 
the original orbit for c = Co. However, if one appli- 
cation of the changed control input (Co + 6c) does 
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not succeed, one has to wait until the system passes 
again from that state. 

An example of how the OGY method works for 
a saddle fixed point is shown in Fig. 5. The system's 
state ~ passes near the fixed point ~F(Co) (Fig. 5a). 
A perturbation 3c of the control input c (Fig. 5b) 
forces the next system state ~n+l onto the stable 
manifold of ~F(Co) (Fig. 5C). 

From the above, one can see that the OGY 
method requires extracting the locations of unstable 
fixed points. Since it is based on linear approxi- 
mation of the local dynamics of the system, the 
method will not be robust, especially in the presence 
of noise. Besides that, the original method waits 
until the system state passes through the neighbour- 
hood of the unstable fixed point, something which 
might take a long time, if the attractor of the system 
is high-dimensional. Such a delay can be critical in 
many systems. 

The OGY method relies on small variations of 
one or more control parameters to stabilize the 
system into an (otherwise unstable) periodic motion 
natural to the system. For this reason it is termed 
a 'weak control' method. In contrast, the neuro- 
genetic control architecture is a 'strong method' 
which aims to employ comparatively large variations 
of control signals to force the system to acquire any 
desired target state or to track any desired trajectory 
in state space. Of course, such a weak method can 
be desirable in many cases, since it does not expend 
so much 'control energy' to achieve stabilisation. 

4. The Attitude Control Problem 
Control of the orientation of a rigid body has 
important applications from pointing and slewing 
aircraft, helicopters, spacecraft and satellites, to the 
orientation of a rigid object held by single or mul- 
tiple robot arms. 

We briefly outline the mathematical system which 
describes the rotational motion and orientation of a 
rigid body and which is used in the simulator. The 
angular velocities are determined by a system of 
first order differential equations (Euler equations): 

. ~F%) ~ ~ ~~176176 ~%%) 
{n {n+l 

(a) Co) (e) 

Fig. 5. An example of the OGY method application. 

a l  = ~ 1  - ( ~ -  6)(02(03 

Ga = ~ 2  - G -L)(03(01 

63 = ~ 3  - (L-~)(01(02 (2) 
where Ix,Iy,Iz are the principal moments of inertia, 
(01,(02,(03, are angular velocities about the principal 
x,y,z axes fixed in the rigid body, and G1,G2,G3 are 
torques applied about these axes at time t. 

Since the frame of reference adopted for the 
equations of motion is fixed to the rigid body, and 
moves with it, the position and orientation of the 
object cannot be described relative to this frame. 
As in Meyer [29], the orientation may be described 
locally by three angles 4J,0,to which represent conse- 
uctive rotations about a set of orthonormal axes i,j,k 
fixed in the body, with origin at the centre of mass 
of the body. By performing this sequence of 
rotations we bring the (id,k) frame into alignment 
with an inertial frame (I,J,K). We may then obtain 
the kinematic equation and derive the relationship 
between the inertial frame orientation angles and 
the body frame angular velocities. This yields 

(i0 sin000 ) (i) (02 = cos 4) sin 4~ cos �9 

w3 - s i n  4~ cos 4~ cos 
(3) 

Although these angles do not coincide with the 
definition of Euler angles, they serve the same pur- 
pose and give rise to a convenient set of equations. 

If we substitute (01,(02,(03, as given by Eq. (3), 
into Eq. (2) we obtain a system of differential equa- 
tions for q), 0, t 0. The solution of these equations 
in general form presents a formidable problem, but 
the equations can easily be numerically integrated. 

In general, the Euler equations are more compli- 
cated than Lorentz's system, and for certain choices 
of Ix,Iy,I z and G1,G2,G3 exhibit both strange attractors 
and limit cycles [30]. Specifically, if we choose 
Ix= 3, Iy= 2, Iz= l and 

G1 - 1.2 0 2 (01 

G2 = 0 0.35 w2 

G3 - ~-6 0 - 0 . 4 /  (03 

(4) 

the Euler equations produce a binary system of 
strange attractors for which the attractor of an orbit 
is determined by the location of the initial point of 
the orbit. The Poincar6 section for the (01 - (03 plane 
of the system, for the trajectory starting at (3, 2, 1) 
is shown in Fig. 6. (This diagram was produced by 
numerical integration of the above equations, using 
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output x 

Fig. 6. Euler system. Poincar~ section. Output x and ol 
refer to the x and z components of the to vector. 

output z 

the Runge-Kutta fourth order method, and 
implemented in C by the authors.) 

