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Abstract. We calculate the on-shell fermion wave-func- 
tion renormalization constant Z2 of a general gauge 
theory, to two loops, in D dimensions and in an arbitrary 
covariant gauge, and find it to be gauge-invariant. In 
QED this is consistent with the dimensionally regular- 
ized version of the Johnson-Zumino relation: 
dlogZ2/dao=i(2~z)-~ In QCD it is, we 
believe, a new result, strongly suggestive of the cancella- 
tion of the gauge-dependent parts of non-abelian UV 
and IR anomalous dimensions to all orders. At the two- 
loop level, we find that the anomalous dimension 7v of 
the fermion field in minimally subtracted QCD, with 
NL light-quark flavonrs, differs from the corresponding 
anomalous dimension PF of the effective field theory of 
a static quark by the gauge-invariant amount 

d Ms , [ Z 2  (#)\ #  ,og 
~s(#) /41 11 . \ &2(,u) . . . .  3, 

A complete description of two-loop on-shell renormal- 
ization of oneqepton QED, in D dimensions, is also giv- 
en. More generally, we show that there is no need of 
integration in the two-loop calculation of on-shell two- 
and three-point functions. 

1 Introduction 

In a massive scalar field theory, the on-shell renormaliza- 
tion scheme is defined by identifying the wave-function 
renormalization constant with the constant Z in the LSZ 
[1] asymptotic relation of the bare Heisenberg field q~o 
to the in and out fields q5 i . . . .  t which create correctly 
normalized initial and final physical states. In the sense 

* Supported by Bundesministerium fiir Forschung und Technolo- 
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of 'weak' convergence [2] one may write 

~bo(X)--~Z(~i  . . . .  t(x) as Xo--* -Too. 

The on-shell renormalization q~o=V-z~b then ensures 
that S-matrix elements are given by on-shell limits of 
truncated (i.e. proper) renormalized Green functions [3]. 
In any other scheme, such as a minimal subtraction (MS) 
scheme with wave-function renormalization constant 
zMS(#), it is necessary to multiply a renormalized Green 
function by (zMS(#)/Z) N~/2 to obtain the corresponding 
S-matrix element for a process with N~ external particles. 
In massive scalar field theory, such a correction factor 
has a finite perturbative expansion in terms of the renor- 
realized mass and coupling, which is most easily found 
from the residue Z/zMS(#) of the renormalized propaga- 
tor at p2= M 2, where M is the pole (i.e. physical) mass. 
This is because Z is the residue at the pole of the bare 
propagator [4]. Formally, one may regard Z as the prob- 
ability for 'finding' the bare particle in the dressed one 
and use a dispersion relation [4] to show that Z < 1. 

The situation in a gauge theory is rather different. 
If the ultraviolet (UV) infinities of the fermion propaga- 
tor are removed by the MS renormalizations ~'o 
= ~ ~  and mo=Z~S(#)rh(#) of the bare-fermion 
field and mass, the pole mass M has a finite perturbative 
expansion [5], but the residue at the pole does not, be- 
cause of the 'infrared catastrophe' [6] of accumulating 
branch points of cuts with intermediate states consisting 
of one fermion and any number of gauge bosons. It is 
therefore straightforward to compute [7] the finite per- 
turbative relation between the MS mass ~fi(#) and the 
pole mass M, but much more problematic to give a 
meaningful expression for the factor z~s(#)/Z2, required 
to convert Green functions of the MS scheme into S- 
matrix elements, since it contains infrared (IR) singulari- 
ties. In QED, these are cancelled by the Bloch-Nordsieck 
[8] mechanism of incoherently adding probabilities for 
low-energy photon emission to the probability given by 
the square of the S-matrix element, thereby obtaining 
finite answers to experimentally meaningful questions 
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[9]. In QCD, however, this mechanism fails for certain 
[10] initial states. 

In a previous paper [7] we have investigated the rela- 
tion between MS and on-shell mass renormalization, by 
combining the results of three-loop MS mass renormal- 
ization [11] with our new results for the finite part of 
on-shell two-loop mass renormalization. The latter are 
commensurable with the former and turn out to domi- 
nate them numerically. 

In this paper we use the same technique of simulta- 
neous dimensional regularization of UV and IR singular- 
ities to calculate on-shell two-loop fermion wave-func- 
tion renormalization, in an arbitrary covariant gauge 
of an arbitrary gauge theory in an arbitrary dimension 
D--= 4--2 o~, and show that it is gauge-invariant. In QED 
there exists an argument [12] why this should be the 
case. In the case of a non-abelian theory such as QCD, 
we know of no such general argument, but are encour- 
aged by our two-loop result to believe that dimensional 
regularization renders Zz gauge-invariant to all orders, 
thereby respecting its formal probabilistic interpretation. 
We hope that a proof of this may eventually be forth- 
coming from non-abelian functional integration. 

The utility of our result is demonstrated by deriving 
from it the two-loop anomalous dimension ~ of the 
field of a static quark, interacting with gluons and mass- 
less quarks in the effective field theory (EFT) obtained 
in the limit M ~  oo [13-15]. The gauge invariance of 
Z2 implies that the corresponding anomalous dimension 
7v of conventional QCD differs from ~Tv by a gauge- 
invariant amount, which is simply calculable from the 
Laurent expansion of Z2. Confirmation of our result 
for 7v has recently been obtained by Broadhurst and 
Grozin [16], working exclusively within EFT. 

The utility of our method is further demonstrated 
by obtaining, using only computer algebra, all the two- 
loop on-shell renormatization constants of one-lepton 
QED, in any dimension D, in terms of F functions and 
a single D-dimensional integral, I(co), whose D ~ 4 limit, 
I ( 0 )  = ~2 log 2--3~(3), was found by one of us [17]. More 
generally, on-shell two-loop three-point functions, such 
as that giving the O(~ 2) corrections 1-18] to g - 2 ,  may 
be expressed in terms of F functions and I(co), which 
may itself be expanded through 0(o~ 2) using exclusively 
algebraic methods [19]. 

The remainder of this paper is organized as follows. 
In Sect. 2 we show how Z2 and Zm--mo/M are re- 

duced to integrals on the bare-mass shell, when all but 
one of the fermions are massless. The one-loop integrals 
are trivially evaluated. The two-loop integrals are related 
by recurrence relations to three general structures, of 
which only I(o~) is not reducible to F functions. Hence 
we obtain the Laurent expansions of Z2 and Zm as ~ ~ 0, 
including important finite terms. 

In Sect. 3 we evaluate the effects of non-trivial fermion 
mass ratios, since these are of importance in QED. Only 
when one has a finite mass ratio, such as Me/M u, is 
it necessary to resort to Spence functions. 

In Sect. 4 we derive the two-loop EFT anomalous 
dimension 7v from Z2 and the known [20] two-loop 
QCD anomalous dimension ~v. 

In Sect. 5 we give all the two-loop on-shell renormal- 
ization constants of QED and indicate other QED calcu- 
lations which are reduced to algebra by our method. 

In Sect. 6 we summarize our findings and present con- 
clusions. 

2 Expansion in the bare coupling 

We achieve the expansion, to O(go 4) in the bare coupling, 
in four stages. First we determine which combinations 
of on-shell integrals enter the two-loop expansion of Z2 
and Zm via the bare-fermion self energy S(p) and its 
derivatives on the bare-mass shell, p2=mZo. Then we 
evaluate the one-loop terms and show that Z 2 = Z m  
+ O(go4). Next we evaluate the two-loop integrals in D 
dimensions, by computer algebra. Finally we give the 
Laurent expansions of Z2 and Z m as D ~ 4. 