5. Satellite Attitude Control Subject 
to External Forces Leading to Chaos 

In this section the task of stabilizing a rigid body 
satellite is considered. The equations describing the 
orientation and rotational motion of a rigid body, 
combined with moments of inertia commensurate 
with those of a satellite are used. 

The moments of inertia of the satellite are 
Ix = 1160 kg.m 2, Iy = 23 300 kg-m 2 and 
I z = 24000 kg.mL We now suppose that determin- 
istic external forces act upon the system for t > 0. 
Thus the mathematical description becomes 

Ix(o 1 - (Iy -Iz)O)2603 : G 1 + T 1 

1/o2 - (Iz - Ix)w3wl = G2 + T2 

1/o3 - (Ix - Iy)Wl~O2 = Gs + T3 (5) 

where the external torques T1,Tz,T3 are given by the 
linear feedback equations 

Tl = --1200~Ol + 1000. ~- to  3 

iCE = 350~02 

T 3 = - 1000 �9 ~ 0 )  1 - -  400093 (6) 

The above is a system in which the externally 
imposed torques would, left to themselves, result in 
a chaotic motion (see, for example [1] - the torques 
here are 1000 times greater because the moments 
of inertia are larger and we want the perturbing 
forces to be significant, but the dynamics are 
similar). 

In the simulation results that follow, every time 

the system dynamics change in an unknown way, a 
new neuromodel describing the new dynamics of 
the plant has to be trained according to this method- 
ology. Full details of how such a neuromodel can 
be constructed can be found elsewhere [1,2]. In 
practice, since vanilla backpropagation (adjusting 
weights with gradient descent and used here) con- 
verges rather slowly and sometimes unreliably, this 
would require a hardware implementation of back- 
propagation, or some other method for rapidly learn- 
ing a dynamic model. As new and faster learning 
algorithms are derived, these can be used for speed- 
ing up the training of a network. For example a 
conjugate gradient based backpropagation converges 
much faster than the vanilla backpropagation but 
here we do not discuss such issues as these are 
discussed in [1,31] and elsewhere, and we concen- 
trate in investigating the viability of the genetic part 
of the hybrid controller. 

Here, the genetic controller uses data (i.e. evalu- 
ations of hypothetical control signals) provided by 
a previously trained (with 1000 training data coming 
from the plant) gradient descent based backpropag- 
ation. 

The goal in this simulation is to acquire the 
state ((D1,(.02,0)3) = ( 0 , 0 , 0 )  and (~b,0,q0 = (0,0,0). The 
initial conditions are (wl,o92,o~3) = (2.0, 1.5, 1.7) and 
(qS,0,O) = (2-2, 2-2, 2-2). 

The objective function for the genetic controller 
is specified to be 

F( G I ,G 2 ,G 3)  = I~b + ~1 + Iqbl 

+ I b +  0l + 101 + I t P +  ~0l + I~l (7) 

Figures 7-9 show the evolution in time of the 
angular velocities Wl,W2,w3 about the x ,y , z  body 
axes, respectively. The genetic controller soon leads 
these angular velocities to the prespecified values of 
zero despite the fact that during the control process 
the externally perturbing torques were as large as 
44% of the maximum available control torques. 
When the target state is acquired the controller 
maintains the angular velocities. 

In Figs 10-12 the reorientation of the satellite for 
the angles ~b,O, qt during the application of the genetic 
controller is shown. Again, once achieved the con- 
troller maintains these angles. 

The applied thrusts during the genetic control of 
the satellite are shown in Figs 13-15. 

6. Control Subject to Sensor Noise 
and External Forces Leading to 
Chaos 

We now add artificial noise, according to a uniform 
distribution, of 5% of the current sensors values. In 
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200 400 SOO 800 1000 
k~bmeR.01 

Fig, 7. Angular velocity w~ for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Initial conditions 
(o91,w2,o93) = (2.0, 1.5, 1.7) and (~b,0,qJ) = (2.2, 2.2, 2.2). 

40O 600 8OO 1000 
k,,,~O.O 1 

Fig. 9. Angular velocity ~3 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Initial conditions 
(r = (2.0, 1.5, 1-7) and (qS,0,~b) = (2.2, 2-2, 2.2). 

i , I 
2 5 0  8OO 

o m ~ a , 9  - -  

Fig. 8, Angular velocity 092 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Initial conditions 
(o9i,o92,o)3) = (2.0, 1-5, 1.7) and (&,0,O)= (2-2, 2.2, 2-2). 

Fig. 10. Orientation angle + for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Initial conditions 
(wl,o)2,r = (2.0, 1-5, 1.7) and (r = (2-2, 2.2, 2.2). 
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k -~m~ 01 

Fig. 11. Orientation angle 0 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Initial conditions 
(o9~,092,m3) = (2.0, 1.5, 1.7) and (ck,0,q*) = (2.2, 2.2, 2.2). 

;: o 

k=~40,01 

Fig. 13. Applied thrust Gj about the x body axis for the satellite, 
in the presence of forces trying to lead it in a chaotic motion, 
during the application of the neuro-genetic controller. Initial 
conditions (~oj,ah,ms)= (2-0, 1.5, 1-7) and (qS,0,~b)= (2.2, 2.2, 
2.2). 

1 

o ~ 

0.s 

0 

-0.5 

2o0 400 600 SO0 loo0 
k,,tnme~.O~ 

Fig. 12. Orientation angle ~0 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Initial conditions 
(o~,oh,co3) = (2-0, 1.5, 1-7) and (4),0,qJ) = (2-2, 2-2, 2-2). 

mlf I I 

4o0 r~o ~oo looo 
k=Snie~}.01 

Fig. 14. Applied thrust G2 about the y body axis for the satellite, 
in the presence of forces trying to lead it in a chaotic motion, 
during the application of the neuro-genetic controller. Initial 
conditions (ml,m>o)3)= (2.0, 1-5, 1.7) and (~b,0,q*)= (2-2, 2.2, 
2-2). 
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0 200 400 6c~ ~ 1ooo 
k=bme/O.Ol 

Fig. 15. Applied thrust G3 about the z body axis for the satellite, 
in the presence of forces trying to lead it in a chaotic motion, 
during the application of the neuro-genetic controller. Initial 
conditions (wl,w2,w3)= (2.0, 1.5, 1.7) and (qS,0,O)= (2.2, 2.2, 
2.2). 

addition, as in the previous example, externally 
imposed torques are acting upon the satellite for 
t > 0. The system is again described by the dynamic 
equations (5), (6). The moments of inertia of the 
satellite in this simulation are Ix = 1200kg'm 2, 
Iy = 22 000 kg.m 2 and I~ = 25 000 kg.m 2, but this is 
unknown to the controller as is the nature of the 
perturbing forces. For this reason, a new neuromodel 
is constructed (using 1000 training data), to describe 
the new plant dynamics. 

The goal in this simulation is to acquire the state 
((D1,O)2,0)3) = (0,0,1) and (~b,0)= (0,0). The initial 
conditions are (r 1-3,  1.1) and 
(~b,0,~b) = (2-1, 1.2, 2.9). 

Since the target state has a non-zero spin 0)3 = 1, 
the forces will remain large in the vicinity of the 
target state and we expect to see asymptotically 
non-zero control torques as t---, ~. 

The choice of the objective function needs some 
care. Since noise is present, when the system is 
near the target state much of the error will be due 
to noise and we would like to reduce 'hunting' (i.e. 
over-energetic control torques), and thus the long- 
term energy expenditure of maintaining the target 
state. Consequently, we want to smooth the angular 
acceleration near the target state. One way (amongst 
many) to achieve this is to introduce a smoothing 
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term which forces ~b ~ 1 - ~0 near the target state. 
Thus, our objective function is chosen to be 

F(G,,G>G3) = I~ + qbl + 14'1 + Io + ol 

+ 10[ + I ~ -  1.0[ + 0.01. I~ + ~0-  1.01 (8) 

at the next sensor sample. This presupposes 
additional sensors for angular acceleration and would 
involve adding an extra output ~b to the LPN predic- 
tor. For the present purpose, assuming the hypotheti- 
cal thrusts we take a value of ~b provided by the 
simulator. 