Throughout this Sect. we assume that the fermion 
loop in the gauge boson propagator involves only the 
external fermion, of mass M, and (if desired) NL massless 
fermions, so that we are evaluating integrals which de- 
pend only upon the dimension D and bare gauge param- 
eter ao. Non-trivial fermion mass ratios will be treated 
in Sect. 3. Coupling constant renormalization will be 
treated in Sects. 4 and 5, for QCD and QED respectively. 

2.1 Reduction to on-shell integrals 

Starting from the perturbative expansion of the bare self 
energy, ,S(p), in terms of the bare coupling constant, go, 
the bare mass, mo, and the bare gauge parameter, ao, 
we calculate Z z by finding the residue, at the pole mass 
M, of the bare Feynman propagator 

1 
SF(p) =- l~-- mo -- S(p) 

= ~ _ ~ +  (terms regular at p2= m 2) (1) 

in D~4--2co dimensions. The essence of dimensional 
continuation is to regulate both ultraviolet and [-21] in- 
frared singularities by the introduction of a single dimen- 
sionless parameter, D, which formally preserves both the 
Lorentz invariance and the gauge invariance of the ac- 
tion, making no attempt to separate the resultant cn ~ 0 
singularities into 1/COuv and 1/09IR terms. Whilst such 
a separation may be possible at the one-loop level, it 
is quite impractical at two loops, where the method of 
integration by parts [22] routinely introduces extra fac- 
tors of 1/o9 in the process of reducing integrals to known 
forms. Computationally, the prescription is very well de- 
fined: one merely instructs a program like REDUCE 
[23] that g~= D and gives it a master formula, and/or 
a set of recurrence relations [7], sufficient to translate 
all possible terms encountered in momentum-space inte- 
grands, generated by the Feynman rules, into functions 
of D which correspond to the integrals. 

We find it convenient to expand the bare self energy 
as 



_ ~ [  g2 1" 
Z ( p ) -  n=l [(4 ~)D/2 P 2~~ 

�9 (mo a ,  (mZ/p 2) + (l~-- too) B, (mZ/p2)) (2) 

where A, and B, are dimensionless functions of the di- 
mension, D, the gauge parameter, a0, and the dimension- 
less variable mZ/p 2. Note that the coupling constant has 
mass dimension co, which has been cancelled by a power 
of the time-like momentum p, before taking the limit 
p2 __+ m~. Then the coefficients of the expansions 

m ~  ~ Z m = 1 + 
m =a 

(3) 

2 n [ 1F. ( /~--  M )  S F (p)I~= M - z 2  = 1 + . ~ ,  [ (4  g)D/2 M 2 o~] . (4) 

are determined by combinations of A. and B, and their 
derivatives on the bare-mass shell. Specifically we find, 
by substitution of (2) in (1), that the following combina- 
tions are required at the two-loop level: 

M 1 ~ - A  1 

M2= - A E + A I ( A 1  + 2A'1-- B 0 

F1 =BI  -- 2coAx -2A'1 

/72 = B2 -- 4 coA2 -- 2A~ + (2A'~ -- Bx) 2 + 4A, (A'~ - B'a) 

+ 2(1 + 2c,)A~ (coA~ + 3A' 0 -  6coA~ Ba 

with all the A and B terms evaluated at  m~/p 2= 1, for 
which the calculation of integrals is much simplified. To 
find the derivatives with respect to mZ/p 2, one has merely 
to differentiate diagrams one or two times with respect 
to the bare mass, before going on shell, thereby merely 
making zero-momentum insertions in internal fermion 
propagators. 

2.2 One-loop result 

From the one-loop integrals of Fig. l a  one easily obtains 

/ \ D--1 
A I = CF [~Z~__ 3 ) F(C,) 

A, ,~ [(D--a)(D--3)--ao\  

\ ( - 5 )  ] 

B 1 = - -  CF F(e))  

[(D -- 2) %\  
Btl = - -  L~F/  ~ - ( ~  ) r (o . )  ) 

where CF=(NZ--1) /2Nc for a gauge group SU(Nc). 
Hence we obtain the one-loop coefficients 

D - 1  
M ~ = F I = -  CF ( ~ _ _  3) if(CO ) (5) 
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Fig. 1. Fermion self-energy diagrams, to two loops 

showing that Z m and Z2 are gauge-invariant and equal 
at the one-loop level�9 

As there is no non-abelian coupling at this order, 
the one-loop gauge invariance of Z2 may be obtained 
directly from the dimensionally regularized version of 
the QED Johnson-Zumino identity [12, 24] 

d log Z2/d ao = i(2 ~)- D eo 2 ~ d ~ k/k 4 = 0 (6) 

which derives from an earlier analysis by Landau and 
Khalatnikov [25] of the transformation of Green func- 
tions under covariant gauge transformations. Note that 
Z 2 is therefore gauge-invariant to all orders in QED. 
We are not aware of a nonabelian generalization of (6) 
that would ensure the gauge invariance of Z2 to all 
orders in QCD. 

Whilst the one-loop gauge invariance of Z 2 is to be 
expected from QED, we have no explanation of the re- 
markable coincidence 

2 2 = Z m "q- 0 (go 4) (7) 

which means that, to leading order, the mass term 
tffo mo qo, in the bare Lagrangian density, is renormalized 
by a factor Z2Zm which is the square of the factor Z2 
by which the kinetic energy term t P o i ~ o  is renormal- 
ized. We shall show that this 'virial' relationship does 
not persist at two loops, where it is replaced by a simple 
relation between the contributions to Z2 and Zm with 
three-fermion intermediate states. 

There is a rather instructive consistency check on (7), 
provided by conventional MS renormalization. With c~ 
and 8s representing the gauge parameter and coupling 
renormalized at scale # in the MS scheme, the anomalous 
dimensions [26] 

dlogZ2US(#) aCFSs F0(82) (8) 
7v(CLSs) = d l o g #  - 2~t 

~)m (Ss) ~- d log Zm Ms (#) _ 3 CF 8s + 0 (82) (9) 
d l o g #  2~ 

are indeed equal at the one-loop level in precisely that 
gauge for which there is no [9] infrared catastrophe, 
namely the Yennie gauge [27] with c~ = 3. 
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It was shown by Abrikosov [6] that in QED the 
electron propagator has a one-loop infrared anomalous 
dimension 7v = ( a -  3) a/2 u. Other authors [28] verified 
that this result is spin-independent. Recently it has be- 
come possible to give a precise definition [16] to Yv in 
EFT, in analogy with (8), namely 

yV(,i, 8s) - dl~ (a--3)Cv~s ]-O(~s 2) (10) 
d log# 2r~ 

where ~MS(#) gives the minimal subtractions which regu- 
larize the fermion propagator in the effective field theory 
[13, 14] of a static fermion, obtained as M --* oe. In EFT 
it is trivial [16] to obtain the one-loop Abrikosov result 
(10) by repeating the one-loop self-energy calculation of 
Eichten and Hill [14] in an arbitrary covariant gauge. 
The coincidence of the one-loop 1/co singularities in (7) 
may thus be written as 

])F - -  YF = ])m "]- 0 (~2). (11) 

The relation of YF--7F to the gauge-invariant 1/co sin- 
gularity of our on-shell Z z becomes apparent when one 
compares S-matrix elements of QCD and EFT. With 
NE external heavy fermions, these differ from truncated 
MS-renormalized Green functions by factors of 
(zMS(p)/Z2)N~/2 and (ZMS(#)/2z) uE/2 respectively�9 Now 
the Green functions are finite, by construction, and the 
S-matrix elements of the two theories can differ, at most, 
by finite radiative corrections which vanish as M ~ oQ 
and hence 8~(M)--*O. Moreover Z,2 = 1, since there can 
be no on-shell wave-function renormalization in dimen- 
sionally regularized EFT, as all the integrals contributing 
to the on-shell self energy are scale free. It follows that 
all singularities must cancel in the finite ratio R(#) 
==-(zMS(#)/Zz)/ZM$(#) and hence that a knowledge of Z2 
suffices to determine the difference of QCD and EFT 
anomalous dimensions. In Sect. 4 we shall verify that 
this is indeed the case at the two-loop level (provided 
one neglects heavy-quark loops in QCD, since these are 
discarded ab initio in EFT). 