Figures 16-18 show the evolution in time of the 
angular velocities ~o~,O9e,~O3. Despite the presence of 
noise and large perturbing forces, the genetic con- 
troller manages to lead the system to the target 
state and once there maintain the target with thrusts 
comparable to the perturbing forces. 

In Figs 19-21, the reorientation for the angles 
~b,0,~ during the application of the genetic controller 
is shown. Once again we see that the target orien- 
tation (0, 0) is acquired and maintained with accept- 
able accuracy (since there is 5% noise present, 
accuracy beyond a certain level cannot be achieved). 

The applied thrusts during the application of the 
genetic controller are shown in Figs 22-24. Any 
particular set of control thrusts are applied for 0.01 s 

o 

i 
1 

.1 .s  

2j 

H 

Fig. 16. Angular velocity w~ for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Presence of 5% noise in the 
sensors. Initial conditions (wl ,w>w3)=(2.3,  1.3, 1.1) and 
(4~,0,q0 = (2.1, 1.2, 2-9). 
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Fig. 17, Angular velocity m2 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Presence of 5% noise in the 
sensors. Initital conditions (m~,~oz,w3)=(2-3, 1.3, 1.1) and 
(+,O, qJ) = (2.1, 1.2, 2.9). 

o 2~0 4~Q 6~o ~ 11~0 
k,,,l~,ne,~Ol 

Fig. 19. Orientation angle + for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Presence of 5% noise in the 
sensors. Initial conditions (to~,to2,w3)=(2.3, 1.3, 1.1) and 
(qS,0,~O) = (2-1, 1.2, 2.9). 

o ~oo 40o ~oO aO0 1000 
k ~ . O l  

Fig. 18. Angular velocity oJ3 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the neuro-genetic controller. Presence of 5% noise in the 
sensors. Initial conditions (tol,OJz,W3)=(2.3, 1.3, 1.1) and 
(qS,0,+) = (2-1, 1.2, 2.9). 
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~ 0  400 6GO ~]0 1000 

Fig. 20. Orientation angle 0 for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the genetic controller. Presence of 5% noise in the sensors. 
Initital conditions (to],m2,093) = (2.3, 1.3, 1.1) and (qb,0,q0 = (2.1, 
1.2, 2.9). 
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Fig. 21. Orientation angle ~ for the satellite, in the presence of 
forces trying to lead it in a chaotic motion, after the application 
of the genetic controller. Presence of 5% noise in the sensors. 
Initial conditions (w~,~o2,w3) = (2.3, 1.3, 1.1) and (~b,0,qJ) = (2.1, 
1.2, 2.9). 
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Fig. 23. Applied thrust G2 about the y body axis for the satellite, 
in the presence of forces trying to lead it in a chaotic motion, 
during the application of the genetic controller. Presence of 5% 
noise in the sensors. Initital conditions (oJ~,~o2,o~3)= (2.3, 1.3, 
1.1) and (4~,0,~) = (2.1, 1.2, 2.9). 

- 1C~0  
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k= t~ /O .O l  

Fig. 22. Applied thrust G~ about the x body axis for the satellite, 
in the presence of forces trying to lead it in a chaotic motion, 
during the application of  the genetic controller. Presence of 5% 
noise in the sensors. Initial conditions (o91,o~2,co3) = (2.3, 1-3, 1.1) 
and (0,~,~) = (2.1, 1.2, 2.9). 
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Fig. 24. Applied thrust G3 about the z body axis for the satellite, 
in the presence of forces trying to lead it in a chaotic motion, 
during the application of  the genetic controller. Presence of 5% 
noise in the sensors. Initial conditions (w~,o>2,o93) = (2.3, 1.3, 1-1) 
and (qS,0,t0) = (2.1, 1.2, 2.9). 
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(this is probably more frequently than would in 
reality be necessary) and the complete simulation 
runs for a time period of 10 s. These results illustrate 
that the proposed architecture is able to 'control 
chaos' even in the presence of noise. 