It is thus apparent that the gauge invariance of Z 2 
guarantees the gauge invariance of the difference (11) 
of the anomalous dimensions of QCD and EFT. It was 
long ago remarked [24] that to leading order Z2 has 
no ultraviolet divergence in the Landau gauge and no 
infrared divergence in the Yennie gauge. Dimensional 
regularization assigns Z2 a unique gauge-invariant value 
in QED and (to two loops, at least) in QCD. Since this 
unique value provides an important link between QCD 
and EFT, its calculation becomes of practical as well 
as theoretical interest. 

2.3 Two-loop result 

We now need the two-loop integrals contributing to 

M2-- - A2 + (D-  2)A z 

�9 [ 1 ) 2 _  7 D  + 8 + a o \ _ 2  
Fz=B2--4COA2,2A'2+ 1- ~ ) A , .  

(12) 

(13) 

In [7] we gave the exact result for the two-loop term 
A2, required in (12). It involved four colour factors and 
the three terms 

R 1 = F2 (co), 

R3=I(CO) 

cor ( -  co) r ( -  4 co) r(2 co) r(co) 
R 2 -  r ( - 2 c o ) r ( - 3 c o )  ' 

(14) 

which derive from the three irreducible integrals to which 
all other on-shell two-loop integrals may eventually be 
reduced by the method of integration by parts [7]. The 
last of these is the D-dimensional (Minkowski space) in- 
tegral 

(p2)5 - D  
I(co)_-- 

dDkdDl 
�9 ~S (k 2 + 2 p.  k) k 2 (l z + 2p .  l) I z ((k + l) z + 2 p .  (k + l)) 

(15) 

= z2 log 2 - ~  ((3) + O(co) (16) 

whose 4-dimensional value was obtained in [17]. 
In this paper, we find it convenient to work with the 

colour factors 

C1 =CF(CA--2CF), C2-=C 2, C3=2TFNLCF, 
C 4 = 2 T F C  v (17) 

where CA=Nc and TF= �89 for a gauge group SU(Nc) and 
NL is the number of light fermions contributing to 
Fig. 1 d, here taken to be massless. Note that Fig. l b, 
e give gauge-dependent contributions proportional to 
the colour factors C~ and C2, respectively, whilst the 
light- and heavy-quark loops in Fig. 1 d give gauge-invar- 
iant contributions proportional to C3 and C4, respec- 
tively. The nonabelian couplings in Fig. l c, f and the 
ghost loop in Fig. lg give gauge-dependent contribu- 
tions proportional to CFCA=Ct+2C2. In the case of 
one-lepton QED, one sets CA = NL = 0 and Cv = TF = 1. 

In terms of the structures (14) and (17) the two-loop 
coefficient M 2 of Zm in (3) is given by Table 1, which 
lists the non-vanishing coefficients Mij of the matrix cou- 
pling the colour and integral structures in 

4 3 
M2= Z Z C,M,&. (18) 

i=1 j = l  

For the O(g 4) corrections to Z 2 w e  need to calculate 
new two-loop terms, namely the B2 and A~ terms of 
(13). These may be obtained by the methods of [7], albeit 
with considerably greater effort, needed to extend the 
recurrence relations to deal with terms which are gener- 
ated by the doubling of fermion propagators in A~. We 
have evaluated them for any dimension, D, and gauge 
parameter, ao, but the results are too bulky to reproduce 
here. What concerns us is the combination (13), which 
turns out to be gauge-invariant, thanks to remarkable 
cancellations, between diagrams, of terms linear and qua- 
dratic in ao in several (colour factor x integral) struc- 
tures, each of which involves complicated rational func- 
tions of D, of which Table 1 is indicative. Since we are 
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Table 1. Non-vanishing coefficients Mi~ of CiRj in (18) 

M l l  ~ 

M 1 2  = 

M 1 3  ~ 

M2~ - 

M 2 2  = 

M 3  2 = 

M 4 1  = 

M, ,2  = 

M 4 3  --  

3(5D 3 - 5 8 D  2 + 180D-- 152) 
2(33 -- 8)(3D -- 10)(D-- 3) 

4(4D 3 --41D 2 + 122D-- 104) 
3(3D--8)(3D--10)(D--3) 

4(D 2 -- 7D + 8)(D-- 3)(D-- 6) 
(3D - 8)(3D-- 10) 

D2--8D+13 
(D-- 3) 2 

8(233 --21D 2 + 680-- 71)(3--2) 
3 (3D-- 8)(3D-- I0)(D-- 3) 2 

16(D--2) 
3(30--8)(3D-- 10) 

12(O 3 - 12D 2 + 500--  68) 
( 3 3 -  8)(3D- 10)(D-- 3)(D-- 6) 

16(D 3 -7D2 + 6D + 16) 
3 (3D-  8)(3D-- 10)(D-- 3)(D-- 6) 

8 ( D  3 --7D 2 +6D + 16)(D--4) 
(30-- 8)(3D-- 10)(D-- 6) 

Table 2. Non-vanishing coefficients F~j of Ci Rj in (19) 

E l l  ~ 

Ft2 = 3 (3D-- 10)(D -- 3) 2 (D - 5) 

D 3 - -  12D 2 + 37D-- 36 
F21 = 4 (D - -  3) 2 

2(2D a -- 170 2 +42D-- 29)(D-- 2) 
F22 = 3 (30-- 10)(D-- 3) 2 

F32- 4(D--2) 
3(3D-- 10) 

2(D 2 -  8D + 11)(D-- 4) 
F,u= 

(D - 2)(D -- 3)(D -- 5)(D -- 7) 

3D 5 - 61D4 + 469D 3 -- 1679D 2 + 2756D -- 1648 
8 (0 -- 3) 2 (D -- 5) 2 

205 - 29D 4 + 148D 3 -- 321D z + 268D -- 60 

n o w  h ighly  sensi t ive to the th ree -g luon  coup l ing  of  a 
non -abe l i an  gauge  theory,  we regard  the  t w o - l o o p  gauge  
invar iance  of  Z2 as a s t rong  ind ica t ion  of  its gauge  invar-  
iance to all orders�9 I t  shou ld  however  be r e m a r k e d  tha t  
we are  no t  yet  sensit ive to the  four -g luon  coupling�9 

To presen t  our  resul t  compac t ly ,  we explo i t  a n o t h e r  
in teres t ing  feature,  namely  tha t  the  c o m b i n a t i o n  