7. Aspects of Objective Function 
Choice 

The nature of a general objective function needs 
some care because not all the variables one could 
specify in various circumstances are independent. 
For example, if all three angular velocities are speci- 
fied to be non-zero, then obviously the orientation 
angles cannot be specified as fixed values (except 
initially) because they will also be changing. Simi- 
larly, if the goal were to keep one axis pointing at 
an external relatively moving target, then all three 
orientation angles must be variable, according to 
some reference model, and (assuming the tracking 
is successful) all three angular velocities will change 
so as to maintain the desired attitude. In this case 
the relative speed with which the external target 
moves is critical in forming a tracking strategy. A 
satellite in Earth orbit required to keep one axis 
pointing at the Earth has a relatively simple tracking 
problem, requiring only small changes of attitude 
from an essentially equilibrium state to effect one 
rotation every orbit. In this case we can add acceler- 
ation smoothing terms to reduce energy consump- 
tion. If the target is changing relative orientation 
rapidly then energy considerations become second- 
ary. We have not pursued these issues in detail but 
tracking and energy minimisation raise interesting 
questions. In general, if the target state is fixed 
rather than dynamic, energy minimisation obviously 
involves a tradeoff against time to target acquisition. 

It is also possible that the initial angular velocities 
may be so high that the time window for the 
computation required by the controller may be too 
small. This situation is easily detected and, assuming 
sufficient energy is available, a simple feedback 
strategy designed to minimise kinetic energy can be 
employed until the angular velocities reduce to an 
acceptable magnitude. 

8. Conclusions 

In Ref. [2] we examined some simple simulation 
experiments in which a neuro-genetic architecture 
was applied to the adaptive attitude control problem 
for arbitrary transitions of system states. The experi- 

ments described there, tested the ability of the sys- 
tem to acquire and maintain an arbitrary target state 
with no prior knowledge of the system dynamics. 
This was achieved for both dynamically stable and 
unstable target states. 

In the present paper, we have extended these 
simulations to very much harder scenarios: the pres- 
ence of noise, large perturbing forces (which left to 
themselves lead the system to a chaotic motion), 
and a combination of the two. In all cases, the 
neuro-genetic controller performed well. 

The suggested neuro-genetic architecture is quite 
general, in the sense that it is applicable to a wide 
range of control tasks, such as reaching a desired 
state or tracking an available reference model. 
Adaptive nonlinear control is achieved by con- 
structing a plant model, using neural networks 
employing supervised learning. The generality of the 
method does not require simplifying assumptions for 
the plant, for example a linearization of the plant 
dynamics, but deals directly with the unknown non- 
linearities of the dynamic system under consideration 
through the use of a genetic algorithm to solve 
the inverse kinematic problem. The neural network 
provides the evaluation of hypothetical control sig- 
nals generated by the genetic algorithm (this would 
normally be the most time consuming part of a GA 
computation). It is supposed that the neural net 
learning and operation is executed in hardware. 
Whether or not it is necessary to implement the GA 
in hardware depends on the particular application 
but it would appear that in many cases a fast serial 
processor should suffice. 

It is of some interest to compare the present 
approach with the OGY method. This was the first 
practical method for controlling a chaotic system 
[18]. The methods proposed in the present paper 
offer the possibility of effectively acquiring and 
maintaining any physically realisable target state in 
both chaotic and more manageable systems. In con- 
trast the OGY method really only applies to chaotic 
systems and before beginning control the OGY 
method (in its original form) was forced to wait 
until the chaotic system trajectory passed close to a 
specified unstable periodic orbit which is the target 
state. Thus the OGY method requires some knowl- 
edge of plant dynamics (e.g. the unstable periodic 
orbits) whilst the method discussed here requires no 
such knowledge. On the other hand, once 
implemented, the OGY method is computationally 
very simple whilst the demands of the neuro-genetic 
controller, although not excessive, are certainly sig- 
nificantly greater. 

Finally, there remains the difficult question of 
control stability. Neuro, or neuro-genetic, control are 
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important because these methods offer the possibility 
of enabling the automated control of systems which 
could not be controlled in the past, for two reasons: 
the physical cost of implementing a known control 
algorithm, or the difficulty of finding such an algor- 
ithm which is robust in complex, noisy, nonlinear 
problems [32]. In addition, neurocontrol might offer 
reduced development times for control algorithms 
and the possibility of real-time adaptive performance 
in a standardized module. Empirical results, such as 
those presented here, have been very encouraging. 

However, existing adaptive control technology 
offers some cautionary advice for those who envis- 
age the rapid introduction of neurocontrol. The first 
adaptive controls were proposed in the late 1950s, 
particularly for use in high performance aircraft. In 
fact such controls were not widely used in practice 
and a significant reason for this was the lack of a 
satisfactory mathematical theory for their operation 
and in particular the lack of a proper stability theory, 
which plays a key role in conventional (non- 
adaptive) control. It has taken some 30 years work 
to derive a satisfactory stability theory for conven- 
tional adaptive control (self tuning regulators and 
Model Reference Adaptive Control systems) [6-9]. 

It is hard to see how such guarantees could be 
offered with, for example the neuro-genetic para- 
digm. Everything depends on how well the genetic 
algorithm performs its task and there is little theory 
to guide us in this respect at present. Conceivably, 
approximation theorems of a probabilistic type might 
be proved for genetic algorithms, but is difficult to 
see how such a result could be independent of the 
problem being addressed. 

Even assuming general theorems were forth- 
coming, for safety critical systems difficult issues 
are raised. We might forgive a civil aircraft manu- 
facturer's sceptical response to the assertion that 
'this control system will work with probability 1 if 
a control solution is feasible'! On the other hand if 
such systems could be shown to be reliable in 
normal operation and be demonstrated to have the 
potential to rapidly adjust to hitherto unseen situ- 
ations and re-provide control where this is actually 
feasible then the argument becomes less clear cut. 

For example, a frequently quoted illustration of 
aircraft recovery that a contemporary control system 
would never have achieved concerns a hydraulic 
failure on a Lockheed Tristar jet. The Tristar is a 
wide-bodied airliner, with an engine under each 
wing and a third mounted at the base of the vertical 
tail surface, i.e. above the fuselage. With a full 
complement of passengers, such a Tristar suffered 
primary and secondary hydraulic failure to the elev- 
ators, the surfaces that provide the pitch attitude 

control of the aircraft. The flight crew saved the 
day and landed the jet by (quickly) realising that 
they could restore some degree of pitch control by 
applying differential thrust from the engines, because 
the tail mounted engine thrust was above the centre 
of gravity and the wing mounted engines thrust 
below. There was nothing in the manual about such 
a form of control, it was invented at 38 000 ft. 'on 
the fly'. 

Future work will concentrate on examining 
methods in which the genetic algorithm objective 
function, could serve in the role of a Lyapunov 
function for the whole controller. In this way, stab- 
ility of the controller can be guaranteed from theory. 
In addition, we are interested in developing tech- 
niques which are closer to biological neural control, 
as the architecture developed here, does not seem to 
have anything to do with the operation in the brain. 

Acknowledgements. The authors would like to 
express their debt to the late Professor Patrick Parks, 
Mathematical Institute, Oxford, for his valuable 
comments on this work. He was a kind friend and 
a wise teacher and will be sorely missed. 

References 

1. Dracopoulos DC, Jones AJ. Neuromodels of analytic 
dynamic systems. Neural Comput & Applic 1993; 
1(4): 268-279 

2. Dracopoulos DC, Jones AJ. Neuro-genetic adaptive 
attitude control. Neural Comput & Applic 1994; 2(4): 
183-204 

3. Miller T, Sutton RS, Werbos PJ, Eds. Neural Networks 
for Control. MIT Press, 1990 

4. Astrom KJ. Towards intelligent control. IEEE Control 
Systems Magazine April 1988 

5. Goldberg KY, Pearlmutter BA. Using backpropagation 
with temporal windows to learn the dynamics of the 
cmu direct drive arm II. Neural Information Processing 
Systems 1. Morgan Kaufmann, 1989 

6. Landau YD. Adaptive Control: The Model Reference 
Approach. Marcel Dekker, 1979 

7. Parks PC. Lyapunov redesign of model reference 
adaptive control systems. IEEE Trans Automatic Con- 
trol 1966; 11:362-367 