4 2 

Fz--(1 +D/4)M2= ~ ~. C~F~jRj (19) 
i = 1  j = l  

does  no t  involve  the in tegra l  (15). As  in the  case of  the 
one - loop  re la t ionship /71  = M 1 ,  we lack  an a r g u m e n t  as 
to why  such a s impl i f ica t ion  should  occur.  I t  involves  
m a t c h i n g  cance l la t ions  in each  of  Fig.  l b, d and  these 
are  a p p a r e n t  on ly  after extensive use of  the recurrence  
re la t ions  of  [7].  Based  on  these two instances,  one is 
t e m p t e d  to  specula te  tha t  at  L loops  there  is a lways  
a l inear  c o m b i n a t i o n  of  FL and  ML in which  there  is 

no  net  c o n t r i b u t i o n  f rom in t e rmed ia t e  s ta tes  wi th  the 
m a x i m u m  n u m b e r  of  mass ive  fermions,  n a m e l y  2 L - 1 .  
The  p r o o f  of  such a con jec ture  migh t  be easier  to  find 
in o ld- fash ioned ,  t ime-o rde red  p e r t u r b a t i o n  theory .  

T h a n k s  to  the  relat ive s impl ic i ty  of  c o m b i n a t i o n  (19) 
and  to gauge  invar iance ,  we are  able  to give a comple t e  
accoun t  of  t w o - l o o p  on-shel l  f e rmion  mass  and  wave-  
funct ion  r eno rma l i za t i on ,  in any  d imens ion  D, by  com-  
p lemen t ing  Tab le  1 wi th  Tab le  2. In  c o m p a r i s o n  to indi-  
v idua l  resul ts  for  the  c o n t r i b u t i o n  of  a pa r t i cu l a r  d ia-  
g r am to one of  the re levant  te rms {A2, A'2, B2}, the full 
D-d imens iona l  resul ts  of  Tables  1 a n d  2 are  ra the r  com-  
pact .  

2.4 Laurent expansion as D ~ 4 

W e  n o w  pe r fo rm L a u r e n t  expans ions  in ~o, ob t a in ing  
the fo l lowing t w o - l o o p  results,  in t e rms  of  the  bare cou-  
p l ing:  

Zm = l --( ~yz~) CF { 4~"b l + (~ ( (2) + 2) O) -+- O (o92) } 

[ 

4 

�9 (20) 
i = 1  

Z 2 = 1 - - ( ~ 2 o )  Cv{4~+1+(~(2)+2)~176176 } 

[ 

4- 

�9 y ,  (21) 
i = 1  

where  % = (g~/4rt)(4n/e0 ~ and  the t w o - l o o p  coefficients 
M~, and  F~, a s soc ia ted  with  the co lou r  factors  (17), are  
given in Tab le  3. N o t e  tha t  it  is necessary  to re ta in  the  
one - loop  O(eo) terms,  since these genera te  finite con t r ibu -  
t ions after  coup l ing  cons t an t  r enorma l i za t ion .  

In  1-7], we used (20) to der ive  the r e l a t ion  be tween  
the po le  mass  a n d  the th ree - loop  M S  mass.  In  Sects. 4 
and  5 we app ly  (21) to wave- func t ion  r e n o r m a l i z a t i o n  
in different schemes of  coup l ing  cons t an t  r eno rma l i za -  

Table 3. Coefficients Mi. and F, i of Cjm" in (20) and {21) 

n 2 1 0 

M~ 11 91 5 1 605 -x~  --6~ ~2 ( ( 2 ) - - ~ I ( 0 ) - ~  
M 2 13 137 41 1011 
M 3 t 7 5 ,5 r6 3~ i6~ (2 )+~  
Mn4 1 7 7 69 

t6 32 -iz((2)+~ 
grit 11 101 49 1 803 

- - ~  64- ~((2)--2I(0)- 128 

F 2 -•13 - - 6 4 -  151 _~22~(2)_1173128 

F 3  1 9 5 59 
16 32 16 ~ ( 2 ) + ~  

1 19 __7 ( (2 )  + 1139 
F 4  8 9~ 576 
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tion, namely minimal subtraction of the QCD coupling, 
and on-shell charge renormalization in QED. But first 
we calculate the form of the contribution of Fig. l d  when 
the internal fermion is neither massless, nor of the exter- 
nal mass M, since this is clearly of some consequence 
in QED, where the effects of one of the leptons {e, p, ~} 
on the other two need investigation. 

3 Radiative effects of non-trivial fermion mass ratios 

The effect on (20) of finite internal fermion mass Mi =t = M 
in Fig. ld  was computed, in terms of dilogarithms, in 
[7]. The same dilogarithms suffice to express the corre- 
sponding effect on (21), but in the case of wave-function 
renormalization they result from a finite integral over 
the fermion contribution to the gauge-boson propagator 
subtracted at zero momentum. This is because we must 
separate out infrared singularities present in Z2, but ab- 
sent from Zm. We find that the O(g 4) contribution to 
Z2, of a single internal fermion of mass M~= rM, is of 
the form 

/ e0 \2 C [ 1 19 -241ogr  
A Z 2 = ~ f )  4 ~  2~- 9 6 0 9  

+ �88 log 2 r-- 2~ log r + �89 ((2) + ~ + el(r) + O (c9)] 
/ 

(22) 

where 

o -}- (2 + y)(1 -- y)/7(r 2 (1 -- y)/y2) 

H(z)=2(1-2z)[ f l+4z arccoth ] / / ~ 4 z + 4 z - ~  

and the bars are to distinguish A- and /7  from the related 
but different functions A and /7 involved in the corre- 
sponding analysis [-7] of Z m. Note the presence of a 
mass-dependent singular term, co -1 log r, in (22). In 
Sect. 5 we will show that this is removed by on-shell 
charge renormalization of QED. 

It remains to reduce A(r) to the dilogarithms [-7] 

L+(r)- i dx(l~ gr) 
0 \ -- 

=�89 log 2 r + (�89 ~) ( (2 ) -L+ (l/r) 

=logrlog(r~)+Li2(T-1/r  ) for r>__l 

where Lip(x)= ~ x"/n v for p>  1 > Ixl. An intricate cal- 

culation yields 

z](r) = ~(r + 1)(6 r 3 - -  r 2 - k  r -4- 2) L + (r) 

+~(r--  1)(6r 3 + r  2 + r-- 2) L_ (r) 
19 229 1 + ~  logr + ~ + ( ~  logr +-~)r 2 

= ~ (--2G(n)logr+G'(n))r -2" for r__>l (23) 
n = l  

where G(n)=3(n z -  1)/4n(n+ 2)(2n+ 1)(2n+ 3) and G'(n) 
is its derivative. 

A check on this result is provided by setting r =  1. 
We find that - 48l A ( 1 ) = ~ - - ( ( 2 ) ,  giving a contribution (22) 
which, with r =  1, agrees with the C4 term of (21). This 
agreement between a long algebraic calculation and a 
difficult analytical evaluation gives us considerable confi- 
dence in each. The limiting behaviours of A(r) at large 
and small mass ratios r are as follows: 

A(r) = ~ r -  2 + O(r-4 log r) 

~(r)=klogZr+~logr+�88 229 + ~g~ + O (r) 

(24) 

(25) 

in marked contrast to the corresonding term A (r) in 

1 7 5 
AZra=(_~2~)2C4(1~f+~2~+T~(2)  45 +-~--A(r) 

+ O (co)] (26) 
/ 

which is given exactly by [-7] 

A (r) = - �88 + 1)(r 3 + 1) L+ (r) -- l ( r - -  1)(r 3 -- 1) L_ (r) 

+ �88 log 2 r + 1 ((2)_ (�88 log r + s 3) r 2 (27) 

and has the limiting behaviours 

A(r)=�88 l 151 ~((2)+z~g+O(r-21ogr) (28) 

.d (r) = �88 ((2) r + O (r 2) (29) 

with A (1)-- 3 ((2)-~]. 
To summarize thus far: in Sect. 2 we found the contri- 

bution of NL massless fermions and the fermion of mass 
M to Fig. l d  in any dimension D, whilst in this section 
we deal with internal fermions of any finite mass, but 
must resort to dilogarithms to find their contributions 
as D-44. This complication does not affect the proof 
of the gauge invariance of Z2 to two loops in all dimen- 
sions, since Fig. ld  is separately gauge-invariant, for any 
fermion mass ratio. It is, however, apparent from (22, 
25) that for Z 2 (un l ike  Zm) one must decide ab initio 
whether one treats light quarks as massless: there is 
clearly no way of obtaining the massless quark contribu- 
tions from those of finite-mass quarks, since the vanish- 
ing of r in (22) produces infrared mass singularities, 
which were dimensionally regularized in Sect. 2. Despite 
this complication, we have sufficient equations to handle 
all mass cases and may now proceed to renormalize the 
coupling. 

4 MS coupling renormalization in QCD and EFT 

In QCD, unlike QED, one cannot renormalize the cou- 
pling merely by calculating the wave-function renormal- 
ization of the gauge boson on its q2= 0 mass shell: that 
is the really significant consequence of the nonabelian 
structure. Our perturbative analysis suggests that the on- 
shell infrared problems of quarks and leptons are rather 
similar and equally gauge-invariant, after dimensionally 
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regularized on-shell fermion wave-function renormaliza- 
tion. But gluons are decidedly different from photons, 
even in perturbation theory. This, we suggest, is the real 
infrared problem of QCD: gluon confinement. If so, 
there is hope of devising an intermediate scheme, in 
which one dares to approach the perturbative heavy- 
quark mass shell, but requires substantial virtualities of 
gluons and light quarks, which dress the heavy quark 
as a decent hadron. As stressed in a recent review by 
Bjorken [29], the formal limit M ~ oo of EFT [13, 14] 
provides a well-defined starting point for such an at- 
tempt. 

4.1 Derivation of 7F from Z 2 

To relate our result for Z2 to EFT, we renormalize the 
coupling in the MS scheme, with NL light quarks: 

g2 [#2e?~ ~~ , ,[~ ~s(#) \ 
~ = ~  4~-~ ) a~t#]~t-- rcco @}CA--�89 (30) 

where # is an arbitrary mass scale, introduced to make 
~s dimensionless, and the power of (er/4n) suppresses 
needless factors of (log4rc-7) in the co ~ 0  limit of (20, 
21). It is important to realize that (30) applies for all 
D = 4 - 2 c o ;  not just as co ~0 .  There are no further terms 
in the Laurent expansion, otherwise the renormalization 
would not be minimal. Note also that we do not include 
the effect of the heavy-quark loop in (30), since that is 
discarded in EFT. 

After MS coupling renormalization, the Laurent ex- 
pansion (21) may conveniently be decomposed as 

Z 2 = Z~ + Za H + O (a 3) (31) 

where 

z2L = 1 - - r  CF {4~q-  1 + (3~(2) + 2) 09 + 0 (~ } 

+ Z Ci{F~/c~176176 (32) 
i=1 

is the contribution of light quarks and gluons, whilst 

ZH /~s(M)~ 2 ( 1  19 7 ~(2) + 15@69 ) 
z = k ~  ] C4 8~2m 2q 96e~ 8 +O(e)) 

(33) 

is the contribution of the heavy quark itself, which is 
unaffected by coupling renormalization and will play no 
role in establishing the link with EFT. 

The coefficients F, ~ of Table 4 are obtained from the 
corresponding coefficients in Table 3, taking into ac- 
count the renormalization of the one-loop term by (30). 
They uniquely determine the minimal subtractions in 

zMS(#) -- 1 -- 3 CF {C~(#)~ • C { ~(#) ~2 
~ -  \4rCCO]''-'F\~)] 

.{~-CA + }CF--2TrNL 
__/127 t'~ 3g" 11 

~,12 " ~ A - - ~ J F  - 3 TFNL)(D}q-O(~3) (34) 

Table 4. MS-renorrnalized coefficients/vd of CJe)" in (32) 

n 2 1 0 

ll•nl 11 127 - - ~  ~(2)--�89 -17~ 
/~n 2 31 101 27 2111 3~ - - ~  --~ ~(2)-- 

by the requirement that R (#) -  (Z~S(#)/Z~)/2~s(#) be fi- 
nite as co ~ 0 .  Note that z~S(#)/zzMS(#) is not obtained 
by mere subtraction of the singularities in Z~, but rather 
by the requirement that (34) have a minimal structure 
such that when divided by the non-minimal Z2 L the result, 
R(#), is finite. The finiteness of R(#) then ensures that 
a ratio of QCD and EFT S-matrix elements is finite, 
given that the corresponding ratio of renormalized 
Green functions is finite and that there is no on-shell 
wave-function renormalization in dimensionally regular- 
ized EFT. 

A strong check on (34) is provided by calculating 
the difference of the anomalous dimensions (8) and (10), 
using the D-dimensional beta function 

d log c7~(#)_ 2 0 ) - 2  c~(p) u2t~r~A-- !TFNL)+O(s 
d log # 7z 

which gives the finite result 

"~F --'~V 3 CF~s  "a- (127/'~ 3/'~ 11 CF ~2 
- 2~ "~ '12-~-~A--4-"~F--~-TFNL)  4--~-~ 2 -t-O(~s3) 

(35) 
c~ 2 

=2c7~+c4~ 11 NL) -~ +O(c~ 3) for SU(3). (36) 1,4 - - 1 8  7~2 

Combining (35) with the known [20] two-loop QCD 
anomalous dimension 

8CF~ f/~2 ~i 25\ 3 

1 C v ~  3 
4 T F N L } ~  q-O(~s) (37) 

we obtain the EFT result 

(d--3) CFC~s f[gt 2 ~ 179\ 

2 ) CF ~2 -3 
+~ TF NL~ ~ w - +  O(cq ) (38) 

which has recently been verified by Broadhurst and Gro- 
zin [16], working entirely within EFT. Note that the 
effective field theory obtained by taking the electron 
mass to infinity in pure QED corresponds to CA = NL = 0 
and hence has no anomalous dimension at two loops 
in the (renormalized) Yennie gauge, which was chosen 
for precisely that reason in [27]. By contrast, the EFT 
of a static quark is not greatly simplified by choosing 
the Yennie gauge, since there is still an anomalous di- 
mension at the two-loop level. 
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4.2 Renormalization-group improvement 

We can integrate (36), using the one- and two-loop terms 
of the beta function [26] 

20)4 d log c 7 ~  ~ [8~]" 
dlog/~ 2 ~ib"\4n ] 

with b~= l l - 2 N L  and b2=102-a~NL . Writing (36) in 
the similar form 

d log(Z2~S/~2 Ms) (8~]" 
d log/~ - 2 ~ e, \4 n] 

n = l  

with e 1 = 4  and e2 = 82--~9~NL, we readily obtain the 4- 
dimensional, two-loop, renormalization-group improved 
result 