8. Narendra KS, Annaswamy AM. Stable Adaptive Sys- 
tems. Prentice Hall, 1989 

9. Astrom K J, Wittenmark B. Adaptive Control. 
Addison-Wesley, 1989 

10. Qammar HK, Mossayebi F. System identification and 
model-based control of a chaotic system. Int J Bifur- 
cation and Chaos 1994; 4:843-851 

11. Fradkov AL, Pogromsky A, Markov A. Adaptive con- 
trol of chaotic continuous-time systems. Proc Third 
Euro Control Conf, Rome, 1995, pp. 3062-3067 

12. Ryan EP. A universal adaptive stabilizer for a class 
of nonlinear systems. Systems and Control Lett 1991; 
16:209-218 



Adaptive Neuro-Genetic Control of Chaos 115 

13. Ilchmann A, Ryan EP. Universal )t-tracking for nonlin- 
earity-perturbed systems in the presence of noise. 
Automatica 1994; 30(2): 337-346 

14. Narendra KS, Parthasarathy K. Identification and con- 
trol of dynamical systems using neural networks. Neu- 
ral Networks 1990; 1(1): 4-27 

15. Narendra KS, Mukhopadhyay S. Intelligent control 
using neural networks. IEEE Control Systems Mag 
1992:11-18 

16. Narendra KS. Adaptive control of dynamical systems 
using neural networks. In: Handbook of Intelligent 
Control, DA White, DA Sofge, Eds. Van Nostrand 
Reinhold, 1992 

17. Rajarshi R, Murphy Jr TW, Maier TD, Gills Z, Hunt 
ER. Dynamical control of a chaotic laser: Experi- 
mental stabilisation of a globally coupled system. Phys 
Rev Lett 1992; 68(9): 1259-1262 

18. Ott E, Grebogi C, Yorke J. Controlling chaos. Phys 
Rev Lett 1990; 64(11) 

19. Jordan MI, Rumelhart DE. Forward models: Super- 
vised learning with a distal teacher. Cognitive Sci 
1992; 16:307-354 

20. Rumelhart D, McClelland J. PDP research group. 
Parallel Distributed Processing - Explorations in the 
Microstructure Cognition, vol. 1. MIT Press, 1986 

21. Werbos PJ. Backpropagation through time: What it 
does and how to do it. Proc IEEE 1990; 78(10) 

22. Kawato M. Computational schemes and neural net- 
work models for formation and control of multijoint 
arm trajectory. In: Neural Networks for Control, S 
Miller, DJ Werbos, Eds. MIT Press, 1990 

23. Kawato M, Uno T, Isobe M, Suzuki R. Hierarchical 
neural network model for voluntary movement with 
application. IEEE Control Systems Mag 1988 

24. Katayama M, Kawato M. Learning trajectory and 
force control of an artificial muscle arm by parallel- 
hierarchical neural network model. Neural Information 
Processing Systems 3. Morgan Kaufmann, 1991 

25. Psaltis D, Sideris A, Yamamura AA. A multilayered 
neural network controller, tEEE Control Systems Mag 
1988:17-21 

26. Dracopoulos DC. Neuromodelling, Adaptive Neuro- 
control and the Attitude Control Problem. PhD thesis, 
Imperial College of Science, Technology and Medi- 
cine, University of London, March 1994 

27. Chen G, Dong X. From chaos to order - perspectives 
and methodologies in controlling chaotic nonlinear 
dynamical systems. Int J Bifurcation and Chaos 1993; 
3(6): 1363-1409 

28. Ditto WL, Rauseo SN, Spano ML. Experimental con- 
trol of chaos. Phys Rev Lett 1990; 65(26) 

29. Meyer G. Design and global analysis of spacecraft 
attitude control systems. Technical Report TR R-361, 
NASA, 1971 

30. Leipnik RB, Newton TA. Double strange attractors in 
rigid body motion with linear feedback control. Phys- 
ics Lett 1981; 86A: 63-67 

31. Lapedes A, Farber R. How neural nets work. Proc 
IEEE Denver Conf Neural Nets, 1987 

32. Werbos P. Neurocontrol and related techniques. In: 
Handbook of Neural Computing Applications, A 
Maren Ed. Academic Press, 1990, pp. 345-381 