1 MS [~s(M)y,/b,{l+Ez~(M)/zc~ R z 2  (~) 
(It)--Z~2 ~ ' ~ R ( M ) \  8 ~ - }  \ l +EzSs(#)/Tr] 

e2 bl - el bE (39) 
E2-- 4b~ 

175 4253 
or for NL=3 or 4 (40) 

-- 162 3750 

for the finite ratio (39) of the factors which convert MS- 
renormalized Green functions to S-matrix elements in 
QCD and EFT. Moreover, the finite part of (32) deter- 
mines the integration constant R(M) in (39) to be 

R (M) = 1 + ~ 8 s (M)/rc + K 2 ~2 s (M)/~z 2 + O (~s 3) (41) 

K2 =~}n 2 l og2 - �89  42663 -(�89 + 1~3~ ~,r 144.1 �9 "L 

19.23 - 1.33 NL. (42) 

Thus, from the gauge-invariant, renormalization-group 
invariant, on-shell quantity (32) we have derived the re- 
normalization-group improved, two-loop expression (39) 
for the scale-dependence of the ratio of two gauge-depen- 
dent artifacts of the MS scheme and also the boundary 
condition (41) to the level commensurate with three-loop 
MS renormalization. 

It is clear that on-shell wave-function renormalization 
corresponds in many respects with on-shell mass [7] re- 
normalization: each is gauge-invariant; each determines 
a gauge-invariant anomalous dimension; the finite parts 
of each at two loops are needed to relate off-shell results 
of the MS scheme at three loops to physical quantities; 
these finite parts are large. For comparison with (42), 
note that the corresponding coefficient of ~2(M)//r2 in 
zMS(M)/Zm =M/rh(M) is K = 16.11 - 1.04 NL [7]. 

Finally, we remark on the relation between the lead- 
ing behaviour of (32) and the one-loop EFT anomalous 
dimension ~j of heavy-light QTu(75)q currents, apparent 
in the logarithms of [15] and elucidated in [-14]. From 
our point of view, it is best obtained from the gauge- 
invariant one-loop dimensionally regularized singularity 
of (32), associated with an on-shell fermion: 

~j  = 1 (~F - -  ])F) -~ 0 (~2 )  : __ ~s/Tg + O ( ~ ? )  : - -  l ~ m  -~- O ( ~ ? ) .  

(43) 

In the Landau gauge, one may blame it all on the static- 
quark field, since the coupling and the light-quark field 
are regular: 

~, = �89 = 0) + o(a~) .  

In the Yennie gauge, the static-quark field is regular, 
but the divergence of the coupling has the opposite sign 
to that of the light-quark field and twice its magnitude, 
since the light-light t]y~(75 ) q current is conserved: 

'TJ = (�89 - 1) 7v (,:i = 3) + O (8~z). 

The O (c~ 2) corrections to the relations between the anom- 
alous dimensions of (43) are studied in detail in [16], 
in an arbitrary covariant gauge. 

5 Complete on-shell two-loop renormalization of QED 

We achieve this in three stages. First we give exact re- 
sults, in D dimensions, for all the two-loop renormaliza- 
tion constants of 'pure '  QED, uncomplicated by elec- 
troweak effects or the existence of # and z. In other 
words, we effect the two-loop on-shell renormalization 
of the U(1) gauge theory of a single fermion in D dimen- 
sions. Then we give the Laurent expansions of the renor- 
malization constants, including finite parts. Finally we 
indicate how these are modified by the addition of other 
leptons. We take no account of the existence of weak 
interactions. 

5.1 D-dimensional QED, without integration 

There is only one more independent renormalization 
constant to determine in QED: the on-shell photon 
wave-function renormalization constant Z3, which also 
determines the charge renormalization eZ=e2/Z3, 
thanks to the Ward identity [30] Z1 = Z2. 

In comparison with Z m and Z2, we find it rather 
easy to calculate Z3=I/(I+H(O)) , to two loops, from 
the bare-photon self energy /-/(q2) at  q2=0. One has 
merely to operate on self-energy diagrams with 
(02/Oq~cqq~) and then set the external momentum q to 
zero. This results in a series of bubble diagrams, with 
four insertions of gamma matrices, which add up to give 
//(0) times the constant tensor 

(02/O q~,aq~)(quqv-qZ gu~)= gu~,gvp + gwgu~- 2 gu~,g~,p. 

The one-loop integrals give a multiple of F(~o), along 
with obvious powers of n, eo and mo. Very conveniently, 
every two-loop integral [-7] gives a rational function of 
D times/-2 (0~). It is thus a simple matter of book-keeping 
to obtain the two-loop expansion in terms of the bare 
quantities and then use the one-loop renormalization 
of eo and mo to express Z 3 in terms of the physical charge 
e R and physical mass M in any dimension D. A short 
REDUCE program yields 



e 2 _ 7 _  4{ e~ r(co) 
eg - ~3 - 1 - ~ k(4 n)D/2 M 2 ~] 

. . . .  [ e~r(~)  \2 
- ( o )  k ( 4 ~ : , o - ]  +O(e  6) (44) 

where eR is the D-dimensional physical coupling con- 
stant, measured at zero momentum, and 

2 (D-4 )  {2+(D-4)(De-8D+9)}. (45) 
BCD)= D(D- 3)(D-- 5) 

The simple rationality of(45) belies its power. It deter- 
mines not only how the two-loop coupling of any off- 
shell scheme runs, but also the boundary condition for 
the integral solution to the renormalization-group equa- 
tion for the running coupling. The former information 
is encoded by the leading behaviour as D ~ 4: B' (4) = 1 ; 
the latter by the next-to-leading behaviour: B" (4) = -- 15/ 
2. Merely by manipulating gamma matrices and gamma 
functions in D-dimensions at zero momentum, we obtain 
these two crucial numbers, which require the running 
coupling ~(#) of the MS scheme to satisfy 

n n 2 M ~ [1 M 15\ 2 
a(,)- l~ l~ )+ o( o) 

(46) 

where cr e~4n is the fine structure constant, as 
D~4 

measured in 4 dimensions. To obtain (46), one has merely 
to equate the D-dimensional MS ansatz 

e2 [#2e~\~~ ( ~(lt) ,4n / ~ ( Z ~  ~ )  ~=[L:~_:_{ ~(#) 1+ --n c01 "l- + 

+ 0 (~3)] (47) 
/ 

to Z 3 ~ e~4n and require that ~(p) be finite in 4 dimen- 
sions. This physical constraint on the MS scheme yields 
the subtraction constants of (47) and the solution (46) 
to the renormalization-group equation [-31] 

fl(c~(#))-- 2co + d log ~(#) _ 2 ~(#) -~ 1 ~2 (#) 1-- 0 ({~3). (48) 
d l o g #  3 n 2 n 2 

Thus the on-shell Z 3 contains, in its finite part, more 
information than can be obtained by ultraviolet subtrac- 
tion: it tells the QED MS coupling where to run to, 
in order to agree with on-shell data, rather than leaving 
it with an integration constant like the astronomic value 
of AQED~'M exp(3 n/2c 0 [31, 33]. This finite information 
is as easy to obtain from (44, 45) as is the beta function. 

Lest it be thought that this virtue of on-shell renor- 
malization is peculiar to the infrared freedom of QED, 
we remark that an analogous situation arose concerning 
the relationship between the pole and MS masses of 
heavy quarks in QCD [7]. There one was in the ironic 
situation of knowing the three-loop anomalous dimen- 
sion 7., [11], but being unable to use it to relate constitu- 
ent and current quark masses, for lack of the finite two- 
loop part of Zm. This state of affairs was remedied in 
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[-7], where it was shown that the finite on-shell two-loop 
term dominates the next-to-leading corrections. 

These two examples show the utility of obtaining on- 
shell renormalization constants in D-dimensions, in 
order to extract physically relevant finite parts, as well 
as anomalous dimensions. We therefore give a complete 
description of the on-shell two-loop renormalization of 
QED in any dimension by complementing (44) with the 
corresponding expansions of Zm and Z2 in terms of the 
physical charge and mass: 

D--l[ e?~ r(co) 
Zm = 1 - ~ ~(4 ~ 2  o~] 

3 Rjl e2RF(co) \2 
+ ~ Mi(D)-~-[( 4 ~ 2 d } * ' * \  ,v ,'- / +O(e6) (49) 

j= l  

_D-l[  e 2F(co) t 
Zz=l D-3 k(4n)D/ZM2'~ 

3 + ZFj(D) Rj{ eZF(co) t 2 j=l ~ \ ( 4 ~ / z ~ 2 d ]  +O(e 6) (50) 

where the rational functions multiplying the integral 
structures (14) are obtained from the coefficients of Ta- 
bles 1 and 2 as follows: 

4(D-- 1) 
Mj(D)= --2mly+mzj+2m4~ 3(D-3)  t~jl (51) 

D(D-- 1) 
F j ( D ) = - 2 F I j + F 2 i + 2 F 4 j +  3(D--3) 6j~ 

+ (1 + D/4) Ms(D ) (52) 

by setting CA=NL--0 and C F =  TF=I in (17) and using 
(44) to transform to the physical charge. The explicit 
forms of these coefficients involve polynomials in D of 
orders up to 10. Their Laurent expansions are used in 
the next section. 

We remark that the rationality of D-dimensional cal- 
culation extends beyond the calculation of renormaliza- 
tion constants. It is clear that the two-loop anomalous 
magnetic moment calculation involves only zero-mo- 
mentum insertions in Fig. 1 a, b, d, e, after differentiating 
with respect to an infinitesimal external photon momen- 
tum. Thus g - 2  to two loops, in D-dimensions, can like- 
wise be reduced to the same three integral structures, 
by systematic computer algebra, quite free of anything 
remotely resembling integration over Feynman or 
Schwinger parameters. 

Nor does the avoidance of integration end here, since 
one of us has found [19] that the sole recalcitrant inte- 
gral, I(o~), may be reduced, in any dimension, to F func- 
tions and a single Saalschiitzian 3F2 series, whose power 
expansion in co can be found up to the level required 
for four-loop calculations by a combination of finite 
group theory and known special cases of related series, 
mainly culled from Hardy's lucid exegesis [32] of 
Chapter XII of Ramanujan's notebook. This expansion 
involves {Liv(1 ), Lip(�89 yet no Spence integral is 
ever encountered; computer algebra suffices. 



120 

We defer consideration of g - 2  and higher-order 
terms in 1(o)) to subsequent papers, here making the 
general point that, by mere book-keeping in D dimen- 
sions, much may be calculated which previously ap- 
peared to entail very difficult integrations in four dimen- 
sions, and exemplifying this by our rational results (45, 
51, 52), which give the two-loop renormalization con- 
stants (44, 49, 50). 

5.2 Laurent expansion for one-lepton QED 

Before giving the 0 ) ~  0 behaviour of (44, 49, 50), there 
is an important observation to make regarding the D- 
dimensional physical charge eR, lest our subsequent for- 
mulae be misunderstood. 

In D dimensions, the on-shell charge, eR, necessarily 
has mass dimension ( 4 -  D)/2- 0). This is an ineluctable 
consequence of having a dimensionless action [31]. It 
follows that the L-loop term of the expansion of a dimen- 
sionless quantity (such as g -  2 or a renormalization con- 
stant) will involve e~ L divided by some physical mass 
or momentum scale (such as M) to the power 2Le), as 
is the case in (44, 49, 50). There will also be the inevitable 
factor of (4rc/eT) L~' which results from the surface of the 
unit sphere in D-dimensions, 2~D/2/F(D/2), divided by 
the (2 ~)D factor of Fourier transformation. It is therefore 
very convenient, though not logically necessary, to intro- 
duce the shorthand notation 

_ e~ [ 4re ~o~ 
aM = ~  ~eTeQ (not a running coupling). (53) 

The important point is that when one has obtained a 
result for a finite quantity, such as g - 2 ,  one may take 
the limit co--* 0 and express the answer in terms of the 
experimentally determined 4-dimensional coupling 

a -  lim a~t= 1/137.036 ... (forallM). 
D~4 

(54) 

By this device we are able to present two-loop results 
uncluttered by factors from the expansion 

rcog/ = ~ & ]  {0) -2+2( l~176  1 

+ 2 (log 4 rc - 7 - log M2) 2 + O (0))} 

which, whilst formally correct, looks dimensionally puz- 
zling at first sight. What  it means is that one should 
use the same mass unit to express the values both of 
M and of eg, for co+0. Thus one might as well work 
with units in which M 2 =4re/eL Only when there is an- 
other mass scale in the problem, as in the next Sect., 
need one concern oneself with logarithms. 

In terms of aM, we find 

Z3 = 1 __ { 1 0 ) -  1 _.[_1~(2) 0) _[_ O(0)2)} aM 
7[ 

2 
C~M 3 __ {1 (O - 1  _.}._ [g .4_ 0 (09)} ~ -  q- 0 (aM) (55) 

Z 2 = 1 - { �88 + 1 + (~ - ( (2 )+  2)0) + 0(r ~,t 
/'C 

+{~co-2• ~ +n2 log2 

--~-((3)- ~2* ~ (2) + v6851152 -[- 0(0))} 

. a~ + o(ag,) /.~2 (56) 

Z m ~ -  1 __ { 3 0 ) -  1 _~. 1 +(~-((2)+ 2)(~ + O(~o2)} ~ u  
7[ 

. rg~ tu + log2 
_ _ 3 ~ ( 3 ) ,  3 ~ ( 2  ) ~_ 1169 ~_ 0 (0))} 

7~ 2 
(57) 

where, as ever in on-shell two-loop renormalization, one 
should retain the one-loop 0(0)) terms, since they may 
later be multiplied by the one-loop O(1/0)) terms of an- 
other expansion. The numerical values of the finite parts 
of the coefficients of a 2 / g  2 in (56) and (57) are 0.86 and 
1.09, respectively, indicating considerable cancellations 
between the four terms in each analytical result. 

5.3 Laurent expansion for multi-lepton QED 

To two loops, the effect of adding more leptons is easy 
to specify in the case of Z3" given a set of leptons of 
masses {Mi l i= l ,  NIo~}, one merely replaces eM in the 
one-loop term of (55) by ~au~,  and a~ in the two-loop 

i 
term by ~a~t,.  There are no cross terms, to two loops. 

At first sight this might seem odd, since the bare self 
energy is iterated in Za = 1/(1+H(0)), which does pro- 
duce cross terms in the expansion in powers of the bare 
charge. However, these are removed when one performs 
one-loop charge renormalization. The corresponding ef- 
fect on (46) is to replace log M/# by ~ log Mi/#. Thus 

i 
the effect of the # and z leptons on the MS coupling 
at the electron mass is rather substantial: 

MuM~ a ( 2  MuM ~ 15) _ ~ _ ~ 2 1 o g ~ + ~  log m~ 16 

+ 0 (a 2) + 0 (0)). (58) 

Only in one-lepton QED is it a good approximation 
[31] to take cT(Me)~cc 

The changes to the renormalization constants (56, 57) 
of one lepton, with mass M, due to another lepton, with 
mass Mi = rM, are to add the following corrections 

- ~ 1 l logr_56+23(r)~a ~ AZ2 (59) 

5+241ogr  l l o g 2 r + ~ l o g  r 
A Zm = -- q 48 0) 2 

3 71 ) aj~/ 
+ g ~ (2) + ~ -  2 A (r)~ rc 2 (60) 



where, given the gross disparity between lepton masses, 
it is a good approximation to work with the appropriate 
limiting forms of the dilogarithms (23, 27), given by (24, 
28) when r >> 1, or by (25, 29) when r ~ 1. 

Note that on-shell charge renormalization ensures 
that the mass-dependent singular term, co- a log r, in the 
bare correction (22), is absent from the renormalized cor- 
rection (59). Correspondingly, the absence of such a term 
from (26) entails its appearance in (60). There seems, in 
general, to be no particular reason why either renormal- 
ization constant should be well-behaved as r ~ oo, since 
only relationships between observable quantities satisfy 
decoupling theorems. The mass singularities of renor- 
malization will cancel those in the truncated bare Green 
functions, to ensure decoupling of internal heavy-lepton 
effects from renormalized light-lepton Green functions. 

6 Summary and conclusions 

In dimensionally regularized QED, Z 2 is gauge-invariant 
to all orders, by virtue of the Johnson-Zumino [12] iden- 
tity (6). We are not aware of a non-abelian generalization 
of this result. Nevertheless, Z2 is gauge-invariant at the 
two-loop level in QCD, thanks to intricate cancellations 
between the diagrams of Fig. 1. We take this as strong 
evidence of its gauge invariance in general. 

The precise form of Z2 at two loops provides a link 
between the MS renormalization of a heavy-quark field 
in QCD and in the effective field theory [13, 14] obtained 
by letting M ---, oo. To convert MS-renormalized truncat- 
ed Green functions to on-shell S-matrix elements in 
QCD and EFT one must multiply by the factors 
(zMS(#)/Z2) N~/2 and (2~s(~)/22) NE/2, respectively, for pro- 
cesses with NE external heavy quarks. But in dimension- 
ally regularized EFT, with one or more infinite-mass 
quarks and NL zero-mass quarks, there is no on-shell 
wave-function renormalization, since the on-shell self en- 
ergy is scale free. Thus ratios of S-matrix elements differ 
from ratios of renormalized Green functions by powers 
of the factor R(#)=--(zMS(#)/zL)/ZMS(~), where Z L in- 
cludes the effects of light quarks and gluons in QCD, 
but excludes the effects of heavy-quark loops, since these 
are discarded in EFT. The factor R(p) must be finite. 
Its # dependence is therefore determined by the singular 
terms in Z }, from which we have obtained the gauge- 
invariant difference (35) between the anomalous dimen- 
sions of the heavy-quark field in QCD and EFT. Renor- 
malization-group improvement then gives 

R (#) ~ R (M) \ ~ s ~ ]  \ 1 ~  ~ }  

where b~=ll--~-NL, ~2-162 w _175 or 425337~o for NL=3 or 4, 
and the integration constant is found from the finite part 
of Z L to be 

R (M)~ 1 + ~s(M)/rc + (19.23 -- 1.33 NL) 42 (M)/n 2 

whose two-loop term is commensurate with three-loop 
MS renormalization and, like the corresponding term 
[7] in z~S(M)/Zm, is numerically large. 
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These results were obtained from the exact D-dimen- 
sional rational functions of Tables 1 and 2, found by 
implementation of the recurrence relations of [7] in a 
REDUCE [23] program which involves no integration 
whatsoever. For convenience, the resultant Laurent ex- 
pansions are given in Table 3, before coupling renormal- 
ization, and Table 4, after MS renormalization of the 
QCD coupling. The EFT anomalous dimension 

( d -  3) CF as 
7r -- 2re 

l i d  2 ~ 179\ 2 NL~--'I CF~ +O(~3) 

was obtained from the singular terms of Table 4 and 
the corresponding QCD result [20]. It has been verified 
[16] by an analogous implementation of the recurrence 
relations for the off-shell two-loop integrals of EFT. 

This complete avoidance of integration, or infinite 
summation, is familiar in massless QCD [22] and clearly 
capable of extension to EFT. What is more surprising 
is that the two-loop on-shell two- and three-point func- 
tions of pure QED fall into the same category of rational 
simplicity in D dimensions, as exemplified by the com- 
plete account of two-loop renormalization given, for all 
D, by (44, 49, 50) and, for D --+ 4, by (55-57). The classic 
two-loop result for g -  2 may also be viewed as a calcula- 
tion of the D--+ 4 limits of the three coefficients of the 
integral structures (14) to which all on-shell two-loop 
diagrams of the type of Fig. 1 are systematically reduc- 
ible. Indeed the value [18] 

g -- 2 = ~/~ + (~ (2) -- I (0) + ~27) o~2/rE 2 + 0 (~3) 

clearly demonstrates that 1(0)= rt 2 log 2 - ~  (3) is central 
to on-shell two-loop QED. This D = 4 value of the inte- 
gral (15) was obtained in [17] by evaluation of trilogar- 
ithmic integrals. But even that is unnecessary, since re- 
cently it has proved possible [19] to expand I(o3) 
through 0(o3 2) by purely algebraic methods. This expan- 
sion involves a fifth-order polylogarithm, Li5 (1) 

= ~ 2-"n-5, typical of four-loop QED calculations, yet 
n = l  

no integration is needed to obtain it. 
When one encounters a physically significant mass 

ratio, such as Me/M ~ in the calculation of the muon's 
anomalous magnetic moment, exact two-loop calcula- 
tion entails the evaluation of dilogarithms, by old- 
fashioned analytical techniques. We have given the corre- 
sponding effects (59, 60) on renormalization constants 
in terms of the dilogarithms (23, 27), whose limiting 
forms (24, 28) and (25, 29) are useful in QED. 

In conclusion: on-shell renormalization of a theory 
with a single mass scale enjoys much of the calculational 
simplicity of deep-euclidean MS renormalization. Its re- 
suits, however, are more powerful, since they determine 
both the MS counterterms and the finite parts needed 
to make contact with physical processes. On-shell renor- 
malization is also satisfyingly gauge-invariant. The phys- 
ical significance of this is that the gauge dependences 
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of  MS r e n o r m a l i z a t i o n  of  Q C D  and  E F T  cancel.  The  
impl i ca t ions  of  ou r  results  for the  t w o - l o o p  a n o m a l o u s  
d imens ions  of  E F T  cur ren ts  1-14, 15] l inking  s ta t ic  and  
massless  qua rks  are  unde r  s tudy  [16], as are  the  p ros -  
pects  of  ex tend ing  our  m e t h o d s  for mass ive  F e y n m a n  
in tegra ls  to three  loops  [19]. 
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